JP2005281859A - Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus - Google Patents

Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus Download PDF

Info

Publication number
JP2005281859A
JP2005281859A JP2005050124A JP2005050124A JP2005281859A JP 2005281859 A JP2005281859 A JP 2005281859A JP 2005050124 A JP2005050124 A JP 2005050124A JP 2005050124 A JP2005050124 A JP 2005050124A JP 2005281859 A JP2005281859 A JP 2005281859A
Authority
JP
Japan
Prior art keywords
substrate
light
material layer
deposition
deposition thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005050124A
Other languages
Japanese (ja)
Inventor
Kenji Tanase
健司 棚瀬
Koki Ishida
弘毅 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005050124A priority Critical patent/JP2005281859A/en
Priority to KR1020050017176A priority patent/KR100716704B1/en
Priority to TW094106193A priority patent/TWI299758B/en
Priority to CNB2005100511760A priority patent/CN100487948C/en
Priority to US11/071,276 priority patent/US20050244570A1/en
Publication of JP2005281859A publication Critical patent/JP2005281859A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To correctly detect the thickness of a deposited material layer at the film deposition. <P>SOLUTION: An aperture is formed in a predetermined part of a film deposition chamber 10 for performing the vacuum vapor deposition, the light transmitted through a substrate 14 and a film deposited on the substrate 14 is irradiated from a light emitter 26, and the transmitted light is detected by a light receiver 28. The light emitter and the light receiver may be provided in the film deposition chamber. During the vapor deposition, the absorption intensity (or the fluorescence intensity or the reflection intensity may be acceptable) at a film thickness monitoring unit 52 formed of the same material at a part of the substrate 14 is detected based on the data from a light receiving unit 28. A material layer of the target thickness is deposited on the substrate by adjusting the deposition speed by controlling the moving speed of a crucible 18, the heating state of a heater 20 or the like by a control device 30. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

基板上における材料の堆積および堆積厚の測定に関する。   It relates to the deposition of materials on a substrate and the measurement of the deposition thickness.

従来より、各種のデバイスにおいて、複数の材料層の積層構造が利用されており、その堆積に蒸着やスパッタなどが利用されている。例えば、有機エレクトロルミネッセンス(EL)ディスプレイでは、有機EL素子(OLED)をそれぞれ有する画素をマトリクス配置して表示を行う。この有機EL素子は、正孔輸送層、発光層、電子輸送層などの有機層を有する物が知られており、これらの有機層を真空蒸着によって形成することが、例えば、特許文献1などに記載がある。   Conventionally, in various devices, a laminated structure of a plurality of material layers is used, and vapor deposition, sputtering, or the like is used for the deposition. For example, in an organic electroluminescence (EL) display, display is performed by arranging pixels each having an organic EL element (OLED) in a matrix. This organic EL element is known to have an organic layer such as a hole transport layer, a light emitting layer, and an electron transport layer. For example, Patent Document 1 discloses that these organic layers are formed by vacuum deposition. There is a description.

このような有機ELディスプレイにおいて各有機層の厚さは、電極層などと比較しても非常に薄く、また、複数の有機層を積層することが多い。そのため層の厚さが発光特性に及ぼす影響も大きいと予想され、各層を適切に蒸着することが望まれ、したがって、各層の厚みを正確にしたいという要求がある。   In such an organic EL display, the thickness of each organic layer is much thinner than that of an electrode layer or the like, and a plurality of organic layers are often stacked. Therefore, it is expected that the thickness of the layer has a great influence on the light emission characteristics, and it is desired to appropriately deposit each layer. Therefore, there is a demand for making the thickness of each layer accurate.

また、有機ELディスプレイを作製する場合、なるべく大きな基板を利用して、作成する方が効率的であり、例えば1型〜10型程度のいわゆる小型ディスプレイであれば、これらの領域をマザー基板上に多数一度に作成し、作製後に切断することが好ましい。従って、有機物質の蒸着も、比較的大面積の基板上に蒸着することになる。そこで、基板上の蒸着位置によるバラツキをできるだけ小さく抑えたいという要求もある。   In the case of manufacturing an organic EL display, it is more efficient to use a substrate as large as possible. For example, in the case of a so-called small display of about 1 type to 10 type, these regions are formed on a mother substrate. It is preferable to prepare a large number at once and cut after the preparation. Accordingly, the organic material is also deposited on a substrate having a relatively large area. Therefore, there is also a demand for minimizing variation due to the deposition position on the substrate.

特開2003−257644号公報JP 2003-257644 A

ここで、薄膜の厚さの計測には、分光エリプソメータや、水晶振動子を用いた膜厚計が用いられる。分光エリプソメータでは、成膜後のサンプルを成膜装置外で計測する場合に用いられるものであり、実際の成膜時に計測することはできない。また、分光エリプソメータは、計測する膜表面の平滑性が高いことが要求されるため、有機EL素子よりも下層に例えば薄膜トランジスタなどの素子が形成され、それらに起因する表面の凹凸も多いディスプレイ用途などの有機層の膜厚測定に対して高い精度を得ることができない。   Here, for measuring the thickness of the thin film, a spectroscopic ellipsometer or a film thickness meter using a crystal resonator is used. The spectroscopic ellipsometer is used when a sample after film formation is measured outside the film formation apparatus, and cannot be measured during actual film formation. In addition, since the spectroscopic ellipsometer is required to have high smoothness on the surface of the film to be measured, an element such as a thin film transistor is formed in a lower layer than the organic EL element, and the surface uses unevenness due to them. High accuracy cannot be obtained for the film thickness measurement of the organic layer.

また水晶振動子の振動数変化より膜厚(蒸着量)を計測する方法を採用すると、成膜装置内に水晶振動子を配置して、水晶振動子に付着した材料膜厚を計測可能であるが、連続使用すると、計測値が変化するため、安定した測定が難しい。また、実際に基板上に形成された材料層の厚さを測定することはできない。   In addition, if a method of measuring the film thickness (deposition amount) from the change in the frequency of the crystal unit is adopted, the thickness of the material attached to the crystal unit can be measured by placing the crystal unit in the film forming apparatus. However, when it is used continuously, the measurement value changes, so stable measurement is difficult. In addition, the thickness of the material layer actually formed on the substrate cannot be measured.

本発明は、材料堆積中における膜厚の計測を効果的に行い、またその計測値に応じて堆積を効果的に制御することを目的とする。   An object of the present invention is to effectively measure the film thickness during material deposition and to effectively control the deposition according to the measured value.

本発明は、基板上への材料層の堆積厚測定方法であって、基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、前記堆積厚モニタ領域に所定の光を照射し、この材料層からの射出光を検出し、検出した光の強度に基づいて、基板上に形成された材料層の堆積厚さを測定する。   The present invention is a method for measuring a deposition thickness of a material layer on a substrate, wherein the material layer is deposited by depositing a material on a deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and the substrate. Form and irradiate the deposition thickness monitor area with predetermined light, detect the emission light from this material layer, and measure the deposition thickness of the material layer formed on the substrate based on the detected light intensity To do.

また、本発明の他の態様は、基板上への材料層の形成方法であって、基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、前記堆積厚モニタ領域に所定の光を照射し、この材料層からの射出光を検出し、検出した光の強度に基づいて、基板上に形成された材料層の堆積厚さを測定し、測定結果に応じて、堆積速度を制御する。   Another aspect of the present invention is a method of forming a material layer on a substrate, wherein the material is deposited on a deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and on the substrate. Forming a material layer, irradiating the deposition thickness monitor region with predetermined light, detecting light emitted from the material layer, and depositing the material layer formed on the substrate based on the detected light intensity The thickness is measured, and the deposition rate is controlled according to the measurement result.

また、本発明の他の態様では、前記材料の堆積は、蒸着源から材料を加熱して蒸発させて基板上に堆積させる蒸着方法であり、前記材料の加熱状態又は蒸着源と基板との相対的な走査速度の少なくとも一方を制御することで堆積速度を制御することが好適である。   In another aspect of the present invention, the deposition of the material is an evaporation method in which the material is heated and evaporated from an evaporation source to be deposited on the substrate, and the heating state of the material or the relative relationship between the evaporation source and the substrate. It is preferable to control the deposition rate by controlling at least one of the typical scanning rates.

