JP2005263828A - Long fiber-reinforced polyamide resin material - Google Patents

Long fiber-reinforced polyamide resin material Download PDF

Info

Publication number
JP2005263828A
JP2005263828A JP2004073894A JP2004073894A JP2005263828A JP 2005263828 A JP2005263828 A JP 2005263828A JP 2004073894 A JP2004073894 A JP 2004073894A JP 2004073894 A JP2004073894 A JP 2004073894A JP 2005263828 A JP2005263828 A JP 2005263828A
Authority
JP
Japan
Prior art keywords
polyamide resin
weight
fiber
long fiber
reinforced polyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004073894A
Other languages
Japanese (ja)
Other versions
JP2005263828A5 (en
Inventor
Yuji Tanaka
裕二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004073894A priority Critical patent/JP2005263828A/en
Publication of JP2005263828A publication Critical patent/JP2005263828A/en
Publication of JP2005263828A5 publication Critical patent/JP2005263828A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition having a high impact strength and rigidity, and a small shrinkage difference between the flowing direction of the resin and its right angle direction, excellent in bending and dimensional accuracy, and having a high grade appearance. <P>SOLUTION: This long fiber-reinforced polyamide resin material consists of (A) 105-200 pts.wt. polyamide resin consisting of (a) 100 pts.wt. hexamethyleneadipamide unit obtained from adipic acid and hexamethylenediamaine and (b) 5-100 pts.wt. hexamethyleneisophthalamide unit obtained from isophthalic acid and hexamethylenediamine, and (B) 5-400 pts.wt. reinforcing fiber oriented in length direction and having 3-30 mm fiber length. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

成形品のそりが少なく、優れた寸法精度、成形品外観、高い衝撃強度、剛性を有する長繊維強化ポリアミド樹脂組成物および成形体に関する。   The present invention relates to a long-fiber reinforced polyamide resin composition and a molded body having little warpage of the molded product and having excellent dimensional accuracy, molded product appearance, high impact strength, and rigidity.

ポリアミド樹脂は、機械的、熱的性質および耐油性等の耐薬品性に優れ、自動車や電気・電子製品等の部品に広く用いられている。またガラス繊維等で補強された強化ポリアミド樹脂は、機械的特性、耐熱性を大きく向上する。しかしながら繊維補強されたポリアミド樹脂は、射出成形等で成形した場合、溶融樹脂の流動に起因した繊維配向により、成形品内で収縮差を有し、そり変形が発生する。特に大型薄物の成形体においてそのそり変形は顕著であり、他部品との組み付けや、溶着等の後加工性にも影響する。このようなそりを改善する方法としては、L/Dが3以下程度の方向性を有さない雲母やタルクやガラスフレークなどの無機フィラーが用いられる(例えば、特許文献1参照)。
また、重量平均繊維長が3mm以上のガラス繊維とガラスフレークおよび熱可塑性エラストマー等を併用し、そりを低減しつつ衝撃強度を向上するものがある(例えば、特許文献2参照)。
Polyamide resins are excellent in chemical resistance such as mechanical and thermal properties and oil resistance, and are widely used in parts such as automobiles and electrical / electronic products. A reinforced polyamide resin reinforced with glass fiber or the like greatly improves mechanical properties and heat resistance. However, when the fiber reinforced polyamide resin is molded by injection molding or the like, the fiber orientation caused by the flow of the molten resin has a difference in shrinkage within the molded product and warpage deformation occurs. In particular, the warpage deformation is remarkable in a large-sized thin article, which also affects post-workability such as assembly with other parts and welding. As a method for improving such warpage, inorganic fillers such as mica, talc, and glass flakes having no directionality with L / D of about 3 or less are used (for example, see Patent Document 1).
In addition, there are glass fibers having a weight average fiber length of 3 mm or more, glass flakes, thermoplastic elastomers and the like, which improve impact strength while reducing warpage (see, for example, Patent Document 2).

しかしながら、アスペクト比L(繊維長)/D(繊維径)の小さな無機フィラーはそりを低減するものの十分な剛性、衝撃強度は得られない。また無機フィラーの種類の選定だけでは、そり変形は十分改善されない。
さらにガラス繊維等の無機フィラーを配合すると、成形品表面に無機物が露出し外観が悪化する.特にガラス等の長繊維無機物を用いた場合、剛性、衝撃は向上するものの、外観の悪化は顕著である。
このように、射出成形で成形された成形体で、そりが少なく優れた寸法精度、成形品外観、高い衝撃強度、剛性を同時に満足する樹脂組成物および成形体が得られていないのが実状である。
特開平6−279615号公報 特開平11−228842号公報
However, although an inorganic filler having a small aspect ratio L (fiber length) / D (fiber diameter) reduces warpage, sufficient rigidity and impact strength cannot be obtained. Moreover, warp deformation cannot be improved sufficiently only by selecting the kind of inorganic filler.
In addition, when an inorganic filler such as glass fiber is blended, the inorganic material is exposed on the surface of the molded product and the appearance deteriorates. In particular, when a long fiber inorganic material such as glass is used, although the rigidity and impact are improved, the deterioration of the appearance is remarkable.
Thus, it is the actual condition that a resin composition and a molded body satisfying both excellent dimensional accuracy, molded product appearance, high impact strength and rigidity are not obtained with a molded body molded by injection molding. is there.
JP-A-6-279615 JP-A-11-228842

本発明は、成形品のそりが少なく、優れた寸法精度、成形品外観、高い衝撃強度、剛性を有する長繊維強化ポリアミド樹脂組成物および成形体を提供することを目的とする。   An object of the present invention is to provide a long-fiber reinforced polyamide resin composition and a molded body having less warpage of a molded product and having excellent dimensional accuracy, molded product appearance, high impact strength, and rigidity.

