JP2005320557A - Abrasion resistant member and manufacturing method therefor - Google Patents

Abrasion resistant member and manufacturing method therefor Download PDF

Info

Publication number
JP2005320557A
JP2005320557A JP2004137486A JP2004137486A JP2005320557A JP 2005320557 A JP2005320557 A JP 2005320557A JP 2004137486 A JP2004137486 A JP 2004137486A JP 2004137486 A JP2004137486 A JP 2004137486A JP 2005320557 A JP2005320557 A JP 2005320557A
Authority
JP
Japan
Prior art keywords
cemented carbide
mass
base material
hardened layer
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004137486A
Other languages
Japanese (ja)
Inventor
Tadashi Noda
正 野田
Takeshi Hasegawa
健 長谷川
Eiji Sakai
英治 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004137486A priority Critical patent/JP2005320557A/en
Priority to CN 200510069015 priority patent/CN1693518A/en
Publication of JP2005320557A publication Critical patent/JP2005320557A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abrasion resistant member having high abrasion resistance, and to provide a manufacturing method therefor. <P>SOLUTION: The abrasion resistant member consists of a base metal and a hardened layer harder than the base metal formed thereon, wherein the hardened layer comprises 60 to 20 mass% of matrix made of an Fe-Cr-C-based alloy, and 40 to 80 mass% of hard metal particles with an average particle diameter D50 of 60 to 800 μm, dispersed in the matrix of the alloy. Thus obtained abrasion-resistant member disperses a sufficient amount of the hard metal particles having such a size as to sufficiently develop the abrasion resistance in the hardened layer, and consequently provides high abrasion resistance. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種の産業機械の摩耗箇所に用いられる耐摩耗性部材およびその製造方法に関するものである。   The present invention relates to a wear-resistant member used for wear points of various industrial machines and a method for manufacturing the same.

鉄鋼やセメントを搬送するコンベアのレール、シュートライナなど、耐摩耗性が要求される部材には、母材上に硬化層を肉盛りした耐摩耗性部材が使用される。   For members that require wear resistance such as rails and shoe liners for conveyors that convey steel and cement, wear-resistant members with a hardened layer built up on a base material are used.

上記硬化層には、クロム炭化物を析出させたものが知られている。また、さらに耐摩耗性を高めるために、炭化タングステン粉末を硬化層に分散させることが考えられている(特許文献1)。
特開平11−172408号公報
The hardened layer is known to have chromium carbide precipitated. In order to further improve the wear resistance, it is considered to disperse the tungsten carbide powder in a hardened layer (Patent Document 1).
Japanese Patent Laid-Open No. 11-172408

しかし、炭化タングステンの粉末は、平均粒径D50が1μ以下と、非常に微細な粉末であるので、炭化タングステンのビッカース硬さ(Hv)が1500であるにも拘わらず、炭化タングステン粉末を分散させた硬化層の硬度は1000Hv程度と、十分な硬度が得られず、その結果、耐摩耗性も不十分であった。なお、平均粒径D50とは、全粒子質量に対する累積質量が50%となる粒子径をいう。   However, since the tungsten carbide powder is a very fine powder having an average particle diameter D50 of 1 μm or less, the tungsten carbide powder is dispersed even though the Vickers hardness (Hv) of tungsten carbide is 1500. Further, the hardness of the hardened layer was about 1000 Hv, and sufficient hardness was not obtained. As a result, the wear resistance was insufficient. The average particle diameter D50 refers to a particle diameter at which the cumulative mass with respect to the total particle mass is 50%.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、高い耐摩耗性を有する耐摩耗性部材およびその製造方法を提供することにある。   The present invention has been made against the background described above, and an object of the present invention is to provide a wear-resistant member having high wear resistance and a method for producing the same.

かかる目的を達成するための第1発明は、母材上に、その母材よりも硬い硬化層が形成されている耐摩耗性部材であって、その硬化層は、マトリックス合金が60質量%〜20質量%であり、そのマトリックス合金に平均粒径D50が60μm〜800μmの超硬合金粒子が40質量%〜80質量%分散されていることを特徴とする。   A first invention for achieving such an object is a wear-resistant member in which a hardened layer harder than the base material is formed on a base material, and the hardened layer has a matrix alloy of 60% by mass to 20 mass%, and cemented carbide particles having an average particle diameter D50 of 60 μm to 800 μm are dispersed in the matrix alloy in an amount of 40 mass% to 80 mass%.

