JP2005326468A - 光波長合分波器 - Google Patents

光波長合分波器 Download PDF

Info

Publication number
JP2005326468A
JP2005326468A JP2004142262A JP2004142262A JP2005326468A JP 2005326468 A JP2005326468 A JP 2005326468A JP 2004142262 A JP2004142262 A JP 2004142262A JP 2004142262 A JP2004142262 A JP 2004142262A JP 2005326468 A JP2005326468 A JP 2005326468A
Authority
JP
Japan
Prior art keywords
core
waveguide
demultiplexer
optical wavelength
side slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004142262A
Other languages
English (en)
Inventor
Koichi Maru
浩一 丸
Kensuke Matsui
研輔 松井
Hiroshi Ishikawa
弘 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004142262A priority Critical patent/JP2005326468A/ja
Publication of JP2005326468A publication Critical patent/JP2005326468A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

【課題】 コアとクラッドの比屈折率差Δを大きくした場合でも、溝での回折損失を小さく抑えることが可能である、小型かつ低損失な温度無依存型光波長合分波器を提供する。
【解決手段】 入力用チャネル導波路12、入力側スラブ導波路13、出力用チャネル導波路15、出力側スラブ導波路16、移相用チャネル導波路14からなるアレイ導波路型光波長合分波器10において、入力側スラブ導波路13に、導波路を形成するコア本体20よりも厚いコア厚肉部21を形成し、コア本体部20とコア厚肉部21の間にコアの厚さが連続的に変化するテーパー部24を形成し、コア厚肉部21に溝22を形成し、その溝22に光学樹脂23を充填したものである。
【選択図】 図1

