JP6528106B2 - NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool - Google Patents

NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool Download PDF

Info

Publication number
JP6528106B2
JP6528106B2 JP2014111897A JP2014111897A JP6528106B2 JP 6528106 B2 JP6528106 B2 JP 6528106B2 JP 2014111897 A JP2014111897 A JP 2014111897A JP 2014111897 A JP2014111897 A JP 2014111897A JP 6528106 B2 JP6528106 B2 JP 6528106B2
Authority
JP
Japan
Prior art keywords
chromium
corrosion
powder
molybdenum alloy
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014111897A
Other languages
Japanese (ja)
Other versions
JP2015224385A (en
Inventor
雅義 秋山
雅義 秋山
佳史 東川
佳史 東川
正樹 森田
正樹 森田
Original Assignee
アイセイエンジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイセイエンジ株式会社 filed Critical アイセイエンジ株式会社
Priority to JP2014111897A priority Critical patent/JP6528106B2/en
Publication of JP2015224385A publication Critical patent/JP2015224385A/en
Application granted granted Critical
Publication of JP6528106B2 publication Critical patent/JP6528106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

高い耐腐食性と耐摩耗性を有する新規合金と、この合金からなる肉盛溶接層を母材の表面に有し高い耐腐食性と耐摩耗性を具えた鋼材と、これらの合金と鋼材から製造される冷間工具に関するものである。   A new alloy having high corrosion resistance and wear resistance, a steel material having a built-up weld layer made of this alloy on the surface of a base material and having high corrosion resistance and wear resistance, and these alloys and steel materials It relates to a cold tool to be manufactured.

強い腐食環境下で使用される合金材料としては、現在のところ事実上、高ニッケル(Ni)基合金であるハステロイ(登録商標、以下同じ。)しか存在しないといわれている。しかしながら、ハステロイは耐摩耗性に乏しく、強い摩擦力で接触対象と接する摺動部材としては利用することができないという問題がある。一方、耐摩耗性に優れた合金としては、ステライト(登録商標、以下同じ。)等のコバルト(Co)基合金が知られているが、ステライト等は耐食性に乏しく、腐食環境下では利用することができないという問題がある。 At present, it is said that only Hastelloy (registered trademark, hereinafter the same), which is a high nickel (Ni) base alloy, exists as an alloy material used under a strong corrosive environment. However, Hastelloy has a problem that it has poor wear resistance and can not be used as a sliding member that contacts the contact object with strong frictional force. On the other hand, cobalt (Co) -based alloys such as Stellite (registered trademark, the same in the following) and the like are known as alloys excellent in wear resistance, but Stellite and the like have poor corrosion resistance and should be used under corrosive environment There is a problem that you can not

強腐食環境下で使用される工具・装置としては、合成ゴム混練機用ロータを例示することができる。合成ゴム混練機用ロータの分野においては、炭素鋼母材の表面に、Ni系やCo系の自溶合金を溶射被覆したものが知られている(特許文献1参照)。しかしながら、溶射技術では、母材表面に比較的薄い溶射被膜を形成することしかできず、しかも母材との冶金的接合性が悪く、剥離を起こしやすいという大きな問題がある。   As a tool and apparatus used under a strong corrosive environment, a rotor for a synthetic rubber kneader can be exemplified. In the field of a rotor for synthetic rubber kneaders, one in which a self-fluxing alloy of Ni-based or Co-based is spray-coated on the surface of a carbon steel base material is known (see Patent Document 1). However, in the thermal spray technology, only a relatively thin thermal spray coating can be formed on the surface of the base material, and moreover, the metallurgical bondability with the base material is poor, and there is a major problem that it is easily peeled off.

このような事情もあり、合成ゴム混練機用ロータには、耐腐食性を優先し短期間での交換を前提としてハステロイが利用されることが多い現状にある。換言すれば、強い腐食環境下において好適に利用することができる耐摩耗性を有する合金、特に溶接金属は存在しない、とこれまで考えられてきた。そのため、高耐腐食性と高耐摩耗性の両方の性質を備えた溶接金属系の設備素材や工具素材は、存在していないのが現状であり、現実的には設備や工具の早期交換しか対応策がなく、設備コストや工具コストが極めて高くついている。しかしながら、素材加工産業での設備運転環境は過酷化しており、設備や工具の強腐食環境下での耐摩耗性の要求が高度化している。そのため、従来にない高耐腐食性と高耐摩耗性を兼ね備えた合金素材が求められている。   Under such circumstances, in the rotor for synthetic rubber kneaders, Hastelloy is often used on the premise of replacement in a short period of time with priority given to corrosion resistance. In other words, it has previously been thought that there is no wear-resistant alloy, in particular no weld metal, which can be suitably utilized in a strong corrosive environment. Therefore, there is currently no welding metal equipment material or tool material with both high corrosion resistance and high wear resistance properties, and in reality there is only an early replacement of equipment and tools. There is no countermeasure, and the equipment cost and tool cost are extremely high. However, the facility operating environment in the material processing industry is becoming severe, and the demand for wear resistance of equipment and tools in a strongly corrosive environment is becoming high. Therefore, there is a demand for an alloy material having high corrosion resistance and high abrasion resistance, which has not heretofore been available.

合金の母材表面の硬度を向上させる手法の一つとして、硬質物質であるニオブ炭化物(NbC)を含む金属−炭化物複合皮膜を金属表面に溶接により形成する技術が提案されている(例えば、特許文献2、特許文献3参照)。特許文献2に開示された技術は、継目無管のプラグミル圧延に使用されるプラグとして、炭素鋼、合金鋼、ステンレス鋼、Ni基合金等の母材表面に、NbC粉末とステンレス鋼粉末からなるマトリックス金属の混合粉末をプラズマ粉体肉盛法によって金属−炭化物複合皮膜を形成するものである。一方、特許文献3に開示された技術は、熱間加工用工具及び継目無管鋼のプラグとして、炭素鋼、合金鋼、ステンレス鋼、ニッケル基合金等の母材表面に、NbC粉末とCo基合金又はNi基合金からなるマトリックス金属の混合粉末を、プラズマ粉体肉盛法等によって金属−炭化物複合皮膜を形成するものである。   As one of the methods to improve the hardness of the surface of the base material of the alloy, a technique of forming a metal-carbide composite film containing niobium carbide (NbC), which is a hard substance, on a metal surface by welding (for example, patent) Reference 2 and Patent Document 3). The technology disclosed in Patent Document 2 comprises NbC powder and stainless steel powder on the surface of a base material such as carbon steel, alloy steel, stainless steel, Ni-based alloy or the like as a plug used for seamless pipe plug milling. A mixed powder of matrix metal is formed into a metal-carbide composite film by plasma powder buildup method. On the other hand, the technique disclosed in Patent Document 3 uses NbC powder and Co base on the surface of a base material such as carbon steel, alloy steel, stainless steel, nickel base alloy or the like as a tool for hot working and seamless steel pipe plug. A mixed powder of a matrix metal composed of an alloy or a Ni-based alloy is used to form a metal-carbide composite film by a plasma powder buildup method or the like.

特開2003−277861号公報Unexamined-Japanese-Patent No. 2003-277861 特開平9−52105号公報JP-A-9-52105 特開2007−160338号公報JP 2007-160338 A

しかしながら、特許文献2、3に開示された技術は、熱間工具に適用されるものであり、熱間での耐摩耗性評価と冷間での耐摩耗性評価は、使用環境、特に温度環境の相違から摩耗部分の様相と形態が全く異なるため、熱間工具に適用される条件を冷間工具に適用される条件に転用することはできない。その理由の一つとしては、特許文献2、3に記載の技術では、100μm程度の巨大なNbCの粒が用いられているが、NbCの硬度は極めて高く、このように巨大な硬質物質が表面に存在する工具を冷間で用いると、工具と接触する被加工材表面に擦過痕をつけてしまうのに対して、熱間では、被加工材が高温であり、加工後に表層部分は酸化物として落剥してしまうので、たとえ疵がついても実害が無い、ということが挙げられる。すなわち冷間では、被加工材はそのまま製品として出荷されるので、擦過痕が残存することは許されないという、熱間との顕著な相違がある。また、冷間工具の材料として、ハステロイ中にNbCを分散させた合金や、このような合金を表面肉盛層として母材の表面に形成した鋼材については、過去に報告の事例が存在しない。   However, the techniques disclosed in Patent Documents 2 and 3 are applied to a hot tool, and the wear resistance evaluation in the hot and the wear resistance evaluation in the cold are the use environment, particularly the temperature environment. The conditions applied to the hot tool can not be diverted to the conditions applied to the cold tool because the appearance and the form of the wear part are completely different from the difference in the above. As one of the reasons, in the techniques described in Patent Documents 2 and 3, huge NbC particles of about 100 μm are used, but the hardness of NbC is extremely high, and such a huge hard substance is a surface When the tool present in the cold is used, the surface of the workpiece in contact with the tool will be scratched, whereas in the hot case, the workpiece is at a high temperature, and the surface layer will be an oxide after processing It is said that there is no real harm even if it is worn out as it That is, in the case of cold, since the work material is shipped as a product as it is, there is a marked difference from hot, in which no scratch marks are allowed to remain. In addition, there has been no case reported in the past for an alloy in which NbC is dispersed in hastelloy as a material for cold tools, and a steel material formed on the surface of a base material with such an alloy as a surface overlay.