第2発明は、母材上に、その母材よりも硬い硬化層が形成されている耐摩耗性部材の製造方法であって、(a)粒径が2.0mmよりも大きい超硬合金塊を粉砕して平均粒径D50が60μm〜800μmの超硬合金粒子を得る粉砕工程と、(b)その粉砕工程で得た超硬合金粒子とマトリックス合金粉末とを混合して、平均粒径D50が60μm〜800μmの超硬合金粒子を40質量%〜80質量%含む肉盛粉末を得る混合工程と、(c)その混合工程で得た肉盛粉末を母材上に肉盛溶接することにより、前記硬化層を形成する肉盛工程とを含むことを特徴とする。   The second invention is a method of manufacturing a wear-resistant member in which a hardened layer harder than the base material is formed on the base material, and (a) a cemented carbide ingot having a particle size larger than 2.0 mm Pulverizing the mixture to obtain cemented carbide particles having an average particle size D50 of 60 μm to 800 μm, and (b) mixing the cemented carbide particles obtained in the pulverization step with the matrix alloy powder to obtain an average particle size D50 A mixing step of obtaining a built-up powder containing 40 to 80% by weight of cemented carbide particles having a particle size of 60 μm to 800 μm, and (c) overlay welding the build-up powder obtained in the mixing step on the base material And a build-up process for forming the hardened layer.

第3発明は、第2発明において、前記超硬合金塊として使用済みの超硬工具を用いることを特徴とする。   A third invention is characterized in that, in the second invention, a used cemented carbide tool is used as the cemented carbide ingot.

上記第1発明よれば、硬化層中に、耐摩耗性を十分に発揮することができる大きさを有する超硬合金粒子が、十分量分散されているので、高い耐摩耗性が得られる。   According to the first invention, since a sufficient amount of cemented carbide particles having a size that can sufficiently exhibit wear resistance is dispersed in the hardened layer, high wear resistance can be obtained.

第2発明の製造方法により製造される耐摩耗性部材は、耐摩耗性を十分に発揮することができる大きさを有する超硬合金粒子が、十分量分散されている硬化層を有するので、高い耐摩耗性が得られる。また、第3発明によれば、使用済みの超硬工具を粉砕して超硬合金粒子を得るので、低コストで耐摩耗性部材を製造することができる。   The wear-resistant member produced by the production method of the second invention has a hardened layer in which a sufficient amount of cemented carbide particles having a size capable of sufficiently exhibiting the wear resistance is dispersed. Abrasion resistance is obtained. Further, according to the third invention, since the used cemented carbide tool is pulverized to obtain cemented carbide alloy particles, the wear resistant member can be manufactured at a low cost.

図1は、本発明の耐摩耗性部材の製造方法を示す工程図である。まず、粉砕工程P1において、粒径が2.0mmよりも大きい超硬合金塊を粉砕して、平均粒径D50が60μm〜800μmの超硬合金粒子を調製する。上記超硬合金塊は、第3発明のように、コストの面から、使用済み超硬工具を用いることが好ましいが、この超硬合金粒子を製造するために特別に製造してもよい。また、超硬合金塊の大きさは、粉砕して平均粒径D50が60μm〜800μmの粒子を製造できるほどに十分に大きければよいので、特に上限はない。   FIG. 1 is a process diagram showing a method for producing a wear-resistant member of the present invention. First, in the pulverization step P1, a cemented carbide ingot having a particle size larger than 2.0 mm is pulverized to prepare cemented carbide particles having an average particle size D50 of 60 μm to 800 μm. The cemented carbide ingot is preferably a used cemented carbide tool from the viewpoint of cost as in the third aspect of the invention, but may be specially produced to produce the cemented carbide particles. Further, the size of the cemented carbide ingot is not particularly limited as long as it is sufficiently large to be pulverized to produce particles having an average particle diameter D50 of 60 μm to 800 μm.