また、本発明の他の態様では、前記堆積厚モニタ領域は、基板又は基板近傍において互いに離れて複数設けられ、それぞれの堆積厚モニタ領域における堆積厚に基づいて、前記蒸着源の加熱分布を制御することが好適である。   In another aspect of the present invention, a plurality of the deposition thickness monitor regions are provided apart from each other in the substrate or in the vicinity of the substrate, and the heating distribution of the vapor deposition source is controlled based on the deposition thickness in each deposition thickness monitor region. It is preferable to do.

また、本発明の他の態様において、前記射出光に基づいて、吸光強度または蛍光強度又は反射強度を検出することが好適である。なお、ここで、堆積厚モニタ領域に光を照射して得られる材料層から射出光は、透過光、反射光、発光(蛍光等)を含む。   In another aspect of the present invention, it is preferable to detect the light absorption intensity, the fluorescence intensity, or the reflection intensity based on the emitted light. Here, the emitted light from the material layer obtained by irradiating the deposition thickness monitor region includes transmitted light, reflected light, and light emission (fluorescence, etc.).

また、本発明の他の態様では、基板上に材料層を堆積形成する形成装置において、材料層が堆積される基板または基板近傍の所定箇所に設けられた堆積厚モニタ領域に対し、光を照射する光照射手段と、光が照射されるモニタ領域からの射出光の光強度を検出する光検出手段と、前記光検出手段で検出された光強度に基づいて堆積厚を測定し、測定結果に基づいて、堆積速度を調整する堆積速度制御手段と、を有する。   In another aspect of the present invention, in a forming apparatus for depositing and forming a material layer on a substrate, light is irradiated to a deposition thickness monitor region provided at a predetermined position near the substrate on which the material layer is deposited or near the substrate. A light irradiating means, a light detecting means for detecting the light intensity of the emitted light from the monitor area irradiated with the light, and measuring the deposition thickness based on the light intensity detected by the light detecting means, And a deposition rate control means for adjusting the deposition rate on the basis thereof.

このように、本発明によれば、堆積厚モニタ領域に形成された材料層の堆積膜厚を、この領域に照射した光に対する射出光を検出することで、その吸光強度または蛍光強度、或いは反射強度等に基づいて求める。このような光の強度などから実際の蒸着層等の材料層の堆積厚を検出すれば、精度よく、かつ材料層を形成しながらその厚さを求めることができる。したがって、検出した堆積厚に応じて堆積条件(例えば蒸着源の温度や移動速度など)を制御して、適切な厚さに材料層を形成することができる。また、材料層の形成と同時に測定する、つまり形成時に厚さをモニタリングするので、装置外で別途測定する方法と比較して、堆積厚の測定時間を飛躍的に短縮でき、また堆積値が目的値から外れた処理基板はその時点で厚さを調整したり、工程から除くことができ、製造の効率化を図ることができる。   As described above, according to the present invention, the deposited film thickness of the material layer formed in the deposited thickness monitor region is detected by detecting the emission light with respect to the light irradiated to this region, so that the light absorption intensity or the fluorescence intensity or the reflected light is reflected. Obtained based on strength. If the deposition thickness of an actual material layer such as a vapor deposition layer is detected from such light intensity, the thickness can be obtained accurately and while forming the material layer. Therefore, the material layer can be formed to an appropriate thickness by controlling the deposition conditions (for example, the temperature of the vapor deposition source and the moving speed) according to the detected deposition thickness. In addition, since the thickness is measured at the same time as the material layer is formed, that is, the thickness is monitored at the time of formation, the measurement time of the deposited thickness can be drastically shortened compared to the method of separately measuring outside the apparatus, and the purpose of the deposited value is The thickness of the processed substrate deviating from the value can be adjusted or removed from the process at that time, and the manufacturing efficiency can be improved.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、実施形態に係る堆積装置(蒸着装置)の概略構成を示している。真空チャンバ(成膜室)10は、気密に構成されており、被蒸着体である基板14(例えば、ガラス基板)が導入された後の内部は真空ポンプなどを利用して所定の減圧状態が維持される。真空チャンバ10内の上部には、基板固定部12が設けられ、ここに基板14が固定される。また、固定された基板14の下方には、るつぼ移動レール16が設置されており、ここにるつぼ18が往復移動可能に設置されている。るつぼ18の移動には、基本的にモータ40が利用されるが、動力の伝達方法には各種のものがあり、適宜採用できる。この例では、モータ40により長ねじ42を回転し、この長ねじの回転によってるつぼ18の移動を制御している。なお、移動手段には、均一な蒸着を達成するために、一定速度で移動可能とすることが要求される。   FIG. 1 shows a schematic configuration of a deposition apparatus (evaporation apparatus) according to an embodiment. The vacuum chamber (film formation chamber) 10 is configured to be airtight, and the inside of the interior after the substrate 14 (for example, a glass substrate), which is a deposition target, is introduced, is in a predetermined reduced pressure state using a vacuum pump or the like. Maintained. A substrate fixing part 12 is provided at the upper part in the vacuum chamber 10, and the substrate 14 is fixed thereto. Also, a crucible moving rail 16 is installed below the fixed substrate 14, and a crucible 18 is installed here so as to be able to reciprocate. For the movement of the crucible 18, the motor 40 is basically used, but there are various power transmission methods that can be adopted as appropriate. In this example, the long screw 42 is rotated by the motor 40, and the movement of the crucible 18 is controlled by the rotation of the long screw. The moving means is required to be movable at a constant speed in order to achieve uniform vapor deposition.

るつぼ18は、例えば、基板の幅方向より若干長い細長い箱形状の蒸着源(リニアソース)で、るつぼ18内に収容している蒸着材料を加熱して蒸発させ、るつぼ上方の開口部から材料を放出する。放出された蒸発材料は、基板14の下面に付着し堆積される。るつぼ18を基板14の長さ(長手)方向に移動させる(走査する)ことで、基板14の表面の全面にほぼ同一の条件で材料層を蒸着形成することができる。なお、図においては、るつぼ18を1つのみ示したが、るつぼ18を複数設けそれぞれから材料を蒸発させてもよい。その場合に、各るつぼ18から異なる材料を蒸発させ、積層構造を形成することもできる。   The crucible 18 is, for example, an elongated box-shaped vapor deposition source (linear source) slightly longer than the width direction of the substrate. The vapor deposition material contained in the crucible 18 is heated and evaporated, and the material is removed from the opening above the crucible. discharge. The released evaporation material adheres to the lower surface of the substrate 14 and is deposited. By moving (scanning) the crucible 18 in the length (longitudinal) direction of the substrate 14, a material layer can be deposited on the entire surface of the substrate 14 under substantially the same conditions. Although only one crucible 18 is shown in the figure, a plurality of crucibles 18 may be provided to evaporate the material from each. In that case, a different material can be evaporated from each crucible 18 to form a laminated structure.

基板上の所定部位のみに材料層を蒸着形成する場合には、図示するように基板14の下面にマスク50を配置し、蒸着部を限定する。例えば、有機EL素子を用いたディスプレイにおいて、画素毎にRGB3色のいずれかの発光層を備える有機EL素子を形成し、この発光層を色毎に塗り分け形成する場合であれば、材料毎に開口位置の異なるマスクを交換して蒸着すればよい。また、基板14を別の真空チャンバ10に移動して、開口位置の異なるマスクを用いて蒸着を行ってもよい。なお、蒸着に際し、るつぼ18ではなく、基板14を移動してもよい。   In the case where the material layer is formed by vapor deposition only on a predetermined portion on the substrate, a mask 50 is disposed on the lower surface of the substrate 14 as shown in the figure to limit the vapor deposition portion. For example, in a display using an organic EL element, if an organic EL element having a light emitting layer of any of RGB three colors is formed for each pixel and this light emitting layer is separately formed for each color, for each material What is necessary is just to vapor-deposit by exchanging masks with different opening positions. Alternatively, the substrate 14 may be moved to another vacuum chamber 10 and vapor deposition may be performed using masks having different opening positions. Note that the substrate 14 may be moved instead of the crucible 18 during vapor deposition.