Description

本発明は、光通信の分野に係り、特に、波長多重伝送を行う上で用いられる光波長合分波器に関するものである。
光通信の分野においては、複数の信号を別々の波長にのせ、一本の光ファイバで伝送し情報容量を増加する波長分割多重方式が検討されている。この方法では、異なる波長の光を合分波する光波長合分波器が重要な役割を果たしている。特に、マッハツェンダ干渉計やアレイ導波路回折格子を用いた光波長合分波器は、狭い波長間隔の合分波を実現可能にし、通信容量を容易に大きくできる利点がある。
図5に示すように、従来のアレイ導波路回折格子型光波長合分波器50は、入力用チャネル導波路41と、入力用チャネル導波路41に接続された入力側スラブ導波路42と、出力用チャネル導波路43と、出力用チャネル導波路43に接続された出力側スラブ導波路44と、入力側スラブ導波路42及び出力側スラブ導波路44に接続された複数の移相用チャネル導波路45とを有する。
入力用チャネル導波路41から入力した光波は入力側スラブ導波路42内を伝搬し、複数の移相用チャネル導波路45に入射する。光波はそれぞれの移相用チャネル導波路45を伝搬する際に位相変化を受け、出力側スラブ導波路44に伝搬する。出力側スラブ導波路44内の光波は干渉し、各出力用チャネル導波路43に到達する。ここで、光波の干渉パターンが波長により異なるため、光合分波機能が実現される。
ここで、従来の材料を用いて光波長合分波器を構成した場合、温度が変化すると、熱光学効果によって材料の屈折率が変化し、移相用チャネル導波路45の等価屈折率が変化する。さらに、熱膨張によって移相用チャネル導波路45の長さも変化する。これにより、温度によって移相用チャネル導波路45で光が受ける位相変化量が変化してしまう。この変化は波長によって異なるため、結果として出力される分波波長が変化してしまう。ここで、一例として石英系材料で構成した場合を考えると、光通信用波長帯である1.55μm付近での温度による分波波長の変化は0.01μm/℃となる。従って、例えば0〜60℃の環境温度で使用する場合には最大0.6μm波長がシフトしてしまう。このため、このままでは実用システムには使用できず、光回路の温度制御を行う必要がある。
そこで、温度無依存化の方法として光波長合分波器の一部に溝を設け、その中に屈折率の温度係数が光波長合分波器を形成する材料とは異なる材料を充填し、温度による位相変化の波長依存性を補償する方法がある(例えば、非特許文献1参照)。
一般的に、溝では光の閉じ込め構造が無いために、大きな回折損失が生じる。そこで、溝を複数に分割して溝一段当たりの回折損失を減らし、さらに溝同士を最適な溝間隔として、溝で集光する作用を生じさせることにより、溝全体としての回折損失を低減する方法がよく用いられる(例えば、非特許文献2参照)。
矩形導波路に溝を形成した場合、溝では基板に関して垂直方向と水平方向のいずれにも回折が生じ、この方法を用いたとしても十分に損失を下げることができないため、スラブ導波路に複数の楔型の溝を設けた例がある。
例えば、図5に示したように、入力側スラブ導波路42には、複数の楔型の溝46が形成され、その溝46内には光学樹脂47が充填され、その光学樹脂47により屈折率の温度依存性の補償を行っている。入力側スラブ導波路42では、基板に関して垂直方向の回折のみが損失に影響を及ぼすため、チャネル導波路に溝を形成した場合に比べ、損失が低減可能になる(例えば、非特許文献3参照)。
一方、光導波路を構成するコア材料とクラッド材料の比屈折率差Δを大きくすることにより、一般的に曲がり導波路の曲率半径を小さくし、素子の小型化及び低コスト化を実現する方法がある(例えば、非特許文献4参照)。
Y.Inoue等,「アサーマル シリカベースド アレイド−ウェーブガイド グレーティング マルチプレクサ(Athermal silica-based arrayed-waveguide grating(AWG) multiplexer )」,イーシーオーシー 97 テクニカル ダイジェスト(ECOC 97 Technical Digest),1997,p.33-36 A.Kaneko等,「アサーマル シリカベースド アレイド−ウェーブガイド グレーティングマルチプレクサ ウィズ ニュー ロウ ロス グルーヴ デザイン(Athermal silica-based arrayed-waveguide grating(AWG) multiplexers with new low loss groove design )」,オーエフシー ’99 テクニカル ダイジェスト(OFC'99 Technical Digest),1999,TuO1,p.204-206 Maru等 「アサーマル アンド センター ウェーブレングス アジャスタブル アレイド−ウェーブガイド グレーティング(Athermal and center wavelength adjustable arryed-waveguide grating)」,オーエフシー 2000 テクニカル ダイジェスト(OFC 2000 Technical Digest) Hida等,「ファブリケーション オブ ロウ−ロス アンド ポラライセイション−インセンシティブ 256 チャネル アレイド−ウェーブガイド グレーティング ウィズ 25GHz スペーシング ユーズィング 1.5%Δ ウェーブガイズ(Fabrication of low-loss and polarization-insensitive 256 channel arrayed-waveguide grating with 25GHz spacing using 1.5% Δ waveguides)」、エレクトロン.レター.(Electron.Lett.),2000,第36巻、第9号,p.820-821
