JP7404567B2 - Pulverized powder for additive manufacturing - Google Patents

Pulverized powder for additive manufacturing Download PDF

Info

Publication number
JP7404567B2
JP7404567B2 JP2023001300A JP2023001300A JP7404567B2 JP 7404567 B2 JP7404567 B2 JP 7404567B2 JP 2023001300 A JP2023001300 A JP 2023001300A JP 2023001300 A JP2023001300 A JP 2023001300A JP 7404567 B2 JP7404567 B2 JP 7404567B2
Authority
JP
Japan
Prior art keywords
powder
modeling
pulverized
sus316l
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023001300A
Other languages
Japanese (ja)
Other versions
JP2023037644A (en
Inventor
貴彦 菊池
義教 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2023001300A priority Critical patent/JP7404567B2/en
Publication of JP2023037644A publication Critical patent/JP2023037644A/en
Priority to CN202321467247.5U priority patent/CN220377520U/en
Application granted granted Critical
Publication of JP7404567B2 publication Critical patent/JP7404567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Body Structure For Vehicles (AREA)

Description

本発明はステンレス系粉末に添加することにより、3Dプリンターによる積層造形や肉盛加工において、造形品の硬度が上昇して耐摩耗性の大幅な向上が期待できる安価な造形用粉末を提供するとともに、この粉末の製造方法及びこの粉末を用いた造形品の製造方法に関するものである。 The present invention provides an inexpensive modeling powder that, when added to stainless steel powder, can be expected to increase the hardness of a modeled product and significantly improve its wear resistance in additive manufacturing and overlay processing using a 3D printer. , relates to a method for producing this powder and a method for producing a shaped article using this powder.

3Dプリンターによる積層造形技術(Additive manufacturing)はここ数年で目覚ましい進歩を遂げ、欧米では航空機部品、自動車部品、人体の義肢等において実用化が進んでいる。使用される材料は樹脂、金属、セラミックス等多種類にわたるが、近年強度を必要とする部品の需要増に伴い、金属粉末の割合が次第に増加してきている。金属粉末にはステンレス系、チタン系、アルミ系、コバルトクロム系、ニッケル系、銅などがあり、3Dプリンターの機種や用途に応じて組成や粒度を調整している。 Additive manufacturing technology using 3D printers has made remarkable progress in recent years, and in Europe and the United States, it is being put into practical use in aircraft parts, automobile parts, human prosthetics, etc. There are many types of materials used, such as resins, metals, and ceramics, but in recent years the proportion of metal powder has been increasing as demand for parts that require strength has increased. Metal powders include stainless steel, titanium, aluminum, cobalt chromium, nickel, and copper, and the composition and particle size are adjusted depending on the 3D printer model and application.

3Dプリンター等の積層造形技術は、粉末の供給方法、粉末の平滑化方法、溶融の熱源(レーザービーム、電子ビーム)等の違い、更には造形後に研削して形状を整えるいわゆるハイブリッド方式のものまでありその種類は多いが、粉末の供給方法で大別するとPBF法(粉末床溶融法。Powder bed fusion)とDED(指向性エネルギー堆積法。Directed energy deposition)に分けられる。 Additive manufacturing technologies such as 3D printers differ in powder supply methods, powder smoothing methods, melting heat sources (laser beams, electron beams), and even so-called hybrid methods in which the shape is adjusted by grinding after printing. There are many types of methods, but they can be roughly divided into the PBF method (Powder bed fusion) and the DED method (Directed energy deposition) based on the powder supply method.

前者は粉末をテーブルに供給したした後、リコーターまたはローラーによって層厚を一定に調整後に溶融し、これを繰り返して積層するものである。
後者は粉末をAr等の気流によってノズルまで空送し、ベースプレートに落下させると同時にレーザーを照射して溶融、積層するものである。
このように粉末の供給方法が異なっても、共通して求められるのは粉末の流動性が良いことであり、そのためにアトマイズ法で製造した球状粉を用いるのが業界の常識となっている。
In the former method, powder is supplied to a table, then melted after adjusting the layer thickness to a constant value using a recoater or roller, and this process is repeated to stack the layers.
In the latter case, the powder is air-fed to a nozzle by an air flow of Ar or the like, dropped onto a base plate, and simultaneously irradiated with a laser to melt and laminate the powder.
Regardless of these different powder supply methods, the common requirement is for the powder to have good fluidity, and for this purpose, it is common knowledge in the industry to use spherical powder produced by the atomization method.

例えば、特許文献1には、「Ni、Fe及びCoのうちの少なくとも1種を含む多数の球状粒子からなり、かつこのNi、Fe及びCoの合計含有率(T.C.)が、50質量%以上であり、累積10体積%粒子径D10が、1.0μm以上であり、下記数式によって算出される値Yが、7.5以上24.0以下である金属粉末。
Y=D50×ρ×S
(上記数式において、D50は上記粉末の累積50体積%粒子径であり、ρは上記粉末の真密度であり、Sは上記粉末の比表面積である。)」が提案されている。
そして、この粉末は、好ましくは、水アトマイズ法、ガスアトマイズ法及びディスクアトマイズ法等によって製造され、積層造形法、溶射法、肉盛り法、レーザーコーティング法等の粉末として用いられるが、この粉末から得られた造形物は、高強度であり、また、この粉末から得られた被覆層は、耐摩耗性に優れるとされている。
しかし、前記特許文献1には、アトマイズ法で作製した粉末を原料粉に使用することについて記載されているものの、原料粉の一部として、粉砕法で作製した粉末を用いること、セラミックスとFeの複合粉末等を用いることについての具体的な開示はない。
For example, in Patent Document 1, it is stated that ``the particle is composed of a large number of spherical particles containing at least one of Ni, Fe, and Co, and the total content (TC) of Ni, Fe, and Co is 50 mass % or more, the cumulative 10 volume % particle diameter D10 is 1.0 μm or more, and the value Y calculated by the following formula is 7.5 or more and 24.0 or less.
Y=D50×ρ×S
(In the above formula, D50 is the cumulative 50 volume % particle diameter of the powder, ρ is the true density of the powder, and S is the specific surface area of the powder.)
This powder is preferably produced by a water atomization method, a gas atomization method, a disk atomization method, etc., and is used as a powder for additive manufacturing, thermal spraying, overlaying, laser coating, etc. The resulting shaped object is said to have high strength, and the coating layer obtained from this powder is said to have excellent wear resistance.
However, although Patent Document 1 describes the use of powder produced by the atomization method as the raw material powder, it also describes the use of powder produced by the pulverization method as part of the raw material powder, and the use of ceramics and Fe. There is no specific disclosure regarding the use of composite powder or the like.