るつぼ18の周面には、ヒータ20が取り付けられ、このヒータ20には、ケーブル22を介しヒータ電源部24が接続されている。従って、ヒータ電源部24からの電力供給によって、ヒータ20の加熱状態が制御され、るつぼ18からの材料の蒸発状態が制御される。   A heater 20 is attached to the peripheral surface of the crucible 18, and a heater power supply unit 24 is connected to the heater 20 via a cable 22. Therefore, the heating state of the heater 20 is controlled by the power supply from the heater power source 24, and the evaporation state of the material from the crucible 18 is controlled.

本実施形態においては、真空チャンバ10の所定部分に複数対の透明部分(窓)が設けられており、これらに対応して発光器26と、受光器28が配置されている。発光器26から射出された光は、材料層が形成されている基板14の所定部分(後述する膜厚モニタ部52)を通過し、受光器28に至る。   In the present embodiment, a plurality of pairs of transparent portions (windows) are provided in a predetermined portion of the vacuum chamber 10, and a light emitter 26 and a light receiver 28 are disposed corresponding to these pairs. The light emitted from the light emitter 26 passes through a predetermined portion (a film thickness monitor unit 52 described later) of the substrate 14 on which the material layer is formed, and reaches the light receiver 28.

ここで、図示するようにマスク50が基板14とるつぼ18との間に配置されている場合、このマスク50の発光器26からの光の光路上には、膜厚測定用の開口部54が設けられている。なお、マスク50の開口部54の位置に合わせて発光器26及び受光器28の位置を移動可能としておくことが好ましい。   Here, when the mask 50 is disposed between the substrate 14 and the crucible 18 as shown in the drawing, an opening 54 for film thickness measurement is provided on the optical path of the light from the light emitter 26 of the mask 50. Is provided. In addition, it is preferable that the positions of the light emitter 26 and the light receiver 28 are movable in accordance with the position of the opening 54 of the mask 50.

るつぼ18から放出される蒸着材料は、画素領域に応じたパターンの開口部と同様に、膜厚測定用開口部54を通って基板14の対応する位置に付着し、これにより基板上には、画素領域などの所望パターンの材料層の形成と同時に、後述する図5のように同一材料で、かつ同一条件で膜厚(堆積厚)モニタ部52が形成される。そして、発光器26から射出された光は、膜厚測定用開口部54及び基板14のこの膜厚モニタ部52を透過して、受光器28に到達する。受光器28は、その受光強度についての信号を制御装置30に供給し、制御装置30は吸光強度を算出し、この吸光強度に基づいて、後述するように予め求めた検量データを参照することで蒸着膜の厚さを算出することができる。制御装置30は、ヒータ電源部24を制御して、蒸着膜厚が適切なものになるように、ヒータ電源部24からヒータ20への電流供給を制御するとともに、モータ40を制御してるつぼ18の移動速度を制御する。このような制御により材料層の膜厚が最適値となるように基板上への材料の堆積速度(成膜速度)が制御される。   The vapor deposition material emitted from the crucible 18 adheres to the corresponding position of the substrate 14 through the film thickness measurement opening 54 as well as the opening of the pattern corresponding to the pixel region. Simultaneously with the formation of a material layer of a desired pattern such as a pixel region, a film thickness (deposition thickness) monitor unit 52 is formed with the same material and under the same conditions as shown in FIG. The light emitted from the light emitter 26 passes through the film thickness measurement opening 54 and the film thickness monitor 52 of the substrate 14 and reaches the light receiver 28. The light receiver 28 supplies a signal regarding the received light intensity to the control device 30, and the control device 30 calculates the light absorption intensity and refers to the calibration data obtained in advance as described later based on the light absorption intensity. The thickness of the deposited film can be calculated. The control device 30 controls the heater power source 24 to control the current supply from the heater power source 24 to the heater 20 and to control the motor 40 so that the vapor deposition film thickness is appropriate. Control the moving speed of the. By such control, the material deposition rate (film formation rate) on the substrate is controlled so that the film thickness of the material layer becomes an optimum value.

ここで、発光器26から射出される光線は、例えば紫外光が採用可能であり、200nm〜900nmの波長域の光でも良い。また、単一波長でもよいし、白色光線を採用してもよい。さらに、発光器26からの発光波長を例えば上記200nm〜900nmの範囲内などで変更し、これを受光器28で検出し、いずれの波長で吸収が起こるかをその吸収スペクトルから検出し、厚さを特定してもよい。更に、吸収ではなく、蛍光スペクトルなどを検出してもよい。特に、発光材料を含む発光層の膜厚計測の場合には、蛍光の強度を計測することで、膜厚を効果的に検出することができる。   Here, the light emitted from the light emitter 26 may be, for example, ultraviolet light, and may be light having a wavelength range of 200 nm to 900 nm. Moreover, a single wavelength may be sufficient and white light may be employ | adopted. Further, the wavelength of light emitted from the light emitter 26 is changed within the range of 200 nm to 900 nm, for example, and this is detected by the light receiver 28, and the wavelength at which absorption occurs is detected from the absorption spectrum, and the thickness May be specified. Furthermore, instead of absorption, a fluorescence spectrum or the like may be detected. In particular, in the case of measuring the film thickness of a light emitting layer containing a light emitting material, the film thickness can be detected effectively by measuring the intensity of fluorescence.

さらに、蛍光を計測する場合には、透過光ではなく、光を照射した部分からの光(反射光)を受光できる場所に受光器28を配置すればよい。この場合、例えば、図2に示すように、発光器26及び受光器28の両方を基板14に形成される膜の表面側(蒸着源側)に設ける。図2の例では、真空チャンバ10の内部では、基板の下方に蒸着源であるるつぼ18が配置されているので、発光器26及び受光器28は、真空チャンバ10の下方に配置している。このような構成で、発光器26から射出された光を計測対象である膜(モニタ部52)の表面に照射し、膜表面で反射した光を受光器28によって受光し、受光光の蛍光強度を測定して膜厚を算出することができる。   Furthermore, when measuring fluorescence, the light receiver 28 may be disposed in a place where light (reflected light) from a portion irradiated with light, not transmitted light, can be received. In this case, for example, as shown in FIG. 2, both the light emitter 26 and the light receiver 28 are provided on the surface side (deposition source side) of the film formed on the substrate 14. In the example of FIG. 2, inside the vacuum chamber 10, the crucible 18 that is a vapor deposition source is disposed below the substrate, so that the light emitter 26 and the light receiver 28 are disposed below the vacuum chamber 10. With such a configuration, the light emitted from the light emitter 26 is irradiated onto the surface of the film to be measured (monitor unit 52), the light reflected on the film surface is received by the light receiver 28, and the fluorescence intensity of the received light is measured. Can be measured to calculate the film thickness.

以上に説明した発光器26、受光器28は、真空チャンバ10内に設けてもよい。この場合には、シャッタをつけ、発光器26、受光器28に対し不要な蒸着物質の堆積を防止することが好適である。あるいはシャッタの代わりに、少なくとも受光器28の周囲の温度を制御して(例えば一定の高温になるように加熱制御)、蒸着物質が受光器28に付着しないようにしてもよい。   The light emitter 26 and the light receiver 28 described above may be provided in the vacuum chamber 10. In this case, it is preferable to attach a shutter to prevent unnecessary vapor deposition material from being deposited on the light emitter 26 and the light receiver 28. Alternatively, instead of the shutter, at least the temperature around the light receiver 28 may be controlled (for example, heating control so as to be a constant high temperature) so that the vapor deposition material does not adhere to the light receiver 28.