本発明者は、上記課題を解決するため検討を重ねた結果、
1.アジピン酸およびヘキサメチレンジアミンから得られるヘキサメチレンアジパミド単位(a)100重量部とイソフタル酸およびヘキサメチレンジアミンから得られるヘキサメチレンイソフタラミド単位(b)5〜100重量部からなるポリアミド樹脂(A)105〜200重量部と、長さ方向に整列した繊維長3〜30mmの強化繊維(B)5〜400重量部からなることを特徴とする成形用長繊維強化ポリアミド樹脂材料、
2.(B)成分が、ガラス繊維もしくは炭素繊維である上記1に記載の成形用長繊維強化ポリアミド樹脂材料、
3.(A)成分100重量部に対し、非吸水性の熱可塑性樹脂(C)5〜100重量部を添加することを特徴とする上記1または2に記載の成形用長繊維強化ポリアミド樹脂材料、
As a result of repeated studies to solve the above problems, the present inventor,
1. A polyamide resin comprising 100 parts by weight of hexamethylene adipamide units (a) obtained from adipic acid and hexamethylenediamine and 5 to 100 parts by weight of hexamethyleneisophthalamide units (b) obtained from isophthalic acid and hexamethylenediamine ( A) Long fiber reinforced polyamide resin material for molding, characterized by comprising 105 to 200 parts by weight and reinforcing fibers (B) having a fiber length of 3 to 30 mm aligned in the length direction, and 5 to 400 parts by weight.
2. (B) The long fiber reinforced polyamide resin material for molding according to 1 above, wherein the component is glass fiber or carbon fiber,
3. (A) The long fiber reinforced polyamide resin material for molding according to 1 or 2 above, wherein 5 to 100 parts by weight of a non-water-absorbing thermoplastic resin (C) is added to 100 parts by weight of the component,

4.(C)成分が、ポリフェニレンエーテル樹脂であることを特徴とする上記1〜3のいずれかに記載の成形用長繊維強化ポリアミド樹脂材料、
5.上記1〜4のいずれかに記載の長繊維強化ポリアミド樹脂を射出成形した際に、(B)成分の50重量累積%の繊維長が0.4mm以上であることを特徴とする成形体、
6.上記1〜4のいずれかに記載の長繊維強化ポリアミド樹脂を射出成形した際に、成形品の流動方向の収縮率Mと直角方向の収縮率Tが(1)または(2)の関係を満たすことを特徴とする成形体、
(1)T−(M+T)/2の絶対値が0.15以下である。
(2)M−(M+T)/2の絶対値が0.15以下である。
である。
4). (C) Component is polyphenylene ether resin, The long-fiber-reinforced polyamide resin material for molding according to any one of the above 1 to 3,
5). When the long fiber reinforced polyamide resin according to any one of the above 1 to 4 is injection-molded, a molded product characterized in that the fiber length of 50% by weight of the component (B) is 0.4 mm or more,
6). When the long fiber reinforced polyamide resin according to any one of the above 1 to 4 is injection-molded, the shrinkage rate M in the flow direction of the molded product and the shrinkage rate T in the perpendicular direction satisfy the relationship (1) or (2). A molded body characterized by
(1) The absolute value of T− (M + T) / 2 is 0.15 or less.
(2) The absolute value of M− (M + T) / 2 is 0.15 or less.
It is.

本発明の樹脂組成物を用い射出成形された成形体は、高い衝撃強度、剛性を有し、樹脂の流動方向と直角方向の収縮差が小さくそりを低減し、寸法精度に優れ、かつ高外観の成形体が得られるという効果を有する。   The molded article injection-molded using the resin composition of the present invention has high impact strength and rigidity, has a small shrinkage difference in the direction perpendicular to the resin flow direction, reduces warpage, has excellent dimensional accuracy, and has a high appearance. This has the effect that a molded product of is obtained.

本発明に用いるポリアミド樹脂(A)は、アジピン酸およびヘキサメチレンジアミンから得られるヘキサメチレンアジパミド単位(以下N66と称す)とイソフタル酸およびヘキサメチレンジアミンから得られるヘキサメチレンイソフタラミド単位(以下N6Iと称す)とから構成されている。各成分の構成比は、N66が100重量部に対し、N6Iが5〜100重量部である。
N66に該範囲内でN6I成分を共重合させることにより結晶化温度、結晶化度を低下させると考えられ、強化繊維同士が繊維長さ方向に整列した長繊維樹脂ペレットの製造時、強化繊維束への樹脂含浸性が改善し、かつ射出成形等により成形体を製造する際の分散性に優れると考えられる。この際ポリアミド樹脂(A)の結晶化温度は210℃以下であることが好ましい。これにより分散不良の繊維束による外観不良を解消する。また金型の転写性すなわち該繊維の成形体表面への露出を減少、外観を改善する。
The polyamide resin (A) used in the present invention is composed of a hexamethylene adipamide unit (hereinafter referred to as N66) obtained from adipic acid and hexamethylene diamine, and a hexamethylene isophthalamide unit (hereinafter referred to as N66) obtained from isophthalic acid and hexamethylene diamine. N6I). The composition ratio of each component is 5 to 100 parts by weight of N6I with respect to 100 parts by weight of N66.
It is considered that the N6I component is copolymerized with N66 within the above range to lower the crystallization temperature and the crystallinity, and during the production of long fiber resin pellets in which reinforcing fibers are aligned in the fiber length direction, It is considered that the resin impregnation property is improved and the dispersibility when producing a molded article by injection molding or the like is excellent. At this time, the crystallization temperature of the polyamide resin (A) is preferably 210 ° C. or lower. This eliminates poor appearance due to poorly dispersed fiber bundles. Further, the transferability of the mold, that is, the exposure of the fiber to the surface of the molded body is reduced, and the appearance is improved.

本発明におけるポリアミド樹脂(A)の結晶化温度は、JIS K7121に準じ、DSCを用いて、融点+20℃の温度で5分保持した後、20℃/分の降温速度で測定した結晶化ピーク温度をいう。
また該範囲内でN6I成分を共重合させることにより、成形品において樹脂の流動方向と直角方向の収縮率差が低減され、そり変形を低減する。これはN6I成分によって結晶化が阻害され、体積収縮量が減少するためと考えられる。該樹脂の溶融状態から固化にいたる過程で
本発明に用いるポリアミド樹脂(A)は、アジピン酸、イソフタル酸とヘキサメチレンジアミンの塩から重縮合反応することによって得られ、その反応方法としては公知の溶液重合、固相重合、塊状重合、溶液重合またはこれらを組み合わせた方法等で良い。またアジピン酸クロライド、イソフタル酸クロライドとヘキサメチレンジアミンから溶液重合、界面重合等によっても得ることができる。
The crystallization temperature of the polyamide resin (A) in the present invention is measured according to JIS K7121, using a DSC for 5 minutes at a temperature of melting point + 20 ° C., and then measured at a temperature decrease rate of 20 ° C./min. Say.
Further, by copolymerizing the N6I component within the range, the difference in shrinkage rate in the direction perpendicular to the flow direction of the resin in the molded product is reduced, and warpage deformation is reduced. This is presumably because crystallization is inhibited by the N6I component and the volume shrinkage is reduced. The polyamide resin (A) used in the present invention in the process from the molten state to the solidification of the resin is obtained by polycondensation reaction from a salt of adipic acid, isophthalic acid and hexamethylenediamine. Solution polymerization, solid phase polymerization, bulk polymerization, solution polymerization, or a combination thereof may be used. It can also be obtained from adipic acid chloride, isophthalic acid chloride and hexamethylenediamine by solution polymerization, interfacial polymerization or the like.

