JPH04337046A - Wear resistant composite material and formation of wear resistant lining layer - Google Patents

Wear resistant composite material and formation of wear resistant lining layer

Info

Publication number
JPH04337046A
JPH04337046A JP13700991A JP13700991A JPH04337046A JP H04337046 A JPH04337046 A JP H04337046A JP 13700991 A JP13700991 A JP 13700991A JP 13700991 A JP13700991 A JP 13700991A JP H04337046 A JPH04337046 A JP H04337046A
Authority
JP
Japan
Prior art keywords
weight
wear
lining layer
boride
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13700991A
Other languages
Japanese (ja)
Inventor
Osamu Hida
肥田 修
Susumu Emi
江見 享
Katsunori Monma
門馬 勝則
Tei Chimura
禎 千村
Hideo Oyabu
大藪 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP13700991A priority Critical patent/JPH04337046A/en
Publication of JPH04337046A publication Critical patent/JPH04337046A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve wear resistance by thermally spraying a powder mixture having a specific chemical composition on a base material and forming a lining layer. CONSTITUTION:A powder mixture prepared by powdering an Ni-base self-fluxing alloy having a composition consisting of, by weight, 10-50% of carbide, 10-30% of boride, and further, as the components to be matrix, 2.0-4.0% B, <=6.0% Si, 0.1-1.0% C, 5.0-16.0% Cr, <=4% Fe, and the balance Ni with inevitable impurities is used. A lining layer is formed by thermally spraying the above-mentioned powder mixture on a base material. By this method, the wear resistant lining layer having superior abrasive wear resistance and reduced in attacks on mating materials can be formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、樹脂機械における押
出機や射出機のシリンダなどに好適な高耐摩耗性複合材
料および耐摩耗性ライニング層の形成方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly wear-resistant composite material suitable for cylinders of extruders and injection machines in resin machines, and a method for forming a wear-resistant lining layer.

【0002】0002

【従来の技術】樹脂機械における押出機や射出機のシリ
ンダは、樹脂組成物中のグラスファイバーなどの硬質添
加材との研摩耗やスクリュとの金属同士の接触による金
属間摺動摩耗により損耗を受けやすい。このため、従来
は、シリンダの内面に、耐摩耗性に優れたライニング層
を形成することによって摩耗を防止する手段が講じられ
ており、例えば、Ni 基自溶性合金にWC強化粒子を
10〜50重量%分散させた複合材料を、遠心鋳造法な
どによって溶解凝固させて、シリンダ内面にライニング
する方法が採用されている(特公昭54ー32413号
など)。上記複合材料は高い硬度を有しており、得られ
たライニング層は優れた耐アブレシブ摩耗特性を有して
いる。
[Prior Art] Cylinders of extruders and injection machines in resin machines are subject to wear and tear due to abrasive wear from hard additives such as glass fibers in resin compositions and metal-to-metal sliding wear due to metal-to-metal contact with screws. Easy to accept. For this reason, conventionally, measures have been taken to prevent wear by forming a lining layer with excellent wear resistance on the inner surface of the cylinder. A method has been adopted in which a composite material dispersed in weight percent is melted and solidified by centrifugal casting or the like and then lined on the inner surface of a cylinder (Japanese Patent Publication No. 32413/1983, etc.). The composite material has high hardness and the resulting lining layer has excellent abrasive wear resistance.

【0003】0003

【発明が解決しようとする課題】しかし、上記複合材料
では、マトリックスであるNi 基合金に比較してWC
強化粒子は比重が大きいため、Ni 基合金が溶融した
際に、WC粒子が比重差によりNi 合金溶湯中を沈降
し、その結果、WC粒子が密集した層とWCが殆どない
層に分離してしまう。WCが殆どない層では、硬度が不
足して十分な耐摩耗性が得られず、早期に摩耗してしま
い、またこれが相手材に凝着するなどの問題点がある。 このため、WCが殆どない層は、機械加工により除去す
る作業が必要となり、生産性を低下させる一因となって
いる。一方、WCが密集した層では、それ自体の耐摩耗
性は良好であるが、これと接触するスクリュなどの相手
材を著しく摩耗させる問題点がある。
[Problems to be Solved by the Invention] However, in the above composite material, compared to the Ni-based alloy that is the matrix, the WC
Since the reinforcing particles have a large specific gravity, when the Ni-based alloy melts, the WC particles settle in the Ni alloy molten metal due to the difference in specific gravity, and as a result, they are separated into a layer with dense WC particles and a layer with almost no WC. Put it away. A layer with almost no WC has problems such as insufficient hardness and insufficient wear resistance, resulting in early wear and adhesion to the mating material. For this reason, the layer with almost no WC needs to be removed by machining, which is one of the causes of lower productivity. On the other hand, a layer in which WC is densely packed has good wear resistance itself, but has the problem of causing significant wear on a mating material such as a screw that comes into contact with it.