しかしながら、温度無依存化したアレイ導波路回折格子型光波長合分波器50の比屈折率差Δを大きくした場合には、入力側スラブ導波路42に溝46を形成して、十分に溝46での放射損失が抑えられない問題点があった。
例えば、図6(a)及び(b)に示すように、Δ=0.8%と1.5%の各光波長分波器において、同じ溝幅で、損失が最小となる溝配置間隔での損失を比較すると、Δ=1.5%の光波長合分波器の方が最小損失が増加してしまっている。 そこで、本発明の目的は、上記課題を解決し、コアとクラッドの比屈折率差Δを大きくした場合でも、溝での回折損失を小さく抑えることが可能である、小型かつ低損失な温度無依存型の光波長合分波器を提供することにある。
上記目的を達成するために、請求項1の発明は、少なくとも1個以上の入力用チャネル導波路と、入力用チャネル導波路に接続された入力側スラブ導波路と、少なくとも1個以上の出力用チャネル導波路と、出力用チャネル導波路に接続された出力側スラブ導波路と、前記入力側スラブ導波路及び出力側スラブ導波路に接続された移相用チャネル導波路とからなるアレイ導波路型の光波長合分波器において、入力側スラブ導波路の一部に、前記導波路を形成するコア本体部よりも厚肉のコア厚肉部を形成し、そのコア厚肉部に溝を形成し、その溝内に光学樹脂を充填した光波長合分波器である。
請求項2の発明は、前記コア本体部の厚さはシングルモード条件を満たすよう、その厚さを調整して形成し、そのコア本体部と前記コア厚肉部とをコアの厚さが連続的に変化するテーパー部を介して断熱的に結合した請求項1記載の光波長合分波器である。
請求項3の発明は、前記コア本体部及び前記コア厚肉部と、前記テーパー部との各境界は円弧状になっており、それらの円弧の曲率中心は、前記入力用チャネル導波路と前記入力側スラブ導波路の境界付近に位置する請求項2記載の光波長合分波器である。
請求項4の発明は、前記コアとそのコアの周囲に形成するクラッドは石英系材料で形成され、コアとクラッドの比屈折率差は1.0%以上である請求項1〜3いずれかに記載の光波長合分波器である。
本発明によれば、温度無依存型の光波長合分波器の小型化及び損失の低減を図ることができるという優れた効果を発揮する。
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
図1は、本発明に係る光波長合分波器の好適な実施の形態を示した平面図である。
図1に示すように、光波長合分波器10は、石英基板11上に製作され、石英基板11上に入力用チャネル導波路12、入力側スラブ導波路13、長さが一定値ずつ異なる複数の移相用チャネル導波路14、複数の出力用チャネル導波路15及び出力側スラブ導波路16を有して構成されるアレイ導波路回折格子型光波長合分波器である。入力用チャネル導波路12、移相用チャネル導波路14、出力用チャネル導波路15は矩形断面構造をした導波路であり、入力側及び出力側スラブ導波路13,16は膜厚方向にのみ光の閉じ込め効果を持つ平板構造をした導波路である。
入力側スラブ導波路13と出力側スラブ導波路16は移相用チャネル導波路14を介して接続され、入力側スラブ導波路13は他端で入力用チャネル導波路12と接続され、出力側スラブ導波路16は他端で出力用チャネル導波路15と接続されている。入力側及び出力側スラブ導波路13、16は、複数の移相用チャネル導波路14を円弧状に結合した扇型に形成され、円弧の曲率中心は入力及び出力用チャネル導波路12,15と入力及び出力側スラブ導波路13,16との境界付近に位置する。光波長合分波器10は屈折率1.48のコアにより形成され、コアの周囲は屈折率1.457のクラッド17により埋め込まれている(比屈折率差Δ=1.5%)。
図2に示すように、本実施形態の光波長合分波器10を構成する導波路12,13,14,15,16のコアの厚さは4.3μmであるが、入力側スラブ導波路13には、コアの厚さ4.3μmのコア本体部20に対して、コアの厚さが10μmあるコア厚肉部21の領域が形成される。
コア厚肉部21はコア本体部20の中央に形成され、入力側スラブ導波路13の入力用チャネル導波路12側及び移相用チャネル導波路14側はコア本体部20で形成されている。そのコア厚肉部21とコア本体部20の間には、コアの厚さが連続的に変化するテーパー部24が形成される。よって、コア本体部20とコア厚肉部21は、テーパー部24により断熱的に結合される。
即ち、入力用チャネル導波路12から入射した光が、コア本体部20、テーパー部24、コア厚肉部21、テーパー部24、コア本体部20を導波して各移相用チャネル導波路14に入射するように、入力側スラブ導波路13のコアが形成される。
また、コア厚肉部21とテーパー部23との境界と、テーパー部23とコア本体部20との境界は、円弧状になっており、その円弧の曲率中心25は、入力用チャネル導波路12と入力側スラブ導波路13の境界付近に位置する。
さらに、このコア厚肉部21には、複数の楔形の溝22が形成され、すべての溝22に光学樹脂23が充填される。
溝22に充填された光学樹脂23の屈折率が、光波長合分波器10を構成する材料の屈折率と大きく異なるほど、光波長合分波器10の温度無依存化に効果的である。光波長合分波器10を石英系材料で構成する場合、その屈折率の温度依存性は正の値をとるので、光学樹脂23としては、屈折率の温度依存性が負の値をとるシリコーン系光学樹脂やエポキシ系光学樹脂等が用いられる。
次に、本実施形態の光波長合分波器10の作製手順を説明する。図4は、図1におけるA−A線に沿ったプロセス断面図である。