超硬合金としては、WC−Co系が好適に用いられるが、それには限定されず、WCが主体となっていれば、WC−TaC−Co、WC−TiC−Co、WC−TiC−TaC−Coなど、種々の合金を用いることもできる。   As the cemented carbide, WC-Co system is preferably used, but is not limited thereto, and WC-TaC-Co, WC-TiC-Co, and WC-TiC-TaC- are not limited thereto. Various alloys such as Co can also be used.

粉砕には、ボールミルなどの機械的な粉砕装置を使用する。粉砕の程度は、平均粒径D50が60μm〜800μmとなるように粉砕することが好ましいが、粉砕後に細粉(たとえば45μm以下のもの)や粗粉(たとえば2000μmまたは1000μm以上のもの)をふるいにより除去することにより、平均粒径D50が60μm〜800μmとなるようにしてもよい。   A mechanical grinding device such as a ball mill is used for grinding. The degree of pulverization is preferably such that the average particle diameter D50 is 60 μm to 800 μm. However, after pulverization, fine powder (for example, 45 μm or less) or coarse powder (for example, 2000 μm or 1000 μm or more) is sieved. By removing, the average particle diameter D50 may be 60 μm to 800 μm.

超硬合金粒子の平均粒子径D50を上記の範囲とするのは、粒径が小さすぎると耐摩耗性が十分に発揮できず、反面、粒径が大きすぎると、マトリックスに対する分散性が悪化し、また、硬化層の厚さに対して超硬合金粒子が大きくなりすぎると剥離しやすくなるからである。なお、硬化層の厚さとの関係では、超硬合金粒子は硬化層の厚さの1/3以下であることが好ましい。   The average particle diameter D50 of the cemented carbide particles is in the above range because if the particle size is too small, the wear resistance cannot be sufficiently exhibited. On the other hand, if the particle size is too large, the dispersibility to the matrix deteriorates. Moreover, if the cemented carbide particles become too large with respect to the thickness of the hardened layer, the particles are easily peeled off. In terms of the relationship with the thickness of the hardened layer, the cemented carbide particles are preferably 1/3 or less of the thickness of the hardened layer.

続く混合工程P2では、上記粉砕工程P1で得た超硬合金粒子と、硬化層のマトリックス成分となるマトリックス合金粉末とを、所定の割合で混合して、肉盛粉末とする。混合割合は、マトリックス合金粉末が60質量%〜20質量%含まれ、超硬合金粒子が40質量%〜80質量%含まれるようにする。このような混合割合とするのは、肉盛粉末中の超硬合金粒子が80質量%以上では、その肉盛粉末から成型される硬化層に割れや剥離が生じやすく、超硬合金粒子が40質量%以下となると、耐摩耗性を受け持つ超硬合金粒子の割合が少なくなりすぎて、十分な耐摩耗性が得られなくなるからである。   In the subsequent mixing step P2, the cemented carbide particles obtained in the pulverization step P1 and the matrix alloy powder serving as the matrix component of the hardened layer are mixed at a predetermined ratio to obtain a build-up powder. The mixing ratio is such that the matrix alloy powder is contained in an amount of 60% by mass to 20% by mass and the cemented carbide particles are contained in an amount of 40% by mass to 80% by mass. The mixing ratio is such that when the cemented carbide particles in the built-up powder are 80% by mass or more, the hardened layer molded from the built-up powder is easily cracked or peeled, and the cemented carbide particles are 40 This is because if the amount is less than or equal to mass%, the ratio of the cemented carbide particles having wear resistance becomes too small, and sufficient wear resistance cannot be obtained.

上記マトリックス合金としては、耐摩耗性材料としてよく知られているFe−Cr−C系の合金や、Ni基自溶性合金などを用いることができる。   As the matrix alloy, an Fe—Cr—C alloy well known as an abrasion resistant material, a Ni-based self-fluxing alloy, or the like can be used.