また本発明のポリアミド樹脂(A)は、本発明の目的を損なわない範囲で、他のポリアミドとブレンドもしくは共重合することができる。他のポリアミドとしては、例えばポリアミド6、66、46、612、610、MXD6、6T等およびこれらの共重合体等が挙げられる。
さらに本発明の樹脂材料を用いて射出成形した成形品において、該成形品中の成分(B)の50重量累積%における繊維長Lが0.4mm以上に保つことにより衝撃強度の改善が見られる。通常、射出成形の工程において樹脂のせん断応力を受け強化繊維は折損するが、該繊維長範囲であれば、通常の短繊維強化ポリアミド樹脂にくらべ衝撃値が改善される。
Further, the polyamide resin (A) of the present invention can be blended or copolymerized with other polyamides within a range not to impair the object of the present invention. Examples of other polyamides include polyamide 6, 66, 46, 612, 610, MXD6, 6T, and copolymers thereof.
Further, in a molded product injection-molded using the resin material of the present invention, the impact strength is improved by keeping the fiber length L at 50% by weight of the component (B) in the molded product at 0.4 mm or more. . Usually, in the injection molding process, the reinforcing fiber breaks due to the shear stress of the resin. However, if the fiber length is within the range, the impact value is improved as compared with a normal short fiber reinforced polyamide resin.

また、該成形品の流動方向の収縮率Mと直角方向の収縮率Tが(1)または(2)の関係を満たすことにより、そりの低減が可能である。
(1)T−(M+T)/2の絶対値が0.15以下である。
(2)M−(M+T)/2の絶対値が0.15以下である。
収縮率は、該成形品の流動方向の収縮率Mと直角方向の収縮率Tを上記(1)または(2)により算定する。
またポリアミド樹脂(A)100重量部に対し、非吸水性の熱可塑性樹脂(C)5〜100重量部を添加もしくはブレンドすることにより吸水による寸法変化および剛性低下を抑制することができる。非吸水性の熱可塑性樹脂(C)としてはポリプロピレン、ポリフェニレンエーテル等が挙げることができ、特に制限はないが、耐熱性を重視する場合はガラス転移温度Tgが高いポリフェニレンエーテル樹脂が好ましい。
ポリフェニレンエーテル樹脂(C)は、下記一般式
Further, when the shrinkage rate M in the flow direction and the shrinkage rate T in the perpendicular direction satisfy the relationship (1) or (2), the warpage can be reduced.
(1) The absolute value of T− (M + T) / 2 is 0.15 or less.
(2) The absolute value of M− (M + T) / 2 is 0.15 or less.
For the shrinkage, the shrinkage rate M in the flow direction and the shrinkage rate T in the direction perpendicular to the flow direction of the molded product are calculated according to the above (1) or (2).
Further, by adding or blending 5 to 100 parts by weight of the non-water-absorbing thermoplastic resin (C) with respect to 100 parts by weight of the polyamide resin (A), it is possible to suppress dimensional change and rigidity reduction due to water absorption. Examples of the non-water-absorbing thermoplastic resin (C) include polypropylene and polyphenylene ether, and are not particularly limited. However, when heat resistance is important, a polyphenylene ether resin having a high glass transition temperature Tg is preferable.
The polyphenylene ether resin (C) has the following general formula:

Figure 2005263828
Figure 2005263828

(R1、R2、R3、R4、R5、R6は同一または異なるtert−ブチル基を除く炭素数1〜4のアルキル基、アリール基、ハロゲン、水素等の一価の残基であり、R、Rは同時に水素ではない。)
を繰り返し単位とし構成単位が(1)からなる単独重合体または(1)および(2)からなる共重合体などである。
(R1, R2, R3, R4, R5, and R6 are monovalent residues such as an alkyl group having 1 to 4 carbon atoms other than the same or different tert-butyl group, an aryl group, halogen, and hydrogen, and R 5 , R 6 is not simultaneously hydrogen.)
As a repeating unit and a structural unit as a homopolymer consisting of (1) or a copolymer consisting of (1) and (2).

ポリフェニレンエーテルの単独重合体の代表例としては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−nプロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジ−n−プロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−nブチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−イソプロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−クロル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−ヒドロキシエチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−クロロエチル−1,4−フェニレン)エーテル等のホモポリマーが挙げられる。
ポリフェニレンエーテル共重合体は、2,6−ジメチルフェノールとオルトクレゾールまたは下記一般式
Representative examples of polyphenylene ether homopolymers include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2, 6-diethyl-1,4-phenylene) ether, poly (2-ethyl-6-npropyl-1,4-phenylene) ether, poly (2,6-di-n-propyl-1,4-phenylene) ether Poly (2-methyl-6-nbutyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-chloro-1, 4-phenylene) ether, poly (2-methyl-6-hydroxyethyl-1,4-phenylene) ether, poly (2-ethyl-6-chloroethyl-1,4-phenylene) ether Include homopolymers and the like.
The polyphenylene ether copolymer is 2,6-dimethylphenol and ortho-cresol or the following general formula

Figure 2005263828
Figure 2005263828

(R3、R4、R5、R6はtert−ブチル基を除く炭素数1〜4のアルキル基、アリール基、ハロゲン、水素等の一価の残基であり、R、Rは同時に水素ではない。)で表される2,3,6−トリメチルフェノール等のアルキル置換フェノールと共重合して得られるポリフェニレンエーテル構造を主体としてなるポリフェニレンエーテル共重合体が挙げられる。
また該ポリフェニレンエーテル樹脂(C)はクロロホルム中で測定した25℃の固有粘度が0.2〜0.8dl/gのものが用いることができるが、好ましくは0.2〜0.7dl/gであり、さらに好ましくは0.2〜0.6dl/gである。
(R3, R4, R5, R6 is an alkyl group having 1 to 4 carbon atoms excluding tert- butyl group, an aryl group, a halogen, residues of monohydric such as hydrogen, R 5, R 6 are not simultaneously hydrogen And polyphenylene ether copolymers mainly composed of a polyphenylene ether structure obtained by copolymerization with an alkyl-substituted phenol such as 2,3,6-trimethylphenol.
The polyphenylene ether resin (C) may have an intrinsic viscosity at 25 ° C. measured in chloroform of 0.2 to 0.8 dl / g, preferably 0.2 to 0.7 dl / g. Yes, more preferably 0.2 to 0.6 dl / g.