次に、実際に基板上に蒸着して得たCuPc(銅フタロシアニン)膜について、本実施形態で光源として用いた紫外線(UV)に対する膜の光吸収強度と、触針式段差測定装置によって測定した膜厚を比較した結果を図3に示す。図3のグラフから理解できるように両者には、かなりよい相関が得られた。すなわち、触針式段差測定機によって得られた実膜厚y、吸収強度xとした場合に、y=83.086exp[5.3657x]が関係式として得られ、その分散R2=0.9554とかなり1に近い数字が得られており、本実施形態のような光吸収強度により正確な膜厚測定が可能であることがわかる。 Next, the CuPc (copper phthalocyanine) film obtained by actually vapor-depositing on the substrate was measured with the light absorption intensity of the film with respect to ultraviolet rays (UV) used as a light source in this embodiment, and a stylus type step measuring device. The result of comparing the film thickness is shown in FIG. As can be understood from the graph of FIG. 3, a fairly good correlation was obtained between the two. That is, when the actual film thickness y and the absorption intensity x obtained by the stylus type step measuring machine are used, y = 83.86exp [5.3657x] is obtained as a relational expression, and the dispersion R 2 = 0.9554. Thus, it is understood that the film thickness can be accurately measured by the light absorption intensity as in the present embodiment.

また、このデータを表1に示す。   The data is shown in Table 1.

Figure 2005281859
このように、本実施形態における光吸収強度の測定は、既に膜厚測定として実績のある分光エリプソメータに替えて、その強度に基づいて膜厚を測定できることが分かる。
Figure 2005281859
Thus, it can be seen that the measurement of the light absorption intensity in the present embodiment can measure the film thickness based on the intensity instead of the spectroscopic ellipsometer that has already been proven as a film thickness measurement.

下記表2は、エリプソメータによる測定と、光吸収強度による測定の精度の比較結果を示している。測定同一条件で基板上に成膜したCuPc膜の各サンプルを各方法によりそれぞれ5回ずつ測定し、その平均値と、最大値max、最小値minから、下式(i)
(max−min)/(max+min)÷(2×平均値)×100 ・・・(i)
で表されるばらつき(%)を測定した結果及びそのばらつき平均である。
Table 2 below shows a comparison result of the accuracy of the measurement by the ellipsometer and the measurement by the light absorption intensity. Measurement Each sample of the CuPc film deposited on the substrate under the same conditions was measured five times by each method. From the average value, the maximum value max, and the minimum value min, the following formula (i)
(Max−min) / (max + min) ÷ (2 × average value) × 100 (i)
It is the result of measuring the variation (%) represented by and the variation average.

Figure 2005281859
表2のばらつき平均値からも明らかなように、吸光強度の方がエリプソの測定結果よりばらつきが小さい。これより、本実施形態の光吸収強度の測定の方がエリプソによる測定より精度が高いことがわかる。
Figure 2005281859
As is apparent from the variation average value in Table 2, the light absorption intensity has a smaller variation than the ellipso measurement result. From this, it can be seen that the measurement of the light absorption intensity of the present embodiment is more accurate than the measurement by the ellipso.

ここで、有機EL素子において、有機層の厚さは発光層での発光条件を決めるための重要な要素の一つと考えられ、より高い発光効率や高精度の発光制御を実現する上で、この有機層の厚さの精度に対する要求は今後さらに高まる。そして、例えば、上記CuPc膜は、有機EL素子において、陽極と正孔輸送層の間に設けられる正孔注入層として利用されることが多く、通常10nm程度と非常に薄いが、このような極めて薄い膜についてもより精度良く膜厚を制御することが望まれる。上述のように連続使用時の安定性に欠ける水晶振動子を用いたのでは正確な計測が困難である。   Here, in the organic EL element, it is considered that the thickness of the organic layer is one of the important factors for determining the light emission conditions in the light emitting layer, and in order to realize higher light emission efficiency and high-precision light emission control, The demand for the accuracy of the organic layer thickness will increase further in the future. For example, the CuPc film is often used as a hole injection layer provided between an anode and a hole transport layer in an organic EL element, and is usually very thin as about 10 nm. It is desired to control the thickness of a thin film with higher accuracy. As described above, accurate measurement is difficult if a crystal resonator lacking stability during continuous use is used.

さらに、上記CuPc膜は、その膜表面が乱反射が起きやすい表面状態となるため、このような膜については、エリプソメータによる膜厚測定に適していない。これに対し、本実施形態では、エリプソメータより高い測定精度が得られ、かつ、リアルタイムでの膜厚測定が可能である。また、有機EL素子の有機層の材料は、現在、その耐久性に依然として課題が多い。このため、下層側の電極(陽極又は陰極)の形成後、例えば真空蒸着法によって形成される多層構造の有機層の各層は、表面にゴミが付着したり有機層の劣化を速める水分が酸素などにさらされる可能性を低減する上で、真空雰囲気を破らずに連続形成することが望まれている。したがって、本実施形態のように真空蒸着室内で成膜した膜の厚さを随時測定すれば、例えばエリプソメータを用いた場合のように、膜厚測定のためだけに基板を装置外に出す必要もなく、膜厚の正確な制御が可能となる。なお、有機EL素子の多層構造の有機層は、例えば陽極が下層側の電極で、上層が電子注入層とほぼ一体に形成された陰極である場合に、下から順に正孔注入層、正孔輸送層、発光層、電子輸送層の積層構造が一例として挙げられ、各層の厚さをそれぞれ最適な値になるよう制御しながら連続して形成することが可能となる。   Furthermore, since the CuPc film is in a surface state in which irregular reflection is likely to occur, such a film is not suitable for film thickness measurement using an ellipsometer. On the other hand, in the present embodiment, measurement accuracy higher than that of the ellipsometer is obtained, and film thickness measurement in real time is possible. Moreover, the material of the organic layer of the organic EL element still has many problems in its durability. For this reason, after the formation of the lower layer side electrode (anode or cathode), for example, each layer of the organic layer having a multilayer structure formed by a vacuum deposition method has moisture that adheres to the surface or accelerates the deterioration of the organic layer. In order to reduce the possibility of exposure, it is desired to form continuously without breaking the vacuum atmosphere. Therefore, if the thickness of the film formed in the vacuum evaporation chamber is measured as needed as in this embodiment, it is necessary to take the substrate out of the apparatus only for film thickness measurement, for example, when using an ellipsometer. Therefore, the film thickness can be accurately controlled. The organic layer having a multilayer structure of the organic EL element includes, for example, a hole injection layer and a hole in order from the bottom when the anode is an electrode on the lower layer side and the upper layer is a cathode formed almost integrally with the electron injection layer. A laminated structure of a transport layer, a light emitting layer, and an electron transport layer is given as an example, and it is possible to continuously form each layer while controlling the thickness of each layer to an optimum value.

以上においては、吸収強度を利用した膜厚測定について述べたが、光照射に伴う蛍光量の計測でもその物質について同様の作用効果が得られることが確認されている。例えば、有機EL素子の発光層は、蛍光により発光する有機材料が多く、これら層の厚さは蛍光測定によって好適に行うことができる。このように蛍光測定を行えば、光透過性の非常に低い例えば比較的厚い層や遮光性層についても確実にその厚さをリアルタイムにかつ正確に測定することができる。   In the above description, the film thickness measurement using the absorption intensity has been described. However, it has been confirmed that the same action and effect can be obtained for the substance in the measurement of the amount of fluorescence accompanying light irradiation. For example, the light emitting layer of the organic EL element has many organic materials that emit light by fluorescence, and the thickness of these layers can be suitably measured by fluorescence measurement. By performing fluorescence measurement in this way, the thickness of a relatively thin layer, such as a relatively thick layer or a light-shielding layer, having a very low light transmittance can be reliably measured in real time.

通常の蒸着工程においては、まずるつぼ18を所定温度まで加温し、蒸発状態を安定化する。これは、るつぼ18を図1に示すような基板14の下方から外れた待機位置に位置させて行う。この待機位置のるつぼ18の上方には、水晶式の膜厚計を配置し、蒸発状態を検出することも好適である。   In a normal vapor deposition process, first, the crucible 18 is heated to a predetermined temperature to stabilize the evaporation state. This is done by placing the crucible 18 in a standby position off the bottom of the substrate 14 as shown in FIG. It is also preferable to place a quartz-type film thickness meter above the crucible 18 at the standby position to detect the evaporation state.

