JP2005290032A - 長距離秩序を有するメソ孔を含む階層的多孔質体の製造方法 - Google Patents

長距離秩序を有するメソ孔を含む階層的多孔質体の製造方法 Download PDF

Info

Publication number
JP2005290032A
JP2005290032A JP2004102653A JP2004102653A JP2005290032A JP 2005290032 A JP2005290032 A JP 2005290032A JP 2004102653 A JP2004102653 A JP 2004102653A JP 2004102653 A JP2004102653 A JP 2004102653A JP 2005290032 A JP2005290032 A JP 2005290032A
Authority
JP
Japan
Prior art keywords
gel
sol
inorganic
porous body
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004102653A
Other languages
English (en)
Inventor
Kazuki Nakanishi
和樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOTO MONOTECH KK
Original Assignee
KYOTO MONOTECH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOTO MONOTECH KK filed Critical KYOTO MONOTECH KK
Priority to JP2004102653A priority Critical patent/JP2005290032A/ja
Publication of JP2005290032A publication Critical patent/JP2005290032A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】本発明の目的は、狭い細孔径分布と長距離にわたる規則性および形状を制御したメソ細孔に加えて、精密に制御されたマクロ細孔も併せ持つ無機系および有機無機ハイブリッド系多孔質体を製造することのできる新しい製造方法を提供することにある。
【解決手段】狭い細孔径分布から成るメソ細孔に加えて、精密に制御されたマクロ細孔を併せ持つ無機系多孔質体を製造する方法が開示されている。鋳型成分として両親媒性物質をゾル−ゲル反応触媒成分を含む水溶液に溶かし、それに加水分解性の官能基を有する無機低分子化合物を添加して得られる出発溶液から、マクロ細孔となる溶媒リッチ相を含むゲルをゾル−ゲル法によって作製し、ついで乾燥によって溶媒を除去し、さらに熱分解などにより鋳型成分を除去する。
【選択図】 図1