さらに、特許文献2、3では、使用されるNbCの平均粒径が65〜135μm程度のものが好ましい、と開示されており、実施例では平均粒径が100μm(特許文献2、3)と120μm(特許文献2)のNbCを用いた実験例が開示されているが、この平均粒径は比較的大きいものであるとはいえ、この範囲よりも小さく市販もされていないNbC粉末を用いた場合の耐摩耗性についてはこれまで検討すらされてこなかった。その理由としては、比較的粒径の小さいNbCの粉末は、プラズマ粉体肉盛溶接を含む溶接をすることができないと当業者の間で言われてきており、それが当然のこととして信じられてきたことによるものと考えられる。   Furthermore, Patent Documents 2 and 3 disclose that the average particle size of NbC to be used is preferably about 65 to 135 μm, and in the examples, the average particle sizes are 100 μm (Patent Documents 2 and 3) and 120 μm. Although an experimental example using NbC of (Patent Document 2) is disclosed, although this average particle size is relatively large, when using NbC powder smaller than this range and not marketed. The abrasion resistance of the steel has not even been studied so far. The reason is that relatively small particle size NbC powder has been told by those skilled in the art that welding including plasma powder build-up welding can not be performed, and it is believed as a matter of course It is thought that it is due to having come.

以上のような問題に鑑みて本発明は、耐腐食性と耐摩耗性の両方の性質を兼ね備えた冷間工具に適した斬新な合金及び鋼材として、ハステロイに対応する耐腐食性ニッケル・クロム・モリブデン合金中に比較的細かいNbC粉末を分散させた構成を有する合金とその製法、斯かる合金を表面肉盛層として備えた鋼材とその製法、並びにこれらの合金若しくは鋼材からなる有用な冷間工具の提供を主たる目的とするものである。 In view of the problems as described above, the present invention is a novel alloy and steel suitable for cold tools having both corrosion resistance and wear resistance properties, such as corrosion resistance nickel, chromium, etc. corresponding to hastelloy. Alloy having a structure in which relatively fine NbC powder is dispersed in molybdenum alloy , method for producing the same, steel material provided with such alloy as surface buildup layer, method for producing the same, and useful cold tool comprising these alloy or steel The main purpose is to provide

本発明の新規合金は、耐腐食性ニッケル基にクロム及びモリブデンを主成分として含有する耐腐食性ニッケル・クロム・モリブデン合金であって、ニッケルを5質量%、クロムを16質量%、モリブデンを1質量%、鉄を4〜7質量%、タングステンを質量3〜4.5%で含有する耐腐食性ニッケル・クロム・モリブデン合金中、又は、ニッケルを56質量%、クロムを22質量%、モリブデンを13質量%、鉄を3質量%、タングステンを3質量%で含有する前記耐腐食性ニッケル・クロム・モリブデン合金中に、平均粒径が45μm未満のニオブ炭化物粉末を分散させてなることを特徴とするNbC分散強化型耐腐食性ニッケル・クロム・モリブデン系合金である。
New alloys of the present invention is a corrosion-resistant nickel-chromium-molybdenum alloy mainly containing chromium and molybdenum corrosion resistant nickel based, nickel 5 7 wt%, chromium 16% by weight, molybdenum 1 7% by weight, iron 4-7% by weight, corrosion resistant nickel-chromium-molybdenum alloy containing tungsten by mass 3 to 4.5%, or nickel 56 wt%, chromium 22% by weight, In the corrosion resistant nickel-chromium-molybdenum alloy containing 13% by mass of molybdenum, 3% by mass of iron and 3% by mass of tungsten , niobium carbide powder having an average particle size of less than 45 μm is dispersed. It is an NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum-based alloy that is characterized.

斯かる本発明は、細かい粒子のNbCを溶接することができないと考えられていたこれまでの常識を覆して、耐腐食性を具えた耐腐食性ニッケル・クロム・モリブデン合金に、硬質で耐摩耗効果があるNbCの細かい粉末を分散させることに初めて成功したものであり、耐腐食性と耐摩耗性の両方の特性を兼ね備えた新規な合金を創出したものである。このNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金は、耐腐食性と耐摩耗性を有するという、強腐食環境で長期間使用することができるこれまでにない冷間工具の材料として使用することができる極めて有用なものとなる。 The present invention reverses the conventional wisdom that it was thought that fine particles of NbC could not be welded, and it was found that the corrosion resistant nickel-chromium-molybdenum alloy is hard and wear resistant. It is the first to succeed in dispersing an effective NbC fine powder, and has created a new alloy that has both corrosion resistance and wear resistance properties. This NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy is used as an unprecedented cold tool material that can be used for a long time in a highly corrosive environment, having corrosion resistance and wear resistance. It can be extremely useful.

ここで、ハステロイC(以下、単に「ハステロイ」という場合がある)は、ニッケル(Ni)基にモリブデン(Mo)やクロム(Cr)を比較的多く混合することによって耐腐食性や耐熱性を高めた合金の総称であり、本発明のNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金には、最も一般的なハステロイ・C276(商品名、以下同じ。)やハステロイ・C22(商品名、以下同じ。)を始めとするハステロイ統と称される合金を、要求される腐食環境やコストに応じて適宜選択し、適用することができる。 Here, Hastelloy C (hereinafter, sometimes simply referred to as "hastelloy") enhances corrosion resistance and heat resistance by mixing a relatively large amount of molybdenum (Mo) or chromium (Cr) with nickel (Ni). Is a general term for alloys, and the most common Hastelloy C276 (trade name, the same shall apply hereinafter) and Hastelloy C22 (trade name, hereinafter applicable to the NbC dispersion strengthened corrosion-resistant nickel-chromium-molybdenum alloy of the present invention ). same. Hastelloy C system integration called alloy including) suitably selected according to the required corrosive environment and cost, it can be applied.

このNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金は、耐腐食性ニッケル・クロム・モリブデン合金の粉末と、粒径が45μm未満のNbCの粉末との混合物を原料として、鋳造又はプラズマ溶接により合金として製造することができる。鋳造の場合は、合金の原料となる耐腐食性ニッケル・クロム・モリブデン合金を溶かした溶解炉にNbCの粉末を投入したものを型に流して鋳込む方法を採用することができる。プラズマ溶接による場合、高温を供給することができるプラズマ粉体溶接(Plasma Transferred Arc 溶接:以下、PTA溶接)法を用いて適宜の母材に耐腐食性ニッケル・クロム・モリブデンとNbCの粉末の混合物を肉盛溶接し、その肉盛溶接層のみを抽出するという方法を採用することができる。 This NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy is cast or plasma-welded using as a raw material a mixture of a corrosion-resistant nickel-chromium-molybdenum alloy powder and an NbC powder having a particle size of less than 45 μm. It can be manufactured as an alloy. In the case of casting, it is possible to employ a method in which a powder obtained by introducing NbC powder into a melting furnace in which a corrosion-resistant nickel-chromium-molybdenum alloy as a raw material of the alloy is melted is poured into a mold and cast. In the case of plasma welding, it is possible to supply a high temperature. A mixture of corrosion-resistant nickel-chromium-molybdenum and NbC powder in an appropriate base material using plasma transfer welding (Plasma Transferred Arc welding: hereinafter PTA welding) method. It is possible to employ a method of overlay welding, and extracting only the overlay welding layer.

本発明のNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金の製造にあたっては、耐腐食性ニッケル・クロム・モリブデン合金とニオブ炭化物の粉末混合物中に占めるニオブ炭化物の粉末の質量%を0%よりも多く50%以下とすることが望ましい。ニオブ炭化物の粉末は、質量%で0%を超える値とすることが前提(ニオブ炭化物の粉末を耐腐食性ニッケル・クロム・モリブデン合金粉末に混合することが必須)であるが、質量%が50%を超えた場合には、得られた合金が耐腐食性ニッケル・クロム・モリブデン合金本来の耐腐食性を十分に発揮できず、強腐食環境下での使用に適さなくなる可能性が高いと考えられることから、本発明においては、ニオブ炭化物の粉末は、耐腐食性ニッケル・クロム・モリブデン合金の粉末との混合物の0〜50質量%とすることが適切であるといえる。この範囲であれば、要求される耐摩耗性能と耐腐食性能に応じてニオブ炭化物の粉末を適宜割合とすればよいが、耐腐食性ニッケル・クロム・モリブデンとの混合物に占めるニオブ炭化物の粉末の質量%を5%以上30%以下とすれば、比較的少量のニオブ炭化物粉末であっても十分な耐摩耗性と耐腐食性を有するNbC分散強化型耐腐食性ニッケル・クロム・モリブデン系合金を得ることができる。 In the production of the NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy of the present invention, 0% by mass of niobium carbide powder in the powder mixture of corrosion-resistant nickel-chromium-molybdenum alloy and niobium carbide is used. It is desirable to make it 50% or less. It is premised that the powder of niobium carbide has a value of more than 0% by mass (it is essential to mix the powder of niobium carbide with the corrosion resistant nickel-chromium-molybdenum alloy powder), but 50 % by mass If it exceeds 10%, the obtained alloy can not fully exhibit the corrosion resistance inherent to the corrosion resistance of nickel-chromium-molybdenum alloy, and it is highly likely that the alloy is not suitable for use in a strongly corrosive environment. Therefore, in the present invention, it is preferable that the niobium carbide powder is 0 to 50 % by mass of the mixture with the corrosion-resistant nickel-chromium-molybdenum alloy powder. Within this range, the niobium carbide powder may be appropriately proportioned according to the required wear resistance performance and corrosion resistance performance, but the niobium carbide powder in the mixture with the corrosion resistant nickel-chromium-molybdenum NbC dispersion-strengthened corrosion-resistant nickel-chromium-molybdenum alloy having sufficient wear resistance and corrosion resistance even if a relatively small amount of niobium carbide powder if the mass% is 5% or more and 30% or less You can get it.