また、特許文献2には、金属粉末あるいはセラミック粉末を含む粉末積層造形に用いる造形用材料であって、粉末において粒子径が45μmを超える粒子の積算質量が全体の0.5質量%以上(45質量%以下)であり、電子顕微鏡観察に基づく粒子径が20μm以下の粒子の数が全体の15個数%以下である造形用材料が提案されている。
そして、この粉末の具体例としては、ガスアトマイズ法で製造されたステンレス系粉末(SUS316L)が挙げられており、粒度制御により流動性が改善されるため、これまでよりも均質でムラのない材料の供給が可能とされ、その結果、粉末積層造形における造形精度を高めることが可能であり、また、造形精度を維持したままより高速での造形が可能となるとされている。
しかし、原料粉の一部として、粉砕法で作製したセラミックスとFeの複合粉末等を用いることについての教示はない。
Further, Patent Document 2 describes a modeling material used for powder additive manufacturing containing metal powder or ceramic powder, in which the cumulative mass of particles with a particle size exceeding 45 μm in the powder is 0.5% by mass or more (45 μm or more of the total mass). % by mass or less) and in which the number of particles having a particle diameter of 20 μm or less based on electron microscopy is 15% or less of the total.
A specific example of this powder is stainless steel powder (SUS316L) manufactured using the gas atomization method, which improves fluidity through particle size control, resulting in a more homogeneous and even material than before. As a result, it is possible to improve the modeling accuracy in powder additive manufacturing, and it is said that it is possible to perform modeling at higher speeds while maintaining the modeling accuracy.
However, there is no teaching about using a composite powder of ceramics and Fe produced by a pulverization method as part of the raw material powder.

ステンレス系粉末の代表的なものはSUS316LとSUS630があり、前者は硬度や耐摩耗性はあまり高くないが主に耐食性を要求される用途に用いられるのに対して、後者は高い硬度が特徴であり、主に高強度を必要とされる部品に用いられる。この他にステンレス系ではないがSUS630以上に高硬度と強度を有するマルエージング鋼が航空機部品や宇宙産業方面において広く使われている。使用方法はSUS316Lは造形して終了であるが、SUS630とマルエージング鋼のいわゆる析出硬化系の材料は、造形しただけでは硬度がSUS316Lより少し高い程度にとどまり、高い硬度を得るには時効処理の工程を必要とする。すなわち造形品を400~500℃で数時間加熱する工程が不可欠である。これによってSUS6360はCuリッチ層を析出させ、マルエージング鋼はNi3Mo系の結晶を析出さることによって高硬度と高強度が得られる。 Typical stainless steel powders include SUS316L and SUS630. The former has not very high hardness or wear resistance, but is mainly used for applications that require corrosion resistance, whereas the latter is characterized by high hardness. Mainly used for parts that require high strength. In addition, maraging steel, which is not stainless steel but has higher hardness and strength than SUS630, is widely used in aircraft parts and the space industry. The method of use for SUS316L is to form it and that's it, but for so-called precipitation hardening materials such as SUS630 and maraging steel, the hardness is only slightly higher than SUS316L just by forming it, and aging treatment is required to obtain high hardness. Requires a process. That is, a step of heating the shaped article at 400 to 500°C for several hours is essential. As a result, SUS6360 precipitates a Cu-rich layer, and maraging steel obtains high hardness and high strength by precipitating Ni 3 Mo-based crystals.

特開2016-194143号公報Japanese Patent Application Publication No. 2016-194143 特開2018-172739号公報Japanese Patent Application Publication No. 2018-172739

上述したように、積層造形技術における原料としてアトマイズ粉が広く使われているが、その製造工程を見ると粉末の回収は本体下、サイクロン、集塵機によって行われ、この本体下で回収されたものが製品となる。
しかし、本体下の粉末は粒度分布の幅が広く、粒径が数μm程度の微細なものから150μmを越える粗粉まで含まれている。これだけの粒度幅があると均一速度での溶融ができないばかりでなく、微粉の摩擦抵抗によって粉末全体の流動性が損なわれるので、装置に供給できないという致命的な問題を生じる。
これを防ぐために振動篩や気流分級等の方法で上カット、下カットして粒度分布の幅を適正な範囲に狭めることが行われるが、それによって製品の収率が大きく低下して2~3割程度しか製品とならないため、原価が大幅に高くなるという問題がある。
As mentioned above, atomized powder is widely used as a raw material in additive manufacturing technology, but looking at the manufacturing process, the powder is collected under the main body using a cyclone and a dust collector. Becomes a product.
However, the powder under the main body has a wide range of particle size distribution, ranging from fine particles with a particle size of several μm to coarse powder with a particle size of over 150 μm. With such a large particle size range, not only is it impossible to melt at a uniform rate, but the fluidity of the powder as a whole is impaired by the frictional resistance of the fine powder, resulting in the fatal problem of not being able to feed it to the equipment.
In order to prevent this, methods such as vibrating sieves and air flow classification are used to narrow the width of the particle size distribution to an appropriate range by making top and bottom cuts, but this greatly reduces the yield of the product. Since only a small portion of the product is made into a product, there is a problem in that the cost becomes significantly higher.

積層造形技術用の金属粉末の中で最も高硬度、高強度を示すのはマルエージング鋼であるが、その特性を出すために単価の高いNi、Co、MoがFeに添加されており、この3成分の合計は全組成の1/3程度にも達するため必然的に高価な粉末となる。またそれに加えて施工面では時効処理工程が不可欠であるため、これも造形品のコスト上げる要因となる。 Among the metal powders used in additive manufacturing technology, maraging steel exhibits the highest hardness and strength, but in order to achieve these characteristics, Ni, Co, and Mo, which have high unit costs, are added to Fe. The total of the three components amounts to about 1/3 of the total composition, which inevitably results in an expensive powder. In addition, an aging treatment process is essential for construction, which also increases the cost of the modeled product.

本発明は上記問題点に鑑みてなされたもので、粉末単価が安価でかつ時効処理しなくてもマルエージング鋼並みの高硬度を有する積層造形技術の金属粉末を提供することを目的とする。
また、本発明は、粉末単価が安価でかつ時効処理しなくても高硬度が得られる造形用粉末の製造方法を提供することを目的とし、さらに、この粉末を用いた耐摩耗性の大幅な向上が期待できる造形品の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a metal powder for additive manufacturing technology that has a low powder unit price and has high hardness comparable to maraging steel without aging treatment.
Another object of the present invention is to provide a method for manufacturing a modeling powder that has a low powder unit price and can obtain high hardness without aging treatment, and furthermore, uses this powder to significantly improve wear resistance. The purpose is to provide a method for manufacturing shaped products that can be expected to improve.