Description

この発明は無機系および有機無機ハイブリッド多孔質材料の新規な製造方法に関する。この発明の製造方法は、クロマトグラフィー用充填剤、血液分離用多孔質体、吸湿剤用多孔質体、消臭等低分子吸着用多孔質体あるいは酵素担体および触媒担体用多孔質体等の製造に好適に利用される。
上述したような用途に用いられる多孔質材料としては、従来より、スチレン・ジビニルベンゼン共重合体等の有機ポリマーよりなるものと、シリカゲル等の無機系材料から成るものがよく知られており、一般に、カラム状に充填して用いられる。
有機系の材質で構成されたカラムは、低強度のために耐圧性が低い、溶媒により膨潤・収縮してしまう、加熱殺菌が不可能である等の難点がある。従って、特に高温での操作によって生産性を上げようとする場合、こうした難点がない無機系のもの、特にシリカゲルが、汎用されている。
一般にシリカゲル等の無機質多孔体は、液相反応であるゾル−ゲル法によって作製される。ゾル−ゲル法とは、よく知られているように、加水分解性の官能基を有する無機低分子化合物を出発物質とし、ゾル−ゲル反応、すなわち、加水分解とその後の重合(重縮合)反応により、最終的に無機低分子化合物から酸化物の凝集体や重合体を得る方法一般のことを指す。出発物質となる無機低分子化合物としては、金属アルコキシドが最もよく知られており、このほか、金属塩化物、カルボキシル基やβ−ジケトンのような加水分解性の官能基を持つ金属塩もしくは配位化合物、さらには金属アミン類等が挙げられる。
多孔質材料を各種担体等として利用する場合には、孔の表面に担持されて機能を発現する物質の大きさに依存した、最適の中心細孔径とできるだけ狭い細孔径分布とが必要である。従って、ゾル−ゲル法によって得られる多孔質体についても、ゲル合成時の反応条件を制御することによって、細孔サイズを制御する試みがなされてきた(特許文献1)。
特に、近年多くの研究者によって界面活性剤やブロック共重合体などいわゆる両親媒性物質(より厳密には、両親媒性物質が自己組織化して形成された分子集合体)を鋳型成分として共存させてゾル−ゲル法による多孔質体を合成することにより、ナノメートル領域の細孔構造を高い精度で制御することができると報告されている。
特開平7−247180号公報
しかし、ゾル−ゲル法で得られる従来の多孔質体は、通常ナノメートル領域の細孔(いわゆるメソ細孔)のみを有し、その形態は多くの場合粉末や薄膜および不規則な粒子状である。塊状材料が得られる場合にも、より大きいスケールの細孔構造(いわゆるマクロ細孔)が同時に系統的に制御されている例は極めて少ない。一例として無定形(結晶のような長距離にわたる周期性を示さない)メソ孔と、鋭い細孔径分布をもつマクロ孔からなる無機系多孔質材料は知られているが、メソ孔の形状と長距離にわたる規則性は制御されていない。メソ孔の秩序を保ちながら、金属塩の共存下で反応溶液を作り、基板の上に膜状に展開した反応溶液の上面から溶媒を蒸発させることによって、金属塩の濃厚相がマクロ孔を形成する例が報告されているが、マクロ孔のサイズや分布は精密に制御されていない。
また、アミド系の共存物質を用いたり、ケイ素アルコキシドからシリカゲルを製造する場合には塩基性触媒のもとでゾル−ゲル反応を行うことにより、平均細孔径を大きくできることが知られているが、これらの材料はせいぜい中心細孔径20ナノメートル以下の細孔のみを持ち、しかもおもに細孔径の小さい側へ広がった分布を示す。
上述したようなナノメートル領域の細孔(メソ細孔)のみから成る多孔質材料は、一般に、細かく粉砕したり粉砕物を結着させた状態で充填して、フィルターや担体材料等として使用される。すなわち、被処理物質(移動相としてのガスまたは液体)は、粉砕物の充填や結着によって生じる多孔体粒子間の隙間を通ってメソ細孔内に導入されて該多孔質材料の所定の機能が発揮される。しかし、それらの隙間は一般に不規則である上、充分な多孔性を供しないことが多いため所望の効果が得られないことが多い。ナノメートル領域の細孔(メソ細孔)への外部からの目的物質の接触が促進されるような多孔性の集合状態や、そのような条件を満足するマクロ細孔構造をもつ塊状試料を得ようとする場合には、煩雑で長時間を要する成形プロセスが要求される。
本発明の目的は、狭い細孔径分布と長距離にわたる規則性および形状を制御したメソ細孔に加えて、精密に制御されたマクロ細孔も併せ持つ無機系および有機無機ハイブリッド系多孔質体を製造することのできる新しい製造方法を提供することにある。特に、反応溶液から溶媒を除去しながら濃縮およびゲル化させたり、ゲルの乾燥に超臨界乾燥法を用いるなどの、煩雑な手法を含まず、密閉条件下における反応溶液のゾル−ゲル転移と常温・常圧下での乾燥および通常の熱処理操作のみによって、狭い細孔径分布と長距離にわたる規則性および形状を制御したメソ細孔に加えて、精密に制御されたマクロ細孔も併せ持つ無機系および有機無機ハイブリッド系多孔質体を製造する方法を提供することである。
本発明者は、両親媒性物質を鋳型成分として共存させてゾル−ゲル法により無機系多孔質体を製造するに当って、ゾル−ゲル転移と相分離過程が同時に起こるようにし、1)鋳型成分の集合状態を安定化させる成分を共存させる、あるいは2)鋳型成分の集合状態が安定化する溶液組成で好ましい相分離が起こるような加水分解性の官能基を有する無機低分子化合物を選択する、の少なくともひとつの条件を満たすことにより、上記の目的が達成されることを見出した。
かくして、本発明に従えば、下記の各工程を含むことを特徴とする、長距離秩序性ならびに形状および細孔径分布の制御されたメソ細孔に加えて、制御された細孔径分布を有するマクロ細孔を併せ持つ、無機系および有機無機ハイブリッド系多孔質体の製造方法が提供される。
(i) ゾル−ゲル反応触媒成分を含有する水溶液に、鋳型成分として両親媒性物質を溶かして均一溶液を調製する工程、
(ii) 該均一溶液に、両親媒性物質が自己組織化して形成された分子集合体が溶液中で安定化される溶媒組成あるいは添加成分を用いて溶液あるいは分散液を調製する工程、
(iii) 該溶液あるいは分散液に、加水分解性の官能基を有する無機低分子化合物を添加しゾル−ゲル反応を行わせて、溶媒に富む溶媒リッチ相と、ゾル−ゲル反応により前記無機低分子化合物から生成した無機酸化物重合体であって、前記両親媒性物質から成る鋳型成分の表面上に固着した無機酸化物重合体に富む骨格相とから成る、連続した3次元網目構造の湿潤ゲルを形成する工程、
(iv) 該湿潤ゲルを乾燥して前記溶媒リッチ相から溶媒を蒸発除去することによりマクロ細孔を形成する工程、および
(v) 乾燥後のゲルから熱分解または抽出により前記鋳型成分を除去することにより前記骨格相内にメソ細孔を形成する工程。
本発明の無機系多孔質体の製造方法の特徴は、適当な添加成分によって安定化せしめられた形状や集合状態を有する両親媒性物質の分子集合体を、鋳型成分として共存させてゾル−ゲル法により無機系多孔質体を製造するに際して、ゾル−ゲル転移と相分離とが同時に起こるように反応条件を調整することにより、後の乾燥工程によりマクロ細孔を形成し得る溶媒リッチ相と、後の熱分解工程により内部にメソ細孔を形成し得る骨格相とから成るゲルを調製する工程を含むことにある。