【0004】これらの問題点に対処するものとして、本
願出願人は、炭化物強化粒子に代えて、比重の小さなほ
う化物強化粒子をNi 基自溶性合金中に分散させた複
合材料を提案している(特公昭58ー10458号)。 この複合材料によれば、ほう化物強化粒子が比重差によ
り沈降することはなく、ほう化物強化粒子はシリンダ表
面の上方側(内周側)に密集して耐摩耗特性を発揮する
。 しかし、ほう化物粒子は、炭化物粒子に比べて硬度が低
いため、この複合材料の耐アブレシブ摩耗特性は、炭化
物粒子を分散させた材料に比べてやや劣っている。そし
て、ほう化物粒子は、上記したようにシリンダ表面側に
密集するように偏在しているので、ライニングが摩耗す
ると、ほう化物粒子が少ないか、全くない層が露呈して
耐摩耗性が劣化するという問題点もある。
To address these problems, the applicant of the present application has proposed a composite material in which boride reinforcing particles with small specific gravity are dispersed in a Ni-based self-fusing alloy instead of carbide reinforcing particles. (Special Publication No. 58-10458). According to this composite material, the boride-reinforced particles do not settle due to the difference in specific gravity, and the boride-reinforced particles are concentrated on the upper side (inner circumferential side) of the cylinder surface and exhibit wear-resistant properties. However, since boride particles have a lower hardness than carbide particles, the abrasive wear resistance of this composite material is somewhat inferior to that of materials in which carbide particles are dispersed. As mentioned above, boride particles are concentrated and unevenly distributed on the cylinder surface side, so when the lining wears out, a layer with few or no boride particles is exposed, which deteriorates the wear resistance. There is also a problem.

【0005】この発明は、上記事情を背景としてなされ
たものであり、優れた耐アブレシブ摩耗特性を有すると
ともに、相手材に対する攻撃性が小さく、さらに強化粒
子をマトリックス中に均一に分散させることができる複
合材料および耐摩耗性ライニング層の形成方法を提供す
ることを目的とするものである。
[0005] The present invention was made against the background of the above circumstances, and has excellent abrasive wear resistance, is less aggressive to the mating material, and can furthermore uniformly disperse reinforcing particles in the matrix. It is an object of the present invention to provide a method for forming a composite material and a wear-resistant lining layer.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
、本願発明のうち、第1の発明の複合材料は、炭化物強
化粒子10〜50重量%と、ほう化物強化粒子10〜3
0重量%とを、Ni 基自溶性合金マトリックス中に均
一に分散させた耐摩耗性複合材料であり、前記Ni 基
自溶性合金は、B:2.0〜4.0重量%、Si :6
.0重量%以下、C:0.1〜1.0重量%、Cr:5
.0〜16.0重量%、Fe :4重量%以下、残部が
Ni および不可避的不純物からなることを特徴とする
ものである。
[Means for Solving the Problems] In order to solve the above problems, the composite material of the first invention of the present invention comprises 10 to 50% by weight of carbide reinforcing particles and 10 to 3% by weight of boride reinforcing particles.
This is a wear-resistant composite material in which B: 2.0 to 4.0 wt%, Si: 6.
.. 0% by weight or less, C: 0.1 to 1.0% by weight, Cr: 5
.. It is characterized by comprising 0 to 16.0% by weight, Fe: 4% by weight or less, and the remainder consisting of Ni and unavoidable impurities.

【0007】そして、第2の発明の耐摩耗性ライニング
層の形成方法は、炭化物10〜50重量%、ほう化物1
0〜30重量%、およびマトリックスとなる、B:2.
0〜4.0重量%、Si :6.0重量%以下、C:0
.1〜1.0重量%、Cr :5.0〜16.0重量%
、Fe :4重量%以下、残部がNi および不可避的
不純物からなるNi 基自溶性合金を粉末化した粉末混
合物または複合粉末を用いて、ライニングすべき母材上
に肉盛溶接または溶射してライニング層を形成すること
を特徴とするものである。
[0007] A method for forming a wear-resistant lining layer according to the second invention includes 10 to 50% by weight of carbides and 1% by weight of borides.
0 to 30% by weight and matrix, B:2.
0 to 4.0% by weight, Si: 6.0% by weight or less, C: 0
.. 1 to 1.0% by weight, Cr: 5.0 to 16.0% by weight
, Fe: 4% by weight or less, the balance being Ni and unavoidable impurities. Using a powder mixture or composite powder made of a powdered Ni-based self-fusing alloy, lining is performed by overlay welding or thermal spraying on the base material to be lined. It is characterized by forming a layer.