なお、本発明でいう積層造形技術とは、前述したPBF法(粉末床溶融法。Powder bed fusion)とDED(指向性エネルギー堆積法。Directed energy deposition)を含む付加製造方式(Additive manufacturing)による造形技術をいい、そして、造形用粉末とは、前記積層造形技術に用いられる粉末、代表的には、3Dプリンターによる積層造形に用いられる粉末、肉盛加工に用いられる粉末をいう。 Note that the additive manufacturing technology in the present invention refers to additive manufacturing technology including the aforementioned PBF method (Powder bed fusion) and DED method (Directed energy deposition). It refers to a modeling technology, and the modeling powder refers to a powder used in the above-mentioned additive manufacturing technology, typically a powder used in additive manufacturing using a 3D printer, and a powder used in overlay processing.

本発明者は上記課題を解決すべく鋭意研究した結果、セラミックスとFeの複合粉末、例えば、TiB2とFeの複合粉末(以下、「TiB2/Fe複合粉末」と記す場合がある。)の粉砕粉、VCとFeの複合粉末(以下、「VC/Fe複合粉末」と記す場合がある。)の粉砕粉、FeV等の粉砕粉を、粒度調整した積層造形用粉砕粉(以下、単に「粉砕粉」ということもある。)とした後にステンレス系粉末と混合した造形用粉末を使用することにより、時効処理することなく容易に造形品の硬度を高められることを見出し本発明に至った。 As a result of intensive research to solve the above problems, the present inventor has developed a composite powder of ceramics and Fe, for example, a composite powder of TiB 2 and Fe (hereinafter sometimes referred to as "TiB 2 /Fe composite powder"). A pulverized powder, a pulverized powder of a composite powder of VC and Fe (hereinafter sometimes referred to as "VC/Fe composite powder"), a pulverized powder of FeV, etc., is used as a pulverized powder for additive manufacturing (hereinafter simply referred to as " The present invention was achieved by discovering that the hardness of a shaped article can be easily increased without aging treatment by using a shaping powder that is mixed with stainless steel powder after being ground (also referred to as "pulverized powder").

すなわち本発明は以下を要旨とするものである。 That is, the gist of the present invention is as follows.

すなわち本発明は以下を要旨とするものである。
(1)セラミックスとFeからなる複合粉末の粉砕粉と、ステンレス系粉末との混合粉末からなることを特徴とする造形用粉末。
That is, the gist of the present invention is as follows.
(1) A modeling powder characterized by being composed of a mixed powder of a pulverized composite powder made of ceramics and Fe and a stainless steel powder.

(2)FeとVの合金であるFeVの粉砕粉と、ステンレス系粉末との混合粉末からなることを特徴とする造形用粉末。 (2) A modeling powder characterized by being made of a mixed powder of pulverized powder of FeV, which is an alloy of Fe and V, and stainless steel powder.

(3)(1)において、セラミックスがTiB2またはVCであり、前記複合粉末の粉砕粉は、TiB2とFeからなる塊状の複合生成物、または、VCとFeからなる塊状の複合生成物が粉砕された粉砕粉であることを特徴とする(1)に記載の造形用粉末。 (3) In (1), the ceramic is TiB2 or VC, and the pulverized composite powder is a lump-like composite product consisting of TiB2 and Fe, or a lump-like composite product consisting of VC and Fe. The powder for modeling according to (1), which is a pulverized powder.

(4)造形用粉末に占めるセラミックスの含有割合は、30質量%以下である(1)または(3)に記載の造形用粉末。 (4) The powder for modeling according to (1) or (3), wherein the content of ceramics in the powder for modeling is 30% by mass or less.

(5)造形用粉末に占めるVの含有割合は、30質量%以下である(2)に記載の造形用粉末。 (5) The modeling powder according to (2), wherein the content of V in the modeling powder is 30% by mass or less.

(6)ステンレス系粉末が、SUS304、SUS316、SUS316Lの一種または二種以上の粉末であることを特徴とする(1)乃至(5)に記載の造形用粉末。 (6) The modeling powder described in (1) to (5), wherein the stainless steel powder is one or more powders of SUS304, SUS316, and SUS316L.

(7)前記粉砕粉を、予め分級して15~150μmの粒度範囲に調整した後、ステンレス系粉末と混合することを特徴とする(1)乃至(6)のいずれかに記載の造形用粉末の製造方法。 (7) The molding powder according to any one of (1) to (6), characterized in that the pulverized powder is classified in advance and adjusted to a particle size range of 15 to 150 μm, and then mixed with stainless steel powder. manufacturing method.

(8)(1)乃至(6)のいずれかに記載の造形用粉末を加熱溶融し、積層造形や肉盛加工を行うことにより、造形品の最大ビッカース硬度を250Hv以上とすることを特徴とする造形品の製造方法。
また、本発明には、以下の積層造形用粉砕粉が含まれる。
[1]TiB 及びVCの一方又は両方とFeからなる複合粉末の粉砕粉であって、粒径が15μm以上、150μm以下であることを特徴とする積層造形用粉砕粉。
[2]前記粉砕粉と、粒度が15~53μmのSUS316Lアトマイズ粉を混合した混合粉を、前記混合粉中のセラミックスが10質量%になるように配合して得た際に、得られた前記混合粉の流動度が9秒/50g以上であることを特徴とする前記[1]の積層造形用粉砕粉。
(8) By heating and melting the modeling powder according to any one of (1) to (6) and performing additive manufacturing or overlay processing, the maximum Vickers hardness of the modeled article is set to 250 Hv or more. A method of manufacturing a shaped product.
Further, the present invention includes the following pulverized powder for additive manufacturing.
[1] A pulverized powder of a composite powder consisting of one or both of TiB 2 and VC and Fe, the pulverized powder for additive manufacturing having a particle size of 15 μm or more and 150 μm or less.
[2] When a mixed powder obtained by mixing the pulverized powder and SUS316L atomized powder with a particle size of 15 to 53 μm is blended so that the ceramic content in the mixed powder is 10% by mass, the obtained The pulverized powder for additive manufacturing according to [1] above, wherein the mixed powder has a fluidity of 9 seconds/50 g or more.

以上のように、本発明の積層造形用粉砕粉を用いれば、3Dプリンター用金属粉末、肉盛加工用金属粉末等の造形用粉末を安価に提供することができ、例えばSUS316Lへ添加して使用することにより、時効処理することなしに高い硬度の造形品、肉盛加工品を得ることができるため、SUS316Lを使用した部品の新規用途が開拓されるという顕著な効果が期待できる。 As described above, if the pulverized powder for additive manufacturing of the present invention is used, powder for modeling such as metal powder for 3D printers and metal powder for overlay processing can be provided at low cost, and for example, it can be used by adding it to SUS316L. By doing so, it is possible to obtain molded products and overlay processed products with high hardness without aging treatment, so a remarkable effect can be expected in that new uses for parts using SUS316L will be developed.