これに対して、両親媒性物質を鋳型成分として共存させてゾル−ゲル法による多孔体を合成する従来の方法に従えば、既述のように、得られる多孔体はメソ細孔のみを有するものであった。これは、従来の方法においては、鋳型成分の表面で局所的に早期に酸化物重合体が形成されて沈澱し系から分離してしまうからであると考えられる。また分子集合体を安定化させる成分を加えずに作製される、相分離を伴うゾル−ゲル反応による多孔体は、整ったマクロ細孔は有するものの、大きさの揃ったメソ細孔は無定形であり、長距離にわたる秩序や細孔形状の制御がなされたものではなかった。
なお、本発明において用いられる「マクロ細孔」および「メソ細孔」という語は、よく知られたIUPACによる提唱に従って定義されるものとする。すなわち、マクロ細孔とは直径が50ナノメートル(nm)以上の細孔を指称し、また、メソ細孔とは、マクロ細孔とミクロ細孔(直径2ナノメートル以下)との中間、すなわち、直径が2〜50ナノメートルの範囲にある細孔を指称し、本発明によって得られる多孔質体は、一般に、直径が2〜10ナノメートル程度のメソ細孔を中心として狭い細孔分布を有する。
本発明の原理は、背景技術に関連して既述したようなゾル−ゲル法により低分子化合物から酸化物の重合体を生成し得るものとして知られた各種の無機化合物に適用することができるが、本発明の方法が特に好ましく適用されるのは、多孔質体を構成する無機酸化物重合体が、シリカおよび/または有機官能基含有シロキサン重合体の場合である。
本発明に従いシリカやシロキサン重合体から成りメソ細孔とマクロ細孔とを併せ持つ多孔質体を製造するには、ゾル−ゲル反応工程を少なくともその反応初期において酸性領域で行い、且つ、該ゾル−ゲル反応において触媒成分を含有する水の量が反応系中のシリカ1.0g(無水シリカ換算重量として)に対して1.0〜50.0gの範囲にあるように反応条件を調整することが必要であり、これによって、ゾル−ゲル転移と相分離が同時に起こり、溶媒リッチ相と骨格相とから成るゲルが生成する。
更に詳述すれば、両親媒性物質を鋳型としてゾル−ゲル反応によりシリカを主成分とする多孔質体を製造する場合、酸性、中性、塩基性いずれの触媒条件においても鋳型成分による大きさの揃ったメソ孔を得ることができることは従来より知られているが、本発明に従い溶媒リッチ相と骨格相に分離したゲルを作製するためには、均質な加水分解およびゲル形成を起こすことが容易な酸性領域での反応が必要である。あるいは反応溶液内部からの均質な反応によって、反応初期に酸性であった液性を徐々に塩基性に変化させて(例えば、反応溶液中に尿素を添加しておき、この尿素が徐々に加水分解してアンモニアを発生するようにする)均質な加水分解とゲル形成を誘起しても良い。すなわち、ゾル−ゲル反応は、加水分解による結合部位(重縮合反応部位:代表的には水酸基)の生成と、該結合部位を介する重縮合反応によるゲル形成とから成るものであるが、酸性領域では加水分解反応が促進されて多くの重縮合反応部位が形成され、この多くの部位を介して均質に重縮合反応(ゲル形成)が起こるものと考えられる。これに対して、ゾル−ゲル反応初期から塩基性であると重縮合反応の方が促進されて不均質なゲル形成が誘起されてしまう。ゾル−ゲル反応の触媒成分としては、塩酸、硝酸、硫酸等の鉱酸および酢酸、クエン酸などの有機酸、またはアンモニア、アミン類などの弱塩基類、水酸化ナトリウム、水酸化カリウム等の強塩基類を挙げることができるが、液性の調整が重要な因子であるのでこれらの物質に限定されない。
また、本発明に従いシリカやシロキサン重合体から成りメソ細孔に加えてマクロ細孔を併せ持つ多孔質体を得るには、ゾル−ゲル反応における水の量も重要な因子であり、反応系中のケイ素原子0.0167モル(無水シリカ換算重量として1.0g)に対して、触媒成分を含む水の量として、1.0〜50.0g、好ましくは2.0〜30.0g、より好ましくは3.0〜20.0gとなるようにする。水の量が多すぎると重合度が充分に上がらない重合体が水中に沈澱してしまい均一なゲルができ難くなる。この現象は出発物質の反応性や反応温度に依存するため、その組成範囲や反応条件を一概に述べることは困難であるが、両親媒性物質を鋳型成分として共存させるゾル−ゲル法によるが、メソ細孔しか有しない多孔質体を製造する従来の方法においては、上記のように定義される水の量は、一般に50g以上であり、100g以上とするものも多い。
以上のようにして、本発明においては、ゾル−ゲル転移と相分離とが実質的に同時に起こるようにゾル−ゲル反応工程を調整することにより、溶媒(水)に富む溶媒リッチ相と酸化物重合体に富む骨格相とから成るゲルが生成され、この生成は、沈澱を生じることなく溶液が白濁することによって確認される。この生成物は、粉末や沈殿ではなく一塊の固体として固化するので、その強度を増すために暫く熟成し(必要に応じて僅かに加温する)、これを乾燥および熱分解(または抽出)に供することにより目的の多孔質体が得られる。
かくして、本発明の方法に従いメソ細孔とマクロ細孔を併せ持つ無機質多孔質を製造するには、先ず、ゾル−ゲル反応触媒成分を含有する水溶液に鋳型成分として両親媒性物質を溶かして均一溶液を調製する。この均一溶液に、必要に応じて両親媒性物質の分子集合体を安定化させる成分を加えた後、加水分解性の官能基を有する無機低分子化合物を添加してゾル−ゲル反応を行うと、上述したように、溶媒リッチ相と骨格相とに分離したゲルが生成する。
溶媒リッチ相は、マクロ細孔に対応する直径を有する3次元網目状に連続した相であり、このことは、後述のように乾燥によって溶媒を除去した後の構造体を電子顕微鏡によって観察することにより確認できる(図1参照)。
骨格相は、ゾル−ゲル反応により無機低分子化合物から生成した無機酸化物重合体あるいは有機無機ハイブリッド重合体に富み、やはり連続した3次元網目構造の相である。この相は、鋳型成分となる両親媒性物質(厳密には、両親媒性物質が自己組織化して形成された分子集合体)の表面に固着して形成されているものであり、このことは、後に鋳型成分(両親媒性化合物)を除去すると、該骨格相の内部に細孔(メソ細孔)が形成されていることからも確認できる(図2参照)。すなわち、酸化物重合体は、表面に水酸基を有し、この部分が両親媒性物質のプロトン受容部分と強く引力相互作用することによって、鋳型成分が溶液中で形成する自己組織化構造をゲル網目の中に転写することができる。
ゾル−ゲル反応の生成物(ゲル)が固化した後、適当な熟成時間を経た後、乾燥によって溶媒を除去すると、溶媒リッチ相の占めていた空間が連続貫通したマクロ細孔となる。次いで両親媒性物質から成る鋳型成分を熱分解あるいは抽出除去すると、鋳型成分の自己組織化した構造によって形成されたナノメートル領域の大きさの揃った細孔(メソ細孔)が得られる。