図4(a)に示すように、下地となる石英基板11上にコア材32を堆積する。コア材32がコア本体部20のパターンを形成する。
次に、図4(b)に示すように、シャドウマスク33を基板上に形成後、コア材34を成膜する。シャドウマスク33のマスクされていない箇所33aがコア厚肉部21のパターンを形成し、シャドウマスク33の庇部33bがテーパー部24のパターンを形成する。
シャドウマスクを用いたプロセスに関した文献に、例えば、伊藤等、”1.5%−Δ導波路を用いた超低損失アレイ導波路回折格子”,信学技報,OPE2002−16,2002,p,27−30 がある。
次に、図4(c)に示すように、シャドウマスク33を除去し、フォトリソグラフィ及びエッチング技術により導波路パターンを形成する。形成されるパターンは入力側スラブ導波路13であるが、同時に、出力側スラブ導波路16、入力用及び出力用チャネル導波路12,15、移相用チャネル導波路14も形成される。その後、化学的気相成長法によりクラッド17を成膜し、全ての導波路12,13,14,15,16はクラッド17に覆われる。
最後に図4(d)に示すように、入力側スラブ導波路13のコア厚肉部21の箇所に楔型の溝22を形成し、その溝22に光学樹脂23の充填を行い、光波長合分波器10が得られる。
次に本実施の形態の作用を述べる。
入力用チャネル導波路12から入力された光波は入力側スラブ導波路13において分光され、それぞれの光波は移相用チャネル導波路14を介して、出力側スラブ導波路16に伝搬する。ここで、各移相用チャネル導波路14は長さが異なるため、移相用チャネル導波路14内を伝搬する光波は位相変化を生じ、出力側スラブ導波路16においてそれぞれの光波が干渉し、波長の異なる光波が出力用チャネル導波路15の個々に集光することで光分波器機能が実現される。
本実施形態の光波長合分波器10では、入力側スラブ導波路13において、光波長合分波器10の温度無依存化のために光学樹脂23の充填された溝22が形成されるが、光学樹脂23の屈折率温度係数は、光波長合分波器10を構成する石英系材料の屈折率温度係数とは符号が異なるため、温度変化によりコアやクラッド17の屈折率が変化し、伝搬光に位相変化が生じても、光学樹脂23の屈折率変化によって、その位相変化を補償できる。これにより、光波長合分波器10の温度無依存化が実現できる。
ただし、溝22では光の閉じ込め機能がないため回折損失が生じ、コアの厚さが小さい程その損失は大きい。そこで、溝22が形成された入力側スラブ導波路13のコアの厚さを、従来の構造によるアレイ導波路のシングルモード条件を満たすコアの厚さよりも大きくしている。具体的には、コア厚肉部21を形成している。これにより、溝22での回折損失を大幅に低減することができる。
図3に、本実施形態の光波長合分波器10の入力側スラブ導波路13中の溝22において、溝幅をパラメータとしたときの溝配置間隔と損失との関係を示す。コアの厚さを10μmと大きくしたことにより、従来の比屈折率Δ=1.5%で入力側スラブ導波路のコア厚が均一である光波長合分波器に比べて、大幅に最小損失が低減されることがわかる。
コア本体部20とコア厚肉部21は、コアの厚さが連続的に変化するテーパ状コア材23により断熱的に結合されているため、コア本体部20からコア厚肉部21に入射した光は、コア厚肉部21の基本モードに無損失で結合させることができる。また、溝22において高次モードが生じた場合でも、コア本体部20は、ほぼシングルモード条件を満たすため、コア本体部20で高次モードを減衰させることができ、高次モードの影響によるクロストークの劣化を抑えることができる。
コア本体部20とコア厚肉部21では、基本モードの伝搬定数が異なるため、コア厚肉部21の領域形状によって入力側スラブ導波路13内での収差の原因となってしまい、光周波数特性を劣化させる可能性がある。しかし、本発明の光波長合分波器10はコア厚肉部21の領域とテーパ部23の境界は円弧状になっており、円弧の曲率中心25が入力用チャネル導波路12と入力側スラブ導波路13の境界付近に位置している。このため、入力用チャネル導波路12から入力側スラブ導波路13に入射、回折する光は入力側スラブ導波路13内でいずれの放射方向に対してもコア厚肉部21を等距離だけ伝搬することになり、伝搬方向の違いによって位相差が生じることを防ぎ、結果として収差が生じることを防ぐことが可能となる。
よって、光回路の小型化のために比屈折率差が1.5%の媒質で作製される温度無依存型の光波長合分波器10は、入力側スラブ導波路13のコアを厚く形成することで、光学樹脂23の充填された溝22での回折損失を低減することができ、コア厚肉部21はコア本体部20とテーパー状に結合し、その境界を円弧状に形成することで、移相用チャネル導波路14に入射する光に収差が生じることを防止し、優良な光学特性の得られる光波長合分波機能をもつ。
本発明の一実施形態である光波長合分波器を示す平面図である。 図1のA−A線断面図である。 図1の光波長合分波器における溝配置間隔と損失の関係を示す図である。 図1の光波長合分波器の作製工程を示す断面図である。 従来の光波長合分波器を示す平面図である。 図5の光波長合分波器における溝配置間隔と損失の関係を示す図であり、(a)は、比屈折率差Δを0.8%としたときの図であり、(b)は、比屈折率差Δを1.5%としたときの図である。
符号の説明
10 光波長合分波器
11 石英基板
12 入力用チャネル導波路
13 入力側スラブ導波路
14 移相用チャネル導波路
15 出力用チャネル導波路
16 出力側スラブ導波路
20 コア本体部
21 コア厚肉部
22 溝
23 光学樹脂
24 テーパー部
25 曲率中心