また、基板14を基板固定部12にセットしておく。そして、モータ40を駆動して、るつぼ18を所定速度で移動させ、基板14の下表面に蒸着を行う。上述のように、発光器26、受光器28によって得られる吸光強度により、膜厚を検出できるため、この検出結果に基づいて、ヒータ20による加熱状態や、モータ40の回転数を制御することで、常に安定した蒸着を行うことができる。なお、このような制御は、1つの基板14に対して蒸着のバラツキを防止するために行ってもよいし、複数の基板14に対する蒸着のバラツキを防止するために行ってもよい。   Further, the substrate 14 is set on the substrate fixing portion 12. Then, the motor 40 is driven to move the crucible 18 at a predetermined speed, and vapor deposition is performed on the lower surface of the substrate 14. As described above, since the film thickness can be detected by the light absorption intensity obtained by the light emitter 26 and the light receiver 28, the heating state by the heater 20 and the rotation speed of the motor 40 are controlled based on the detection result. , Stable deposition can always be performed. Note that such control may be performed in order to prevent variations in deposition on one substrate 14 or may be performed in order to prevent variations in deposition on a plurality of substrates 14.

さらに、上記実施形態では、実際に蒸着対象となっている基板14における蒸着膜厚を検出した。しかし、ダミー基板を用い、そのダミー基板における蒸着状態を調べて、るつぼ18の加熱状態およびるつぼ18の移動状態を制御してもよい。ここで、このダミー基板は、実際に蒸着する基板14の代わりに設けてもよいし、基板14に隣接して設けてもよい。さらに、図4に示すように、ダミー基板15は、平板でなくてもよく、円柱状や多角柱状として、複数の蒸着膜の形成毎にるつぼ18の変更と対応してその周面位置(又は周面)を変更し、対応する周面での蒸着膜の堆積厚を上述のような吸収又は蛍光検出装置で検出することで、るつぼ18からの蒸発物質の蒸発状態を検出することができ、これに基づいて蒸着量の制御ができる。特に、ダミー基板を円柱状として、これを適宜回転させて、表面に蒸着させて、この膜厚を検出することが好適である。   Furthermore, in the said embodiment, the vapor deposition film thickness in the board | substrate 14 actually used as vapor deposition object was detected. However, a dummy substrate may be used, and the deposition state on the dummy substrate may be investigated to control the heating state of the crucible 18 and the movement state of the crucible 18. Here, this dummy substrate may be provided in place of the substrate 14 to be actually deposited, or may be provided adjacent to the substrate 14. Further, as shown in FIG. 4, the dummy substrate 15 may not be a flat plate, but may be a columnar shape or a polygonal columnar shape, corresponding to the change in the crucible 18 every time a plurality of vapor deposition films are formed (or the peripheral surface position (or By changing the peripheral surface) and detecting the deposition thickness of the vapor-deposited film on the corresponding peripheral surface with the absorption or fluorescence detection device as described above, the evaporation state of the evaporated substance from the crucible 18 can be detected, Based on this, the amount of vapor deposition can be controlled. In particular, it is preferable to detect the film thickness by making the dummy substrate into a cylindrical shape, rotating it appropriately, and depositing it on the surface.

図5には、基板14におけるモニタ部(膜厚測定部)52が形成される膜厚モニタ領域の設定が示されている。この例では、基板14の幅方向(るつぼ18の長手方向に一致)において、モニタ領域が設けられ、ここに3点のモニタ部52が形成されている。これらモニタ部52は、基板14中で、実際の有機EL素子領域(あるいは表示領域)としては利用されない領域に形成されている。そして、本実施形態では、るつぼ18が幅方向に細長い形状を有し、このるつぼ18はその長手方向(基板14の幅方向)と直交する方向に移動する。そこで、このるつぼ18の長手方向に沿って3点のモニタ部52を形成することによって、るつぼ18の長手方向における蒸発量の均一性を検出することができ、この検出結果に基づいて、るつぼ18の長手方向における加熱状態を制御することができる。加熱状態は、ヒータ20をるつぼ18の長手方向で、複数に分割しておき、分割ヒータへの個別の通電を制御することなどによって行える。   FIG. 5 shows the setting of the film thickness monitor region in which the monitor unit (film thickness measuring unit) 52 in the substrate 14 is formed. In this example, a monitor region is provided in the width direction of the substrate 14 (corresponding to the longitudinal direction of the crucible 18), and three monitor portions 52 are formed here. These monitor parts 52 are formed in the area | region which is not utilized as an actual organic EL element area | region (or display area) in the board | substrate 14. FIG. In this embodiment, the crucible 18 has an elongated shape in the width direction, and the crucible 18 moves in a direction perpendicular to the longitudinal direction (the width direction of the substrate 14). Therefore, by forming three monitor portions 52 along the longitudinal direction of the crucible 18, the uniformity of the evaporation amount in the longitudinal direction of the crucible 18 can be detected. Based on the detection result, the crucible 18 is detected. The heating state in the longitudinal direction can be controlled. The heating state can be performed by dividing the heater 20 into a plurality of parts in the longitudinal direction of the crucible 18 and controlling individual energization to the divided heaters.

なお、図5において、破線で示した膜厚モニタ部52は、多層の蒸着を真空雰囲気を破らずに連続して実行する場合において、異なる蒸着源を用いた異なる蒸着膜の膜厚測定にそれぞれ使用することもできる。すなわち、成膜時に用いるマスク50として、膜厚測定用の開口部の位置がそれぞれ異なるマスクを用いれば、基板上のモニタ領域の各モニタ部52はそれぞれ異なる位置に形成され、既に形成されている下層の有機膜と重ならず、確実に形成した膜の厚さを測定することができる。なお、この膜厚測定用の開口部の位置は、互いに例えば10mm程度異なっていればよい。成膜室毎にこの膜厚測定用開口部の位置の異なるマスクを用いても良い。以上のような方法により、連続して積層する膜についてもそれぞれの厚さを確実に測定することができる。なお、モニタ領域は、基板14の全体(但し有機EL素子の非形成領域が望ましい)に分散させて設けてもよい。   In FIG. 5, the film thickness monitor unit 52 indicated by a broken line is used to measure the film thickness of different vapor deposition films using different vapor deposition sources in the case where multilayer vapor deposition is continuously performed without breaking the vacuum atmosphere. It can also be used. That is, if the masks 50 used at the time of film formation are different from each other in the positions of the film thickness measurement openings, the monitor portions 52 in the monitor area on the substrate are formed at different positions and are already formed. The thickness of the film formed reliably can be measured without overlapping with the lower organic film. In addition, the position of the opening for measuring the film thickness may be different from each other by about 10 mm, for example. You may use the mask from which the position of this opening part for film thickness measurement differs for every film-forming chamber. By the method as described above, it is possible to reliably measure the thicknesses of the films that are continuously laminated. The monitor region may be provided dispersed throughout the substrate 14 (however, the region where the organic EL element is not formed is desirable).

また、上述の実施形態では、るつぼ18として細長い形状のものを利用した。しかし、るつぼ18としては、点状のものを多数併設してもよい。るつぼ18をこのような面状のものとすれば、基板14およびるつぼ18のいずれも移動することなく、大面積の基板14に対する蒸着が行える。一方、このような大面積の蒸着を行うと、蒸着膜厚にバラツキが生じやすいが、本実施形態の膜厚検出を基板上の分散された複数の点で行い、るつぼ18の加熱状態を部分的に制御する構成をとれば、全体として均一な蒸着を行えるように制御することができる。なお、蒸着対象である基板14が小面積の場合には単一の点状のるつぼ18を採用しても良い。また、検出した膜厚が目標値に対して±50%程度のずれで
ある場合には、るつぼ18の加熱制御だけでは不十分なことがあり、基板14とるつぼ18との相対速度(例えばるつぼ18のスキャン速度)を変更することが望ましい。
In the above-described embodiment, the crucible 18 having an elongated shape is used. However, as the crucible 18, a large number of point-like ones may be provided. If the crucible 18 has such a planar shape, vapor deposition can be performed on the large-area substrate 14 without moving both the substrate 14 and the crucible 18. On the other hand, when such a large area of vapor deposition is performed, the film thickness of the vapor deposition tends to vary, but the film thickness detection of this embodiment is performed at a plurality of dispersed points on the substrate, and the heating state of the crucible 18 is partially If the configuration is controlled in a controlled manner, it can be controlled so that uniform vapor deposition can be performed as a whole. In addition, when the board | substrate 14 which is vapor deposition object is a small area, you may employ | adopt the single point-like crucible 18. FIG. Further, when the detected film thickness is about ± 50% of the target value, the heating control of the crucible 18 may not be sufficient, and the relative speed between the substrate 14 and the crucible 18 (for example, the crucible). It is desirable to change the 18 scan speed).