これらポリアミド樹脂(A)以外の樹脂とアロイ化もしくはブレンドする場合は、ポリアミド樹脂(A)との相溶化の為に、α、β不飽和カルボン酸およびその誘導体、ビニルシラン化合物、飽和脂肪族ポリカルボン酸およびその誘導体等を添加もしくはあらかじめ該非吸水性樹脂を変性したものを用いることが好ましい。該化合物の代表例としては、マレイン酸、無水マレイン酸、マレイン酸イミド、ビニルメトキシシラン、γ−アミノプロピルメトキシシラン、クエン酸、リンゴ酸等がある。
該長繊維強化樹脂ペレットは強化繊維同士が繊維長さ方向に整列した強化繊維束中に前記ポリアミド樹脂を含浸したもので、ペレットの製造方法は特に限定されない。連続繊維束中に前記ポリアミド樹脂を含浸する方法としては、たとえば強化繊維束を帯電させて、樹脂粉末を付着させた後、加熱溶融含浸させる方法や加熱溶融した樹脂を、バー、ロール、ダイス上で強化繊維束を開繊させながら含侵させる引き抜き法等がある。こうして得られたペレットは、強化繊維がペレットと実質的に同一長さで繊維長方向に整列した状態で存在する。
When alloying or blending with resins other than these polyamide resins (A), α, β unsaturated carboxylic acids and their derivatives, vinyl silane compounds, saturated aliphatic polycarboxylic acids are used for compatibilization with the polyamide resin (A). It is preferable to use an acid or a derivative thereof or the like, or a product obtained by modifying the non-water absorbent resin in advance. Representative examples of the compound include maleic acid, maleic anhydride, maleic imide, vinyl methoxysilane, γ-aminopropylmethoxysilane, citric acid, malic acid and the like.
The long fiber reinforced resin pellet is obtained by impregnating the polyamide resin in a reinforcing fiber bundle in which reinforcing fibers are aligned in the fiber length direction, and the manufacturing method of the pellet is not particularly limited. Examples of the method for impregnating the polyamide resin into the continuous fiber bundle include, for example, a method in which a reinforcing fiber bundle is charged and a resin powder is attached, and then heat melt impregnation or a heat melted resin is applied on a bar, roll, or die. There is a drawing method in which the reinforcing fiber bundle is impregnated while being opened. The pellets thus obtained exist in a state where the reinforcing fibers are substantially the same length as the pellets and are aligned in the fiber length direction.

該ペレットの繊維長は3〜30mm好ましくは5〜15mmである。射出成形機に該長繊維強化ペレットを単独で供給する場合、また他の樹脂ペレットとブレンドして供給する際、樹脂投入口でブリッジを起こさず、かつ長繊維ペレットと通常ペレットとの分級が発生せず、安定して計量、可塑化が行われ、かつ50重量累積%における繊維長Lが0.4mm以上のものが以上を確保できる。
強化繊維の含有量に特に制限はないが5〜70重量%、好ましくは5〜60重量%である。引き抜き法によるペレット製造時の強化繊維束への樹脂含浸性および射出成形時の強化繊維の成形品中での分散性から、さらに好ましくは30〜50重量%である。
The fiber length of the pellet is 3 to 30 mm, preferably 5 to 15 mm. When the long fiber reinforced pellets are supplied to the injection molding machine alone or when blended with other resin pellets, no bridging occurs at the resin inlet, and the classification of long fiber pellets and normal pellets occurs. Therefore, measurement and plasticization can be performed stably, and the fiber length L at 50% by weight cumulative% can be ensured to be 0.4 mm or more.
Although there is no restriction | limiting in particular in content of a reinforced fiber, 5-70 weight%, Preferably it is 5-60 weight%. From the viewpoint of resin impregnation into the reinforcing fiber bundle during pellet production by the drawing method and dispersibility of the reinforcing fiber during injection molding in the molded product, it is more preferably 30 to 50% by weight.

本発明に用いる強化繊維としては、特に制限はないが、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維等が用いることができるが、比強度、剛性向上の観点からガラス繊維、炭素繊維が好ましい。特に炭素繊維はガラス繊維にくらべ一般的に繊維径が細く、比重が小さいため、繊維本数が増大するため樹脂の含浸性、分散性が極めて悪く、外観、特に分散不良の繊維束や表面の平坦性に劣る傾向にある。しかしながら、本願ポリアミド(A)成分を用いることにより該不良が解消され特に有効である。
強化繊維の表面はカップリング剤で処理されたものが一般的に用いることができる。カップリング剤としては、アミノシラン、エポキシシラン、アミドシラン、アジドシラン、アクリルシラン等のシランカップリング剤、チタネート系カップリング剤等がある。また強化繊維はカップリング剤以外に、界面活性剤、帯電防止剤等で表面処理されていても良い。
The reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, metal fiber, aromatic polyamide fiber, and the like can be used. From the viewpoint of improving specific strength and rigidity, glass fiber and carbon fiber are preferable. preferable. In particular, carbon fibers are generally smaller in fiber diameter and smaller in specific gravity than glass fibers, so the number of fibers increases, so the impregnation and dispersibility of the resin are extremely poor, and the appearance, especially poorly dispersed fiber bundles and flat surfaces It tends to be inferior. However, the use of the polyamide (A) component of the present application is particularly effective because the defect is eliminated.
The surface of the reinforcing fiber that has been treated with a coupling agent can be generally used. Examples of the coupling agent include silane coupling agents such as amino silane, epoxy silane, amido silane, azido silane, and acrylic silane, titanate coupling agents, and the like. In addition to the coupling agent, the reinforcing fiber may be surface-treated with a surfactant, an antistatic agent, or the like.