続く肉盛工程P3では、母材上に、上記混合工程P2で得た肉盛粉末を肉盛溶接する。そして、続く冷却工程P4では、肉盛溶接後の部材を冷却する。   In the subsequent overlaying process P3, the overlaying powder obtained in the mixing process P2 is overlay welded on the base material. And in the subsequent cooling process P4, the member after build-up welding is cooled.

上記母材としては、炭素鋼、ステンレス鋼などの鉄系基材を用いることができるが、アルミニウムやアルミニウム合金などの軽合金であってもよい。また、母材の形状は、板状(プレート状)、管状など、種々の形状を用いることができ、板状とする場合には、平板状としてもよいし、幅方向に湾曲した形状としてもよい。管状とする場合には、直管状であっても良いし、折れ曲がり部が形成されている形状であってもよい。   As the base material, an iron-based base material such as carbon steel or stainless steel can be used, but a light alloy such as aluminum or aluminum alloy may be used. In addition, the shape of the base material can be various shapes such as a plate shape (plate shape) and a tubular shape. When the shape is a plate shape, it may be a flat plate shape or a shape curved in the width direction. Good. In the case of a tubular shape, it may be a straight tubular shape or a shape in which a bent portion is formed.

肉盛り方法は、ガス溶接、アーク溶接、エレクトロスラグ溶接、プラズマアーク溶接、溶射など、特に制限無く種々の方法を用いることができる。また、上記肉盛粉末を母材上に載置して粉末層を形成し、加熱炉内にてその肉盛粉末を母材表面に溶着させることにより肉盛りする方法を用いることもできる。また、母材と硬化層との密着性を高めるために、肉盛前に、母材表面を粗面処理をしてもよい。   As the overlaying method, various methods such as gas welding, arc welding, electroslag welding, plasma arc welding, thermal spraying and the like can be used without particular limitation. Alternatively, a method may be used in which the build-up powder is placed on a base material to form a powder layer, and the build-up powder is welded to the surface of the base material in a heating furnace. Moreover, in order to improve the adhesiveness between the base material and the hardened layer, the surface of the base material may be roughened before the overlaying.

図2は、図1の肉盛工程P3および冷却工程P4に用いることのできる製造装置10の概略構成を示す図である。この製造装置10は、耐摩耗性部材としての耐摩耗性プレート12を連続的に製造できる装置の例である。この製造装置10は、ローラコンベア14を備えており、そのローラコンベア14の上流側から、ホッパ16、厚み調整板18、予熱機20、加熱炉22、保温機24が順に設けられている。   FIG. 2 is a diagram showing a schematic configuration of the manufacturing apparatus 10 that can be used in the build-up process P3 and the cooling process P4 of FIG. This manufacturing apparatus 10 is an example of an apparatus that can continuously manufacture the wear-resistant plate 12 as a wear-resistant member. The manufacturing apparatus 10 includes a roller conveyor 14, and a hopper 16, a thickness adjusting plate 18, a preheater 20, a heating furnace 22, and a heat insulator 24 are provided in this order from the upstream side of the roller conveyor 14.

ホッパ16には、予め調製された肉盛粉末26が投入され、ローラコンベア14上を母材28が一定の速度で移動させられることにより、ホッパ16内の肉盛粉末26が母材28上に順次供給される。母材28上に供給された肉盛粉末26の厚みは、厚み調整板18を通過させられることにより一様とされる。   The build-up powder 26 prepared in advance is put into the hopper 16, and the base material 28 is moved on the roller conveyor 14 at a constant speed, so that the build-up powder 26 in the hopper 16 is placed on the base material 28. Sequentially supplied. The thickness of the build-up powder 26 supplied on the base material 28 is made uniform by passing the thickness adjusting plate 18.

そして、一様の厚みで肉盛粉末26が載置された母材28は、予熱機20を経て加熱炉22内に搬送される。上記予熱機20は、加熱炉22の前での急激な温度変化を緩和するためのものであり、比較的低温で加熱するように設定されている。   Then, the base material 28 on which the overlaying powder 26 is placed with a uniform thickness is conveyed into the heating furnace 22 through the preheater 20. The preheater 20 is for reducing a sudden temperature change in front of the heating furnace 22, and is set to heat at a relatively low temperature.