本発明の方法において鋳型として用いられる両親媒性物質として好ましいのは、四級アンモニウム塩等の親水部と主にアルキル基からなる疎水部とを含むカチオン性界面活性剤もしくは非イオン性界面活性剤から成る界面活性剤、または親水部と疎水部をもつブロック共重合体であり、具体的な例としては、ハロゲン化アルキルアンモニウム、ポリオキシエチレンアルキルエーテル、エチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体などが挙げられるが、これらに限られるものではない。本発明において用いられる両親媒性物質は、界面活性剤や上記のブロック共重合体のように反応溶液に均一に溶解するものが好ましい。また、既述の説明から理解されるように、本発明における両親媒性物質は、鋳型成分としてナノメートル領域の細孔(メソ細孔)の径を整える働きに加えて、マクロ細孔となる溶媒リッチ相を持つ構造を生じさせる共存物質としての働きを兼ね備えた成分である。
本発明の方法において上述の両親媒性物質の分子集合体を安定化させて、形状の整った長距離(典型的に100nm以上)にわたるX線回折等の手法で検出可能な秩序を発現させ、なおかつその秩序構造が無機系および有機無機ハイブリッド系ゲルの構造中に細孔として転写されるための適切な添加物としては、非プロトン性の有機液体、例えばトリメチルベンゼンやクロロホルムなどが好適であるが、これに限定されるものではない。出発物質として比較的水の多い組成においてマクロ孔を生じる相分離を起こすアルコキシドを用いた場合には、上述の添加物を用いることなく両親媒性物質の分子集合体を安定化させて、形状の整った長距離にわたるX線回折当の手法で検出可能な秩序を発現させることもできる。この場合には上述の添加物は、主として細孔径の制御を行うために加えられる。また上述の添加物を両親媒性物質に対して、長距離秩序が得られる適切な濃度範囲を超えて過剰に添加すると、両親媒性物質の分子集合体は再び秩序の低い状態に転化していくが、その際には典型的に直径20nm以上の比較的大きいメソ細孔からなるメソ細孔構造が得られる。この構造はメソ構造セル状泡(Mesostructured Cellurar Foam)と呼ばれ、すでに両親媒性物質を含むゾル−ゲル反応によって粉末や沈殿の形状では知られているが、本発明によればこの特徴的な構造も、制御されたマクロ孔を与えるゲル骨格中に転写することが可能である。両親媒性物質の分子集合体を安定化させる添加物の好適な添加量は、両親媒性物質のに対して重量比で、0〜100%、好ましくは0〜70%、より好ましくは0〜50%の範囲である。添加物は通常ゾル−ゲル反応系の溶媒への溶解度が低いため、これを大過剰に加えると、両親媒性物質の分子集合体中へ溶解し切れなかった添加物が反応溶液中に液滴状に分散し、溶液を不均一な状態にし、結果として得られるゲルの多孔構造の中に液滴状の不均一なマクロ孔を形成するため、整ったマクロ孔を有する構造体を得るためには、これを避けることが必要である。
また、本発明において用いられる加水分解性の官能基を有する無機低分子化合物としては、背景技術に関連して既述したような金属アルコキシドをはじめとする各種の金属化合物が適用可能であるが、本発明の特に好ましい態様に従い、シリカから成る多孔質体を製造する場合においては、シリカ源としてケイ素アルコキシドの単量体および低分子重合体(オリゴマー)が好適に使用される。また、有機官能基含有シロキサン重合体(有機・無機ハイブリッド)から成る多孔質体を製造する場合には、そのような有機・無機ハイブリッド源として、少なくとも1つのケイ素−炭素結合を含むケイ素アルコキシドの単量体および低分子量重合体、あるいは2つ以上のケイ素原子間を1つ以上の炭素を含む炭化水素鎖あるいはヘテロ原子を含む炭化水素鎖が架橋している構造の化合物(例えばビストリアルコキシシリルアルカン類)を用いることができる。なお、シリカと有機官能基含有シロキサン重合体とを組み合わせて本発明の無機系多孔質体を製造することもできる。
以下に本発明の特徴を更に明らかにするため実施例を示すが、本発明はこれらの実施例により限定されるものではない。
(実施例1):
まず両親媒性物質であるエチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体(EO20-PO70-EO20、平均分子量5800、アルドリッチ)1.90gを0.1mol/L硝酸水溶液5.76gに溶解し、トリメチルベンゼン0.20gを加えた後、得られた均一溶液にビス(トリメトキシシリル)エタン2.15gを攪拌下で加えて加水分解反応を行った。この場合、触媒成分を含有する水の量は、シリカ1.0g当たり12.0gである。数分攪拌したのち、得られた透明溶液を密閉容器に移し、60℃の恒温漕中に保持したところ約60分後に溶液の白濁に引き続いて固化した。
固化した試料をさらに数時間熟成させ、ついで60℃において溶媒を蒸発させて除去し、そののち100℃/hの昇温速度で350℃まで加熱してこの温度で5時間保持した後、室温まで冷却した。これによって、ケイ素原子をエチレン鎖が架橋した構造をもつ有機無機ハイブリッドよりなる多孔質体を得た。
得られた多孔質体中には中心孔径2μm(=2000nm)程度の揃った貫通孔と太さ約1μmのゲル骨格が3次元網目状に絡み合った構造で存在していることが電子顕微鏡観察(図1)によって確かめられた。そして、その貫通孔の内壁に直径5.5nm付近に分布の中心を持つ細孔が多数存在し、300m2/g以上の比表面積を有していることが、窒素吸着測定によって確かめられた。その細孔分布を図2に示す。この試料の電界放射型走査電子顕微鏡像には、マクロ細孔を形成するゲル骨格の断面に、大きさの均一な2次元六方配列状にならんだメソ細孔が観察された(図3)。さらにこの試料の粉末X線回折を測定したところ、約9nmに相当する秩序の高い周期配列を示す回折プロファイルが得られた(図4)。このことから、本試料のゲル骨格の内部には、直径約5.5nmのメソ細孔と約3.5nmの厚さのゲルの壁とが交互に長距離(典型的に100nm以上)に渡って配列し、全体の配列は2次元六方対称性を有することがわかった。この結果は上述の電界放射型走査電子顕微鏡像の与える情報と良く整合し、本試料が細孔分布の制御されたマクロ細孔と、長距離秩序をもつ大きさの揃ったメソ孔を併せ持っていることが証明された。
(実施例2):
まず両親媒性物質であるエチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体(EO20-PO70-EO20、平均分子量5800、アルドリッチ)1.90gを0.1mol/L硝酸水溶液5.76gに溶解し、トリメチルベンゼン0.25gを加えた後、得られた均一溶液にビス(トリメトキシシリル)エタン2.15gを攪拌下で加えて加水分解反応を行った。この場合、触媒成分を含有する水の量は、シリカ1.0g当たり12.0gである。数分攪拌したのち、得られた透明溶液を密閉容器に移し、55℃の恒温漕中に保持したところ約50分後に溶液の白濁に引き続いて固化した。
固化した試料をさらに数時間熟成させ、ついで60℃において溶媒を蒸発させて除去し、そののち100℃/hの昇温速度で350℃まで加熱してこの温度で5時間保持した後、室温まで冷却した。これによって、ケイ素原子をエチレン鎖が架橋した構造をもつ有機無機ハイブリッドよりなる多孔質体を得た。