【0008】なお、本発明で用いられる金属炭化物には
、高硬度で耐アブレシブ摩耗特性に優れたものを使用す
るが、例えば、周期律表第IV、V 、VI属のWC、
TaC、NbCなどを使用する。また、ほう化物には、
自己潤滑性に優れ、耐凝着摩耗性の良好なものを用いる
が、例えば、周期律表第IV、V 、VI属のMoB、
CrBなどを使用する。そして、第2の発明で用いる粉
末には、炭化物、ほう化物、Ni 基自溶性合金の各構
成物をそれぞれ粉末化して混合する他に、各構成物の2
〜3種からなる合金を粉末化した複合粉末を用いること
もでき、また、2種以上の複合粉末を混合することも可
能である。 なお、粉末は、過度の溶解反応を防ぎ、しかも供給を円
滑に行えるように、平均粒径が20〜250μmとなる
ように調製するのが望ましい。なお、この発明で行う肉
盛溶接または溶射は、上記粉末に対応するものであれば
特に種別が限定されるものではないが、急速溶解、急速
凝固の点で粉体プラズマ溶接法が適している。
[0008] The metal carbide used in the present invention is one with high hardness and excellent abrasive wear resistance, such as WC of Groups IV, V, and VI of the periodic table,
TaC, NbC, etc. are used. In addition, borides include
Materials with excellent self-lubricating properties and good adhesive wear resistance are used, such as MoB from Groups IV, V, and VI of the periodic table,
Use CrB etc. In the powder used in the second invention, in addition to powdering and mixing each constituent of carbide, boride, and Ni-based self-fusing alloy, two of each constituent are mixed.
It is also possible to use a composite powder obtained by pulverizing an alloy consisting of ~3 types, and it is also possible to mix two or more types of composite powder. Note that the powder is desirably prepared to have an average particle size of 20 to 250 μm in order to prevent excessive dissolution reaction and to facilitate smooth supply. Note that the type of overlay welding or thermal spraying performed in this invention is not particularly limited as long as it is compatible with the above powder, but powder plasma welding is suitable in terms of rapid melting and rapid solidification. .

【0009】[0009]

【作用】すなわち、本願発明の複合材料によれば、マト
リックスへの炭化物粒子の分散によって、耐アブレシブ
摩耗特性が向上する。さらに、ほう化物粒子の分散によ
って相手材に対する攻撃性が低下する。これは、ほう化
物自体が潤滑材の役割を果たして、炭化物の攻撃性を和
らげ、かつ金属同士が癒着して起きる凝着摩耗を和らげ
るためと考えられる。したがって、炭化物粒子とほう化
物粒子との組合せによって、炭化物単体を分散させたも
のと同等で、ほう化物粒子単体を分散させたものよりも
優れた耐摩耗性が得られ、さらに相手材に対する攻撃性
が大幅に改善される。また、炭化物粒子とほう化物粒子
との組合せにより、比較的比重の大きい炭化物粒子間に
、比較的比重の小さいほう化物が入り込んで、強化粒子
の平均比重をマトリックスに近い値(例えば、5.0〜
10.0)にコントロールすることができ、特定粒子の
密集を防止する。
[Operation] That is, according to the composite material of the present invention, the abrasive wear resistance is improved due to the dispersion of carbide particles in the matrix. Furthermore, the dispersion of boride particles reduces the aggressiveness towards the mating material. This is thought to be because the boride itself plays the role of a lubricant, softening the aggressiveness of the carbide and also softening the adhesive wear that occurs when metals adhere to each other. Therefore, the combination of carbide particles and boride particles provides wear resistance equivalent to that obtained by dispersing carbide alone, and superior to that obtained by dispersing only boride particles, and is more aggressive against the mating material. is significantly improved. In addition, due to the combination of carbide particles and boride particles, the boride with relatively low specific gravity enters between the carbide particles with relatively high specific gravity, and the average specific gravity of the reinforcing particles is reduced to a value close to that of the matrix (for example, 5.0 ~
10.0) to prevent specific particles from crowding.