加熱炉22は、肉盛粉末26に含まれるマトリックス合金粉末が溶融可能な温度(たとえば1100度程度)とされており、加熱炉22に、肉盛粉末26が載置された母材28が搬送されると、マトリックス合金粉末が溶融して、これにより、マトリックス合金粉末が互いに結合して、マトリックス合金粉末間に分散させられた超硬合金粒子がマトリックス合金に保持されるとともに、マトリックス合金が母材28の表面に溶着して、母材28の上に硬化層30が形成される。   The heating furnace 22 is set to a temperature (for example, about 1100 degrees) at which the matrix alloy powder contained in the build-up powder 26 can be melted, and the base material 28 on which the build-up powder 26 is placed is conveyed to the heating furnace 22. As a result, the matrix alloy powder is melted, whereby the matrix alloy powder is bonded to each other, and the cemented carbide particles dispersed between the matrix alloy powders are held in the matrix alloy, and the matrix alloy is A hardened layer 30 is formed on the base material 28 by welding to the surface of the material 28.

次いで、母材28は、加熱炉22の下流に設けられている保温機24へと搬送される。この保温機24は、加熱炉22の後での急激な温度変化を緩和するためのものであり、比較的低温で加熱するように設定されている。そして、母材24がさらに下流に搬送されると、自然冷却される。   Next, the base material 28 is conveyed to a heat retaining device 24 provided downstream of the heating furnace 22. The warmer 24 is for relaxing a rapid temperature change after the heating furnace 22 and is set to heat at a relatively low temperature. And if the base material 24 is conveyed further downstream, it will be naturally cooled.

次に、本発明の実施例を比較例とともに説明する。表1に、実施例および比較例のマトリックス合金の組成、超硬合金粒子の添加割合とその平均粒径D50、および、5時間摩耗試験における土砂摩耗量(g/5h)を示す。なお、超硬合金粒子の添加割合は、肉盛粉末、すなわちマトリックス合金と超硬合金粒子との合計重量に対する割合であり、マトリックス合金組成における各元素の質量%は、マトリックス合金中における割合である。また、母材には、軟鋼板(SS400)を、超硬合金粒子には、WC−8%Coを用いた。

Figure 2005320557
Next, examples of the present invention will be described together with comparative examples. Table 1 shows the compositions of the matrix alloys of Examples and Comparative Examples, the addition ratio of cemented carbide particles and the average particle diameter D50, and the amount of earth and sand wear (g / 5h) in a 5-hour wear test. The addition ratio of the cemented carbide particles is a ratio to the total weight of the overlaying powder, that is, the matrix alloy and the cemented carbide particles, and the mass% of each element in the matrix alloy composition is the ratio in the matrix alloy. . Further, a mild steel plate (SS400) was used as the base material, and WC-8% Co was used as the cemented carbide particles.
Figure 2005320557

また、平均粒径D50は、19種類のふるい(8、10、12、14、16、20、24、28、32、36、42、50、60、80、100、145、200、250、35メッシュ)によりふるい分けし、各ふるい上の重量を測定することにより、横軸が粒径、縦軸が累積頻度(%)である粒度加積曲線を作成して求めたものである。表2に、表1に示す平均粒径D50=800、200、80、20μmの超硬合金粒子の粒度分布を示す。

Figure 2005320557
The average particle diameter D50 is 19 kinds of sieves (8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 42, 50, 60, 80, 100, 145, 200, 250, 35). This is obtained by preparing a particle size accumulation curve in which the horizontal axis is the particle size and the vertical axis is the cumulative frequency (%) by sieving with a mesh) and measuring the weight on each sieve. Table 2 shows the particle size distribution of cemented carbide particles having an average particle diameter D50 = 800, 200, 80, and 20 μm shown in Table 1.
Figure 2005320557

また、5時間摩耗試験は、図3の概略図に示すように、円盤状の銅板40上に珪砂6号(42)を敷き詰め、耐摩耗性プレート12(2cm×2cm)を、硬化層30を下向きにして所定の荷重(4kg)を下向きに加えた状態で、銅板40に沿って摺動させることを5時間継続する試験である。   Further, in the 5-hour wear test, as shown in the schematic diagram of FIG. 3, silica sand No. 6 (42) is spread on the disk-shaped copper plate 40, the wear-resistant plate 12 (2 cm × 2 cm) is applied, and the hardened layer 30 is applied. In this test, sliding along the copper plate 40 is continued for 5 hours in a state where a predetermined load (4 kg) is applied downward.