得られた多孔質体中には中心孔径0.4μm(=400nm)程度の揃った貫通孔と太さ約0.3μmのゲル骨格が3次元網目状に絡み合った構造で存在していることが電子顕微鏡および水銀圧入測定によって確かめられた(図5(a)(b)および図6)。そして、その貫通孔の内壁に直径5nm付近に分布の中心を持つ細孔が多数存在し、300m2/g以上の比表面積を有していることが、窒素吸着測定によって確かめられた。その細孔分布を図7に示す。
この試料の電界放射型走査電子顕微鏡像には、マクロ細孔を形成するゲル骨格の断面に、大きさの均一な2次元六方配列状に並んだメソ細孔と、大きさは揃っているが破断面内には一見してそれと分かる秩序の認められない構造を持ったメソ孔とが、一定の広さの領域をもって交じり合った状態で観察された(図8)。さらにこの試料の粉末X線回折を測定したところ、約10nmに相当する秩序の高い周期配列を示す回折プロファイルが得られた(図9)が、既に報告されている3次元六方対称構造のメソ孔をもつ物質の粉末X線回折との比較により、この試料には2次元六方対称構造と3次元六方対称構造が共存していることが分かった。
このことから、本試料のゲル骨格の内部には、直径約6nmのメソ細孔と約4nmの厚さのゲルの壁とが交互に長距離(典型的に100nm以上)に渡って配列し、全体の配列は2次元六方対称性を有する構造と、同等の細孔径をもつが3次元六方対称性を有する構造とが共存することがわかった。この結果は上述の電界放射型走査電子顕微鏡像の与える情報と良く整合し、本試料が細孔分布の制御されたマクロ細孔と、2種類の異なった長距離秩序をもつ大きさの均一なメソ孔を併せ持っていることが証明された。
(実施例3):
まず両親媒性物質であるエチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体(EO20-PO70-EO20、平均分子量5800、アルドリッチ)1.90gを0.1mol/L硝酸水溶液5.76gに溶解し、トリメチルベンゼン0.25gを加えた後、得られた均一溶液にビス(トリメトキシシリル)エタン2.15gを攪拌下で加えて加水分解反応を行った。この場合、触媒成分を含有する水の量は、シリカ1.0g当たり12.0gである。数分攪拌したのち、得られた透明溶液を密閉容器に移し、35℃の恒温漕中に保持したところ約70分後に溶液の白濁に引き続いて固化した。
固化した試料をさらに数時間熟成させ、ついで60℃において溶媒を蒸発させて除去し、そののち100℃/hの昇温速度で350℃まで加熱してこの温度で5時間保持した後、室温まで冷却した。これによって、ケイ素原子をエチレン鎖が架橋した構造をもつ有機無機ハイブリッドよりなる多孔質体を得た。
得られた多孔質体中には中心孔径0.1μm(=100nm)程度の揃った貫通孔と太さ約0.1μmのゲル骨格が3次元網目状に絡み合った構造で存在していることが電子顕微鏡および水銀圧入測定によって確かめられた。そして、その貫通孔の内壁に直径5.5nm付近に分布の中心を持つ細孔が多数存在し、300m2/g以上の比表面積を有していることが、窒素吸着測定によって確かめられた。その細孔分布を図10に示す。このゲルには実施例2で述べたのと同様なメソ孔が存在することが同様な方法で、確かめられた。したがって反応温度を変えることにより、細孔径分布の狭いマクロ孔の直径と気孔率だけを変化させて、メソ孔は同様の構造をもつ、多孔質体を作製することができた。
(実施例4(比較例)):noTMB
まず両親媒性物質であるエチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体(EO20-PO70-EO20、平均分子量5800、アルドリッチ)1.90gを0.1mol/L硝酸水溶液5.76gに溶解し、両親媒性物質の分子集合体を安定させる役割を持つ添加物を加えることなく、ビス(トリメトキシシリル)エタン2.15gを攪拌下で加えて加水分解反応を行った。この場合、触媒成分を含有する水の量は、シリカ1.0g当たり12.0gである。数分攪拌したのち、得られた透明溶液を密閉容器に移し、60℃の恒温漕中に保持したところ約60分後に溶液の透明度は特に変化することなく固化した。
固化した試料をさらに数時間熟成させ、ついで60℃において溶媒を蒸発させて除去し、そののち100℃/hの昇温速度で350℃まで加熱してこの温度で5時間保持した後、室温まで冷却した。これによって、ケイ素原子をエチレン鎖が架橋した構造をもつ有機無機ハイブリッドよりなる多孔質体を得た。
得られた多孔質体中には電子顕微鏡で確認できる100nm以上の不均一構造は存在しなかった。しかしゲル骨格中には直径5nm付近に分布の中心を持つ細孔が多数存在し、300m2/g以上の比表面積を有していることが、窒素吸着測定によって確かめられた。その細孔分布を図11に示す。この試料の粉末X線回折を測定したところ、約9nmに相当する他の試料に比べて秩序の低い構造に対応する回折プロファイルが得られた(図12)。
このことから、トリメチルベンゼンを用いずに作製した本試料の内部には、直径約5nmのメソ細孔と約4nmの厚さのゲルの壁とが、長距離秩序をもたない無定形状態で分布していることがわかった。
(実施例5):SILICA
まず両親媒性物質であるエチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体(EO20-PO70-EO20、平均分子量5800、アルドリッチ)4.00gを1.0mol/L硝酸水溶液10.0gに溶解し、トリメチルベンゼン0.85gを加えた後、得られた均一溶液にテトラメトキシシラン5.15gを攪拌下で加えて加水分解反応を行った。この場合、触媒成分を含有する水の量は、シリカ1.0g当たり5.0gである。数分攪拌したのち、得られた透明溶液を密閉容器に移し、40℃の恒温漕中に保持したところ約120分後に溶液の白濁に引き続いて固化した。
固化した試料をさらに数時間熟成させ、ついで60℃において溶媒を蒸発させて除去し、そののち100℃/hの昇温速度で600℃まで加熱してこの温度で5時間保持した後、室温まで冷却した。これによって、純粋なシリカよりなる多孔質体を得た。
得られた多孔質体中には中心孔径2μm(=2000nm)程度の揃った貫通孔と太さ約1μmのゲル骨格が3次元網目状に絡み合った構造で存在していることが電子顕微鏡観察(図13)によって確かめられた。そして、その貫通孔の内壁に直径6.5nm付近に分布の中心を持つ細孔が多数存在し、300m2/g以上の比表面積を有していることが、窒素吸着測定によって確かめられた。その細孔分布を図14に示す。この試料の電界放射型走査電子顕微鏡像には、マクロ細孔を形成するゲル骨格の断面に、大きさの均一な2次元六方配列状にならんだメソ細孔が観察された(図15)。さらにこの試料の粉末X線回折を測定したところ、約10nmに相当する秩序の高い周期配列を示す回折プロファイルが得られた(図16)。このことから、本試料のゲル骨格の内部には、直径約6.5nmのメソ細孔と約3.5nmの厚さのゲルの壁とが交互に長距離(典型的に100nm以上)に渡って配列し、全体の配列は2次元六方対称性を有することがわかった。この結果は上述の電界放射型走査電子顕微鏡像の与える情報と良く整合し、本試料が細孔分布の制御されたマクロ細孔と、長距離秩序をもつ大きさの揃ったメソ孔を併せ持っていることが証明された。
(実施例6)