【0010】次に、本願発明の耐摩耗性ライニング層の
形成方法によれば、上記した複合材料からなるライニン
グ層が形成され、優れた耐摩耗特性が得られるとともに
、相手材に対する攻撃性が低下する。また、溶射または
肉盛溶接の採用によって、粉末は急速に溶解、凝固する
ので、前記した平均比重のコントロールと相まって、比
重の大きな炭化物の沈降を防止し、炭化物およびほう化
物粒子をマトリックス中に均一に分散させることができ
る。
[0010] Next, according to the method for forming a wear-resistant lining layer of the present invention, a lining layer made of the above-mentioned composite material is formed, which provides excellent wear-resistance properties and reduces the aggressiveness towards the mating material. do. In addition, by using thermal spraying or overlay welding, the powder melts and solidifies rapidly, which, combined with the control of the average specific gravity described above, prevents the precipitation of carbides with large specific gravity, and uniformly distributes carbide and boride particles in the matrix. can be dispersed into

【0011】さらに、本願発明の数値限定の理由を以下
に述べる。 炭化物粒子:10〜50重量% 炭化物粒子は、耐アブレシブ摩耗特性を向上させるため
に分散させるが、10重量%未満では、その作用は不十
分であり、また、過度に分散させると相手材に対する攻
撃性が増すので、上記範囲内とする。 ほう化物粒子:10〜30重量% ほう化物粒子は、自己潤滑性を発揮して相手材への攻撃
性を低下させるが、10重量%未満では、不十分である
。なお、同様の理由で、B換算で1重量%以上とするの
が望ましい。また、30重量%を越えると、抗折力など
の機械的特性を低下させるので上記範囲とした。
Furthermore, the reason for the numerical limitations of the present invention will be described below. Carbide particles: 10 to 50% by weight Carbide particles are dispersed to improve abrasive wear resistance, but if the amount is less than 10% by weight, the effect is insufficient, and if excessively dispersed, they may attack the mating material. Since this increases the performance, it should be within the above range. Boride particles: 10 to 30% by weight Boride particles exhibit self-lubricating properties and reduce the aggressiveness to the mating material, but if it is less than 10% by weight, it is insufficient. Note that, for the same reason, it is desirable that the amount is 1% by weight or more in terms of B. Moreover, if it exceeds 30% by weight, mechanical properties such as transverse rupture strength will deteriorate, so the content was set in the above range.

【0012】なお、上記炭化物粒子とほう化物粒子との
合算量は、上記限定に加え、20〜60重量%の範囲内
とするのが望ましい。これは、下限未満では、硬度不足
などの支障を来し、また、上限を越えると、抗折力など
の機械的特性を低下させるためである。さらに、同様の
理由により、この合算量を30〜50重量%の範囲とす
るのがより望ましい。また、炭化物およびほう化物の配
合比は、調整可能であるので各種用途に最適となるよう
に対応することができる。例えば、アブレシブ摩耗が激
しい場合には、炭化物量を多くし、金属同士の接触が激
しい場合には、ほう化物量を多くすることで最適な特性
を発揮するように設定することができる。
In addition to the above limitations, the total amount of the carbide particles and boride particles is preferably within the range of 20 to 60% by weight. This is because if it is less than the lower limit, problems such as insufficient hardness will occur, and if it exceeds the upper limit, mechanical properties such as transverse rupture strength will be degraded. Furthermore, for the same reason, it is more desirable that this total amount be in the range of 30 to 50% by weight. Furthermore, since the blending ratio of carbides and borides can be adjusted, it can be optimized for various uses. For example, when abrasive wear is severe, the amount of carbide can be increased, and when contact between metals is severe, the amount of boride can be increased to exhibit optimal characteristics.

【0013】次に、マトリックスとなるNi 基自溶性
合金の組成限定理由を述べる。 B:2.0〜4.0重量% Bは、自溶性を与えるために添加されるが、2.0重量
%未満では、その作用は不十分である。また、4.0重
量%を越えると、靭性が著しく低下するので上記範囲と
した。 Si :6.0重量%以下 Si は、Bと同様に自溶性を与えるために添加される
が、6.0重量%を越えると、靭性が低下するので上記
上限を定めた。 C:0.1〜1.0重量% Cは、炭化物を生成し、耐摩耗性を向上させるために添
加される。このCが0.1重量%未満であると、上記作
用が不十分であり、1.0重量%を越えると、耐摩耗性
を低下させるので、上記範囲とする。
Next, the reasons for limiting the composition of the Ni-based self-fluxing alloy that will serve as the matrix will be described. B: 2.0 to 4.0% by weight B is added to provide self-solubility, but if it is less than 2.0% by weight, its effect is insufficient. Moreover, if the content exceeds 4.0% by weight, the toughness will be significantly reduced, so the content was set in the above range. Si: 6.0% by weight or less Si is added to provide self-solubility like B, but if it exceeds 6.0% by weight, the toughness decreases, so the above upper limit was set. C: 0.1 to 1.0% by weight C is added to form carbide and improve wear resistance. If the C content is less than 0.1% by weight, the above effect will be insufficient, and if it exceeds 1.0% by weight, the abrasion resistance will be lowered, so it is set within the above range.