粉末の電子顕微鏡写真であって、(a)は、TiB2/Fe複合粉末を粉砕後、分級して25~75μmに粒度調整した複合粉末の粉砕粉を示したものであり、(b)は、上記複合粉末の粉砕粉と粒度20~53μmのSUS316Lアトマイズ粉を、混合粉中のTiB2含有量が10質量%になるように配合した混合粉末を示した図である。Electron micrographs of powders, in which (a) shows the pulverized TiB 2 /Fe composite powder, which was then classified and adjusted to have a particle size of 25 to 75 μm, and (b) shows the pulverized composite powder. , is a diagram showing a mixed powder in which the pulverized powder of the above composite powder and SUS316L atomized powder with a particle size of 20 to 53 μm are blended so that the TiB 2 content in the mixed powder is 10% by mass. 粉末の電子顕微鏡写真であって、(a)は、FeVを粉砕後、分級して25~75μmに粒度調整した粉砕粉を示したものであり、(b)は、上記粉砕粉と粒度20~53μmのSUS316Lアトマイズ粉を、混合粉中のVが10質量%になるように配合した混合粉末を示した図である。Electron micrographs of powders, (a) shows the pulverized powder whose particle size was adjusted to 25 to 75 μm after pulverizing FeV, and (b) shows the above pulverized powder and the particle size of 20 to 75 μm. It is a figure showing a mixed powder in which 53 μm SUS316L atomized powder is blended so that V in the mixed powder is 10% by mass. 単層ビード断面元素分布の電子顕微鏡写真であって、TiB2/Fe複合粉末粉砕粉と粒度20~53μmのSUS316Lアトマイズ粉を、混合粉中のTiB2が10質量%になるように配合した混合粉を用いて、DED法で単層ビードを造形後、その断面の元素分布を電子顕微鏡で観察した写真を示す。図中、網目状に見える箇所がTiB2、それ以外の箇所はFeである。This is an electron micrograph of the cross-sectional element distribution of a single layer bead, showing a mixture of pulverized TiB 2 /Fe composite powder and SUS316L atomized powder with a particle size of 20 to 53 μm so that the TiB 2 content in the mixed powder is 10% by mass. A photograph is shown in which the element distribution in the cross section of a single-layer bead formed using powder using the DED method was observed using an electron microscope. In the figure, the mesh-like portions are TiB 2 and the other portions are Fe. 本発明の造形用粉末を用い、PBF法により作製された造形品の外観図の一例を示す図である。ここで、使用した造形用粉末はそれぞれ下記の通り。左側の図:SUS316Lアトマイズ粉,中央の図:FeV粉砕粉+SUS316Lアトマイズ粉,右側の図:TiB2/Fe粉砕粉+SUS316Lアトマイズ粉FIG. 1 is a diagram showing an example of an external view of a shaped article produced by a PBF method using the shaping powder of the present invention. Here, the modeling powders used are as follows. Left figure: SUS316L atomized powder, middle figure: FeV pulverized powder + SUS316L atomized powder, right figure: TiB 2 /Fe pulverized powder + SUS316L atomized powder 本発明の造形用粉末を用い、PBF法により作製された造形品の外観図の他の例を示す図である。ここで、使用した造形用粉末は、FeV粉砕粉+SUS316Lアトマイズ粉である。It is a figure which shows another example of the external view of the shaped article produced by the PBF method using the modeling powder of this invention. Here, the modeling powder used was FeV pulverized powder + SUS316L atomized powder. 本発明の造形用粉末を用い、DED法により作製された単層ビードの外観図の一例を示す。ここで、使用した造形用粉末は、TiB2/Fe粉砕粉とSUS316Lアトマイズ粉である。An example of an external view of a single-layer bead produced by the DED method using the modeling powder of the present invention is shown. Here, the modeling powders used were TiB 2 /Fe pulverized powder and SUS316L atomized powder. 図6の単相ビード断面の上部から底部へ向かう硬度測定箇所を示す図である。7 is a diagram showing hardness measurement locations from the top to the bottom of the single-phase bead cross section of FIG. 6. FIG. 本発明の造形用粉末を用い、DED法により作製された単層ビード断面の厚さ方向のビッカース硬度測定値の変化の一例を示す図である。ここで、使用した造形用粉末は、TiB2/Fe複合粉末の粉砕粉と粒度20~53μmのSUS316Lアトマイズ粉であり、混合粉中のTiB2が10質量%になるように配合した造形用粉末である。It is a figure which shows an example of the change of the Vickers hardness measurement value of the thickness direction of the single layer bead cross section produced by the DED method using the modeling powder of this invention. Here, the modeling powder used was a pulverized powder of TiB 2 /Fe composite powder and SUS316L atomized powder with a particle size of 20 to 53 μm, and the modeling powder was blended so that the TiB 2 in the mixed powder was 10% by mass. It is. 本発明の造形用粉末を用い、DED法により作製された単層ビード断面の厚さ方向のビッカース硬度測定値変化を示す他の例の図である。ここで、使用した造形用粉末はFeV粉砕粉と粒度20~53μmのSUS316Lアトマイズ粉であり、混合粉中のVが10質量%になるように配合した造形用粉末である。It is a figure of another example which shows the Vickers hardness measurement value change of the thickness direction of the single layer bead cross section produced by the DED method using the modeling powder of this invention. Here, the modeling powder used was FeV pulverized powder and SUS316L atomized powder with a particle size of 20 to 53 μm, and the modeling powder was blended so that the V content in the mixed powder was 10% by mass.

以下に、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明は安価でかつ時効処理をしなくても高い硬度が得られる3Dプリンター用あるいは肉盛加工用等の造形用の金属粉末を提供するとともに、この粉末の製造方法及びこの粉末を用いた造形品の製造方法に関する。 The present invention provides a metal powder for modeling, such as for 3D printers or overlay processing, which is inexpensive and can obtain high hardness without aging treatment, as well as a method for manufacturing this powder, and modeling using this powder. Concerning the manufacturing method of the product.

TiB2/Fe複合粉末の製造方法は特許6450670に記載されているが、その要旨は原料のFeBとFeTiの混合粉を粉砕後真空炉で加熱し、得られた鋳塊をボールミル、振動ミル等を使用して粉砕するというものである。これらより微細なTiB2粒子がマトリックスであるFe中に均一に分散した粉末が得られる。しかしこのようにして得られた粉末は微粉を多く含んでいること及び形状が不規則でかつ表面に凹凸があるため流動性が悪く、3Dプリンターあるいは肉盛加工等の造形用の原料粉末としてはほとんど使用実績がない。 A method for producing TiB 2 /Fe composite powder is described in Patent No. 6450670, but the gist is that a mixed powder of FeB and FeTi as raw materials is pulverized and then heated in a vacuum furnace, and the resulting ingot is processed using a ball mill, vibration mill, etc. It is used to crush it. A powder in which TiB 2 particles finer than these are uniformly dispersed in the Fe matrix is obtained. However, the powder obtained in this way has poor fluidity because it contains a large amount of fine powder, has an irregular shape, and has an uneven surface, so it is not suitable as a raw material powder for modeling in 3D printers or overlay processing. There is almost no use record.