加水分解の際に加えるトリメチルベンゼンの量を0.45g、0.65gおよび0.90gに変化させたほかは実施例5と同様にして反応溶液を調製し、ゲル化、熟成、乾燥、熱処理を行って、純粋なシリカよりなる多孔質体を得た。
得られた多孔質体中にはいずれのトリメチルベンゼン添加量においても中心孔径2μm(=2000nm)程度の揃った貫通孔と太さ約1μmのゲル骨格が3次元網目状に絡み合った構造で存在していることが電子顕微鏡観察(図17)によって確かめられた。そして、その貫通孔の内壁に、トリメチルベンゼン添加量が0.45g,0.65gおよび0.90gの場合直径それぞれ 5, 5.5, および 7nm付近に分布の中心を持つ細孔が多数存在し、いずれも300m2/g以上の比表面積を有していることが、窒素吸着測定によって確かめられた。
これに対してトリメチルベンゼンをまったく加えない場合は、細孔径は4nmであった。これらの試料の細孔分布を図18に示す。トリメチルベンゼン添加量が0.65gである試料の電界放射型走査電子顕微鏡像には、マクロ細孔を形成するゲル骨格の断面に、大きさの均一な2次元六方配列状にならんだメソ細孔が観察された(図19)。さらにこの試料の粉末X線回折を測定したところ、約9nmに相当する秩序の高い周期配列を示す回折プロファイルが得られた(図20)。このことから、本試料のゲル骨格の内部には、直径約5.5nmのメソ細孔と約3.5nmの厚さのゲルの壁とが交互に長距離(典型的に100nm以上)に渡って配列し、全体の配列は2次元六方対称性を有することがわかった。
この結果は上述の電界放射型走査電子顕微鏡像の与える情報と良く整合し、本試料が細孔分布の制御されたマクロ細孔と、長距離秩序をもつ大きさの揃ったメソ孔を併せ持っていることが証明された。トリメチルベンゼンを加えない場合には粉末X線回折プロファイルは幅広く、窒素吸着法によるデータも併せて、他の試料に比べて細孔径の分布も広いことがわかった。
(実施例7):BTMM
まず両親媒性物質であるエチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体(EO20-PO70-EO20、平均分子量5800、アルドリッチ)0.90gを0.1mol/L硝酸水溶液15.18g(試料A)あるいは30.36g(試料B)に溶解し、両親媒性物質の分子集合体を安定させる役割を持つ添加物を加えることなく、ビス(トリメトキシシリル)メタン1.873gを攪拌下で加えて加水分解反応を行った。この場合、触媒成分を含有する水の量は、シリカ1.0g当たり17gおよび34gである。数分攪拌したのち、得られた透明溶液を密閉容器に移し、60℃の恒温漕中に保持したところ約120分後に溶液の白濁に引き続いて固化した。
固化した試料をさらに数時間熟成させ、ついで60℃において溶媒を蒸発させて除去し、そののち100℃/hの昇温速度で350℃まで加熱してこの温度で5時間保持した後、室温まで冷却した。これによって、ケイ素原子をエチレン鎖が架橋した構造をもつ有機無機ハイブリッドよりなる多孔質体を得た。
得られた多孔質体中には、試料Aでは中心孔径1μm程度の揃った貫通孔と太さ約0.8μmのゲル骨格が、試料Bでは中心孔径4μm(=4000nm)程度の揃った貫通孔と太さ約3μmのゲル骨格が、3次元網目状に絡み合った構造で存在していることが水銀圧入測定(図21)によって確かめられた。そして、その貫通孔の内壁に、試料Aでは直径5nm付近に、試料Bでは直径6nm付近に、それぞれ分布の中心を持つ細孔が多数存在し、300m2/g以上の比表面積を有していることが、窒素吸着測定によって確かめられた。その細孔分布を第図22に示す。これらの試料の電界放射型走査電子顕微鏡像には、マクロ細孔を形成するゲル骨格の断面に、大きさの均一な2次元六方配列状にならんだメソ細孔が観察された(4図23、24)。さらにこの試料の粉末X線回折を測定したところ、試料Aでは約9nm、試料Bでは10nmに、それぞれ相当する秩序の高い周期配列を示す回折プロファイルが得られた(図25)。このことから、本試料のゲル骨格の内部には、試料Aでは直径約5nmのメソ細孔と約4nmの厚さのゲルの壁とが、試料BBは直径約6nmのメソ細孔と約4nmの厚さのゲルの壁とが、交互に長距離(典型的に100nm以上)に渡って配列し、全体の配列は2次元六方対称性を有することがわかった。この結果は上述の電界放射型走査電子顕微鏡像の与える情報と良く整合し、本試料が細孔分布の制御されたマクロ細孔と、長距離秩序をもつ大きさの揃ったメソ孔を併せ持っていることが証明された。ビス(トリメトキシシリル)メタンの場合には、実施例6までの反応系とは異なり、両親媒性物質の分子集合体を安定化させる成分を添加しなくても、長距離秩序を持つ大きさの揃ったメソ孔をもつマクロ多孔体を合成することができる。
以上のように本発明によれば、所望の細孔分布に制御された多孔質体を製造することができる。しかも本発明によって得られる多孔質体は、マクロ細孔とメソ細孔との二重気孔構造の多孔質体であることから、筒内に粒子を充填してなる充填型カラムの充填剤としてのみならず、それ自体でカラムとなる一体型カラムとしても適用可能である。
実施例1においてゾル−ゲル反応工程の後に溶媒を蒸発除去して得られた構造体の走査電子顕微鏡写真を示す。 実施例1で得られた多孔質体の窒素吸着法による細孔径分布曲線を示す。 実施例1で得られた多孔質体の電解放射型走査電子顕微鏡写真を示す。 実施例1で得られた多孔質体のX線回折測定結果を示す。 実施例2および3で得られた多孔質体の走査電子顕微鏡写真であり温度が(a)55℃および(b)35℃の場合を示す。 実施例2および3で得られた多孔質体の水銀圧入法による細孔径分布曲線であり調製温度が55℃および35℃の場合を示す。 実施例2で得られた多孔質体の窒素吸着法による細孔径分布曲線を示す。 実施例2で得られた多孔質体の電解放射型走査電子顕微鏡写真を示す。 実施例2で得られた多孔質体のX線回折測定結果を示す。 実施例3で得られた多孔質体の窒素吸着法による細孔径分布曲線を示す。 実施例4で得られた多孔質体の窒素吸着法による細孔径分布曲線を示す。 実施例4で得られた多孔質体のX線回折測定結果を示す。 実施例5においてゾル−ゲル反応工程の後に溶媒を蒸発除去して得られた構造体の走査電子顕微鏡写真を示す。 実施例5で得られた多孔質体の窒素吸着法による細孔径分布曲線を示す。 実施例5で得られた多孔質体の電解放射型走査電子顕微鏡写真を示す。 実施例5で得られた多孔質体のX線回折測定結果を示す。 実施例6においてゾル−ゲル反応工程の後に溶媒を蒸発除去して得られた構造体の走査電子顕微鏡写真を示す。 実施例6で得られた多孔質体の窒素吸着法による細孔径分布曲線を示す。 実施例6で得られた多孔質体の電解放射型走査電子顕微鏡写真を示す。 実施例6で得られた多孔質体のX線回折測定結果を示す。 実施例7で得られた多孔質体の水銀圧入法による細孔径分布曲線を示す。 実施例7で得られた多孔質体の窒素吸着法による細孔径分布曲線を示す。 実施例7で得られた多孔質体の電解放射型走査電子顕微鏡写真を示す。 実施例7で得られた多孔質体の電解放射型走査電子顕微鏡写真を示す。 実施例7で得られた多孔質体のX線回折測定結果を示す。