本発明における樹脂組成物には、一般に熱可塑性樹脂に添加される公知の物質、たとえば酸化防止剤、耐熱安定剤、中和剤、紫外線吸収剤等の安定剤、気泡防止剤、難燃剤、難燃助剤、分散剤、帯電防止剤、滑剤、染料、顔料等の着色剤、可塑剤等を配合することが可能である。またガラスフレーク、マイカ、ガラス粉、ガラスビーズ、タルク、アルミナ、カーボンブラック、ワラストナイト等の板状、粉粒状の無機化合物あるいはウイスカー等を併用しても良い。
また静電塗装される部品では導電性カーボンを添加することができる。導電性カーボンとしえては、導電性カーボンブラック、微細な繊維状カーボンが挙げられる。
In the resin composition of the present invention, known substances generally added to thermoplastic resins, for example, stabilizers such as antioxidants, heat stabilizers, neutralizers, UV absorbers, bubble inhibitors, flame retardants, difficult It is possible to add a colorant such as a combustion aid, a dispersant, an antistatic agent, a lubricant, a dye, and a pigment, a plasticizer, and the like. Further, plate-like or powdery inorganic compounds such as glass flakes, mica, glass powder, glass beads, talc, alumina, carbon black, wollastonite, whiskers, etc. may be used in combination.
In parts to be electrostatically coated, conductive carbon can be added. Examples of the conductive carbon include conductive carbon black and fine fibrous carbon.

導電性カーボンブラックとしてはアセチレンブラック、ファーネスブラック等が挙げられる。具体的にはライオン社製「ケッチェンブラックEC」、キャボット社製「バルカンXC−72」「バルカンSC」等があり、一次粒子径が1μm以下、好ましくは0.1μm以下で、凝集体を形成し導電性を発現するものである。
また、微細な繊維状カーボンとしては一般的にカーボンナノチューブと言われる中空炭素フィブリル等が挙げられ、平均直径約2〜50nm、平均長さ1〜10μmである。具体的にはハイペリオン・カタリシス社製「ハイペリオン」等がある。いずれも市販のものが使用できる。
Examples of the conductive carbon black include acetylene black and furnace black. Specifically, there are “Ketjen Black EC” manufactured by Lion, “Vulcan XC-72”, “Vulcan SC” manufactured by Cabot, etc., and the primary particle diameter is 1 μm or less, preferably 0.1 μm or less to form an aggregate. It exhibits electrical conductivity.
Further, examples of the fine fibrous carbon include hollow carbon fibrils generally referred to as carbon nanotubes, and has an average diameter of about 2 to 50 nm and an average length of 1 to 10 μm. Specific examples include “Hyperion” manufactured by Hyperion Catalysis. Any commercially available products can be used.

導電性カーボンの添加量は、静電塗装される成形体において、その体積固有抵抗値が10Ω・cm以下、好ましくは体積固有抵抗値が10Ω・cm以下、より好ましくは10Ω・cm以下になるように添加すると良い。
またガラス繊維、炭素繊維、芳香族ポリアミド繊維等で作られた本発明ペレットを剛性、導電性等のバランスをとるため等、必要に応じ繊維含有量の調整、ブレンドして成形することが可能である。
The amount of conductive carbon added to the molded article to be electrostatically coated has a volume resistivity value of 10 7 Ω · cm or less, preferably a volume resistivity value of 10 5 Ω · cm or less, more preferably 10 4 Ω. -It is good to add so that it may become cm or less.
The pellets of the present invention made of glass fiber, carbon fiber, aromatic polyamide fiber, etc. can be molded by adjusting and blending the fiber content as necessary to balance rigidity, conductivity, etc. is there.

本発明を実施例に基づいて説明する。
(長繊維強化ペレットの製造)
引き抜き成形用含浸ダイを用い、連続するガラス繊維束もしくは炭素繊維束に樹脂を含浸し長繊維強化樹脂ペレットを作製した。
用いたガラスの繊維径は16μm、ペレット長さは7mmにカットした。
The present invention will be described based on examples.
(Manufacture of long fiber reinforced pellets)
A continuous fiberglass bundle or carbon fiber bundle was impregnated with resin using a pultrusion impregnation die to produce long fiber reinforced resin pellets.
The glass diameter of the glass used was 16 μm, and the pellet length was cut to 7 mm.

(そりの評価)
100mm×100mm×2mm、3×2mmのサイドゲート金型により成形された平板を用いた。射出成形機は住友重機製SG100を用い、
・ シリンダ設定温度300℃/金型設定温度80℃
・ 充填時間0.5sec
・ 保圧15MPa×保圧時間15sec
・ 冷却時間25sec
である。
成形サイクル45secで成形した。成形した平板は23℃×50%相対湿度雰囲気中に40時間放置後、定磐上に置き4隅を押圧し、金型固定側および稼動側をそれぞれ下にし、押圧部と対角線上の反対側の高さを測定した。前記計8箇所の測定数値うちの最大高さを求め、計5枚を測定し、その平均値を用いた。
(Evaluation of sled)
A flat plate formed by a side gate mold of 100 mm × 100 mm × 2 mm and 3 × 2 mm was used. The injection molding machine uses Sumitomo Heavy Industries SG100,
・ Cylinder set temperature 300 ℃ / Mold set temperature 80 ℃
・ Filling time 0.5sec
・ Holding pressure 15MPa x Holding time 15sec
・ Cooling time 25sec
It is.
Molding was performed at a molding cycle of 45 sec. The molded flat plate is left in a 23 ° C x 50% relative humidity atmosphere for 40 hours, then placed on a fixed plate and pressed at its four corners, with the mold fixing side and operating side down, and the opposite side of the pressing part and diagonal line The height of was measured. The maximum height among the measured values at the 8 locations in total was obtained, and a total of 5 sheets were measured, and the average value was used.

(収縮率の測定)
前記そり変形量を測定した平板のほぼ中央部の流動方向、直角方向の長さをノギスで測定した。
(機械的物性)
ISOダンベルを成形し、曲げ弾性率、曲げ強度、シャルピー衝撃値を求めた。
(繊維長の測定)
前記平板の中央部を1cm四方で切り出し、電気炉で650℃×2時間焼成後、残渣をイソプロピルアルコール中に分散、プレパラート上にできるだけ繊維凝集のないように広げ、その後イソプロピルアルコールを乾燥、光学顕微鏡でサンプル数が少なくとも500本以上になるように複数枚を写真撮影後、該写真を画像解析装置に取り込み繊維長を測定した。
(外観)
外観は目視で繊維束の凝集の有無、平坦性(表面のうねり)を判断した。
表面の平坦性の基準としてはレオナ14G50(ポリアミド66短繊維GF50重量%)を○とし、これ以上を◎、以下を×とした。(目視判定)
(Measurement of shrinkage rate)
The flow direction at the substantially central portion of the flat plate where the amount of warpage deformation was measured, and the length in the perpendicular direction were measured with calipers.
(Mechanical properties)
An ISO dumbbell was molded, and bending elastic modulus, bending strength, and Charpy impact value were determined.
(Measurement of fiber length)
The central part of the flat plate is cut out in a 1 cm square, baked in an electric furnace at 650 ° C. for 2 hours, the residue is dispersed in isopropyl alcohol, spread on a preparation so as not to aggregate fibers, and then the isopropyl alcohol is dried, and an optical microscope Then, a plurality of photographs were taken so that the number of samples was at least 500 or more, and the photographs were taken into an image analyzer and the fiber length was measured.
(appearance)
The appearance was determined by visual observation of the presence or absence of aggregation of fiber bundles and flatness (surface waviness).
As a standard for the surface flatness, Leona 14G50 (polyamide 66 short fiber GF 50% by weight) was evaluated as “◯”, more than “◎”, and the following as “×”. (Visual judgment)