しかし本発明者はTiB2/Fe複合粉末はセラミックスであるTiB2と金属であるFeとの複合粉末ではあるが、主要成分はFeであり密度が大きいので、微粉をカットすれば流動性が改善されるのではないかと考え、75μmアンダーの粉末を25μmカットして25~75μmとし流動性を測定したところ、アトマイズ粉よりは若干劣るとはいえ、ほぼ問題のない流動性の粉末が得られることを確認した。 However, the inventor of the present invention found that although TiB 2 /Fe composite powder is a composite powder of TiB 2 , which is a ceramic, and Fe, which is a metal, the main component is Fe and the density is high, so if the fine powder is cut, the fluidity can be improved. Thinking that this might be the case, we cut the powder below 75 μm by 25 μm and measured the fluidity of the powder to a size of 25 to 75 μm. Although it was slightly inferior to atomized powder, we were able to obtain a powder with almost no problems in fluidity. It was confirmed.

VC/Fe複合粉末の粉砕粉はFeVとCとの混合粉を真空中で加熱して得た鋳塊を粉砕することにより得られるが、これについても微粉カットするとTiB2/Fe複合粉末と同様にほぼ良好な流動性を示した。 The crushed powder of VC/Fe composite powder is obtained by crushing the ingot obtained by heating the mixed powder of FeV and C in a vacuum, but when this is also cut into fine powder, it becomes the same as the TiB 2 /Fe composite powder. It showed almost good fluidity.

FeV粉末の粉砕粉はテルミット反応によって得られた塊状品を粉砕することにより容易に得られるが、これについても微粉カットするとほぼ良好な流動性の粉末が得られた。
一般に粉末は微粉になるほど流動性が悪化するので、カット粒径は少なくとも15μm、好ましくは20μm、より好ましくは25μmである。流動性のみを考慮するとカット粒径を更に大きくする方が良いが、あまり大きくすると収率か低下してコスト高となるので、微粉カット粒径は25μmに留めるのが好ましい。なお粗粉については150μm以上の粒径では粗すぎて溶融に時間がかかり微粉との溶融時間に差が生じて均一溶融ができなくなり、良好な造形品を得ることができなくなる。よって粒径の上限は150μmとする。
したがって上述したTiB2/Fe複合粉末、VC/Fe複合粉末、FeV粉末の粉砕粉の粒径は、15~150μm、好ましくは、20~90μm、より好ましくは、25~75μmとする。またこのように微粉をカットすることにより、粒子径が45μmを超える粒子の積算質量は50質量%以上となり平均粒径が粗くなるため、粉末の流動性改善にも効果的である。
A pulverized FeV powder can be easily obtained by pulverizing a lump obtained by the thermite reaction, and when this was also cut into fine powder, a powder with almost good fluidity was obtained.
Generally, the finer the powder, the worse its fluidity, so the cut particle size is at least 15 μm, preferably 20 μm, and more preferably 25 μm. Considering only the fluidity, it is better to further increase the cut particle size, but if it is too large, the yield will decrease and the cost will increase, so it is preferable to keep the fine powder cut particle size at 25 μm. If the coarse powder has a particle size of 150 μm or more, it is too coarse and takes a long time to melt, resulting in a difference in melting time with the fine powder, making it impossible to achieve uniform melting and making it impossible to obtain a good shaped product. Therefore, the upper limit of the particle size is set to 150 μm.
Therefore, the particle size of the pulverized TiB 2 /Fe composite powder, VC/Fe composite powder, and FeV powder mentioned above is 15 to 150 μm, preferably 20 to 90 μm, and more preferably 25 to 75 μm. Further, by cutting the fine powder in this way, the cumulative mass of particles having a particle diameter exceeding 45 μm becomes 50% by mass or more, and the average particle diameter becomes coarse, which is also effective in improving the fluidity of the powder.

このようにして粗粉カット、微粉カットしたTiB2/Fe複合粉末、VC/Fe複合粉末、FeV粉末を、造形用の原料粉末とするが、流動性を更に良くするためには粒度分布幅はより狭い方が好ましい。これは原料粉末の収率を考慮しつつ、使用する造形装置の機種に適した粒度幅とする必要がある。 The TiB 2 /Fe composite powder, VC/Fe composite powder, and FeV powder cut into coarse powder and fine powder in this way are used as raw material powder for modeling, but in order to further improve fluidity, the particle size distribution width is Narrower is preferable. It is necessary to set the particle size range to be suitable for the model of the modeling apparatus used while considering the yield of the raw material powder.

一般にPBF法のレーザータイプでは15~45μm、電子ビームタイプでは45~105μm、DED法では45~150μmが使いやすい粒度と言われているのでそれらに合わせる必要があるが、粉砕粉の場合はもともと粒径が粗いので粉砕、分級工程において容易に粒度調整することが可能であり収率も高い。 In general, particle sizes of 15 to 45 μm for the laser type of the PBF method, 45 to 105 μm for the electron beam type, and 45 to 150 μm for the DED method are said to be easy to use, so it is necessary to adjust to these, but in the case of pulverized powder, the particle size is Since the diameter is coarse, the particle size can be easily adjusted in the crushing and classification steps, and the yield is also high.

TiB2/Fe複合粉末、VC/Fe複合粉末のSUS316Lに対する添加量は、多すぎるとSUS316Lの本来の性状を損なう恐れがあるため、添加後の混合粉末においてTiB2、VC等のセラミックスの割合を30質量%以下とする必要がある。これにより造形用粉末に占めるステンレス系粉末の含有割合は70質量%以上となり、好ましい含有割合を維持することができる。
一方、少なくするほどSUS316Lの本来の性状は保たれるが、少なすぎると造形品の硬度の上昇がわずかで効果が不十分となるため、適正な添加割合が存在する。
その割合は、好ましくは5~20質量%、より好ましくは5~10質量%の範囲であり、この範囲であれば造形品の硬度はマルエージング鋼並みの高水準となり、それに伴い耐摩耗性の大幅な向上が期待できる。
If the amount of TiB 2 /Fe composite powder or VC/Fe composite powder added to SUS316L is too large, it may damage the original properties of SUS316L, so the proportion of ceramics such as TiB 2 and VC in the mixed powder after addition may be It needs to be 30% by mass or less. As a result, the content ratio of the stainless steel powder in the modeling powder becomes 70% by mass or more, and a preferable content ratio can be maintained.
On the other hand, the smaller the amount, the more the original properties of SUS316L are maintained, but if the amount is too small, the hardness of the shaped article will increase only slightly and the effect will be insufficient, so there is an appropriate addition ratio.
The proportion is preferably in the range of 5 to 20% by mass, more preferably 5 to 10% by mass; within this range, the hardness of the molded product will be at a high level comparable to that of maraging steel, and the wear resistance will be improved accordingly. Significant improvements can be expected.