また、発光器26、受光器28に対応する窓等は加熱して高温にすることによって、蒸着物のこれらの窓に対する堆積を防止することができる。発光器26、受光器28を真空チャンバ10の内部に設ける場合においても、検出計の蒸着物質を堆積させたくない箇所について、高温として堆積を防止することが好適である。   Moreover, the windows corresponding to the light emitter 26 and the light receiver 28 are heated to a high temperature, thereby preventing deposition of the deposited material on these windows. Even when the light emitter 26 and the light receiver 28 are provided in the vacuum chamber 10, it is preferable to prevent the deposition of the vapor deposition material of the detector at a high temperature to prevent the deposition.

以上の説明では、図1に示すように下方にるつぼ18が配置され、マスク及び基板がその上方に面方向が水平方向に向いて配置された、横型の蒸着装置を例に挙げている。しかし、これに限らず、縦型の堆積装置(真空蒸着やスパッタ装置)においても、成膜室に発光器26からの光を透過させる窓と、発光器から射出され基板及び膜を透過する光を透過させ受光器に到達させるための窓を設け、吸収強度、又は蛍光量から膜厚を測定することでリアルタイムでの膜厚測定が可能となる。反射率を測定する場合には縦型の堆積装置の基板への材料層形成側に、図2に示すように発光器26,受光器28を設け、紫外線、可視光線等の光線を透過させるための窓を成膜室に設ける。   In the above description, as shown in FIG. 1, a horizontal vapor deposition apparatus in which a crucible 18 is disposed below, and a mask and a substrate are disposed above the surface in a horizontal direction is taken as an example. However, the present invention is not limited to this, and also in a vertical deposition apparatus (vacuum deposition or sputtering apparatus), a window that transmits light from the light emitter 26 to the film forming chamber, and light that is emitted from the light emitter and passes through the substrate and the film. The film thickness can be measured in real time by providing a window through which the light is transmitted and reaching the light receiver, and measuring the film thickness from the absorption intensity or the fluorescence amount. In the case of measuring the reflectance, a light emitter 26 and a light receiver 28 are provided on the material layer forming side of the substrate of the vertical deposition apparatus as shown in FIG. 2 to transmit light such as ultraviolet rays and visible rays. Are provided in the film formation chamber.

図6は、この縦型の堆積装置(成膜装置)600の構成の一例を示しており、原理的には、上述の図1の成膜装置と同様であり、基板64及び蒸着源の支持方向が垂直方向である点が異なっている。即ち、成膜室60内で、膜の形成される基板64は垂直方向に起立支持されている。また、例えば基板と同程度の幅のライン状の蒸着源70が垂直方向に支持されており、図6の例では、この蒸着源70と基板64との相対位置が変化するように、例えば蒸着源70が移動し、この蒸着源70からの材料が直接又はマスク66を介して基板64上に付着する構成である。マスク66には膜厚測定用の開口部74が有機EL素子の非形成領域に設けられており、蒸着源70からこの開口部を通過して基板64上に形成された膜に発光器76からの光を照射し、受光器78によって透過光や蛍光を測定することで、上記と同様に膜厚を正確かつ成膜後直ちに装置内で測定することができる。なお、図6では、重なっているが、蒸着源70が例えば待機位置にある際には、発光器76からの光は蒸着源70に遮られることなく、基板64、マスク66を通過し、受光器78に入射する構成となっている。ここで、縦型の堆積装置600において、基板64が起立支持されているため、発光器76からの光は成膜室60の側面から入射させることが好ましく、例えば光ファイバを利用して成膜室60の中に光を導入すればよい。   FIG. 6 shows an example of the configuration of the vertical deposition apparatus (film formation apparatus) 600, which is in principle the same as the film formation apparatus of FIG. 1 described above, and supports the substrate 64 and the evaporation source. The difference is that the direction is vertical. That is, the substrate 64 on which the film is formed is supported upright in the vertical direction in the film forming chamber 60. Further, for example, a linear vapor deposition source 70 having the same width as that of the substrate is supported in the vertical direction. In the example of FIG. 6, for example, vapor deposition is performed so that the relative position between the vapor deposition source 70 and the substrate 64 changes. The source 70 moves and the material from the vapor deposition source 70 is deposited on the substrate 64 directly or through a mask 66. The mask 66 is provided with an opening 74 for measuring the film thickness in a non-formation region of the organic EL element. A film formed on the substrate 64 from the vapor deposition source 70 through the opening is formed from the light emitter 76. By measuring the transmitted light and fluorescence with the light receiver 78, the film thickness can be measured in the apparatus accurately and immediately after the film formation as described above. Although overlapping in FIG. 6, when the vapor deposition source 70 is at a standby position, for example, the light from the light emitter 76 passes through the substrate 64 and the mask 66 without being blocked by the vapor deposition source 70 to receive light. In this configuration, the light enters the device 78. Here, in the vertical deposition apparatus 600, since the substrate 64 is supported upright, the light from the light emitter 76 is preferably incident from the side surface of the film formation chamber 60. For example, the film is formed using an optical fiber. Light may be introduced into the chamber 60.

また、図7に示すように、蒸着源の放出端としてシャワー状ノズル80を採用し、成膜順に、順次、キャリアガス中に成膜材料(例えば有機材料)源を蒸発させ、これを加熱ガスラインからバルブを介して選択的に加熱成膜室内に保持された基板14にノズル80から放出し積層する気相成長型成膜装置800においても上記膜厚測定方式を採用することができる。即ち、例えば基板14とノズル80の間に配置されるマスク90に膜厚測定用の開口部を設け、その位置に形成された膜の厚さを、発光器86と受光器88によってその吸収強度や蛍光強度を検出して精度良く測定することができる。またマスク90の膜厚測定用開口部84の位置は例えば蒸着源が変更される毎にシャッタなどで変更したり、異なるマスクを用いるなどすることで、連続成膜される薄膜の各膜厚をリアルタイムに測定することができる。   In addition, as shown in FIG. 7, a shower-like nozzle 80 is employed as the discharge end of the vapor deposition source, and the film-forming material (for example, organic material) source is sequentially evaporated in the carrier gas in the order of film formation. The above-described film thickness measurement method can also be adopted in a vapor deposition type film forming apparatus 800 that discharges from the nozzle 80 and stacks on the substrate 14 selectively held in the heated film forming chamber through a valve from the line. That is, for example, an opening for film thickness measurement is provided in a mask 90 disposed between the substrate 14 and the nozzle 80, and the thickness of the film formed at that position is determined by the light emitter 86 and the light receiver 88. And fluorescence intensity can be detected and measured accurately. Further, the position of the film thickness measurement opening 84 of the mask 90 is changed by, for example, a shutter every time the deposition source is changed, or by using a different mask, the thickness of each thin film to be continuously formed can be changed. It can be measured in real time.

蒸着を行う装置全体の構成を示す図である。It is a figure which shows the structure of the whole apparatus which performs vapor deposition. 反射強度を検出する場合の概略装置構成を示す図である。It is a figure which shows schematic apparatus structure in the case of detecting reflection intensity. 吸収強度による測定膜厚と触針式段差による実膜厚測定で得られた膜厚との関係を示す図である。It is a figure which shows the relationship between the film thickness obtained by the film thickness measured by absorption intensity, and the actual film thickness measurement by a stylus type level | step difference. 基板に併設された膜厚測定用のダミー基板の例を示す図である。It is a figure which shows the example of the dummy board | substrate for the film thickness measurement attached to the board | substrate. 基板のモニタ部を示す図である。It is a figure which shows the monitor part of a board | substrate. 縦型の蒸着装置に本実施形態の膜厚測定機構を適用した例である。This is an example in which the film thickness measurement mechanism of this embodiment is applied to a vertical vapor deposition apparatus. シャワー状ノズルを用いた成膜装置に本実施形態の膜厚測定機構を適用した例である。This is an example in which the film thickness measurement mechanism of this embodiment is applied to a film forming apparatus using a shower-like nozzle.