表1において、マトリックス合金組成が同一であり、平均粒径D50も同じであるが、超硬合金粒子の添加割合が異なる実施例1と実施例8と比較例3との比較、および実施例6と実施例13と比較例4との比較から、超硬合金粒子の添加割合が少なすぎると、土砂摩耗量が多くなること、すなわち、耐摩耗性が不十分となることが分かる。なお、超硬合金粒子の添加割合を多くして、85%以上とすると、前述のように、割れや剥離が生じてしまい、土砂摩耗試験を行うことができなかった。   In Table 1, the matrix alloy composition is the same and the average particle diameter D50 is the same, but the addition ratio of the cemented carbide particles is different between Example 1 and Example 8 and Comparative Example 3, and Example 6 From comparison between Example 13 and Comparative Example 4, it can be seen that if the addition ratio of the cemented carbide particles is too small, the amount of earth and sand wear increases, that is, the wear resistance becomes insufficient. In addition, when the addition ratio of the cemented carbide particles was increased to 85% or more, as described above, cracking and peeling occurred, and the earth and sand wear test could not be performed.

また、マトリックス合金組成が同一であり、超硬合金粒子の添加割合も同じであるが、平均粒径D50が異なる実施例1と実施例6と実施例7と比較例1との比較、および実施例8と実施例13と実施例14と比較例2との比較から、超硬合金粒子の添加割合が多くても、平均粒径D50が小さすぎると、耐摩耗性が不十分であることが分かる。なお、平均粒径D50を800μmよりも大きくすると、表面の凹凸が大きくなりすぎ、また、マトリックス合金に対する分散が不十分となってしまうので、不適当である。   In addition, the matrix alloy composition is the same, and the addition ratio of the cemented carbide particles is also the same, but the average particle diameter D50 is different, and the comparison between Example 1, Example 6, Example 7, and Comparative Example 1 is carried out. From comparison between Example 8, Example 13, Example 14, and Comparative Example 2, even if the addition ratio of the cemented carbide particles is large, if the average particle diameter D50 is too small, the wear resistance may be insufficient. I understand. In addition, if the average particle diameter D50 is larger than 800 μm, the surface unevenness becomes excessively large and the dispersion with respect to the matrix alloy becomes insufficient.

さらに、実施例1〜7の比較、および実施例8〜14の比較から、平均粒径D50の大きさ、および超硬合金粒子の添加割合が適当であれば、マトリックス合金の組成に関係なく十分な耐摩耗性が得られることが分かる。   Furthermore, from the comparison of Examples 1 to 7 and the comparison of Examples 8 to 14, if the average particle size D50 and the addition ratio of the cemented carbide particles are appropriate, it is sufficient regardless of the composition of the matrix alloy. It can be seen that excellent wear resistance can be obtained.

以上、本発明の実施の形態を説明したが、本発明は上述の実施形態に限定されず、当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

本発明の耐摩耗性部材の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the wear-resistant member of this invention. 図1の肉盛工程および冷却工程に用いることのできる製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the manufacturing apparatus which can be used for the build-up process and cooling process of FIG. 耐摩耗性を評価するための5時間摩耗試験の試験方法を示す概略図である。It is the schematic which shows the test method of the 5-hour abrasion test for evaluating abrasion resistance.