このように耐腐食性ニッケル・クロム・モリブデン合金の粉末をマトリックスとして、45μm未満という細かいNbCの粉末を比較的少量だけ添加して溶接した場合、得られた合金中ではNbCの粉末の一部は、プラズマ溶接等の溶接時の熱によってNbCの表層部が(あるいは場合によっては芯部までが)融け、隣り合った同種のNbCの粒と結合して45μm以上の塊となるものも存在する可能性があるものの、大半のNbCの粉末は投入された際の大きさ(45μm)よりも小さい粒子として存在し、しかもニオブ(Nb)と炭素(C)とが分離せずNbCとして存在したままの状態であり、耐腐食性ニッケル・クロム・モリブデン合金中にほぼ均一に分散しているため、耐腐食性ニッケル・クロム・モリブデン合金の耐腐食性を損なうことなくNbCによる耐摩耗性を獲得できることになるのである。 Thus, when welding is performed by adding a relatively small amount of NbC powder of less than 45 μm in a relatively small amount using a corrosion-resistant nickel-chromium-molybdenum alloy powder as a matrix, in the obtained alloy, a part of the NbC powder is The heat of welding, such as plasma welding, causes the surface layer of NbC to melt (or even to the core in some cases) and combine with adjacent NbC particles of the same kind to form a block of 45 μm or more Although most of the NbC powder is present as particles smaller than the size (45 μm) at the time of introduction, the niobium (Nb) and carbon (C) are not separated and remain as NbC. a state, since the substantially uniformly dispersed in the corrosion resistance of nickel-chromium-molybdenum alloy, a loss of corrosion resistance of the corrosion resistant nickel-chromium-molybdenum alloy It become possible to earn the abrasion resistance by NbC without.

また、本発明に係る鋼材は、母材となる金属材の表面に、肉盛溶接層を形成した鋼材であって、この肉盛溶接層が、上述したNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金、すなわち耐腐食性ニッケル・クロム・モリブデン合金に平均粒径が45μm未満のニオブ炭化物の粉末を分散させた合金からなるものであることを特徴としている。 Further, the steel material according to the present invention is a steel material in which a weld overlay is formed on the surface of a metal material as a base material, and the weld overlay is the NbC dispersion strengthened corrosion-resistant nickel-chromium described above. It is characterized by comprising a molybdenum alloy, that is, an alloy obtained by dispersing a powder of niobium carbide having an average particle diameter of less than 45 μm in a corrosion resistant nickel-chromium-molybdenum alloy .

本発明の係る鋼材は、耐腐食性ニッケル・クロム・モリブデン合金による耐腐食性に加えて、耐腐食性ニッケル・クロム・モリブデン合金にはない耐摩耗性をニオブ炭化物によって兼ね備えた肉盛溶接層を母材の表面に有する鋼材である。特に、平均粒径45μm未満という非常に小さいニオブ炭化物の粉末を耐腐食性ニッケル・クロム・モリブデン合金に混在させた合金は上述の通りこれまで存在せず、またこの合金を肉盛溶接層として有する鋼材としても従来にない全く新規なものであり、上述したNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金と同様に、強い腐食環境下で使用される鋼材として、特に冷間において耐摩耗性能が要求される鋼材として、極めて有用なものである。 The steel according to the present invention is a corrosion-resistant nickel-chromium-molybdenum alloy , in addition to corrosion resistance, a weld-welded layer combining wear resistance not possessed by the corrosion-resistant nickel-chromium-molybdenum alloy by niobium carbide. It is a steel material that has on the surface of the base material. In particular, an alloy in which a very small niobium carbide powder having an average particle size of less than 45 μm is mixed in a corrosion resistant nickel-chromium-molybdenum alloy as described above does not exist so far, and has this alloy as a weld overlay. It is a completely new steel material, which has never been used in the past, and like the NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy described above, wear resistance performance particularly in cold as a steel material used under a strong corrosive environment. Is a very useful steel material that is required.

肉盛溶接層は、溶射被膜の形成技術と異なり、比較的厚い層を形成することができる上に、肉盛溶接層と母材とが部分的に混ざり合うため剥離の問題も生じ難いといえる。このことと、一般的な腐食環境下での摩耗に対する肉盛溶接層の耐久性を考慮すると、肉盛溶接層の平均厚さを、2mm以上4mm以下とすれば十分である。一層盛りの肉盛溶接では、2mm程度の肉盛溶接層を形成するのが限界であるため、二層盛りの肉盛溶接層を形成する場合には、肉盛溶接層の総厚さの上限は4mmとなる。   The buildup welding layer can form a relatively thick layer, unlike the formation technique of the thermal spray coating, and moreover, it can be said that the problem of peeling can hardly occur because the buildup welding layer and the base material are partially mixed. . In consideration of this and the durability of the weld overlay to the general corrosion environment, it is sufficient if the average thickness of the weld overlay is 2 mm or more and 4 mm or less. In the case of single-layer build-up welding, the limit is to form a build-up weld layer of about 2 mm. Therefore, when forming a double-layer build-up weld layer, the upper limit of the total thickness of the build-up weld layer Is 4 mm.

一方、本発明の鋼材において母材に適用される金属材は特に限定されるものではないが、肉盛溶接層の形成時に、肉盛溶接層の耐腐食性ニッケル・クロム・モリブデン合金中のニッケルが希釈されて耐腐食性が低下することは避けるべきである。そこで母材には、ニッケルを8%以上57%以下の質量%で含有する合金からなる金属材が適切であるといえる。このようにニッケル(Ni)を比較的多く含有する金属材としては、ニッケルを比較的多く含有する合金として、オーステナイト系ステンレス(SUS304(Ni含有率8〜10.5%)、SUS316L(Ni含有率10〜14%)、SUS309S(Ni含有率12〜15%))や、ハステロイ(Ni含有率57%前後)等の耐腐食性ニッケル・クロム・モリブデンを例示することができる。すなわち、ニッケルの含有率が少ないと、肉盛溶接時に耐腐食性ニッケル・クロム・モリブデン合金中のニッケルが母材と混合された希釈され、肉盛溶接層の耐腐食性が低下するおそれがある一方、安価に製造できるという利点があることから、ニッケル含有率の下限値は8%が限界であり、肉盛溶接層の耐腐食性ニッケル・クロム・モリブデン合金との希釈の問題を生じない素材として、ハステロイ等の耐腐食性ニッケル・クロム・モリブデンを母材とした場合のニッケル含有率(57%)が上限となる。 On the other hand, although the metal material applied to the base material in the steel of the present invention is not particularly limited , nickel in the corrosion resistant nickel-chromium-molybdenum alloy of the weld overlay is formed when the weld overlay is formed. It should be avoided that the corrosion resistance is lowered by dilution. Then, it can be said that the metal material which consists of an alloy which contains nickel 8%-57% by mass% is suitable for a base material. Thus, as a metal material containing a relatively large amount of nickel (Ni), an austenitic stainless steel (SUS 304 (Ni content: 8 to 10.5%), SUS 316 L (Ni content) as an alloy containing a relatively large amount of nickel Examples include corrosion resistant nickel-chromium-molybdenum such as 10 to 14%), SUS309S (Ni content 12 to 15%), and hastelloy (Ni content 57% or so ). That is, when the content of nickel is small, the nickel in the corrosion resistant nickel-chromium-molybdenum alloy is mixed with the base material and diluted with the base metal, and the corrosion resistance of the weld overlay may be reduced. On the other hand, because it has the advantage of being able to be manufactured inexpensively, the lower limit of the nickel content is limited to 8%, and a material that does not cause dilution problems with the corrosion resistant nickel-chromium-molybdenum alloy of the weld overlay As the upper limit, the nickel content (57%) in the case of using corrosion resistant nickel, chromium and molybdenum such as hastelloy as a base material is the upper limit.

斯かる本発明の鋼材は、母材となる金属材の表面に、耐腐食性ニッケル・クロム・モリブデン合金の粉末とニオブ炭化物の粉末との混合物をプラズマ粉体肉盛溶接法により溶接する溶接工程を経て製造することができる。 Such a steel material of the present invention is a welding step of welding a mixture of a corrosion resistant nickel / chromium / molybdenum alloy powder and a niobium carbide powder onto the surface of a metal material as a base material by plasma powder buildup welding method Can be manufactured.

このようなPTA溶接法による鋼材の製造方法においては、耐腐食性ニッケル・クロム・モリブデン合金の粉末との混合物中に占めるニオブ炭化物の粉末の質量%を0%よりも多く50%以下とすることが望ましい。ニオブ炭化物の粉末は、溶接時に添加する粉末の混合物中に質量%で0%を超える値とすることが前提(ニオブ炭化物の粉末を耐腐食性ニッケル・クロム・モリブデン粉末に混合することが必須)であるが、質量%50%を超えた場合には、肉盛溶接層がニッケル・クロム・モリブデン合金本来の耐腐食性を十分に発揮できず、強腐食環境下での使用に適さなくなる可能性が高いと考えられることから、本発明においては、ニオブ炭化物の粉末は、粉末混合物中で0〜50%とすることが適切であるといえる。この範囲であれば、要求される耐摩耗性能と耐腐食性能に応じてニオブ炭化物の粉末を適宜割合とすればよいが、耐腐食性ニッケル・クロム・モリブデン合金の粉末との混合物に占めるニオブ炭化物の粉末の質量%を5%以上30%以下とすれば、比較的少量のニオブ炭化物粉末であっても十分な耐摩耗性と耐腐食性を有する肉盛溶接層を得ることができる。 In the method of manufacturing a steel material by such a PTA welding method, the mass percentage of niobium carbide powder in the mixture of the corrosion resistant nickel-chromium-molybdenum alloy with the powder is more than 0% and 50% or less. Is desirable. It is premised that the niobium carbide powder has a value of 0% or more by mass% in the mixture of powders added during welding (it is essential to mix the niobium carbide powder with the corrosion resistant nickel-chromium-molybdenum powder) However, if it exceeds 50% by mass , the weld overlay may not fully exhibit the corrosion resistance inherent to the nickel-chromium-molybdenum alloy and may not be suitable for use in a strongly corrosive environment. In the present invention, it is preferable that the niobium carbide powder is 0-50% in the powder mixture. Within this range, the niobium carbide powder may be appropriately proportioned according to the required wear resistance performance and corrosion resistance performance, but the niobium carbide in a mixture with the corrosion resistant nickel-chromium-molybdenum alloy powder By setting the mass percentage of the powder of 5% to 30%, it is possible to obtain a weld overlay having sufficient wear resistance and corrosion resistance even with a relatively small amount of niobium carbide powder.