[実施例1]
ポリアミド樹脂にレオナ8002(N66成分 73重量%、N6I成分 27重量%)の共重合体を用い、ガラス繊維が50重量%になるように長繊維強化樹脂ペレットを作製した。該組成物を射出成形により物性測定用のISOダンベル、そり変形および収縮率測定用の平板を得た。
[Example 1]
A long fiber reinforced resin pellet was prepared using a copolymer of Leona 8002 (73% by weight of N66 component, 27% by weight of N6I component) as a polyamide resin so that the glass fiber was 50% by weight. The composition was subjected to injection molding to obtain an ISO dumbbell for measuring physical properties and a flat plate for measuring warpage and shrinkage.

[実施例2]
ポリアミド樹脂にレオナ8002(N66成分 73重量%、N6I成分 27重量%)の共重合体を用い、炭素繊維が25重量%になるように長繊維強化樹脂ペレットを作製した。該組成物を射出成形により物性測定用のISOダンベル、そり変形および収縮率測定用の平板を得た。
[Example 2]
Using a copolymer of Leona 8002 (73% by weight of N66 component, 27% by weight of N6I component) as a polyamide resin, long fiber reinforced resin pellets were prepared so that the carbon fiber was 25% by weight. The composition was subjected to injection molding to obtain an ISO dumbbell for measuring physical properties and a flat plate for measuring warpage and shrinkage.

[実施例3]
実施例1で用いた長繊維ペレット50重量%と比較例2で用いた短繊維ペレット50重量%をペレットブレンドし、実施例1同様にISOダンベル、平板を得た。
[Example 3]
50% by weight of the long fiber pellets used in Example 1 and 50% by weight of the short fiber pellets used in Comparative Example 2 were pellet-blended, and ISO dumbbells and flat plates were obtained in the same manner as in Example 1.

[比較例1]
ポリアミド樹脂としてN66(旭化成 レオナ1300)を用いた他は実施例1と同様に評価した。
[Comparative Example 1]
Evaluation was performed in the same manner as in Example 1 except that N66 (Asahi Kasei Leona 1300) was used as the polyamide resin.

[比較例2]
ポリアミド樹脂としてN66(旭化成 レオナ1300)を用いた他は実施例2と同様に評価した。
[Comparative Example 2]
Evaluation was performed in the same manner as in Example 2 except that N66 (Asahi Kasei Leona 1300) was used as the polyamide resin.

[比較例3]
ポリアミド樹脂がN66で短繊維のガラス繊維50重量%で補強したレオナ14G50を評価した。
[Comparative Example 3]
Leona 14G50 reinforced with N66 polyamide resin and 50% by weight of short glass fiber was evaluated.

実施例1および比較例1より、本願発明のポリアミド樹脂(A)を用いることにより、実施例1は流動方向、直角方向の収縮差が減少しており、そり変形も減少することがわかる。さらに、実施例1では繊維の凝集が見られず、表面の平坦性に優れる成形品が得られた。
また、実施例1と比較例3との比較において、実施例1の衝撃強度が向上することがわかる。
さらにまた、実施例2および比較例2より、炭素繊維を用いた場合、本願発明のポリアミド樹脂(A)を用いることにより、特に平坦性に優れた成形品が得られた。
また、実施例3から短繊維を含む樹脂ペレットをブレンドしても、本願発明の範囲内において、そり、外観が改善することがわかる。
From Example 1 and Comparative Example 1, it can be seen that by using the polyamide resin (A) of the present invention, the shrinkage difference in the flow direction and the perpendicular direction is reduced in Example 1, and the warpage deformation is also reduced. Further, in Example 1, no agglomeration of fibers was observed, and a molded product having excellent surface flatness was obtained.
In addition, in comparison between Example 1 and Comparative Example 3, it can be seen that the impact strength of Example 1 is improved.
Furthermore, from Example 2 and Comparative Example 2, when carbon fiber was used, a molded article particularly excellent in flatness was obtained by using the polyamide resin (A) of the present invention.
Moreover, even if the resin pellet containing a short fiber is blended from Example 3, it turns out that a curvature and an external appearance improve within the scope of the present invention.

Figure 2005263828
Figure 2005263828

本発明の組成物及び成形体は、例えば自動車用途では溶着等で後加工される自動車用吸気管や、エンジンオイルシールのため平面性を要求されるシリンダヘッドカバー、周辺部品との勘合および剛性が必要なシフトレバーブラケット、また外装部品として寸法精度、表面の平坦性が要求される外板や外板を支える裏面基材(インナーパネル)、ミラーシェル等が挙げられる。また家電・電気機器、OA機器用途ではハウジング、ケーシング、カバー、トレイ等の分野で好適に利用できる。   The composition and molded body of the present invention require fitting and rigidity with an automotive intake pipe that is post-processed by welding or the like in automobile applications, a cylinder head cover that requires flatness for engine oil sealing, and peripheral parts. Shift lever brackets, exterior plates that require dimensional accuracy and surface flatness as exterior parts, back substrates (inner panels) that support the exterior plates, mirror shells, and the like. Moreover, it can utilize suitably in field | areas, such as a housing, a casing, a cover, a tray, in household appliances / electric equipment and OA equipment use.