FeVの添加についても同様の理由で添加後の混合粉末においてVの割合を30質量%以下とする必要がある。 Regarding the addition of FeV, the proportion of V in the mixed powder after addition needs to be 30% by mass or less for the same reason.

VC/Fe複合粉末中のVCの形態はVC,V87,V43等、種々のものがあるが、どの形態のものでも硬度が高いため、形態に制限されることなくいずれのものでも使用することができる。 There are various forms of VC in the VC/Fe composite powder, such as VC, V 8 C 7 and V 4 C 3 , but all forms have high hardness, so any form can be used without being limited to the form. It can also be used with anything.

これらの粉末の溶融方法にはレーザービーム溶融、電子ビーム溶融、プラズマ溶融等の方法があり、それによって使用する粉末の適正粒度範囲や出力、走査速度、走査ピッチ、積層厚さ等の造形条件は異なるが、いずれの方法も粉末を高温にして溶融させるものであり、適正条件さえ把握すればどの原理の設備にも適用可能である。 There are several methods for melting these powders, such as laser beam melting, electron beam melting, and plasma melting, which determine the appropriate particle size range of the powder used, and the modeling conditions such as output, scanning speed, scanning pitch, and layer thickness. Although different, both methods involve heating the powder to a high temperature and melting it, and as long as the appropriate conditions are understood, they can be applied to equipment based on any principle.

本発明のTiBとFeの複合粉末の粉砕粉、VCとFeの複合粉末の粉砕粉あるいはFeVの粉砕粉を、SUS316L等のステンレス系粉末へ添加混合して造形用粉末とすることによる造形品の硬度の増加は、次のように考えられる。 A shaped product made by adding and mixing the TiB 2 and Fe composite powder, VC and Fe composite powder, or FeV powder of the present invention to stainless steel powder such as SUS316L to obtain a powder for modeling. The increase in hardness can be considered as follows.

TiB2やVCはビッカース硬度がそれぞれ3,400Hv、2,800Hvと非常に高いセラミックスであるが、造形時の加熱、溶融、凝固の過程を経ることによって、これらの微細な結晶がマトリックスであるステンレスの結晶粒界にリング状あるいは網目状に均一に分布するようになるため、全体的に硬度が上昇し、耐摩耗性が大幅に向上すると考えられる。
具体的には、例えば、図3にも示されるように、TiB2がステンレス(主体はFe)の結晶粒界に分布している組織が観察される。
一方、FeV添加の場合は溶融時に硬度が高いVが材料中に均一に分散し、全体的に硬度の高いV合金となって造形品の硬度が増加すると考えられる。
TiB 2 and VC are ceramics with extremely high Vickers hardnesses of 3,400Hv and 2,800Hv, respectively, but by going through the heating, melting, and solidification process during molding, these fine crystals form a matrix of stainless steel. It is thought that the hardness increases overall and the wear resistance is greatly improved because it is uniformly distributed in a ring-like or network-like manner at the crystal grain boundaries.
Specifically, for example, as shown in FIG. 3, a structure in which TiB 2 is distributed at grain boundaries of stainless steel (mainly Fe) is observed.
On the other hand, in the case of FeV addition, it is thought that V, which has high hardness, is uniformly dispersed in the material during melting, resulting in a V alloy with high hardness as a whole, increasing the hardness of the shaped article.

以下に、実施例を用いて本発明を詳細に説明する。 The present invention will be explained in detail below using examples.

(実施例1)
TiB/Fe複合粉末の粉砕粉を分級して粒度を25~75μmとした積層造形用粉砕粉とし、混合粉末に占めるTiB2の含有割合が10質量%になるように市販されているSUS316Lアトマイズ粉と混合し造形用粉末を作製した。
(Example 1)
The pulverized powder of TiB 2 /Fe composite powder is classified to obtain a pulverized powder for additive manufacturing with a particle size of 25 to 75 μm, and the commercially available SUS316L atomized powder is prepared so that the content of TiB 2 in the mixed powder is 10% by mass. A powder for modeling was prepared by mixing with powder.

次に、この造形用粉末の流動度測定を行った。粉末の流動度はJIS Z-2502 に規定された金属粉の流動度測定方法に準じた方法で測定した。すなわち、乾燥した金属粉末50gを出口が塞がれた所定の形状の漏斗に供給し、出口を開放して粉末が落下し始めてから全量が落下するまでの時間を測定した。
表1にその結果を示すが、この造形用粉末では測定値は9秒となったが、これはSUS316Lアトマイズ粉単独(後記比較例1参照)の場合の流動度8秒とほぼ同等の時間であり、3Dプリンター用あるいは肉盛加工用粉末としては全く問題のない良好な流動性である。
Next, the fluidity of this modeling powder was measured. The fluidity of the powder was measured in accordance with the method for measuring the fluidity of metal powder specified in JIS Z-2502. That is, 50 g of dry metal powder was supplied to a funnel of a predetermined shape with a closed outlet, and the time from when the outlet was opened and the powder started to fall until the entire amount fell was measured.
The results are shown in Table 1. With this modeling powder, the measured value was 9 seconds, which is approximately the same time as the flow rate of 8 seconds when using SUS316L atomized powder alone (see Comparative Example 1 below). It has good fluidity with no problems at all as a powder for 3D printers or overlay processing.

ついで、この造形用粉末を用いてPBF法で立方体の積層造形を行ったところ、粉末の供給とリコーターによる層厚の調整は問題なく、連続運転も可能で、図4中の右側の図に示すように、所定の形状の造形品を得ることができた。 Next, when we performed additive manufacturing of a cube using the PBF method using this modeling powder, there were no problems in supplying the powder and adjusting the layer thickness using the recoater, and continuous operation was possible, as shown in the diagram on the right side of Figure 4. In this way, we were able to obtain a shaped article with a predetermined shape.

また、DED法による単層ビード造形試験でも粉末の供給は全く問題なく、図6に示すように、所定の形状の単層ビード造形品を得ることができた。 Further, in the single-layer bead molding test using the DED method, there was no problem in supplying the powder, and as shown in FIG. 6, a single-layer bead molded product with a predetermined shape could be obtained.