ただしこの他にも、本発明に係る上述した鋼材の製造方法においては、耐腐食性ニッケル・クロム・モリブデン合金の種類、耐腐食性ニッケル・クロム・モリブデン合金の粉末とニオブ炭化物の粉末の混合割合、ニオブ炭化物の粉末のサイズ、母材の種類等については、求められる腐食環境、耐摩耗性の程度、耐久性、コスト等によって、上述した通り種々アレンジすることができる。 However besides this, in the above-described method for manufacturing a steel material according to the present invention, the mixing ratio of type corrosion resistant nickel-chromium-molybdenum alloy, corrosion resistant nickel-chromium-molybdenum alloy powder and the niobium carbide powder The size of the niobium carbide powder, the type of the base material, and the like can be variously arranged as described above according to the required corrosion environment, the degree of wear resistance, the durability, the cost, and the like.

さらに、本発明に係る冷間工具は、上述のNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金からなるもの、若しくは上述の鋼材により形成されて肉盛溶接層を摩擦面として設定したものである。このような冷間工具は、例えば次の様にして作製することも可能である。先ず、NbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金の溶接棒を、鋳造等の方法で、事前に製造しておく。その後、工具強度を保たせるために、炭素鋼等の安価な強度部材を用いて、これを工具形状に近い形に予め成形あるいは加工する。その上で、その表面の必要な場所に、前記の溶接棒を用いて肉盛溶接を行う。もちろん、この肉盛溶接を直接PTA肉盛溶接によって行っても何ら問題はない。肉盛溶接完了後は、溶接表面にある溶接起因の凹凸を、切削などの加工によって除去し、所定の工具形状に仕上げる。以上のような工程で冷間工具を作製することも可能である。このような本発明の冷間工具では、摩擦面が耐腐食性ニッケル・クロム・モリブデン合金中にニオブ炭化物の細かい粒を適度に分散させた状態にあることから、従来のニオブ炭化物の巨大な粒を用いた場合のように工具と接触する被加工材表面に擦過痕をつけてしまう虞がなく、製品となる被加工材の品質や価値を向上することができる。また、耐腐食性と耐摩耗性を兼ね備え、耐久性のある冷間工具はこれまで存在していないことから、本発明は特に素材加工産業において全く新しく有用な冷間工具を提供することができるものである。 Furthermore, in the cold tool according to the present invention, the above-described NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy or the above-described steel material is used to set a weld overlay as a friction surface. is there. Such a cold tool can also be produced, for example, as follows. First, a welding rod of NbC dispersion strengthened type corrosion resistant nickel-chromium-molybdenum alloy is manufactured in advance by a method such as casting. Thereafter, in order to maintain the strength of the tool, it is preformed or processed into a shape close to the shape of the tool using an inexpensive strength member such as carbon steel. Then, build-up welding is performed using the above-mentioned welding rod in the necessary place of the surface. Of course, there is no problem if this overlay welding is directly performed by PTA overlay welding. After completion of overlay welding, unevenness due to welding on the welding surface is removed by processing such as cutting to finish it into a predetermined tool shape. It is also possible to produce a cold tool by the above process. In such a cold tool according to the present invention, since the friction surface is in a state in which fine particles of niobium carbide are appropriately dispersed in the corrosion resistant nickel-chromium-molybdenum alloy , the huge particles of conventional niobium carbide are As in the case of using the present invention, there is no risk of scratch marks on the surface of the workpiece in contact with the tool, and the quality and value of the workpiece to be a product can be improved. In addition, since there is no durable cold tool having both corrosion resistance and wear resistance, the present invention can provide a completely new and useful cold tool especially in the material processing industry. It is a thing.

本発明は、56〜65質量%のニッケル基に16〜23質量%のクロム及び13〜16質量%のモリブデンを主成分として含有し耐腐食性を有するニッケル・クロム・モリブデン合金中にニオブ炭化物の小さい粒子を分散させた合金、もしくは耐腐食性ニッケル・クロム・モリブデン合金中とニオブ炭化物の合金から構成された肉盛溶接層を母材の表面に形成したものであるため、耐腐食性ニッケル・クロム・モリブデン合金の耐腐食性とニオブ炭化物の耐摩耗性の両方の特質を兼ね備えた全く新しい合金と鋼材を提供することができるものである。またそれにより、斯かる合金や鋼材から製造される有用な冷間工具であれば、強腐食環境下において耐摩耗性を発揮することができ、従来は頻繁に交換するほかなかったという状況を一変させ、このような状況で用いられる冷間工具として耐久性のあるものを新たに供給することができるようになる。 In the present invention, niobium carbide is contained in a corrosion resistant nickel-chromium-molybdenum alloy containing 56 to 65% by mass of nickel and 16 to 23% by mass of chromium and 13 to 16% by mass of molybdenum as main components . because alloy dispersed small particles, or corrosion resistant nickel-chromium-molybdenum alloy and niobium carbide overlay welding layer composed of an alloy obtained by forming on the surface of the base, corrosion-resistant nickel It is possible to provide a completely new alloy and steel which combine the characteristics of both corrosion resistance of chromium-molybdenum alloy and wear resistance of niobium carbide. Moreover, thereby, if it is a useful cold tool manufactured from such an alloy or steel materials, it can exhibit abrasion resistance in a strong corrosive environment, and the situation that it could not change until now except for frequent replacement is unusual. As a result, it is possible to newly supply a durable cold tool to be used in such a situation.

本発明の一実施形態に係る鋼材及びその製造工程をPTA溶接装置と共に示す概観図。The steel material which concerns on one Embodiment of this invention, and the outline view which shows the manufacturing process with a PTA welding apparatus. 同実施形態に係る鋼材と比較例の肉盛溶接層の組織の状態を示す光学顕微鏡写真。The optical microscope photograph which shows the state of the structure of the steel materials which concern on the same embodiment, and the weld overlay of a comparative example. 同実施形態に係る鋼材と比較例の試験片の冷間摩耗試験の概要を示す図。The figure which shows the outline | summary of the cold-wearing test of the steel material which concerns on the embodiment, and the test piece of a comparative example. 同冷間摩耗試験を行った試験片と摩耗深さの計算概要を示す図。The figure which shows the calculation outline of the test piece which performed the same cold wear test, and wear depth. 同冷間摩耗試験の結果を示すグラフ。The graph which shows the result of the same cold wear test. 同実施形態に係る鋼材と比較例の試験片の冷間腐食試験の結果を示すグラフ。The graph which shows the result of the cold corrosion test of the steel bars concerning the embodiment, and the test piece of a comparative example.

以下、本発明の一実施形態を、図面を参照して説明する。
本発明の一実施形態に係る鋼材1は、図1に示すように、母材2と、この母材2の表面に形成された肉盛溶接層3とから構成されるものであり、同図の通り、プラズマ粉体肉盛溶接(Plasma Transferred Arc 溶接:以下、PTA溶接)法により製造されるものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
A steel material 1 according to an embodiment of the present invention is, as shown in FIG. 1, composed of a base material 2 and a weld overlay 3 formed on the surface of the base material 2, as shown in FIG. As described in the above, it is manufactured by a plasma powder buildup welding (Plasma Transferred Arc welding: hereinafter, PTA welding) method.

図1は、本実施形態に適用されるPTA溶接装置4の要部の概観と、母材2への肉盛溶接層3の形成過程を示す模式的な縦断面図である。この溶接装置4は、主としてPTA装置(トーチのみを図示している)を備えた通常のものであるので、以下に簡単に説明する。トーチ4は、適宜の駆動手段(図示省略)により、例えば図中の左右方向に移動可能とされている。具体的にトーチ4は、内側から順にタングステン電極41、内壁42、中壁43、外壁44により構成されている。内壁42は水冷式ノズルとして機能している。タングステン電極41と内壁42とによりプラズマガス供給用ノズルを構成しており、図中上方から供給されるプラズマガスPGをトーチ4の先端部に向けて送出するようにしている。また、内壁42と中壁43とによりプラズマアーク収束及び粉体供給用ノズルを構成しており、図中上方から供給されるキャリアガスCGと、マトリックスとなる耐腐食性ニッケル・クロム・モリブデンの粉末と、ニオブ炭化物(NbC)の粉末の混合物3aをトーチ4の先端部から放出するようにしている。さらに中壁43と外壁44とによりシールドガス供給用ノズルを構成しており、図中上方から供給されるシールドガスSGをトーチ4の先端部から噴射するようにしている。また、符号45及び46はそれぞれパイロットアーク電源、プラズマアーク電源を示している。パイロットアーク電源45は、タングステン電極41と母材2との間に電圧を発生させるためのものであり、プラズマアーク電源46は、発生した電圧を安定させるように制御するものである。プラズマガスPG、キャリアガスCG、シールドガスSGには、例えばアルゴン(Ar)ガスを適用することが好ましい。 FIG. 1 is a schematic longitudinal sectional view showing an overview of the main parts of a PTA welding apparatus 4 applied to the present embodiment and a process of forming a weld overlay 3 on a base material 2. The welding device 4 is a conventional one mainly provided with a PTA device (only the torch is shown), and therefore will be briefly described below. The torch 4 is movable, for example, in the left and right direction in the figure by appropriate drive means (not shown). Specifically, the torch 4 is configured by the tungsten electrode 41, the inner wall 42, the middle wall 43, and the outer wall 44 in order from the inside. The inner wall 42 functions as a water-cooled nozzle. The tungsten electrode 41 and the inner wall 42 constitute a plasma gas supply nozzle, and the plasma gas PG supplied from the upper side in the drawing is sent toward the tip of the torch 4. Further, a nozzle for plasma arc convergence and powder supply is constituted by the inner wall 42 and the middle wall 43, and a carrier gas CG supplied from the upper side in the figure, and a powder of corrosion resistant nickel, chromium and molybdenum to be a matrix. And a mixture 3a of niobium carbide (NbC) powder is released from the tip of the torch 4. Further, a shield gas supply nozzle is constituted by the middle wall 43 and the outer wall 44, and shield gas SG supplied from the upper side in the drawing is sprayed from the tip of the torch 4. Reference numerals 45 and 46 indicate a pilot arc power supply and a plasma arc power supply, respectively. The pilot arc power supply 45 is for generating a voltage between the tungsten electrode 41 and the base material 2, and the plasma arc power supply 46 is for controlling the generated voltage to be stable. For example, argon (Ar) gas is preferably applied to the plasma gas PG, the carrier gas CG, and the shield gas SG.