Claims (3)

  1. メソ細孔に加えてマクロ細孔を併せ持つ無機系多孔質体を製造する方法であって、
    (i) ゾル−ゲル反応触媒成分を含有する水溶液に、鋳型成分として両親媒性物質を溶かし、必要に応じて両親媒性物質の分子集合体を安定化させる添加成分を加えて、均一溶液を調製する工程、
    (ii) 該均一溶液に、加水分解性の官能基を有する無機低分子化合物を添加しゾル−ゲル反応を行わせて、溶媒に富む溶媒リッチ相と、ゾル−ゲル反応により前記無機低分子化合物から生成した無機酸化物重合体であって、前記両親媒性物質から成る鋳型成分の表面上に固着した無機酸化物重合体に富む骨格相とから成る、連続した3次元網目構造のゲルを形成する工程、
    (iii) 該ゲルを乾燥して前記溶媒リッチ相から溶媒を蒸発除去することによりマクロ細孔を形成する工程、および
    (iv) 乾燥後のゲルから熱分解または抽出により前記鋳型成分を除去することにより前記骨格相内にメソ細孔を形成する工程、
    を含むことを特徴とする方法。
  2. 無機酸化物重合体が、シリカおよび/または有機官能基含有シロキサン重合体であることを特徴とする請求項1に記載の無機系多孔質体の製造方法。
  3. ゾル−ゲル反応工程(ii)を少なくともその反応初期において酸性領域で行ない、且つ、該ゾル−ゲル反応において触媒成分を含有する水の量が反応系中のシリカ1.0g(無水シリカ換算重量として)に対して1.0g〜50.0gの範囲にあるようにすることを特徴とする請求項2に記載の無機系多孔質体の製造方法。
JP2004102653A 2004-03-31 2004-03-31 長距離秩序を有するメソ孔を含む階層的多孔質体の製造方法 Pending JP2005290032A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102653A JP2005290032A (ja) 2004-03-31 2004-03-31 長距離秩序を有するメソ孔を含む階層的多孔質体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102653A JP2005290032A (ja) 2004-03-31 2004-03-31 長距離秩序を有するメソ孔を含む階層的多孔質体の製造方法