この単層ビードの断面試験片を採取して樹脂埋めし、表面を研磨後に、図7に示すように、上部から底部へ0.2mmごとにビッカース硬度を測定したところ、500~560Hvという高い数値を示した(表1、図8参照)。これは高硬度で知られるマルエージング鋼の造形品のビッカース硬度とほぼ同水準である。
すなわち、TiB2/Fe複合粉末の粉砕粉をSUS316Lへ添加して造形することにより、時効処理することなしにマルエージング鋼並みの硬度を有するSUS316Lとすることができた。
A cross-sectional specimen of this single-layer bead was taken, embedded in resin, and the surface polished. As shown in Figure 7, the Vickers hardness was measured every 0.2 mm from the top to the bottom, and the result was a high value of 500 to 560 Hv. (See Table 1 and Figure 8). This is approximately the same level as the Vickers hardness of molded products made of maraging steel, which is known for its high hardness.
That is, by adding pulverized powder of TiB 2 /Fe composite powder to SUS316L and shaping it, SUS316L could be made to have a hardness comparable to that of maraging steel without aging treatment.

このビッカース硬度測定サンプル断面の元素分布を、電子顕微鏡を用いて調査したところ、図3に示すように、Feのマトリックス中にリング状または網目状のTiB2が均一に分布しているのが観察された。
TiB/Fe複合粉末の粉砕粉をSUS316Lへ添加した造形用粉末を用いて造形することによる大幅な硬度上昇の原理は必ずしも解明されていないが、Feマトリックス中におけるこのようなTiB結晶の分布が寄与しているものと考えられる。
When the element distribution of the cross section of this Vickers hardness measurement sample was investigated using an electron microscope, it was observed that ring-shaped or mesh-shaped TiB 2 was uniformly distributed in the Fe matrix, as shown in Figure 3. It was done.
Although the principle behind the significant increase in hardness caused by modeling using a modeling powder made by adding pulverized TiB 2 /Fe composite powder to SUS316L has not been fully elucidated, the distribution of such TiB 2 crystals in the Fe matrix is not clear. It is thought that this is a contributing factor.

(実施例2)
FeV粉砕粉を分級して粒度を25~75μmとした積層造形用粉砕粉とし、混合粉末に占めるV含有割合が10質量%になるように市販されているSUS316Lアトマイズ粉と混合し、造形用粉末を作製した後、流動度を測定したところ、表1に示すように、10秒となり、SUS316Lアトマイズ粉単独の場合の流動度8秒とほぼ同等の流動性となった。
(Example 2)
The FeV pulverized powder is classified to have a particle size of 25 to 75 μm as a pulverized powder for additive manufacturing , and is mixed with commercially available SUS316L atomized powder so that the V content ratio in the mixed powder is 10% by mass. After the preparation, the fluidity was measured, and as shown in Table 1, it was 10 seconds, which was almost the same as the fluidity of 8 seconds when using SUS316L atomized powder alone.

この粉末を用いてPBF法で立方体の積層造形を行ったところ、粉末の供給とリコーターによる層厚の調整は問題なく、連続運転も可能で、図4中の中央の図に示すように、所定の形状の造形品を得ることができた。 When we performed additive manufacturing of a cube using the PBF method using this powder, there were no problems in supplying the powder and adjusting the layer thickness with the recoater, and continuous operation was possible, as shown in the center diagram in Figure 4. We were able to obtain a molded product with the shape of .

DED法による単層ビード造形試験でも粉末の供給は全く問題なく、所定の形状の単層ビード造形品を得ることができた。
この単層ビードの断面試験片を採取して樹脂埋めし、表面を研磨後に上部から底部へ0.2mmごとにビッカース硬度を測定したところ300~310Hvとなり、比較例に示すSUS316L単独の場合の硬度の約2倍となった(表1参照)。
Even in the single-layer bead molding test using the DED method, there was no problem in supplying the powder, and a single-layer bead molded product with a predetermined shape could be obtained.
A cross-sectional test piece of this single-layer bead was collected, embedded in resin, and after polishing the surface, the Vickers hardness was measured every 0.2 mm from the top to the bottom, and it was 300 to 310 Hv, which is the hardness of SUS316L alone as shown in the comparative example. (See Table 1)

(実施例3)
VC粉砕粉を分級して粒度を25~75μmとした積層造形用粉砕粉とし、混合粉末に占めるVC含有割合が10質量%になるように市販されているSUS316Lアトマイズ粉と混合した造形用粉末について、実施例1、実施例2と同様の方法でDED法による単層ビードを造形してその断面硬度を測定したところ、300~320Hvとなり、比較例に示すSUS316L単独の場合の硬度の約2倍となった(表1参照)。
(Example 3)
VC crushed powder is classified to have a particle size of 25 to 75 μm as a crushed powder for additive manufacturing , and the powder for modeling is mixed with commercially available SUS316L atomized powder so that the VC content in the mixed powder is 10% by mass. When a single-layer bead was formed using the DED method in the same manner as in Examples 1 and 2, and its cross-sectional hardness was measured, it was 300 to 320 Hv, which was approximately twice the hardness of SUS316L alone as shown in the comparative example. (See Table 1).

(比較例1)
粒度が15~53μmのSUS316Lアトマイズ粉を、実施例1~実施例3と同様の方法で、流動度を測定するとともに、DED法による単層ビードを造形してその断面硬度を測定したところ、表1に示すように、流動度は8秒であったが、断面硬度は、160~170Hvであった。
(Comparative example 1)
The fluidity of SUS316L atomized powder with a particle size of 15 to 53 μm was measured in the same manner as in Examples 1 to 3, and the cross-sectional hardness of a single-layer bead formed by the DED method was measured. As shown in No. 1, the fluidity was 8 seconds, but the cross-sectional hardness was 160 to 170 Hv.

本発明による積層造形用粉砕粉を、例えば、SUS316L等のステンレス系粉末と混合して3Dプリンターあるいは肉盛加工の造形用原料粉末とすることにより、造形品の硬度が大幅に向上しそれに伴い耐摩耗性の大幅な向上も期待できるため、ステンレス系粉末の新規用途への道が開かれる。
また粉砕粉はアトマイズ粉と比べて安価なため、混合粉の原価も低下して価格が安くなるため、これまで3Dプリンターの普及を妨げていた原因の一つである粉末価格の問題が緩和されるため、大幅な需要増も期待できる。
By mixing the pulverized powder for additive manufacturing according to the present invention with a stainless steel powder such as SUS316L and using it as a raw material powder for modeling in 3D printers or overlay processing, the hardness of the modeled product can be greatly improved, and the durability will be improved accordingly. It is also expected to significantly improve wear resistance, opening the way to new uses for stainless steel powder.
In addition, since pulverized powder is cheaper than atomized powder, the cost of mixed powder also decreases, making it cheaper, which alleviates the problem of powder price, which was one of the reasons that had hindered the spread of 3D printers. Therefore, a significant increase in demand can be expected.