本実施形態の鋼材1において、母材2には、ニッケルを比較的多く含有する金属材として、ステンレスSUS316L(極低炭素鋼、Ni含有割合は10〜14質量%)を適用しているが、その他にも、SUS304やSUS309L等のオーステナイト系ステンレスや、ハステロイ等の比較的Ni含有率が高い金属材を母材2として適用することができる。 In the steel material 1 of this embodiment, stainless steel SUS316L (very low carbon steel, containing 10 to 14 mass% of Ni) is applied to the base material 2 as a metal material containing a relatively large amount of nickel. In addition, austenitic stainless steels such as SUS304 and SUS309L, and metal materials such as hastelloy having a relatively high Ni content can be used as the base material 2.

肉盛溶接層3のマトリックスとなる耐腐食性ニッケル・クロム・モリブデン合金としては、本実施形態ではハステロイ・C276(Ni:57%、Mo:17%、Cr:16%、Fe:4〜7%、W:3〜4.5%。何れも質量%)を適用している。その他、ハステロイ・C22(Ni:56%、Mo:13%、Cr:22%、Fe:3%、W:3%。何れも質量%)や、他のハステロイC系統と総称される合金に含まれるものを利用することができる。PTA溶接法では、ハステロイC系の耐腐食性ニッケル・クロム・モリブデン合金を粉末として供給している。 In the present embodiment, Hastelloy C276 (Ni: 57%, Mo: 17%, Cr: 16%, Fe: 4 to 7%) as a corrosion resistant nickel-chromium-molybdenum alloy to be a matrix of the weld overlay 3 , W: 3 to 4.5%, all apply to mass% ). In addition, Hastelloy C22 (Ni: 56 %, Mo: 13%, Cr: 22%, Fe: 3%, W: 3%, all by mass% ), and alloys included collectively as other Hastelloy C series Can be used. In the PTA welding method, Hastelloy C-based corrosion resistant nickel-chromium-molybdenum alloy is supplied as a powder.

肉盛溶接層3耐腐食性ニッケル・クロム・モリブデン合金に混合されるニオブ炭化物(NbC)は、粒径45μm未満の粉末(以下、このサイズの粉末を「細粒」という)を適用している。市販されているNbC粉末は、公称値では最小でも粒径150μmの粗大粒主体の粉末であるため、本実施形態では、市販の150μmまでのNbC粉末を目の粗さが45μmの篩にかけることにより細粒を得ている。本実施形態では、耐腐食性ニッケル・クロム・モリブデン合金の粉末との混合物3aに対するNbCの細粒の質量%を変化させて複数の試験片を作成している。具体的には、耐腐食性ニッケル・クロム・モリブデン合金の粉末との混合物3a中に10〜50質量%の範囲でNbCの細粒を添加した5種類の肉盛溶接層3を備えた鋼材1の試験片を作成した。 Niobium carbide (NbC) mixed with buildup welding layer 3 corrosion resistant nickel-chromium-molybdenum alloy applies powder having a particle size of less than 45 μm (hereinafter, powder of this size is referred to as “fine particle”) . In the present embodiment, a commercially available NbC powder having a particle size of 150 μm or less is nominally minimum, and therefore, the commercially available NbC powder of up to 150 μm is sieved with a sieve having a mesh size of 45 μm. Fine grains are obtained by In the present embodiment, a plurality of test pieces are prepared by changing the mass% of the fine particles of NbC with respect to the mixture 3a of the corrosion-resistant nickel-chromium-molybdenum alloy powder. Specifically, a steel material 5 provided with five types of weld overlays 3 in which fine particles of NbC are added in a range of 10 to 50 % by mass in a mixture 3a with a powder of corrosion resistant nickel-chromium-molybdenum alloy 1 The test piece of was made.

また、NbCの細粒を耐腐食性ニッケル・クロム・モリブデン合金に混合した肉盛溶接層3との比較のために、比較例として、細粒に代えて、粒径45μm以上75μm未満の粉末(以下、このサイズの粉末を「中粒」という)を耐腐食性ニッケル・クロム・モリブデン合金に混合して肉盛溶接層を母材の表面に形成した試験片と、粒径75μm以上150μm未満の粉末(以下、このサイズの粉末を「粗粒」という)を耐腐食性ニッケル・クロム・モリブデン合金に混合して肉盛溶接層を母材の表面に形成した試験片も形成した。細粒の場合と同様に、市販の150μm程度のNbC粉末を目の粗さが75μmの篩にかけることにより中粒を得て、残ったものを粗粒として使用した。図2に、肉盛溶接時に添加する粉末の混合物3aにおいて、NbCの細粒を30%(a)、中粒を30%(b)、粗粒を40%(c)でそれぞれ混合して得られた肉盛溶接層の光学顕微鏡写真による肉盛溶接組織の写真を示す。各写真中、灰色部分が耐腐食性ニッケル・クロム・モリブデン合金であり、耐腐食性ニッケル・クロム・モリブデン合金中に分散している歪な粒形状の塊がNbCの粒である。NbCの細粒を用いたPTA溶接後の肉盛溶接層3の平均粒径は、投入時の粒径よりも小さい45μm以下(同図(a))であり、NbCの中粒、粗粒をそれぞれ用いたPTA溶接後の肉盛溶接層3の平均粒径は、同じく投入時の粒径よりも小さい45μm以上75μm未満(同図(b))、75μm以上150μm未満(同図(c))である。耐腐食性ニッケル・クロム・モリブデン合金中のNbCの粒子のなかには近くのNbC粒子同士が大きく凝集しているものもあるが、大半は投入時の粒径よりも小さい粒となって存在している。同図(c)に示されるように、NbCの粗粒を用いた場合には、溶接は可能であるが、溶接されたNbCの粗粒に大きな軽石状態の穴の欠陥(写真中、黒い部分)が極めて多く観測されたため、NbCの粗粒は溶接不良発生率が高いと判断されたことにより、以下の摩耗試験や腐食試験を行わなかった。同図(a)(b)のNbCの細粒や中粒の写真でも黒い部分が見受けられるが、溶接組織全体でみると、溶接不良が高いといえるようなレベルではない。特に本実施形態の肉盛溶接層3では、NbCの細粒が溶接組織全体に亘ってほぼ均一に分散していることがわかる。 Also, for comparison with overlay welding layer 3 in which fine particles of NbC are mixed with corrosion resistant nickel-chromium-molybdenum alloy , powder having a particle diameter of 45 μm or more and less than 75 μm instead of fine particles as a comparative example. Hereinafter, a test piece having a built-up weld layer formed on the surface of a base material by mixing powder of this size with “medium-sized particles” in a corrosion-resistant nickel-chromium-molybdenum alloy , and having a particle size of 75 μm to 150 μm. A test piece was also formed in which a built-up weld layer was formed on the surface of a base material by mixing powder (hereinafter, powder of this size is referred to as "coarse particles") into a corrosion resistant nickel-chromium-molybdenum alloy . As in the case of the fine particles, medium-sized particles were obtained by passing a commercially available NbC powder of about 150 μm on a sieve with a mesh size of 75 μm, and the remaining particles were used as coarse particles. Obtained by mixing 30% (a) of fine particles of NbC, 30% (b) of medium particles and 40% (c) of coarse particles in FIG. It shows a photograph of a weld overlay structure by an optical micrograph of the weld overlay layer. In each photograph, the gray part is a corrosion-resistant nickel-chromium-molybdenum alloy , and the distorted grain-shaped lump dispersed in the corrosion-resistant nickel-chromium-molybdenum alloy is a grain of NbC. The average grain size of the weld overlay 3 after PTA welding using fine grains of NbC is 45 μm or less (the same figure (a)) smaller than the grain size at the time of injection. The average grain size of the weld overlay 3 after PTA welding used is 45 μm or more and less than 75 μm (the same figure (b)) and 75 μm or more less than 150 μm (the same figure (c)). It is. Some NbC particles in the corrosion-resistant nickel-chromium-molybdenum alloy are closely aggregated with each other, but most of them exist as particles smaller than the particle size at the time of input. . As shown in (c) of the figure, welding is possible when coarse particles of NbC are used, but the defects of the holes in the large pumice state in the coarse particles of NbC welded (black parts in the photograph The following wear tests and corrosion tests were not conducted because it was determined that the NbC coarse grains had a high incidence of welding defects because a large number of them were observed. In the photographs of fine and medium particles of NbC shown in (a) and (b) in the same figure, black parts can be seen, but when viewed as a whole of the weld structure, the level is not such that welding defects are high. In particular, in the weld overlay 3 of the present embodiment, it can be seen that fine grains of NbC are dispersed substantially uniformly throughout the entire weld structure.