符号の説明Explanation of symbols

10:製造装置、 12:耐摩耗性プレート(耐摩耗性部材)、 14:ローラコンベア、 16:ホッパ、 18:厚み調整板、 20:予熱機、 22:加熱炉、 24:保温機、 26:肉盛粉末、 28:母材、 30:硬化層、 40:銅板、 42:珪砂6号 10: Manufacturing apparatus, 12: Abrasion resistant plate (abrasion resistant member), 14: Roller conveyor, 16: Hopper, 18: Thickness adjusting plate, 20: Preheater, 22: Heating furnace, 24: Insulator, 26: Overlay powder, 28: Base material, 30: Hardened layer, 40: Copper plate, 42: Silica sand No. 6

Claims (3)

母材上に、該母材よりも硬い硬化層が形成されている耐摩耗性部材であって、
該硬化層は、マトリックス合金が60質量%〜20質量%であり、該マトリックス合金に平均粒径D50が60μm〜800μmの超硬合金粒子が40質量%〜80質量%分散されていることを特徴とする耐摩耗性部材。
A wear-resistant member in which a hardened layer harder than the base material is formed on the base material,
In the hardened layer, the matrix alloy is 60% by mass to 20% by mass, and cemented carbide particles having an average particle diameter D50 of 60 μm to 800 μm are dispersed in the matrix alloy by 40% by mass to 80% by mass. Wear resistant member.
母材上に、該母材よりも硬い硬化層が形成されている耐摩耗性部材の製造方法であって、
粒径が2.0mmよりも大きい超硬合金塊を粉砕して平均粒径D50が60μm〜800μmの超硬合金粒子を得る粉砕工程と、
該粉砕工程で得た超硬合金粒子とマトリックス合金粉末とを混合して、平均粒径D50が60μm〜800μmの超硬合金粒子を40質量%〜80質量%含む肉盛粉末を得る混合工程と、
該混合工程で得た肉盛粉末を母材上に肉盛溶接することにより、前記硬化層を形成する肉盛工程と
を含むことを特徴とする耐摩耗性部材の製造方法。
A method of manufacturing a wear-resistant member in which a hardened layer harder than the base material is formed on the base material,
A crushing step of crushing a cemented carbide ingot having a particle size larger than 2.0 mm to obtain cemented carbide particles having an average particle size D50 of 60 μm to 800 μm;
A mixing step of mixing the cemented carbide particles obtained in the pulverization step with the matrix alloy powder to obtain a built-up powder containing 40% by mass to 80% by mass of cemented carbide particles having an average particle size D50 of 60 μm to 800 μm ,
A build-up process for forming the hardened layer by overlay welding the build-up powder obtained in the mixing process on a base material.
前記超硬合金塊として、使用済みの超硬工具を用いることを特徴とする請求項2の耐摩耗性部材の製造方法。 3. The method for producing a wear-resistant member according to claim 2, wherein a used cemented carbide tool is used as the cemented carbide alloy lump.
JP2004137486A 2004-05-06 2004-05-06 Abrasion resistant member and manufacturing method therefor Pending JP2005320557A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004137486A JP2005320557A (en) 2004-05-06 2004-05-06 Abrasion resistant member and manufacturing method therefor
CN 200510069015 CN1693518A (en) 2004-05-06 2005-04-29 Wear resistance component and manufacturing method therof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137486A JP2005320557A (en) 2004-05-06 2004-05-06 Abrasion resistant member and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005320557A true JP2005320557A (en) 2005-11-17

Family

ID=35352641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137486A Pending JP2005320557A (en) 2004-05-06 2004-05-06 Abrasion resistant member and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2005320557A (en)
CN (1) CN1693518A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034902A1 (en) * 2006-09-22 2008-03-27 H.C. Starck Gmbh Metal powder
JP2017064664A (en) * 2015-10-01 2017-04-06 キヤノン株式会社 Mixture treatment equipment, mixture treatment method and toner manufacturing method
JP2017205803A (en) * 2016-05-20 2017-11-24 株式会社フジコー Manufacturing method and manufacturing apparatus of welding liner, and welding liner