Claims (4)

  1. 少なくとも1個以上の入力用チャネル導波路と、入力用チャネル導波路に接続された入力側スラブ導波路と、少なくとも1個以上の出力用チャネル導波路と、出力用チャネル導波路に接続された出力側スラブ導波路と、前記入力側スラブ導波路及び出力側スラブ導波路に接続された移相用チャネル導波路とからなるアレイ導波路型の光波長合分波器において、入力側スラブ導波路の一部に、前記導波路を形成するコア本体部よりも厚肉のコア厚肉部を形成し、そのコア厚肉部に溝を形成し、その溝内に光学樹脂を充填したことを特徴とする光波長合分波器。
  2. 前記コア本体部の厚さはシングルモード条件を満たすよう、その厚さを調整して形成し、そのコア本体部と前記コア厚肉部とをコアの厚さが連続的に変化するテーパー部を介して断熱的に結合した請求項1記載の光波長合分波器。
  3. 前記コア本体部及び前記コア厚肉部と、前記テーパー部との各境界は円弧状になっており、それらの円弧の曲率中心は、前記入力用チャネル導波路と前記入力側スラブ導波路の境界付近に位置する請求項2記載の光波長合分波器。
  4. 前記コアとそのコアの周囲に形成するクラッドは石英系材料で形成され、コアとクラッドの比屈折率差は1.0%以上である請求項1〜3いずれかに記載の光波長合分波器。
JP2004142262A 2004-05-12 2004-05-12 光波長合分波器 Pending JP2005326468A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142262A JP2005326468A (ja) 2004-05-12 2004-05-12 光波長合分波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142262A JP2005326468A (ja) 2004-05-12 2004-05-12 光波長合分波器

Publications (1)

Publication Number Publication Date
JP2005326468A true JP2005326468A (ja) 2005-11-24

Family

ID=35472895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142262A Pending JP2005326468A (ja) 2004-05-12 2004-05-12 光波長合分波器

Country Status (1)

Country Link
JP (1) JP2005326468A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053636A (ja) * 2007-08-29 2009-03-12 Nippon Telegr & Teleph Corp <Ntt> 光導波回路およびその製造方法
KR100968891B1 (ko) 2007-12-14 2010-07-09 한국전자통신연구원 평탄한 파장 응답을 갖는 파장 분할 다중화기/역다중화기
US8086105B2 (en) 2007-12-14 2011-12-27 Electronics And Telecommunications Research Institute Wavelength division multiplexer/demultiplexer having flat wavelength response

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053636A (ja) * 2007-08-29 2009-03-12 Nippon Telegr & Teleph Corp <Ntt> 光導波回路およびその製造方法
KR100968891B1 (ko) 2007-12-14 2010-07-09 한국전자통신연구원 평탄한 파장 응답을 갖는 파장 분할 다중화기/역다중화기
US8086105B2 (en) 2007-12-14 2011-12-27 Electronics And Telecommunications Research Institute Wavelength division multiplexer/demultiplexer having flat wavelength response

Similar Documents

Publication Publication Date Title
US8369666B2 (en) Optical wavelength multiplexing/ de-multiplexing circuit
JP5399693B2 (ja) 光波長合分波回路
JP2007065562A (ja) アレイ導波路回折格子
JP3818169B2 (ja) 導波路デバイス
Kamei et al. 1.5%-/spl Delta/athermal arrayed-waveguide grating multi/demultiplexer with very low loss groove design
Inoue et al. Novel birefringence compensating AWG design
EP1373950B1 (en) Arrayed waveguide grating
KR20020092209A (ko) 광도파로 장치 및 그 제조 방법
Lin et al. Design analysis and experimental verification of cross-order AWG triplexer based on silica-on-silicon
JP2005326468A (ja) 光波長合分波器
Kamei Recent progress on athermal AWG wavelength multiplexer
JP4375256B2 (ja) 導波路型温度無依存光合分波器
JP4569440B2 (ja) 温度無依存光合分波器
JPH11160555A (ja) 光波長合分波器
JP4960201B2 (ja) 光波長合分波回路
JP4960202B2 (ja) 光波長合分波回路
Shen et al. High-performance silicon arrayed-waveguide grating (de) multiplexer with 0.4-nm channel spacing
Janz et al. Planar waveguide echelle gratings: an embeddable diffractive element for photonic integrated circuits
Mizuno et al. Uniform wavelength spacing Mach-Zehnder interferometer using phase-generating couplers
US7058262B2 (en) Arrayed waveguide grating
JP2007093721A (ja) 光波長合分波器
WO2020031865A1 (ja) 光合波器およびrgbカプラ
Takahashi Arrayed Waveguide Grating (AWG)
JP2005326561A (ja) 光波長合分波器
JP2002341158A (ja) アレイ導波路格子型光波長合分波器