本実施形態の鋼材1の冷間摩耗試験、冷間腐食試験のために、縦30mm、横10mm、高さ25mmの鋼片Aを作成した(図3参照)。高さ方向のうち、下から22〜24mm(平均厚さ23mm)の領域は、ステンレス・SUS316Lからなる母材Aa(2)であり、表面から1〜3mm(平均厚さ2mm)の領域は、ハステロイ・C276の粉末とNbCを母材Aa(2)の表面に形成した肉盛溶接層Ab(3)である。このような鋼材1を、肉盛溶接層Ab(3)におけるNbCの細粒が10〜50質量%(10%刻み)である5種類について作成した。 For the cold wear test and the cold corrosion test of the steel material 1 of the present embodiment, a steel strip A having a length of 30 mm, a width of 10 mm, and a height of 25 mm was created (see FIG. 3). In the height direction, an area of 22 to 24 mm (average thickness 23 mm) from the bottom is the base material Aa (2) made of stainless steel SUS 316 L, and an area of 1 to 3 mm from the surface (average thickness 2 mm) is It is a buildup welding layer Ab (3) formed on the surface of a base material Aa (2) by powder of Hastelloy C276 and NbC. Such steel materials 1 were created for five types of NbC fine grains of 10 to 50 % by mass (in 10% increments) in the weld overlay Ab (3).

また、比較例として、肉盛溶接層AbにおけるNbCの中粒が10〜50質量%(10%刻み)である5種類について試験片Aを作成し、さらにNbCを含有しないハステロイ・C276のみを母材の表面に肉盛溶接した試験片Aと、コバルト基合金であるステライトを母材Aaの表面に肉盛溶接した試験片も同様に作成した。各試験片Aの母材Aaは、本実施形態の鋼材1と同じくステンレス・SUS316Lであり、肉盛溶接層の形成方法も上述したPTA法を用いている。 In addition, as a comparative example, test pieces A are prepared for five types of NbC medium particles of 10 to 50 mass% (in 10% increments) in the weld overlay Ab, and only Hastelloy C276 not containing NbC is a mother A test specimen A weld-welded on the surface of the steel and a test specimen weld-welded Stellite, which is a cobalt-based alloy, on the surface of the base material Aa were similarly prepared. The base material Aa of each test piece A is stainless steel SUS316L as in the steel material 1 of the present embodiment, and the method of forming the weld overlay also uses the above-described PTA method.

図3は、冷間摩耗試験の概要図である。本実施形態の5種の鋼材1を含む試験片Aの肉盛溶接層Aaを、直径125mmの摺動面がステライト製であるディスク5に室温25℃(冷間)で押し付けた。ディスク5の回転速度は毎分30回転、押し付け荷重は350kPa、押し付け時間を3分として、図4に示すような摩耗痕Axを試験片Aに形成した。摩耗痕Axの測定方法は、摩耗試験後の試験片Aを両側面から観測し、摩耗痕長さL1、L2の平均値を平均摩耗長さLとし(同図中(1)式)、そのLの値とディスク5の半径rを用いて摩耗痕深さdを計算した。   FIG. 3 is a schematic view of a cold wear test. The buildup welding layer Aa of the test piece A including the five types of steel materials 1 of the present embodiment was pressed against the disc 5 whose sliding surface having a diameter of 125 mm is made of stellite at room temperature 25 ° C. (cold). The wear mark Ax as shown in FIG. 4 was formed on the test piece A with the rotational speed of the disk 5 set to 30 revolutions per minute, the pressing load of 350 kPa and the pressing time of 3 minutes. The method of measuring the wear mark Ax is to observe the test piece A after the wear test from both sides and set the average value of the wear mark lengths L1 and L2 as the average wear length L (in the figure, formula (1)), The wear mark depth d was calculated using the value of L and the radius r of the disk 5.

各試験片Aについての摩耗痕深さの測定結果を図5にグラフとして示す。同図の横軸は、肉盛溶接層Ab(3)を形成する際のハステロイ・C276の粉末との混合物3aにおけるに対するNbCの粉末の投入率(質量%)を示し、縦軸は計算により得られた摩耗痕深さ(μm)を示している。横軸0%の位置に、比較のために作成したハステロイ・C276のみからなる肉盛溶接層(▲C276)と、ステライトのみからなる肉盛溶接層(●STL)の摩耗痕深さがプロットされている。耐摩耗性を有さないハステロイ・C276の肉盛溶接層では、400μm以上の摩耗痕深さとなったのに対して、耐摩耗性に優れたステライトの肉盛溶接層では、殆ど摩耗が生じていないことが分かる。一方、NbCの中粒をハステロイ・C276に添加した肉盛溶接層(■NbC中粒)では、NbCの中粒の低投入率領域で摩耗深さの値に乱れが認められたが、NbCが20〜50%の領域ではステライトには劣るものの、100μm前後の摩耗深さとなり、ハステロイ・C276単体の肉盛溶接層と比較すると良好な耐摩耗性が認められた。本実施形態の鋼材1であるNbCの細粒をハステロイ・C276に添加した肉盛溶接層(◆NbC細粒)では、投入率にあまり関係せず、摩耗深さが低位で安定し、50%以下の全領域で概ね100μm若しくはそれ以下の摩耗深さであった。すなわち、ハステロイ・C276にNbCの細粒を添加すると、ステライトとほぼ同等の冷間耐摩耗性が得られるといえる。特に、NbCの細粒が10%という少量での耐摩耗効果が良好であることから、NbCの細粒をごく少量でもハステロイ・C276の粉末に混合しても、肉盛溶接層の冷間での高い耐摩耗性が得られることが初めて実証された。 The measurement results of the wear trace depth for each test piece A are shown as a graph in FIG. The horizontal axis of the figure indicates the NbC powder input rate ( mass %) with respect to the mixture 3a with Hastelloy-C 276 powder when forming the weld overlay Ab (3), and the vertical axis is obtained by calculation. The indicated wear mark depth (μm) is shown. The wear scar depth of the overlay welding layer (▲ C276) consisting only of Hastelloy C276 created for comparison and the overlay welding layer (● STL) consisting only of stellite are plotted at the position of 0% on the horizontal axis. ing. The Hastelloy C276 weld overlay with no wear resistance had a wear mark depth of 400 μm or more, while Stellite weld overlay with excellent wear resistance produced almost no wear. I understand that there is not. On the other hand, in the build-up welding layer (medium size NbC) in which medium size NbC was added to Hastelloy C276, disturbance was observed in the wear depth value in the low NbC medium loading rate region, but NbC Although it is inferior to Stellite in the region of 20 to 50%, the wear depth is about 100 μm, and good wear resistance was observed as compared with the overlay welding layer of Hastelloy C276 alone. In the weld overlay (NbC fine grain) in which fine grains of NbC, which is the steel material 1 of the present embodiment, are added to Hastelloy C276 (NbNbC fine grain), the wear depth is stable at a low level, 50% The wear depth was about 100 μm or less in all areas below. That is, it can be said that when fine grains of NbC are added to Hastelloy C276, cold wear resistance substantially equivalent to that of stellite can be obtained. In particular, because the wear resistance effect is as small as 10% of NbC fine grains, even if only a very small amount of NbC fine grains is mixed with Hastelloy-C 276 powder, the cold of the weld overlay is obtained. It has been demonstrated for the first time that high wear resistance is obtained.