Claims (6)

アジピン酸およびヘキサメチレンジアミンから得られるヘキサメチレンアジパミド単位(a)100重量部とイソフタル酸およびヘキサメチレンジアミンから得られるヘキサメチレンイソフタラミド単位(b)5〜100重量部からなるポリアミド樹脂(A)105〜200重量部と、長さ方向に整列した繊維長3〜30mmの強化繊維(B)5〜400重量部からなることを特徴とする成形用長繊維強化ポリアミド樹脂材料。   A polyamide resin comprising 100 parts by weight of hexamethylene adipamide units (a) obtained from adipic acid and hexamethylenediamine and 5 to 100 parts by weight of hexamethyleneisophthalamide units (b) obtained from isophthalic acid and hexamethylenediamine ( A) A long fiber reinforced polyamide resin material for molding, comprising 105 to 200 parts by weight and reinforcing fibers (B) 5 to 400 parts by weight of fiber lengths 3 to 30 mm aligned in the length direction. (B)成分が、ガラス繊維もしくは炭素繊維である請求項1に記載の成形用長繊維強化ポリアミド樹脂材料。   The long fiber reinforced polyamide resin material for molding according to claim 1, wherein the component (B) is glass fiber or carbon fiber. (A)成分100重量部に対し、非吸水性の熱可塑性樹脂(C)5〜100重量部を添加することを特徴とする請求項1または2に記載の成形用長繊維強化ポリアミド樹脂材料。   The long fiber reinforced polyamide resin material for molding according to claim 1 or 2, wherein 5 to 100 parts by weight of a non-water-absorbing thermoplastic resin (C) is added to 100 parts by weight of the component (A). (C)成分が、ポリフェニレンエーテル樹脂であることを特徴とする請求項1〜3のいずれかに記載の成形用長繊維強化ポリアミド樹脂材料。   The long fiber reinforced polyamide resin material for molding according to any one of claims 1 to 3, wherein the component (C) is a polyphenylene ether resin. 請求項1〜4のいずれかに記載の長繊維強化ポリアミド樹脂を射出成形した際に、(B)成分の50重量累積%の繊維長が0.4mm以上であることを特徴とする成形体。   A molded product, wherein when the long fiber reinforced polyamide resin according to any one of claims 1 to 4 is injection-molded, the 50% cumulative fiber length of the component (B) is 0.4 mm or more. 請求項1〜4のいずれかに記載の長繊維強化ポリアミド樹脂を射出成形した際に、成形品の流動方向の収縮率Mと直角方向の収縮率Tが(1)または(2)の関係を満たすことを特徴とする成形体。
(1)T−(M+T)/2の絶対値が0.15以下である。
(2)M−(M+T)/2の絶対値が0.15以下である。
When the long fiber reinforced polyamide resin according to any one of claims 1 to 4 is injection-molded, the shrinkage rate M in the flow direction of the molded product and the shrinkage rate T in the perpendicular direction satisfy the relationship of (1) or (2). A molded product characterized by satisfying.
(1) The absolute value of T− (M + T) / 2 is 0.15 or less.
(2) The absolute value of M− (M + T) / 2 is 0.15 or less.
JP2004073894A 2004-03-16 2004-03-16 Long fiber-reinforced polyamide resin material Pending JP2005263828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073894A JP2005263828A (en) 2004-03-16 2004-03-16 Long fiber-reinforced polyamide resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073894A JP2005263828A (en) 2004-03-16 2004-03-16 Long fiber-reinforced polyamide resin material

Publications (2)

Publication Number Publication Date
JP2005263828A true JP2005263828A (en) 2005-09-29
JP2005263828A5 JP2005263828A5 (en) 2007-04-26

Family

ID=35088711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073894A Pending JP2005263828A (en) 2004-03-16 2004-03-16 Long fiber-reinforced polyamide resin material

Country Status (1)