【0014】Cr :5.0〜16.0重量%Cr は
、耐食性を高めるとともに、ほう化物および炭化物を生
成して耐摩耗性を向上させる。このCr が5.0重量
%未満であると、上記作用は不十分であり、16.0重
量%を越えると、マトリックス合金の融点を高めて製造
を困難にするので上記範囲とする。 Fe :4重量%以下 Fe は、マトリックス合金に耐食性を高めるために添
加するが、過度に添加すると、硬さの低いFe −Ni
 固溶体を生成してマトリックスの硬さを低下させるの
で上記上限を定めた。
Cr: 5.0 to 16.0% by weight Cr not only improves corrosion resistance, but also forms borides and carbides to improve wear resistance. If the Cr content is less than 5.0% by weight, the above-mentioned effect will be insufficient, and if it exceeds 16.0% by weight, the melting point of the matrix alloy will increase, making production difficult, so the above range is set. Fe: 4% by weight or less Fe is added to the matrix alloy to improve its corrosion resistance, but if it is added excessively, Fe-Ni with low hardness
The above upper limit was set because solid solution is generated and the hardness of the matrix is reduced.

【0015】[0015]

【実施例】以下に、この発明の実施例を、比較例(従来
例)と比較しつつ説明する。先ず、炭化物としてWC、
ほう化物としてMoB、Ni 基自溶性合金として表2
に示す組成を有する合金を用意した。これら各粉末を、
表1に示される配合比(重量%)で混合して発明材1〜
4および比較材5〜8用の粉末を調製した。
[Embodiments] Examples of the present invention will be explained below while comparing them with comparative examples (conventional examples). First, WC as a carbide,
MoB as a boride, Table 2 as a Ni-based self-fusing alloy
An alloy having the composition shown below was prepared. Each of these powders
Inventive material 1~
Powders for Comparative Materials 4 and Comparative Materials 5 to 8 were prepared.

【0016】[0016]

【表1】[Table 1]

【0017】[0017]

【表2】[Table 2]

【0018】各試料用調製粉末(比較材7用の粉末を除
く)を、表3に示す条件下で、プラズマ溶接機に供給し
て、母材である円筒形状の低合金鋼(SMC440)内
周面に、粉体プラズマ溶接法(PTA)により肉盛溶接
してライニング層を形成した。  なお、溶接に際して
は、母材の鉄合金からの鉄の拡散を少なくするため、2
層盛とした。この炭素鋼から適当量を切出して、発明材
1〜4および比較材5〜8の試料とした。なお、比較材
8用の調製粉末は、母材上に肉盛することなく、そのま
ま鋳造して比較材8とした。
The prepared powder for each sample (excluding the powder for comparative material 7) was supplied to a plasma welding machine under the conditions shown in Table 3, and the powder was heated inside a cylindrical low alloy steel (SMC440) that was the base material. A lining layer was formed on the circumferential surface by overlay welding using powder plasma welding (PTA). In addition, during welding, in order to reduce the diffusion of iron from the base metal iron alloy,
It was layered. Appropriate amounts were cut out from this carbon steel to provide samples of Inventive Materials 1 to 4 and Comparative Materials 5 to 8. In addition, the prepared powder for Comparative Material 8 was cast as it was without being overlaid on the base material to obtain Comparative Material 8.

【0019】[0019]

【表3】[Table 3]

【0020】各試料のうち、発明材3と比較材8につい
て金属組織を観察したところ、発明材3は、図1の写真
に示すように炭化物およびほう化物がマトリックス中に
均一に分散していた。また、比較材8は、図2の写真に
示すように、炭化物が密集した層と、殆ど存在しない層
の2層に明確に分離していた。
Among the samples, the metal structures of Inventive Material 3 and Comparative Material 8 were observed, and it was found that in Inventive Material 3, carbides and borides were uniformly dispersed in the matrix, as shown in the photograph in FIG. . Moreover, as shown in the photograph of FIG. 2, Comparative Material 8 was clearly separated into two layers: a layer in which carbides were densely packed and a layer in which carbides were hardly present.