Publications (1)

Publication Number Publication Date
JP2005290032A true JP2005290032A (ja) 2005-10-20

Family

ID=35323342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102653A Pending JP2005290032A (ja) 2004-03-31 2004-03-31 長距離秩序を有するメソ孔を含む階層的多孔質体の製造方法

Country Status (1)

Country Link
JP (1) JP2005290032A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290033A (ja) * 2004-03-31 2005-10-20 Kazuki Nakanishi 有機無機ハイブリッド系多孔質体の製造方法
WO2007010949A1 (ja) * 2005-07-19 2007-01-25 Dynax Corporation アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
KR100746345B1 (ko) 2006-07-26 2007-08-03 한국과학기술원 매크로 크기의 기공을 갖는 메조포러스 실리케이트의제조방법 및 이를 이용한 휘발성 유기화합물의 흡착제
JP2009265047A (ja) * 2008-04-30 2009-11-12 Kyoto Univ 長距離秩序を有するメソ孔を含む階層的多孔質体による固液接触デバイスおよび分離媒体
JP2010518239A (ja) * 2007-02-14 2010-05-27 ユニベルシテ ピエール エ マリー キュリー ハイブリッド材料及びその製造方法
US7741069B2 (en) 2005-12-27 2010-06-22 Canon Kabushiki Kaisha Mesoporous material having dendritic skeleton containing immobilized glucose dehydrogenase
WO2014034588A1 (ja) 2012-08-27 2014-03-06 信和化工株式会社 多孔質シリカ粉末
JP2016500044A (ja) * 2012-10-01 2016-01-07 ダウ グローバル テクノロジーズ エルエルシー 直径分布が狭い大きい細孔を有するメソポーラスシリカのための組成物およびプロセス
JP2018134624A (ja) * 2017-02-21 2018-08-30 株式会社 京都モノテック モノリスフィルタとそれを利用した固体分離装置、および、そのモノリスフィルタ製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285081A (ja) * 1991-03-11 1992-10-09 Kansai Shin Gijutsu Kenkyusho:Kk 制御された均一な孔径を有する多孔質シリカの製造方法
JPH06265534A (ja) * 1993-01-18 1994-09-22 Naohiro Soga 無機系多孔質カラム
JPH0741374A (ja) * 1993-07-30 1995-02-10 Naohiro Soga 無機系多孔質体の製造方法
JPH07247180A (ja) * 1994-03-14 1995-09-26 Naohiro Soga 有機官能基の結合した無機系多孔質体の製造方法
JP2001340755A (ja) * 2000-03-31 2001-12-11 Toyota Central Res & Dev Lab Inc ガス吸着分離用多孔体及びそれを用いたガス吸着分離方法
WO2004018099A1 (ja) * 2002-08-26 2004-03-04 Kyoto Monotech Co. 一体型反応性多孔質担体の製造方法
JP2005290033A (ja) * 2004-03-31 2005-10-20 Kazuki Nakanishi 有機無機ハイブリッド系多孔質体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285081A (ja) * 1991-03-11 1992-10-09 Kansai Shin Gijutsu Kenkyusho:Kk 制御された均一な孔径を有する多孔質シリカの製造方法
JPH06265534A (ja) * 1993-01-18 1994-09-22 Naohiro Soga 無機系多孔質カラム
JPH0741374A (ja) * 1993-07-30 1995-02-10 Naohiro Soga 無機系多孔質体の製造方法
JPH07247180A (ja) * 1994-03-14 1995-09-26 Naohiro Soga 有機官能基の結合した無機系多孔質体の製造方法
JP2001340755A (ja) * 2000-03-31 2001-12-11 Toyota Central Res & Dev Lab Inc ガス吸着分離用多孔体及びそれを用いたガス吸着分離方法
WO2004018099A1 (ja) * 2002-08-26 2004-03-04 Kyoto Monotech Co. 一体型反応性多孔質担体の製造方法
JP2005290033A (ja) * 2004-03-31 2005-10-20 Kazuki Nakanishi 有機無機ハイブリッド系多孔質体の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290033A (ja) * 2004-03-31 2005-10-20 Kazuki Nakanishi 有機無機ハイブリッド系多孔質体の製造方法
JP4538785B2 (ja) * 2004-03-31 2010-09-08 和樹 中西 有機無機ハイブリッド系多孔質体の製造方法
WO2007010949A1 (ja) * 2005-07-19 2007-01-25 Dynax Corporation アルキルシロキサンエアロゲルの製造方法、並びに、アルキルシロキサンエアロゲル、その製造装置およびそれを含むパネルの製造方法
US7741069B2 (en) 2005-12-27 2010-06-22 Canon Kabushiki Kaisha Mesoporous material having dendritic skeleton containing immobilized glucose dehydrogenase
KR100746345B1 (ko) 2006-07-26 2007-08-03 한국과학기술원 매크로 크기의 기공을 갖는 메조포러스 실리케이트의제조방법 및 이를 이용한 휘발성 유기화합물의 흡착제
JP2010518239A (ja) * 2007-02-14 2010-05-27 ユニベルシテ ピエール エ マリー キュリー ハイブリッド材料及びその製造方法
JP2009265047A (ja) * 2008-04-30 2009-11-12 Kyoto Univ 長距離秩序を有するメソ孔を含む階層的多孔質体による固液接触デバイスおよび分離媒体
WO2014034588A1 (ja) 2012-08-27 2014-03-06 信和化工株式会社 多孔質シリカ粉末
US9738534B2 (en) 2012-08-27 2017-08-22 Shinwa Chemical Industries Ltd. Porous silica powder
JP2016500044A (ja) * 2012-10-01 2016-01-07 ダウ グローバル テクノロジーズ エルエルシー 直径分布が狭い大きい細孔を有するメソポーラスシリカのための組成物およびプロセス
JP2018134624A (ja) * 2017-02-21 2018-08-30 株式会社 京都モノテック モノリスフィルタとそれを利用した固体分離装置、および、そのモノリスフィルタ製造方法
JP7011119B2 (ja) 2017-02-21 2022-02-10 株式会社 京都モノテック モノリスフィルタとそれを利用した固体分離装置、および、そのモノリスフィルタ製造方法

Similar Documents

Publication Publication Date Title
Chen et al. Synthesis of monodispersed mesoporous silica spheres (MMSSs) with controlled particle size using gemini surfactant
DE112005001838B4 (de) Poröse anorganische/organische Hybridmaterialien mit geordneten Domänen für chromatographische Auftrennungen, Verfahren für deren Herstellung sowie Auftrennvorrichtung und chromatographische Säule
EP2181069B1 (en) A method for synthesising porous silica microparticles
KR101750584B1 (ko) 다공질 실리카의 제조 방법 및 다공질 실리카
KR102190185B1 (ko) 메조다공성 이산화티탄 나노입자 및 제조 방법
US6911192B2 (en) Method for preparing inorganic porous material
Zhao et al. Fabrication of silica nanoparticles and hollow spheres using ionic liquid microemulsion droplets as templates
JP2004143026A (ja) 球状シリカ多孔質粒子及びその製造方法
Kosuge et al. One-step preparation of porous silica spheres from sodium silicate using triblock copolymer templating
WO1998052869A1 (en) Lyotropic liquid crystalline l3 phase silicated nanoporous monolithic composites and their production
JPH0741374A (ja) 無機系多孔質体の製造方法
WO2006052917A2 (en) Silica mesoporous materials
JP2005290032A (ja) 長距離秩序を有するメソ孔を含む階層的多孔質体の製造方法
JP4221498B2 (ja) 多孔性アルミナ結晶性粒子及びその製造方法
JP4099811B2 (ja) 定形多孔質シリカ乃至シリカ金属複合体粒子及びその製造方法
Semeykina et al. Medium controlled aggregative growth as a key step in mesoporous silica nanoparticle formation
KR100773134B1 (ko) 사이클로덱스트린을 이용한 다공성 이산화티탄의 제조 방법
Coutinho et al. Further studies of DAM-1 mesoporous silica preparations
Fujita et al. Cr3+-doped macroporous Al2O3 monoliths prepared by the metal-salt-derived sol–gel method
Khushalani et al. Glycometallate surfactants. Part 1: non-aqueous synthesis of mesoporous silica
Bilo et al. Millimeter-sized micellar-templated silica beads and phenylene-bridged mesoporous organosilica beads
Morales et al. Oil-in-water synthesis of hollow-shell mesoporous peapod-like silicates: Electron microscopy insights
Yang et al. The synthesis of mesoporous silica film using multi-templates directing and the effects of inorganic acids
JP2009265047A (ja) 長距離秩序を有するメソ孔を含む階層的多孔質体による固液接触デバイスおよび分離媒体
JP6410574B2 (ja) 多孔質シリカの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817