符号の説明Explanation of symbols

10 真空チャンバ、12 基板固定部、14,64 基板、15 ダミー基板、16 移動レール、18 るつぼ(蒸着源)、20 ヒータ、22 ケーブル、24 ヒータ電源部、26,76,86 発光器、28,78,88 受光器、30 制御装置、40 モータ、50,66,90 マスク、52 モニタ部(膜厚測定部)、60 (縦型)成膜室、70 (縦型)蒸着源、80 シャワー状ノズル、600 縦型成膜装置、800 気相成長型成膜装置。   10 Vacuum chamber, 12 Substrate fixing part, 14, 64 Substrate, 15 Dummy substrate, 16 Moving rail, 18 Crucible (deposition source), 20 Heater, 22 Cable, 24 Heater power supply, 26, 76, 86 Light emitter, 28, 78,88 light receiver, 30 control device, 40 motor, 50, 66, 90 mask, 52 monitor unit (film thickness measuring unit), 60 (vertical type) film forming chamber, 70 (vertical type) vapor deposition source, 80 shower type Nozzle, 600 Vertical film forming apparatus, 800 Vapor growth type film forming apparatus.

Claims (12)

基板上への材料層の堆積厚測定方法であって、
基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、
前記堆積厚モニタ領域に所定の光を照射し、この材料層からの射出光を検出し、
検出した光の強度に基づいて、基板上に形成された材料層の堆積厚さを測定することを特徴とする堆積厚測定方法。
A method for measuring a deposition thickness of a material layer on a substrate, comprising:
A material layer is formed by depositing a material on the deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and on the substrate,
Irradiate predetermined light to the deposition thickness monitor region, detect light emitted from this material layer,
A deposition thickness measurement method comprising measuring a deposition thickness of a material layer formed on a substrate based on detected light intensity.
基板上への材料層の形成方法であって、
基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、
前記堆積厚モニタ領域に所定の光を照射し、この材料層からの射出光を検出し、
検出した光の強度に基づいて、基板上に形成された材料層の堆積厚さを測定し、測定結果に応じて、堆積速度を制御することを特徴とする材料層の形成方法。
A method for forming a material layer on a substrate, comprising:
A material layer is formed by depositing a material on the deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and on the substrate,
Irradiate predetermined light to the deposition thickness monitor region, detect light emitted from this material layer,
A method for forming a material layer, comprising: measuring a deposition thickness of a material layer formed on a substrate based on detected light intensity; and controlling a deposition rate according to the measurement result.
請求項2に記載の材料層の形成方法において、
前記材料の堆積は、蒸着源から材料を加熱して蒸発させて基板上に堆積させる蒸着方法であり、前記材料の加熱状態又は蒸着源と基板との相対的な走査速度の少なくとも一方を制御することで堆積速度を制御することを特徴とする材料層の形成方法。
In the formation method of the material layer of Claim 2,
The deposition of the material is a vapor deposition method in which the material is heated and evaporated from a vapor deposition source to deposit on the substrate, and controls at least one of the heating state of the material or the relative scanning speed between the vapor deposition source and the substrate. A method for forming a material layer, characterized in that the deposition rate is controlled.
請求項3に記載の材料層の形成方法において、
前記堆積厚モニタ領域は、基板又は基板近傍において互いに離れて複数設けられ、それぞれの堆積厚モニタ領域における堆積厚に基づいて、前記蒸着源の加熱分布を制御することを特徴とする材料層の形成方法。
In the formation method of the material layer of Claim 3,
A plurality of the deposition thickness monitoring regions are provided apart from each other in the substrate or in the vicinity of the substrate, and the heating distribution of the vapor deposition source is controlled based on the deposition thickness in each deposition thickness monitoring region. Method.
請求項3に記載の材料層の形成方法において、
前記基板上に前記材料層を蒸着する蒸着室は、蒸着室外に配置された発光器から射出され前記堆積厚モニタ領域に到達する光の光路上及び前記材料層から射出され受光器に到達する光の光路上にそれぞれ該光を透過する窓部を備え、
前記材料層を蒸着する間、該窓部を加熱することを特徴とする材料層の形成方法。
In the formation method of the material layer of Claim 3,
The vapor deposition chamber for depositing the material layer on the substrate has a light beam emitted from a light emitter arranged outside the vapor deposition chamber and reaching the deposition thickness monitor region, and a light beam emitted from the material layer and reaching the light receiver. Each of which has a window portion for transmitting the light on the optical path,
The method of forming a material layer, wherein the window portion is heated while the material layer is deposited.
請求項1〜請求項5のいずれか1項に記載の方法において、
前記射出光に基づいて、吸光強度または蛍光強度または反射強度を検出することで材料層の堆積厚さを求めることを特徴とする堆積厚測定方法又は材料層の形成方法。
The method according to any one of claims 1 to 5, wherein
A deposition thickness measurement method or a material layer formation method, wherein the deposition thickness of the material layer is obtained by detecting the absorption intensity, fluorescence intensity, or reflection intensity based on the emitted light.
基板上への材料層の堆積厚を検出する堆積厚測定装置であって、
材料が堆積される基板または基板近傍の所定箇所に設けられた堆積厚モニタ領域に対し、所定の光を照射する光照射手段と、
光が照射された前記堆積厚モニタ領域からの射出光の光強度を検出する光検出手段と、 を有し、
前記光検出手段において検出した光強度に基づいて、基板上の材料層の堆積厚を測定することを特徴とする堆積厚測定装置。
A deposition thickness measuring device for detecting a deposition thickness of a material layer on a substrate,
A light irradiating means for irradiating predetermined light to a deposition thickness monitor region provided at a predetermined position in the vicinity of the substrate on which the material is deposited,
A light detecting means for detecting the light intensity of the emitted light from the deposited thickness monitor region irradiated with light, and
A deposition thickness measuring apparatus that measures the deposition thickness of a material layer on a substrate based on the light intensity detected by the light detection means.
基板上に材料層を堆積形成する形成装置において、
材料層が堆積される基板または基板近傍の所定箇所に設けられた堆積厚モニタ領域に対し、光を照射する光照射手段と、
光が照射される前記モニタ領域からの射出光の光強度を検出する光検出手段と、
前記光検出手段で検出された光強度に基づいて堆積厚を測定し、測定結果に基づいて、堆積速度を調整する堆積速度制御手段と、
を有することを特徴とする材料層の形成装置。
In a forming apparatus for depositing a material layer on a substrate,
A light irradiation means for irradiating light to a deposition thickness monitor region provided at a predetermined position near the substrate on which the material layer is deposited or the substrate;
Light detecting means for detecting the light intensity of the emitted light from the monitor region irradiated with light;
A deposition rate control unit that measures the deposition thickness based on the light intensity detected by the light detection unit, and adjusts the deposition rate based on the measurement result;
An apparatus for forming a material layer, comprising:
請求項8に記載の形成装置において、
前記材料の堆積は、蒸着源から材料を加熱して蒸発させて基板上に堆積させる蒸着方法であり、前記材料の加熱状態又は蒸着源と基板との相対的な走査速度の少なくとも一方を制御することで堆積速度を制御することを特徴とする材料層の形成装置。
The forming apparatus according to claim 8.
The deposition of the material is a vapor deposition method in which the material is heated and evaporated from a vapor deposition source to deposit on the substrate, and controls at least one of the heating state of the material or the relative scanning speed between the vapor deposition source and the substrate. The material layer forming apparatus characterized by controlling the deposition rate.
請求項9に記載の形成装置において、
前記堆積厚モニタ領域は、基板又は基板近傍において互いに離れて複数設けられ、それぞれの堆積厚モニタ領域における堆積厚に基づいて、前記蒸着源の加熱分布を制御することを特徴とする材料層の形成装置。
The forming apparatus according to claim 9, wherein
A plurality of the deposition thickness monitoring regions are provided apart from each other in the substrate or in the vicinity of the substrate, and the heating distribution of the vapor deposition source is controlled based on the deposition thickness in each deposition thickness monitoring region. apparatus.
請求項9に記載の形成装置において、
前記基板上に前記材料層を蒸着する蒸着室は、蒸着室外に配置された前記光照射器から射出され前記堆積厚モニタ領域に到達する光の光路上及び前記材料層から射出され前記光検出器に到達する光の光路上にそれぞれ該光を透過する窓部を備え、
さらに、前記窓部を加熱する加熱部を有することを特徴とする材料層の形成装置。
The forming apparatus according to claim 9, wherein
A vapor deposition chamber for vapor-depositing the material layer on the substrate is emitted from the light irradiator disposed outside the vapor deposition chamber and emitted from the material layer on the optical path of the light reaching the deposition thickness monitor region and the photodetector. Each having a window that transmits the light on the optical path of the light reaching
Furthermore, it has a heating part which heats the said window part, The formation apparatus of the material layer characterized by the above-mentioned.
基板上への材料層の堆積厚測定方法であって、
基板又は基板近傍の所定箇所に設けられた堆積厚モニタ領域上と、前記基板上とに材料を堆積して材料層を形成し、
前記堆積厚モニタ領域に紫外光又は200nm〜900nmの波長範囲の光線を照射し、この材料層からの射出光を検出し、
検出した光の強度に基づいて、基板上に形成された材料層の堆積厚さを測定することを特徴とする堆積厚測定方法。
A method for measuring a deposition thickness of a material layer on a substrate, comprising:
A material layer is formed by depositing a material on the deposition thickness monitor region provided at a predetermined location near the substrate or the substrate and on the substrate,
Irradiate the deposited thickness monitor region with ultraviolet light or light having a wavelength range of 200 nm to 900 nm, and detect light emitted from the material layer;
A deposition thickness measurement method comprising measuring a deposition thickness of a material layer formed on a substrate based on detected light intensity.
JP2005050124A 2004-03-03 2005-02-25 Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus Pending JP2005281859A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005050124A JP2005281859A (en) 2004-03-03 2005-02-25 Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
KR1020050017176A KR100716704B1 (en) 2004-03-03 2005-03-02 Measurement method of deposition thickness, formation method of material layer, deposition thickness measurement device and material layer formation device
TW094106193A TWI299758B (en) 2004-03-03 2005-03-02 Method and apparatus for measuring the thickness of deposited film, method and apparatus for forming material layer
CNB2005100511760A CN100487948C (en) 2004-03-03 2005-03-02 Method and apparatus for measuring thickness of deposited film and method and apparatus for forming material layer
US11/071,276 US20050244570A1 (en) 2004-03-03 2005-03-03 Deposition thickness measuring method, material layer forming method, deposition thickness measuring apparatus, and material layer forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004059236 2004-03-03
JP2005050124A JP2005281859A (en) 2004-03-03 2005-02-25 Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus

Publications (1)

Publication Number Publication Date
JP2005281859A true JP2005281859A (en) 2005-10-13

Family

ID=35180567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050124A Pending JP2005281859A (en) 2004-03-03 2005-02-25 Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus

Country Status (1)

Country Link
JP (1) JP2005281859A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063446A (en) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd Vacuum deposition apparatus of organic substance
JP2007273363A (en) * 2006-03-31 2007-10-18 Horiba Ltd Method and device for manufacturing organic el element
JP2009164020A (en) * 2008-01-09 2009-07-23 Sony Corp Manufacturing device of organic el element
JP2013137294A (en) * 2011-12-02 2013-07-11 Shimadzu Corp Device and method for preparing sample for maldi
KR101286523B1 (en) * 2006-12-29 2013-07-16 엘지디스플레이 주식회사 Apparatus and method for fabricating flat display
JP2015130263A (en) * 2014-01-07 2015-07-16 株式会社アルバック Organic el device manufacturing apparatus
JP2017510827A (en) * 2013-12-22 2017-04-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Deposition monitoring system and operation method thereof
WO2017117993A1 (en) * 2016-01-05 2017-07-13 京东方科技集团股份有限公司 Measurement tool and method for coating thickness on large-sized base plate
CN110938871A (en) * 2019-12-31 2020-03-31 江西中材新材料有限公司 Polycrystalline silicon ingot casting equipment and polycrystalline silicon ingot casting method
CN115896731A (en) * 2022-12-06 2023-04-04 等离子体装备科技(广州)有限公司 Preparation process and processing equipment for metal shell of electronic equipment

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063446A (en) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd Vacuum deposition apparatus of organic substance
JP2007273363A (en) * 2006-03-31 2007-10-18 Horiba Ltd Method and device for manufacturing organic el element
JP4511488B2 (en) * 2006-03-31 2010-07-28 株式会社堀場製作所 Organic EL device manufacturing equipment
KR101286523B1 (en) * 2006-12-29 2013-07-16 엘지디스플레이 주식회사 Apparatus and method for fabricating flat display
JP2009164020A (en) * 2008-01-09 2009-07-23 Sony Corp Manufacturing device of organic el element
JP2013137294A (en) * 2011-12-02 2013-07-11 Shimadzu Corp Device and method for preparing sample for maldi
US9334569B2 (en) 2011-12-02 2016-05-10 Shimadzu Corporation Sample preparation device to form a matrix film for matrix assisted laser desorption/ionization method
JP2017510827A (en) * 2013-12-22 2017-04-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Deposition monitoring system and operation method thereof
JP2015130263A (en) * 2014-01-07 2015-07-16 株式会社アルバック Organic el device manufacturing apparatus
WO2017117993A1 (en) * 2016-01-05 2017-07-13 京东方科技集团股份有限公司 Measurement tool and method for coating thickness on large-sized base plate
CN110938871A (en) * 2019-12-31 2020-03-31 江西中材新材料有限公司 Polycrystalline silicon ingot casting equipment and polycrystalline silicon ingot casting method
CN110938871B (en) * 2019-12-31 2024-05-31 江西中材新材料有限公司 Polycrystalline silicon ingot casting equipment and polycrystalline silicon ingot casting method
CN115896731A (en) * 2022-12-06 2023-04-04 等离子体装备科技(广州)有限公司 Preparation process and processing equipment for metal shell of electronic equipment
CN115896731B (en) * 2022-12-06 2024-01-12 等离子体装备科技(广州)有限公司 Preparation process and processing equipment for metal shell of electronic equipment

Similar Documents

Publication Publication Date Title
KR100716704B1 (en) Measurement method of deposition thickness, formation method of material layer, deposition thickness measurement device and material layer formation device
JP2005281859A (en) Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
JP2005281858A (en) Deposition thickness measurement method, material layer deposition method, deposition thickness measurement device, and material layer deposition apparatus
TWI410604B (en) Deposition apparatus and deposition method using the same
KR101167547B1 (en) Evaporation source, vapor deposition apparatus and method of film formation
KR101496667B1 (en) Vacuum vapor deposition system
JP6140681B2 (en) Evaporation system with measuring unit
US20060185588A1 (en) Vapor deposition apparatus measuring film thickness by irradiating light
JP2003007462A (en) Organic layer vacuum evaporation equipment
EP1862788A1 (en) Evaporator for organic material, coating installation, and method for use thereof
WO2012026483A1 (en) Vapor deposition processing device and vapor deposition processing method
US20080118630A1 (en) Apparatus and method for forming thin film
KR20080061666A (en) Apparatus and method for depositing organic film on substrate
CN1891848A (en) Optical coating device
TWI437111B (en) Evaporation apparatus, thin film depositing apparatus and method for feeding source material of the same
TW201103998A (en) Vacuum evaporation method and apparatus thereof
KR20110010572A (en) Vacuum evaporation coating method and device thereof
KR20120047810A (en) Vacuum vapor deposition system
US20060147613A1 (en) Deposition system and method for measuring deposition thickness in the deposition system
JP2003232737A (en) Apparatus and method for optically measuring polymer quantity printed on substrate using optical characteristics of polymer
JP7329005B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
KR20150114097A (en) Real Time Deposit Thickness Monitoring System and Monitoring Method Thereof
KR100684739B1 (en) Apparatus for sputtering organic matter
US20070284571A1 (en) Organic thin-film transistor, method of manufacturing same and equipment for manufacturing same
KR102547687B1 (en) Deposition rate monitoring apparatus and deposition rate monitoring method using the same