【0021】次に、試料のうち、発明材3と比較材7、
8を用いて、アブレシブ摩耗特性を評価する試験を行っ
た。その結果は表4に示す。なお、試験は、以下の条件
で行い、400回毎の摩耗量の平均値を摩耗量として表
示した。 アブレシブ摩耗試験条件:相手材320番SiCペーパ
ー、荷重2Kgf、速度3.6m/min(60往復/
分)前記アブレシブ摩耗試験結果から明らかなように、
発明材のアブレシブ摩耗量は、WC粒子を分散させた比
較材8よりも摩耗量が僅かに多いものの、強化粒子を分
散させていない比較材7よりも摩耗量は非常に少なく、
優れた耐アブレシブ摩耗性を有している。また、発明材
3の抗折力は、比較材7と同等であり、WC粒子を分散
させた比較材8よりも非常に優れている。したがって、
発明材は、耐アブレシブ摩耗、抗折力の両特性で総合的
に優れていた。
Next, among the samples, inventive material 3, comparative material 7,
A test was conducted using No. 8 to evaluate abrasive wear characteristics. The results are shown in Table 4. The test was conducted under the following conditions, and the average value of the amount of wear every 400 times was displayed as the amount of wear. Abrasive wear test conditions: mating material No. 320 SiC paper, load 2 kgf, speed 3.6 m/min (60 reciprocations/
) As is clear from the abrasive wear test results above,
Although the amount of abrasive wear of the invention material is slightly greater than that of Comparative Material 8 in which WC particles are dispersed, the amount of abrasive wear is much lower than that of Comparative Material 7 in which reinforcing particles are not dispersed.
Has excellent abrasive wear resistance. Further, the transverse rupture strength of Inventive Material 3 is equivalent to that of Comparative Material 7, and is much superior to Comparative Material 8 in which WC particles are dispersed. therefore,
The invented material was comprehensively superior in both abrasive wear resistance and transverse rupture strength.

【0022】[0022]

【表4】[Table 4]

【0023】次に、射出機、押出機などのシリンダ材と
、スクリュ材との金属接触摩耗をシュミレートするため
、全試料に対し、大越式摩耗試験を行った。具体的には
、前記試料を固定試験片とし、相手材として工具鋼を採
用し、これを回転試験片として、以下に示す条件で試験
を行った。 大越式摩耗試験条件:荷重18.9Kgf 、すべり距
離200m すべり速度2.37m/s なお、摩耗量は、mm3/Kgf・mm×10−8で示
した。
Next, in order to simulate metal contact wear between the cylinder material of an injection machine, extruder, etc. and the screw material, an Okoshi type wear test was conducted on all the samples. Specifically, the above sample was used as a fixed test piece, tool steel was used as a mating material, and this was used as a rotating test piece, and the test was conducted under the conditions shown below. Okoshi type abrasion test conditions: load 18.9 Kgf, sliding distance 200 m, sliding speed 2.37 m/s The amount of wear was expressed as mm3/Kgf·mm×10-8.

【0024】その結果は表5に示すとおりであり、いず
れの発明材も、ライニング層自身(固定試験片)および
相手材(回転試験片)の摩耗量は少ない値を示した。こ
れに対し、ほう化物量が少ない比較材5、6およびほう
化物を含まない比較材8は、自身の摩耗量は少ないもの
の、相手材摩耗量が多く、相手材への攻撃性が大きいと
いう結果が得られた。また、比較材7は、自身の摩耗量
が非常に多く、これが相手材に凝着していた。
[0024] The results are shown in Table 5, and in all the invented materials, the amount of wear of the lining layer itself (fixed test piece) and the mating material (rotating test piece) was small. In contrast, Comparative Materials 5 and 6, which have a small amount of borides, and Comparative Material 8, which does not contain borides, have a small amount of wear on themselves, but have a large amount of wear on the mating material, and are highly aggressive to the mating material. was gotten. Furthermore, Comparative Material 7 had a very large amount of wear on itself, and this was adhered to the mating material.