Country Link
JP (1) JP2005263828A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269914A (en) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corp Glass long fiber-reinforced polyamide resin pellet and its molded article
WO2008123449A1 (en) * 2007-03-29 2008-10-16 Asahi Kasei Chemicals Corporation Resin pellet reinforced with long-fiber filler
JP2010043204A (en) * 2008-08-14 2010-02-25 Daicel Polymer Ltd Resin composition
WO2010132335A1 (en) * 2009-05-12 2010-11-18 E. I. Du Pont De Nemours And Company Polyamide composite structures and processes for their preparation
WO2011014770A3 (en) * 2009-07-30 2011-03-31 E. I. Du Pont De Nemours And Company Heat resistant semi-aromatic polyamide composite structures and processes for their preparation
JP2013023672A (en) * 2011-07-26 2013-02-04 Toray Ind Inc Carbon fiber-reinforced resin composition and molded article thereof
EP2581400A1 (en) * 2010-06-11 2013-04-17 Asahi Kasei Chemicals Corporation Polyamide and polyamide composition
JP2013119609A (en) * 2011-12-08 2013-06-17 Asahi Kasei Chemicals Corp Long fiber-reinforced polyamide resin composition pellet and molded product
WO2014203811A1 (en) * 2013-06-21 2014-12-24 三菱エンジニアリングプラスチックス株式会社 Crystalline thermoplastic resin composition and molded article
US8993670B2 (en) 2006-02-27 2015-03-31 Asahi Kasei Chemicals Corporation Glass-fiber reinforced thermoplastic resin composition and molded article thereof
CN106280232A (en) * 2016-08-12 2017-01-04 绍兴金创意塑化电器有限公司 A kind of fibre reinforced plastics motor casing possessing high thermal conductivity coefficient
CN106317762A (en) * 2016-08-12 2017-01-11 绍兴金创意塑化电器有限公司 Fiber-reinforced plastic motor case and forming process thereof
WO2018143283A1 (en) * 2017-02-03 2018-08-09 帝人株式会社 Composite material including carbon fibers and thermoplastic resin, molded body production method using same, and molded body
JP2022541266A (en) * 2019-07-18 2022-09-22 スンチョンヒャン ユニバーシティ インダストリー アカデミー コーポレーション ファウンデーション Method for manufacturing long fiber composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316807A (en) * 1991-04-17 1992-11-09 Mitsubishi Rayon Co Ltd Long fiber reinforced resin pellet
JPH1171518A (en) * 1997-06-19 1999-03-16 Asahi Chem Ind Co Ltd Polyamide resin composition and molded article
JP2000178441A (en) * 1998-12-16 2000-06-27 Asahi Chem Ind Co Ltd Polyamide resin composition, and formed product thereof
JP2001131408A (en) * 1999-11-05 2001-05-15 Asahi Kasei Corp Black-colored reinforced polyamide resin composition
JP2001131407A (en) * 1999-11-05 2001-05-15 Asahi Kasei Corp Reinforced polyamide resin composition having excellent moldability
JP2002234999A (en) * 2001-02-09 2002-08-23 Toray Ind Inc Molding material, molded article and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316807A (en) * 1991-04-17 1992-11-09 Mitsubishi Rayon Co Ltd Long fiber reinforced resin pellet
JPH1171518A (en) * 1997-06-19 1999-03-16 Asahi Chem Ind Co Ltd Polyamide resin composition and molded article
JP2000178441A (en) * 1998-12-16 2000-06-27 Asahi Chem Ind Co Ltd Polyamide resin composition, and formed product thereof
JP2001131408A (en) * 1999-11-05 2001-05-15 Asahi Kasei Corp Black-colored reinforced polyamide resin composition
JP2001131407A (en) * 1999-11-05 2001-05-15 Asahi Kasei Corp Reinforced polyamide resin composition having excellent moldability
JP2002234999A (en) * 2001-02-09 2002-08-23 Toray Ind Inc Molding material, molded article and its manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993670B2 (en) 2006-02-27 2015-03-31 Asahi Kasei Chemicals Corporation Glass-fiber reinforced thermoplastic resin composition and molded article thereof
JP2007269914A (en) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corp Glass long fiber-reinforced polyamide resin pellet and its molded article
WO2008123449A1 (en) * 2007-03-29 2008-10-16 Asahi Kasei Chemicals Corporation Resin pellet reinforced with long-fiber filler
JP2009074043A (en) * 2007-03-29 2009-04-09 Asahi Kasei Chemicals Corp Long fiber filler reinforced resin pellet
JP2010043204A (en) * 2008-08-14 2010-02-25 Daicel Polymer Ltd Resin composition
WO2010132335A1 (en) * 2009-05-12 2010-11-18 E. I. Du Pont De Nemours And Company Polyamide composite structures and processes for their preparation
WO2011014770A3 (en) * 2009-07-30 2011-03-31 E. I. Du Pont De Nemours And Company Heat resistant semi-aromatic polyamide composite structures and processes for their preparation
EP2581400A1 (en) * 2010-06-11 2013-04-17 Asahi Kasei Chemicals Corporation Polyamide and polyamide composition
EP2581400A4 (en) * 2010-06-11 2014-12-03 Asahi Kasei Chemicals Corp Polyamide and polyamide composition
US8933167B2 (en) 2010-06-11 2015-01-13 Asahi Kasei Chemicals Corporation Polyamide and polyamide composition
JP2013023672A (en) * 2011-07-26 2013-02-04 Toray Ind Inc Carbon fiber-reinforced resin composition and molded article thereof
JP2013119609A (en) * 2011-12-08 2013-06-17 Asahi Kasei Chemicals Corp Long fiber-reinforced polyamide resin composition pellet and molded product
WO2014203811A1 (en) * 2013-06-21 2014-12-24 三菱エンジニアリングプラスチックス株式会社 Crystalline thermoplastic resin composition and molded article
CN106280232A (en) * 2016-08-12 2017-01-04 绍兴金创意塑化电器有限公司 A kind of fibre reinforced plastics motor casing possessing high thermal conductivity coefficient
CN106317762A (en) * 2016-08-12 2017-01-11 绍兴金创意塑化电器有限公司 Fiber-reinforced plastic motor case and forming process thereof
CN106317762B (en) * 2016-08-12 2019-10-18 绍兴金创意塑化电器有限公司 A kind of fibre-reinforced plastic motor shell and its moulding process
CN106280232B (en) * 2016-08-12 2020-01-03 绍兴金创意塑化电器有限公司 Fiber reinforced plastic motor casing with high heat conductivity coefficient
WO2018143283A1 (en) * 2017-02-03 2018-08-09 帝人株式会社 Composite material including carbon fibers and thermoplastic resin, molded body production method using same, and molded body
JPWO2018143283A1 (en) * 2017-02-03 2019-07-11 帝人株式会社 COMPOSITE MATERIAL COMPRISING CARBON FIBER AND THERMOPLASTIC RESIN, METHOD FOR PRODUCING MOLDED BODY USING THE SAME, AND MOLDED BODY
US11384209B2 (en) 2017-02-03 2022-07-12 Teijin Limited Composite material including carbon fibers and thermoplastic resin, molded body production method using same, and molded body
JP2022541266A (en) * 2019-07-18 2022-09-22 スンチョンヒャン ユニバーシティ インダストリー アカデミー コーポレーション ファウンデーション Method for manufacturing long fiber composite material
JP7355429B2 (en) 2019-07-18 2023-10-03 スンチョンヒャン ユニバーシティ インダストリー アカデミー コーポレーション ファウンデーション Manufacturing method of long fiber composite material

Similar Documents

Publication Publication Date Title
US7678295B2 (en) Reinforced poly(arylene ether)/polyamide composition and article comprising the foregoing
US7435780B2 (en) Poly(arylene ether) compositions and methods of making the same
TWI660003B (en) Electrically conductive polyamide moulding materials
JP5270106B2 (en) Polyamide resin composition and molded article comprising the same
JP2005263828A (en) Long fiber-reinforced polyamide resin material
US20070238832A1 (en) Method of making a poly(arylene ether)/polyamide composition
US20070235698A1 (en) vehicular body part
US20060111548A1 (en) Method of making a flame retardant poly(arylene ether)/polyamide composition and the composition thereof
US7413684B2 (en) Poly(arylene ether)/polyamide composition
US20060108567A1 (en) Conductive poly (arylene ether) compositions and methods of making the same
US8795557B2 (en) Flame resistant polyphthalamide/poly(arylene ether) composition
WO2001081473A1 (en) Conductive resin composition and process for producing the same
EP2004750A2 (en) Poly (arylene ether)/polymide composition, method and article
EP1841815A1 (en) Filled compositions and a method of making
JP5618039B2 (en) Thermally conductive resin composition and molded body comprising the same
US20070235697A1 (en) Poly(arylene ether)/polyamide composition
JP2010116518A (en) Heat conductive resin composition and molded product formed thereof
JP4777080B2 (en) Polyarylene sulfide resin composition for molded article having box shape and molded article having box shape
EP3052569B1 (en) Reinforced polyphthalamide/poly(phenylene ether) composition
JP2005298545A (en) Method for producing electroconductive resin composition
JP4248845B2 (en) Conductive resin composition and process for producing the same
KR20230167359A (en) Electrostatic dissipative polyamide compositions and articles containing the same
JP2006291076A (en) Thermoplastic resin composition as coil-sealing material
JP4162465B2 (en) Conductive resin composition and process for producing the same
JP2011001392A (en) Electroconductive polyamide resin composition for rotary structure and rotary structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A621 Written request for application examination

Effective date: 20070309

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Effective date: 20100601

Free format text: JAPANESE INTERMEDIATE CODE: A02