次に、上述した各試験片Aを用いて、冷間での腐食試験を行った。冷間腐食試験は、JIS G0577「ステンレス鋼の孔電電位測定方法」に準拠した。PH3.0に保った80℃(冷間)の腐食溶液(CaClをHClにてPH調整)に試験片Aを浸漬し、電位差を増加させながら電流が流れ出し腐食が一気に進むまでの時間を調査した。各試験片Aについての腐食試験の結果を図6にグラフとして示す。同図の横軸は、肉盛溶接層Ab(3)を形成する際のハステロイ・C276の粉末との混合物3aにおけるに対するNbCの粉末の投入率(質量%)を示し、縦軸は電位(孔電電位)を示している。縦軸の値が大きいほど腐食が生じにくいため電流が流れにくく、小さいほどすぐに腐食が進んで一気に電流が流れることが表される。横軸0の位置にプロットされたハステロイ・C276のみからなる肉盛溶接層(▲C276)と、ステライトのみからなる肉盛溶接層(●STL)の電位は、それぞれ0.8と0.6であった。一方、NbCの中粒をハステロイ・C276に添加した肉盛溶接層(■NbC中粒)では、NbCの中粒の低投入率によって電位(すなわち腐食の進展速度)に乱れが認められ、NbCの投入率を増やすに従って、腐食が早く進みやすくなることが示された。本実施形態の鋼材1であるNbCの細粒をハステロイ・C276に添加した肉盛溶接層(◆NbC細粒)では、投入率が10%、30%、40%の場合にステライトとハステロイ・C276の中間の値の電位となり、50%ではステライトよりもやや低い電位となり、20%ではハステロイ・C276よりも高い電位となった。すなわち、NbCの細粒では、10〜50%の全般に亘って腐食進展速度が抑えられているが、特に投入率が10〜30%の間で腐食進展速度が強く抑えられており、ハステロイ・C276単体の値に近く、少投入率の領域で投入率の増加に伴う腐食進展速度の減少が少ない、換言すれば高い耐腐食性を有しているということが初めて実証された。 Next, a cold corrosion test was performed using each of the test pieces A described above. The cold corrosion test conformed to JIS G0577 "Method of measuring hole potential of stainless steel". Immerse the test piece A in an 80 ° C. (cold) corrosive solution (pH adjustment of CaCl 2 with HCl) maintained at PH 3.0, and investigate the time until the current flows out and the corrosion progresses rapidly while increasing the potential difference did. The result of the corrosion test for each of the test pieces A is shown as a graph in FIG. The horizontal axis of the figure indicates the NbC powder input rate ( mass %) to the mixture 3a with Hastelloy-C 276 powder when forming the weld overlay Ab (3), and the vertical axis indicates the potential (pores Potential) is shown. As the value on the vertical axis is larger, the corrosion is less likely to occur, and the current is less likely to flow. The potentials of the buildup weld layer (▲ C276) consisting only of Hastelloy C276 plotted at the position of the horizontal axis 0 and the buildup weld layer (● STL) consisting only of stellite are 0.8 and 0.6, respectively. there were. On the other hand, in the buildup welding layer (NbC medium grain) in which medium NbC grains are added to Hastelloy C276, disturbance is observed in the potential (that is, the rate of development of corrosion) due to the low introduction rate of medium NbC grains. It has been shown that as the loading rate is increased, the corrosion becomes easier to progress. In the case of a weld overlay (NbC fine grain) in which fine grains of NbC, which is the steel material 1 of the present embodiment, are added to Hastelloy C.276, in the case of 10%, 30%, and 40%, the stellite and hastelloy C276. At 50%, the potential was slightly lower than stellite, and at 20%, it was higher than Hastelloy C276. That is, in the fine grains of NbC, the corrosion growth rate is suppressed over 10 to 50% in general, but in particular, the corrosion growth rate is strongly suppressed between 10 to 30%, and Hastelloy It was demonstrated for the first time that the value of C276 alone is close to the value of C276 and that the decrease in the rate of corrosion development with the increase of the input rate is small in the low input rate region, that is, it has high corrosion resistance.

以上の冷間摩耗試験と冷間腐食試験の結果を総合的に勘案すると、母材1の表面に肉盛溶接層3を形成する場合、ハステロイ・C276の粉末にNbCの細粒又は中粒を添加した肉盛溶接層3であれば、冷間での耐摩耗性と耐腐食性の両方を兼ね備えた鋼材1を得ることができ、特にNbCは粒径45μm未満の細粒とすることが好ましく、ハステロイ・C276単体の肉盛溶接層の結果も鑑みると、肉盛溶接時の粉体の混合物3aに占める質量%が50%以下、とりわけ5%以上30%以下のNbCの細粒を添加した場合に冷間耐摩耗性能と冷間耐腐食性能が得られることが明らかとなった。すなわち、本実施形態の鋼材1における肉盛溶接層3は、全く新しいタイプの冷間における耐摩耗性と耐腐食性を有するNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金系合金、換言すればNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金溶接被膜であるといえる。 Considering the above results of the cold wear test and the cold corrosion test comprehensively, when forming the weld overlay 3 on the surface of the base material 1, fine or medium particles of NbC are added to the powder of Hastelloy C276. With the built-up welding layer 3 added, it is possible to obtain a steel material 1 having both wear resistance in the cold and corrosion resistance, and in particular, it is preferable to use NbC as fine grains having a particle size of less than 45 μm. In view of the result of overlay welding layer of Hastelloy C276 alone, the mass percentage of the powder in the mixture 3a at overlay welding was 50% or less, particularly 5% or more and 30% or less NbC fine grains were added It has become clear that in the case cold wear resistance performance and cold corrosion resistance performance can be obtained. That is, the weld overlay 3 in the steel 1 according to the present embodiment is a completely new type of NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy alloy having wear resistance and corrosion resistance in a completely new type. For example, it can be said that it is a NbC dispersion strengthened type corrosion resistant nickel-chromium-molybdenum alloy weld coating.

したがって、本実施形態の鋼材1により冷間工具を製造すれば、摩擦面となる肉盛溶接層には少量のNbCの細粒を耐腐食性ニッケル・クロム・モリブデン合金中に分散させればよいことから、これまで両立しなかった耐摩耗性と耐腐食性を兼ね備えた斬新且つ有用な冷間工具を、比較的安価で市場に提供することができる。冷間加工用工具に硬質物質を分散させると、被加工材の表面に疵をつけるとこれまで考えられており、その様な工具は作製されて来なかったという業界の事情があったが、強腐食環境下で用いられる冷感加工工具においても事情は同じである。また、本発明において、NbCの細粒をハステロイに投入し分散させると、当初予想した以上の効果が得られたことは、当該技術分野において画期的なことであるといえる。このような冷間工具としては、例えば前述した強腐食環境下で使用される合成ゴム生成分野で用いられる混練機用ロータや、押出機や乾燥機のスクリューやシリンダ等を挙げることができ、その他にも、カーボン生成分野、セラミック生成分野などの従来からハステロイが利用されてきた腐食環境で使用される工具に適用することができる。 Therefore, if a cold tool is manufactured using the steel material 1 of the present embodiment, a small amount of NbC fine particles may be dispersed in the corrosion resistant nickel-chromium-molybdenum alloy in the weld overlay serving as the friction surface. Thus, a novel and useful cold tool having a combination of wear resistance and corrosion resistance that has been incompatible can be provided to the market relatively inexpensively. It has been considered that when hard materials are dispersed in cold working tools, the surface of the workpiece is wrinkled, and there has been an industry situation that such tools have not been produced. The situation is the same as in the case of a cold working tool used in a strongly corrosive environment. Further, in the present invention, when fine particles of NbC are added to Hastelloy and dispersed, it is possible to say that it is an epoch-making thing in the relevant technical field that an effect more than initially expected is obtained. As such a cold tool, for example, there can be mentioned a rotor for a kneader used in the synthetic rubber formation field used under the above-mentioned strong corrosive environment, a screw and a cylinder of an extruder and a dryer, etc. Also, it can be applied to tools used in corrosive environments where hastelloy has been conventionally used, such as in the field of carbon production and ceramic production.

なお本発明の構成は、上述した実施形態に限られるものではない。以上の実施形態では、耐腐食性ニッケル・クロム・モリブデン合金中にNbCの細粒を分散させた肉盛溶接層を母材の表面に形成した鋼材について説明したが、この肉盛溶接層と同様の構成からなるNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金とすることもできる。さらに、本発明の趣旨を逸脱しない範囲で鋼材における母材や肉盛溶接層若しくはNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金のマトリックスの材料を変更したり、同合金や肉盛溶接層に添加されるNbCの粒径や投入率を変更することは、冷間工具として使用される環境や要求される仕様に応じて適宜変更することができる。その他、肉盛溶接層を含む鋼材や合金の製造方法、適用される冷間工具についても上記実施形態に限られず、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 The configuration of the present invention is not limited to the above-described embodiment. In the above embodiments, a steel material is described in which a buildup weld layer in which fine particles of NbC are dispersed in a corrosion resistant nickel-chromium-molybdenum alloy is formed on the surface of a base material, but similar to this buildup weld layer It is also possible to use an NbC dispersion strengthened corrosion-resistant nickel-chromium-molybdenum alloy consisting of Furthermore, the material of the base material or the weld overlay or the NbC dispersion strengthened corrosion resistant nickel-chromium-molybdenum alloy matrix in the steel is changed without departing from the scope of the present invention, or the alloy or overlay weld layer Changing the particle size and input rate of NbC to be added can be appropriately changed according to the environment used as a cold tool and the required specifications. In addition, the method of manufacturing steel materials and alloys including the weld overlay and the applied cold tool are not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明は、耐腐食性ニッケル・クロム・モリブデン合金中にニオブ炭化物を分散させた合金や、この合金を肉盛溶接層として母材の表面に形成した鋼材により、耐腐食性と耐摩耗性とを兼ね備えた新たな合金及び鋼材とそれらの製法、並びに斯かる鋼材から製造される冷間工具を創出するものであり、金属材料分野やその用途としての素材加工産業などにおいて、極めて有益なものとなり得る。 The present invention relates to corrosion resistance and wear resistance by an alloy in which niobium carbide is dispersed in a corrosion resistant nickel-chromium-molybdenum alloy , or a steel material formed on the surface of a base material by using this alloy as a weld overlay. New alloys and steels that have the same composition, and their production methods, as well as cold tools manufactured from such steel materials, which will be extremely useful in the metal materials field and the material processing industry as its application. obtain.