【0025】[0025]

【表5】[Table 5]

【0026】[0026]

【発明の効果】以上説明したように、本願発明の複合材
料によれば、炭化物強化粒子10〜50重量%と、ほう
化物強化粒子10〜30重量%とを、Ni 基自溶性合
金マトリックス中に均一に分散させた耐摩耗性複合材料
であり、前記Ni 基自溶性合金は、B:2.0〜4.
0重量%、Si :6.0重量%以下、C:0.1〜1
.0重量%、Cr :5.0〜16.0重量%、Fe 
:4重量%以下、残部がNi および不可避的不純物か
らなるので、優れた耐アブレシブ摩耗特性を有するとと
もに、相手材に対する攻撃性を和らげて、自身および相
手材に対し優れた摩耗特性を有し、しかも炭化物粒子お
よびほう化物粒子がマトリックス中に均一に分散する効
果がある。
As explained above, according to the composite material of the present invention, 10 to 50% by weight of carbide reinforcing particles and 10 to 30% by weight of boride reinforcing particles are incorporated into a Ni-based self-fusing alloy matrix. It is a uniformly dispersed wear-resistant composite material, and the Ni-based self-fluxing alloy has B: 2.0 to 4.
0% by weight, Si: 6.0% by weight or less, C: 0.1-1
.. 0% by weight, Cr: 5.0-16.0% by weight, Fe
: 4% by weight or less, with the balance consisting of Ni and unavoidable impurities, so it has excellent abrasive wear resistance, softens the aggressiveness towards the mating material, and has excellent abrasion properties against itself and the mating material. Furthermore, there is an effect that carbide particles and boride particles are uniformly dispersed in the matrix.

【0024】また、第2の発明の耐摩耗性ライニング層
の形成方法によれば、炭化物10〜50重量%、ほう化
物10〜30重量%、およびマトリックスとなる、B:
2.0〜4.0重量%、Si :6.0重量%以下、C
:0.1〜1.0重量%、Cr:5.0〜16.0重量
%、Fe :4重量%以下、残部がNi および不可避
的不純物からなるNi 基自溶性合金を粉末化した粉末
混合物または複合粉末を用いて、ライニングすべき母材
上に肉盛溶接または溶射してライニング層を形成するの
で、炭化物およびほう化物を、能率よくマトリックス中
に均一に分散させることができ、作業能率が向上すると
ともに、得られたライニング層は、第1の発明と同様の
優れた耐摩耗特性を有する効果がある。
According to the method for forming a wear-resistant lining layer of the second invention, 10 to 50% by weight of carbide, 10 to 30% by weight of boride, and B as a matrix:
2.0 to 4.0% by weight, Si: 6.0% by weight or less, C
A powder mixture obtained by pulverizing a Ni-based self-fusing alloy consisting of: 0.1 to 1.0% by weight, Cr: 5.0 to 16.0% by weight, Fe: 4% by weight or less, and the balance being Ni and unavoidable impurities. Alternatively, a lining layer is formed by overlay welding or thermal spraying on the base material to be lined using composite powder, so carbides and borides can be efficiently and uniformly dispersed in the matrix, increasing work efficiency. In addition, the resulting lining layer has the same excellent wear resistance properties as the first invention.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】発明材における金属組織写真である。FIG. 1 is a photograph of the metallographic structure of the invention material.

【図2】比較材における金属組織写真である。FIG. 2 is a photograph of the metallographic structure of a comparative material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  炭化物強化粒子10〜50重量%と、
ほう化物強化粒子10〜30重量%とを、Ni 基自溶
性合金マトリックス中に均一に分散させた耐摩耗性複合
材料であり、前記Ni 基自溶性合金は、B:2.0〜
4.0重量%、Si:6.0重量%以下、C:0.1〜
1.0重量%、Cr :5.0〜16.0重量%、Fe
 :4重量%以下、残部がNi および不可避的不純物
からなることを特徴とする耐摩耗性複合材料
1. 10 to 50% by weight of carbide reinforcing particles;
This is a wear-resistant composite material in which 10 to 30% by weight of boride reinforcing particles are uniformly dispersed in a Ni-based self-fusing alloy matrix, and the Ni-based self-fusing alloy has B: 2.0 to 30% by weight.
4.0% by weight, Si: 6.0% by weight or less, C: 0.1~
1.0% by weight, Cr: 5.0-16.0% by weight, Fe
: A wear-resistant composite material characterized by comprising 4% by weight or less, the remainder consisting of Ni and unavoidable impurities.
【請求項2】  炭化物10〜50重量%、ほう化物1
0〜30重量%、およびマトリックスとなる、B:2.
0〜4.0重量%、Si :6.0重量%以下、C:0
.1〜1.0重量%、Cr :5.0〜16.0重量%
、Fe :4重量%以下、残部がNi および不可避的
不純物からなるNi 基自溶性合金を粉末化した粉末混
合物または複合粉末を用いて、ライニングすべき母材上
に肉盛溶接または溶射してライニング層を形成すること
を特徴とする耐摩耗性ライニング層の形成方法
Claim 2: 10 to 50% by weight of carbide, 1% of boride
0 to 30% by weight and matrix, B:2.
0 to 4.0% by weight, Si: 6.0% by weight or less, C: 0
.. 1 to 1.0% by weight, Cr: 5.0 to 16.0% by weight
, Fe: 4% by weight or less, the balance being Ni and unavoidable impurities. Using a powder mixture or composite powder made of a powdered Ni-based self-fusing alloy, lining is performed by overlay welding or thermal spraying on the base material to be lined. A method for forming a wear-resistant lining layer characterized by forming a layer.
JP13700991A 1991-05-14 1991-05-14 Wear resistant composite material and formation of wear resistant lining layer Pending JPH04337046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13700991A JPH04337046A (en) 1991-05-14 1991-05-14 Wear resistant composite material and formation of wear resistant lining layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13700991A JPH04337046A (en) 1991-05-14 1991-05-14 Wear resistant composite material and formation of wear resistant lining layer