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910418A (en) * 2012-09-28 2013-02-06 北京二七轨道交通装备有限责任公司 Roller guide rail and manufacturing method thereof, chain transmission system and subgrade treating vehicle
KR101565728B1 (en) * 2015-03-27 2015-11-03 박기홍 Method for Forming Hard Metal Cemented Carbide Layer by Welding Work Pieces with Cemented Carbide Powder
CN105838961A (en) * 2016-04-20 2016-08-10 苏州市相城区明达复合材料厂 Abrasion-resistant metal blade for cutting
JP7122459B2 (en) * 2019-03-27 2022-08-19 日本碍子株式会社 wear resistant material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256275A (en) * 1987-04-11 1988-10-24 Kubota Ltd Sliding member with excellent seizure resistance and wear resistance
JPH04337046A (en) * 1991-05-14 1992-11-25 Japan Steel Works Ltd:The Wear resistant composite material and formation of wear resistant lining layer
JPH0913177A (en) * 1995-06-29 1997-01-14 Tokushu Denkyoku Kk Cermet build-up metallic parts by welding and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256275A (en) * 1987-04-11 1988-10-24 Kubota Ltd Sliding member with excellent seizure resistance and wear resistance
JPH04337046A (en) * 1991-05-14 1992-11-25 Japan Steel Works Ltd:The Wear resistant composite material and formation of wear resistant lining layer
JPH0913177A (en) * 1995-06-29 1997-01-14 Tokushu Denkyoku Kk Cermet build-up metallic parts by welding and production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034902A1 (en) * 2006-09-22 2008-03-27 H.C. Starck Gmbh Metal powder
JP2010504426A (en) * 2006-09-22 2010-02-12 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Metal powder
KR101554047B1 (en) * 2006-09-22 2015-09-17 하.체. 스타르크 게엠베하 Metal Powder
US9856546B2 (en) 2006-09-22 2018-01-02 H. C. Starck Gmbh Metal powder
JP2017064664A (en) * 2015-10-01 2017-04-06 キヤノン株式会社 Mixture treatment equipment, mixture treatment method and toner manufacturing method
JP2017205803A (en) * 2016-05-20 2017-11-24 株式会社フジコー Manufacturing method and manufacturing apparatus of welding liner, and welding liner

Also Published As

Publication number Publication date
CN1693518A (en) 2005-11-09

Similar Documents

Publication Publication Date Title
US10781512B2 (en) Method of coating a body, granules for the method and method of making granules
JP3305357B2 (en) Alloy with excellent corrosion resistance and wear resistance, method for producing the same, and material for producing the alloy
JP4653721B2 (en) Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder
JP2002220652A (en) Powder for thermal spraying and manufacturing method therefor
JP2008000763A (en) Method for forming hardfaced layer
Li et al. Effect of solid carbide particle size on deposition behaviour, microstructure and wear performance of HVOF cermet coatings
JP2005320557A (en) Abrasion resistant member and manufacturing method therefor
JP6528106B2 (en) NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool
KR101638365B1 (en) Method for Forming Hard Metal Cemented Carbide Layer by Welding Work Pieces with Cemented Carbide Powder
JP4328715B2 (en) Ni-based self-fluxing alloy powder for thermal spraying and manufacturing method thereof
JP7404567B2 (en) Pulverized powder for additive manufacturing
KR101565728B1 (en) Method for Forming Hard Metal Cemented Carbide Layer by Welding Work Pieces with Cemented Carbide Powder
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JP2022144437A (en) Fe-based alloy and metal powder
JP2006206966A (en) Method for producing sputtering target material
CN111315919B (en) Member for in-bath facility, in-bath facility for molten metal, and apparatus for producing hot dip plated metal material
JP4652792B2 (en) Co-based self-fluxing alloy powder for thermal spraying
Zhudra Tungsten carbide based cladding materials
JP5300180B2 (en) Method of forming hardfacing layer
JPH0732189A (en) Composite power material for powder plasma welding
JP2003105517A (en) Construction method for protecting and repairing concrete
KR100369587B1 (en) Hot Coating for Welding a WC Layer to the Round Surface of a Plain Carbon Steel
JP3918608B2 (en) High frequency welding hardfacing powder
WO2019167148A1 (en) Member for equipment in bath, equipment in molten metal bath, and molten metal plating material production device
JPS63177997A (en) Composite welding material for build-up welding with plasma powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A02 Decision of refusal

Effective date: 20100629

Free format text: JAPANESE INTERMEDIATE CODE: A02