Claims (2)

TiB及びVCの一方又は両方とFeからなる複合粉末の粉砕粉であって、粒径が15μm以上、150μm以下であることを特徴とする積層造形用粉砕粉。 A pulverized powder for additive manufacturing, which is a pulverized composite powder consisting of one or both of TiB 2 and VC and Fe, and has a particle size of 15 μm or more and 150 μm or less. 前記粉砕粉と、粒度が15~53μmのSUS316Lアトマイズ粉を混合した混合粉を、前記混合粉中のセラミックスが10質量%になるように配合して得た際に、得られた前記混合粉の流動度が9秒/50g以上であることを特徴とする請求項1に記載の積層造形用粉砕粉。 When a mixed powder obtained by mixing the pulverized powder and SUS316L atomized powder with a particle size of 15 to 53 μm is blended so that the ceramic content in the mixed powder is 10% by mass, the obtained mixed powder The pulverized powder for additive manufacturing according to claim 1, having a fluidity of 9 seconds/50 g or more.
JP2023001300A 2019-03-29 2023-01-06 Pulverized powder for additive manufacturing Active JP7404567B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023001300A JP7404567B2 (en) 2019-03-29 2023-01-06 Pulverized powder for additive manufacturing
CN202321467247.5U CN220377520U (en) 2019-03-29 2023-06-09 Skeleton member of small room for indoor installation and high-pressure cabin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065777A JP7285112B2 (en) 2019-03-29 2019-03-29 Powder for modeling, method for producing this powder and method for producing shaped articles
JP2023001300A JP7404567B2 (en) 2019-03-29 2023-01-06 Pulverized powder for additive manufacturing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019065777A Division JP7285112B2 (en) 2019-03-29 2019-03-29 Powder for modeling, method for producing this powder and method for producing shaped articles

Publications (2)

Publication Number Publication Date
JP2023037644A JP2023037644A (en) 2023-03-15
JP7404567B2 true JP7404567B2 (en) 2023-12-25

Family

ID=72716742

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019065777A Active JP7285112B2 (en) 2019-03-29 2019-03-29 Powder for modeling, method for producing this powder and method for producing shaped articles
JP2023001300A Active JP7404567B2 (en) 2019-03-29 2023-01-06 Pulverized powder for additive manufacturing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019065777A Active JP7285112B2 (en) 2019-03-29 2019-03-29 Powder for modeling, method for producing this powder and method for producing shaped articles

Country Status (2)

Country Link
JP (2) JP7285112B2 (en)
CN (1) CN220377520U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908865A (en) * 2021-02-09 2022-08-16 小智研发股份有限公司 Building assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009980A1 (en) 1989-12-27 1991-07-11 Toshiba Kikai Kabushiki Kaisha Production of anticorrosive and antiwearing alloy
JP2017088972A (en) 2015-11-13 2017-05-25 新日本電工株式会社 Titanium boride-containing powder and manufacturing method therefor and manufacturing method of sintered metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0551688A (en) * 1991-08-21 1993-03-02 Kawasaki Steel Corp Production of high density sintered compact of stainless steel
JP3314505B2 (en) * 1993-12-27 2002-08-12 株式会社豊田中央研究所 High-rigidity iron-based alloy and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009980A1 (en) 1989-12-27 1991-07-11 Toshiba Kikai Kabushiki Kaisha Production of anticorrosive and antiwearing alloy
JP2017088972A (en) 2015-11-13 2017-05-25 新日本電工株式会社 Titanium boride-containing powder and manufacturing method therefor and manufacturing method of sintered metal

Also Published As

Publication number Publication date
JP2020164916A (en) 2020-10-08
CN220377520U (en) 2024-01-23
JP7285112B2 (en) 2023-06-01
JP2023037644A (en) 2023-03-15

Similar Documents

Publication Publication Date Title
EP3609640B1 (en) High carbon content cobalt-based alloy
JP7404567B2 (en) Pulverized powder for additive manufacturing
WO2019230806A1 (en) Metal powder for 3d printers, shaped article, and method for producing shaped article
TWI265062B (en) Electrode for discharge surface treatment, method for making an electrode for discharge surface treatment, discharge surface treatment apparatus and method
Maurya et al. Additive manufacturing of TiC-based cermet with stainless steel as a binder material
WO2017150340A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
JP6915700B2 (en) Powder material, powder material for additional manufacturing, and method of manufacturing powder material
TWI512126B (en) A sputtering target and a method for producing the same, and a film produced by using the same
KR101638365B1 (en) Method for Forming Hard Metal Cemented Carbide Layer by Welding Work Pieces with Cemented Carbide Powder
CN115029587A (en) Oxide dispersion strengthening nickel-based high-temperature alloy manufactured by additive manufacturing and preparation method thereof
JP7296232B2 (en) Method for producing solid spherical powder and method for producing shaped products
CN114682774A (en) Spherical Ti/TC4-TiC composite powder and preparation method thereof
JP2022122462A (en) Carbon-fixed carbon steel powder
JP2005320557A (en) Abrasion resistant member and manufacturing method therefor
JPH08311586A (en) Alpha plus beta titanium alloy matrix composite, titanium alloy material for various products, and titanium alloy product
KR20070015256A (en) Process for manufacturing sintered materials containing cobalt component
JP2023131661A (en) Titanium boride dispersion strengthening steel, manufacturing method of titanium boride dispersion strengthening steel, and raw material powder for dispersing titanium boride
EP4212638A1 (en) Ni-based alloy powder and method for manufacturing lamination molded article using said ni-based alloy powder
US20230064672A1 (en) Isotropic, crack-free steel design using an additive manufacturing method
WO2023100920A1 (en) 3d printing alloy powder material comprising oxide nanoparticles, and 3d printed body
KR20230068340A (en) Fe-BASED ALLOY FOR MELT-SOLIDIFICATION-SHAPING AND METAL POWDER
JP2022148950A (en) METHOD FOR PRODUCING MOLDED ARTICLE INCLUDING Fe-BASED ALLOY POWDER
KR101647997B1 (en) Density and sphericity enhanced RuCr alloy and the manufacturing method of the same
JP2023032589A (en) High-rigidity iron-based alloy and method of manufacturing the same
Walther et al. Manufacturing of fine spherical iron powder and the influence of the powder morphology on the sintering behaviour

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230106

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231213

R150 Certificate of patent or registration of utility model

Ref document number: 7404567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150