1…鋼材
2…母材
3…肉盛溶接層
1 ... steel 2 ... base material 3 ... weld overlay

Claims (12)

ニッケル基にクロム及びモリブデンを主成分として含有する耐腐食性ニッケル・クロム・モリブデン合金であって、ニッケルを5質量%、クロムを16質量%、モリブデンを1質量%、鉄を4〜7質量%、タングステンを質量3〜4.5%で含有する前記耐腐食性ニッケル・クロム・モリブデン合金中、又は、ニッケルを56質量%、クロムを22質量%、モリブデンを13質量%、鉄を3質量%、タングステンを3質量%で含有する前記耐腐食性ニッケル・クロム・モリブデン合金中に、平均粒径が45μm未満のニオブ炭化物の粉末を分散させてなることを特徴とするNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金。 A corrosion resistant nickel-chromium-molybdenum alloy containing chromium and molybdenum as the main component in the nickel-based, nickel 5 7 wt%, chromium 16% by weight, 1 7 wt% of molybdenum, the iron 4-7 In the corrosion resistant nickel-chromium-molybdenum alloy containing 3% by mass of tungsten by 3 to 4.5% by mass or 56% by mass of nickel, 22% by mass of chromium, 13% by mass of molybdenum and 3% by mass of iron NbC dispersion-strengthened type, characterized in that a powder of niobium carbide having an average particle size of less than 45 μm is dispersed in the corrosion resistant nickel-chromium-molybdenum alloy containing 3% by mass of tungsten by mass. Corrosive nickel-chromium-molybdenum alloy. 請求項1に記載のNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金の製造方法であって、
前記耐腐食性ニッケル・クロム・モリブデン合金の粉末と、粒径が45μm未満の前記ニオブ炭化物の粉末との混合物を原料として、鋳造又はプラズマ溶接により合金を製造することを特徴とするNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金の製造方法。
A method for producing the NbC dispersion strengthened corrosion-resistant nickel-chromium-molybdenum alloy according to claim 1,
NbC dispersion-strengthened type characterized in that an alloy is produced by casting or plasma welding using as a raw material a mixture of the above-mentioned corrosion-resistant nickel-chromium-molybdenum alloy powder and the above-mentioned niobium carbide powder having a particle size of less than 45 μm. Method of producing corrosion resistant nickel-chromium-molybdenum alloy.
前記混合物中に占める前記ニオブ炭化物の粉末の質量%を、0%よりも多く50%以下としている請求項2に記載のNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金の製造方法。 The method for producing an NbC dispersion strengthened corrosion-resistant nickel-chromium-molybdenum alloy according to claim 2, wherein the mass% of the niobium carbide powder in the mixture is more than 0% and 50% or less. 前記混合物中に占める前記ニオブ炭化物の粉末の質量%を、5%以上30%以下としている請求項3に記載のNbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金の製造方法。 The method for producing an NbC dispersion strengthened corrosion-resistant nickel-chromium-molybdenum alloy according to claim 3, wherein the mass percentage of the niobium carbide powder in the mixture is 5% or more and 30% or less. 母材となる金属材の表面に、肉盛溶接層を形成した鋼材であって、
前記肉盛溶接層が、請求項1に記載の前記NbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金からなるものであることを特徴とする鋼材。
A steel material in which a buildup weld layer is formed on the surface of a metal material as a base material,
A steel material characterized in that the buildup welding layer is made of the NbC dispersion strengthened corrosion-resistant nickel-chromium-molybdenum alloy according to claim 1.
前記肉盛溶接層の平均厚さを、2mm以上4mm以下としている請求項5に記載の鋼材。 The steel material according to claim 5, wherein an average thickness of the weld overlay is 2 mm or more and 4 mm or less. 前記母材は、ニッケルを8%以上57%以下の質量%で含有する合金からなる金属材である請求項5又は6の何れかに記載の鋼材。 The steel material according to any one of claims 5 or 6, wherein the base material is a metal material made of an alloy containing 8% to 57% by mass of nickel. 請求項5乃至7の何れかに記載の鋼材の製造方法であって、
前記母材となる金属材の表面に、前記耐腐食性ニッケル・クロム・モリブデン合金の粉末と前記ニオブ炭化物の粉末との混合物をプラズマ粉体肉盛溶接法により溶接する溶接工程を含むことを特徴とする鋼材の製造方法。
A method of manufacturing a steel material according to any one of claims 5 to 7, wherein
The method includes a welding step of welding a mixture of the powder of the corrosion resistant nickel-chromium-molybdenum alloy and the powder of the niobium carbide to the surface of the metal material to be the base material by plasma powder buildup welding. How to make steel products.
当該溶接工程において、前記混合物中の前記ニオブ炭化物の粉末の質量%を、0%よりも多く50%以下としている請求項8に記載の鋼材の製造方法。 The manufacturing method of the steel materials according to claim 8 which makes mass% of powder of said niobium carbide in said mixture more than 0% and below 50% in the welding process concerned. 前記混合物中の前記ニオブ炭化物の粉末の質量%を、5%以上30%以下としている請求項9に記載の鋼材の製造方法。 The manufacturing method of the steel materials of Claim 9 which makes mass% of the powder of the said niobium carbide in the said mixture 5%-30%. 請求項1に記載の前記NbC分散強化型耐腐食性ニッケル・クロム・モリブデン合金により形成されたことを特徴とする冷間工具。 A cold tool formed of the NbC dispersion strengthened corrosion-resistant nickel-chromium-molybdenum alloy according to claim 1. 請求項5乃至7の何れかに記載の鋼材により形成され、前記肉盛溶接層を摩擦面として設定したものであることを特徴とする冷間工具。 A cold tool which is made of the steel according to any one of claims 5 to 7, and wherein the weld overlay is set as a friction surface.
JP2014111897A 2014-05-30 2014-05-30 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool Active JP6528106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111897A JP6528106B2 (en) 2014-05-30 2014-05-30 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111897A JP6528106B2 (en) 2014-05-30 2014-05-30 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool

Publications (2)

Publication Number Publication Date
JP2015224385A JP2015224385A (en) 2015-12-14
JP6528106B2 true JP6528106B2 (en) 2019-06-12

Family

ID=54841388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111897A Active JP6528106B2 (en) 2014-05-30 2014-05-30 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool

Country Status (1)

Country Link
JP (1) JP6528106B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102601044B1 (en) * 2016-01-08 2023-11-09 플로웍스 인터내셔널 엘엘씨 A method of producing phosphoric acid in a reaction tank to which a mixed tee assembly and a mixed tee assembly are attached.
JP7163009B2 (en) 2017-06-26 2022-10-31 三菱重工業株式会社 High temperature sliding parts and steam turbines
CN108296665A (en) * 2018-01-26 2018-07-20 哈尔滨工业大学(威海) A kind of nano particle insertion type seam organization method of modifying, device and welding wire
US12000027B2 (en) 2019-11-01 2024-06-04 Exxonmobil Chemical Patents Inc. Bimetallic materials comprising cermets with improved metal dusting corrosion and abrasion/erosion resistance
CN114700495B (en) * 2022-04-07 2023-09-22 西安交通大学 Non-cracking high-wear-resistance corrosion-resistance nickel-based composite material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199892A (en) * 1987-02-12 1988-08-18 Kubota Ltd Conductive roll for electroplating
JPS63199893A (en) * 1987-02-12 1988-08-18 Kubota Ltd Conductive roll for electroplating
JP2566615B2 (en) * 1988-05-24 1996-12-25 トーカロ株式会社 Weld overlay material with excellent corrosion resistance in chloride-containing environment
JPH0768563B2 (en) * 1991-05-27 1995-07-26 大同特殊鋼株式会社 Method for producing hard particle dispersed alloy powder
CN1096234A (en) * 1992-11-18 1994-12-14 布罗肯希尔有限公司 Composite roll
JP4219544B2 (en) * 2000-10-12 2009-02-04 住友金属工業株式会社 Heating furnace components
JP4412964B2 (en) * 2003-10-20 2010-02-10 株式会社荏原製作所 Coating alloys with corrosion and wear resistance
JP4409245B2 (en) * 2003-10-20 2010-02-03 株式会社荏原製作所 Apparatus using coating alloy having corrosion resistance and wear resistance
JP2013086120A (en) * 2011-10-17 2013-05-13 Hitachi Plant Technologies Ltd Build up welding body and equipment for seawater using the build up welding body

Also Published As

Publication number Publication date
JP2015224385A (en) 2015-12-14

Similar Documents

Publication Publication Date Title
Saroj et al. Microstructure and mechanical performance of TiC-Inconel825 composite coating deposited on AISI 304 steel by TIG cladding process
JP6528106B2 (en) NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool
CA2830543C (en) Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design
CN103429773B (en) It is plated with the engine valve of Ni-Fe-Cr system alloy
US7165325B2 (en) Welding material, gas turbine blade or nozzle and a method of repairing a gas turbine blade or nozzle
Gurumoorthy et al. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy
JP3305357B2 (en) Alloy with excellent corrosion resistance and wear resistance, method for producing the same, and material for producing the alloy
TWI726875B (en) New powder composition and use thereof
Sahoo et al. Evaluation of microstructure and mechanical properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) coating process
CN108130529A (en) A kind of particle enhanced nickel base metal powder for ultrahigh speed laser melting coating
TWI549918B (en) New material for high velocity oxy fuel spraying, and products made therefrom
Raahgini et al. Abrasive wear performance of laser cladded Inconel 625 based metal matrix composites: Effect of the vanadium carbide reinforcement phase content
CN108130530A (en) A kind of particle for ultrahigh speed laser melting coating enhances powder metal composition
JP2006316309A (en) High wear resistant tough steel having excellent fatigue strength
Yung et al. Tribological performances of ZrC-Ni and TiC-Ni cermet reinforced PTA hardfacings at elevated temperatures
CN106180971B (en) Tungsten carbide Fe-based self-fluxing alloy resurfacing welding material and overlaying method
Garbade et al. Overview on hardfacing processes, materials and applications
US20140272388A1 (en) Molten metal resistant composite coatings
Dilawary et al. Influence of laser surface melting on the characteristics of Stellite 12 plasma transferred arc hardfacing deposit
Škamat et al. Pulsed laser processed NiCrFeCSiB/WC coating versus coatings obtained upon applying the conventional re-melting techniques: Evaluation of the microstructure, hardness and wear properties
Sawant et al. Characteristics of single-track and multi-track depositions of stellite by micro-plasma transferred arc powder deposition process
Bendikiene et al. Wear behaviour of Cr3C2–Ni cermet reinforced hardfacings
CN110385430A (en) A kind of powder body material of 3D printing
CN105088220A (en) Composite carbide and carbonitride alloy used for laser cladding
US20200338672A1 (en) Composite welding rods and associated cladded articles

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6528106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150