Publications (1)

Publication Number Publication Date
JPH04337046A true JPH04337046A (en) 1992-11-25

Family

ID=15188681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13700991A Pending JPH04337046A (en) 1991-05-14 1991-05-14 Wear resistant composite material and formation of wear resistant lining layer

Country Status (1)

Country Link
JP (1) JPH04337046A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299973A (en) * 1993-03-18 1994-10-25 Praxair St Technol Inc Rotor having carbide or boride coating for displacement type motor or pump
JP2005320557A (en) * 2004-05-06 2005-11-17 Daido Steel Co Ltd Abrasion resistant member and manufacturing method therefor
US8846207B2 (en) 2008-09-15 2014-09-30 Igor Yuri Konyashin Wear part with hard facing
WO2016049972A1 (en) * 2014-09-30 2016-04-07 株洲西迪硬质合金科技股份有限公司 Wear-resistant material, wear-resistant impeller and preparation method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299973A (en) * 1993-03-18 1994-10-25 Praxair St Technol Inc Rotor having carbide or boride coating for displacement type motor or pump
JP2005320557A (en) * 2004-05-06 2005-11-17 Daido Steel Co Ltd Abrasion resistant member and manufacturing method therefor
US8846207B2 (en) 2008-09-15 2014-09-30 Igor Yuri Konyashin Wear part with hard facing
US8968834B2 (en) 2008-09-15 2015-03-03 Igor Yuri Konyashin Wear part with hard facing
WO2016049972A1 (en) * 2014-09-30 2016-04-07 株洲西迪硬质合金科技股份有限公司 Wear-resistant material, wear-resistant impeller and preparation method therefor
US10107300B2 (en) 2014-09-30 2018-10-23 Zhu Zhou Seed Cemented Carbide Technology Co., Ltd. Wear resistant material, wear resistant impeller and preparation method of wear resistant impeller

Similar Documents

Publication Publication Date Title
US10662518B2 (en) Abrasion-resistant weld overlay
EP0320195B1 (en) Wear resisting copper base alloys
US3836341A (en) Wear resistant composite cylinder linings
CA2060889C (en) Tungsten carbide-containing hard alloy that may be processed by melting
JP4900806B2 (en) Cylinder for molding machine
JP5703272B2 (en) Abrasion resistant material
US4365997A (en) Wear resistant compound material, method for manufacturing it and use of such compound material
US4427446A (en) Corrosion-resistant and abrasive wear-resistant composite material for centrifugally cast linings
JPH04337046A (en) Wear resistant composite material and formation of wear resistant lining layer
CN102785003B (en) Method for overlaying iron-based surface composite material
JPH04371390A (en) Welding method for wear resistant cladding layer and wear resistant material
JPS6326295A (en) Corrision-and wear-resistant alloy and composite cylinder thereof
JPH01230759A (en) Composite powder for thermal spraying
JP4491758B2 (en) Cylinder for molding machine
JPH0564706B2 (en)
JP5095669B2 (en) Cylinder lining material for centrifugal casting and centrifugal casting method for producing cylinder lining material
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
JP2562445B2 (en) Abrasion resistant composite roll
JPH01294843A (en) Coating alloy having wear resistance and corrosion resistance and material for forming the same
Gunasekaran et al. The Effect of Various Reinforcements on Aluminium Alloy (Al7075)–A Review
JPH11277246A (en) Wear resistant cladding layer by welding and cladding material by welding
JPS63265617A (en) Abrasion resistant and corrosion resistant composite cylinder
JPH08319530A (en) Composite material with high wear resistance and corrosion resistance
JPH0258345B2 (en)
JPS61213334A (en) Wear resistant copper bearing alloy