JP2006291076A - Thermoplastic resin composition as coil-sealing material - Google Patents

Thermoplastic resin composition as coil-sealing material Download PDF

Info

Publication number
JP2006291076A
JP2006291076A JP2005114989A JP2005114989A JP2006291076A JP 2006291076 A JP2006291076 A JP 2006291076A JP 2005114989 A JP2005114989 A JP 2005114989A JP 2005114989 A JP2005114989 A JP 2005114989A JP 2006291076 A JP2006291076 A JP 2006291076A
Authority
JP
Japan
Prior art keywords
resin composition
thermoplastic resin
sealing material
mass
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005114989A
Other languages
Japanese (ja)
Inventor
Yukihiro Tsugai
幸裕 番
Hiroyuki Kobayashi
博幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005114989A priority Critical patent/JP2006291076A/en
Publication of JP2006291076A publication Critical patent/JP2006291076A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin composition as a coil-sealing material used for injection molding and extrusion molding, especially excellent in insulating property equipped also with static-preventing property, and also in low warp property/low burr property, heat resistance, molding property and mechanical properties. <P>SOLUTION: This thermoplastic resin composition as the coil-sealing material is provided by using a thermoplastic resin composition having 1&times;10<SP>6</SP>-1&times;10<SP>11</SP>&Omega; range surface resistance values, 1.0-2.0 range anisotropy of the surface resistance values, 1.0-2.5 anisotropy of linear expansion coefficients and &ge;150&deg;C deflection temperature under load. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は射出成形や押し出し成形に適したコイル封止材用熱可塑性樹脂組成物に関する。更に詳しくは、特に帯電防止性能と絶縁性能を兼ね備え、低反り性で、耐熱性に優れたコイル封止材用熱可塑性樹脂に関する。   The present invention relates to a thermoplastic resin composition for a coil sealing material suitable for injection molding and extrusion molding. More specifically, the present invention relates to a thermoplastic resin for a coil sealing material that has both antistatic performance and insulation performance, low warpage, and excellent heat resistance.

近年、電機・電子機器、自動車機器、化学機器などを構成する部品材料には機器の小型化や軽量化を目的として機械的強度、耐熱性、耐薬品性に優れ、更には難燃性に優れた熱可塑性樹脂の要求が高まっている。また、これらの熱可塑性樹脂が使用される部品には、作動部品あるいは、駆動用のコイル部品があるが、これらの部品が作動した時に熱可塑性樹脂組成物が帯電し、これらの機器に重大な影響を与えることが知られている。従って、熱可塑性樹脂組成物に帯電防止性能を付与する技術の開発が必要となっている。但し、熱可塑性樹脂組成物が帯電防止性能を超えて、導電性能を有する様になると、コイルに電流を流した場合に、通電してしまい、同様にこれらの機器に重大な影響を与える可能性がある。従って、コイル封止用熱可塑性樹脂組成物には、帯電防止性能と絶縁性能を兼ね備えることが要求されている。更には、これらの部品は作動又は駆動した時に高温となる為、部品を構成する熱可塑性樹脂は耐熱性に優れることも要求されている。   In recent years, component materials that make up electrical and electronic equipment, automotive equipment, chemical equipment, etc. have excellent mechanical strength, heat resistance, chemical resistance, and flame resistance for the purpose of downsizing and weight reduction of equipment. There is a growing demand for thermoplastic resins. In addition, the parts using these thermoplastic resins include working parts or coil parts for driving. When these parts are operated, the thermoplastic resin composition is charged, which is serious for these devices. It is known to have an impact. Therefore, it is necessary to develop a technique for imparting antistatic performance to the thermoplastic resin composition. However, if the thermoplastic resin composition exceeds the antistatic performance and has conductive performance, it will be energized when a current is passed through the coil, which may also have a significant impact on these devices. There is. Therefore, the thermoplastic resin composition for coil sealing is required to have both antistatic performance and insulation performance. Furthermore, since these parts become high temperature when actuated or driven, the thermoplastic resin constituting the parts is also required to have excellent heat resistance.

これらの熱可塑性樹脂の帯電性を改良する方法として、有機電解質を混合する方法(特許文献1参照)が開示されているが、コイル封止材やモーター封止材に使用できる程の十分な耐熱性は有していない。また、耐熱性に優れる熱可塑性樹脂組成物として、液晶性ポリエステルに黒鉛を混合する方法(例えば特許文献2参照)が開示されているが、線膨張係数の異方性が大きくなる為に成形品とした時に反り、表面抵抗値に異方性があることから、帯電防止性能の安定性が十分ではないという欠点があった。
特開2001−106894号公報 特開2000−281885号公報
As a method for improving the chargeability of these thermoplastic resins, a method of mixing an organic electrolyte (see Patent Document 1) has been disclosed, but it has sufficient heat resistance to be used for a coil sealing material and a motor sealing material. Does not have sex. Moreover, as a thermoplastic resin composition having excellent heat resistance, a method of mixing graphite with liquid crystalline polyester (see, for example, Patent Document 2) has been disclosed. However, since the anisotropy of the linear expansion coefficient is increased, a molded product is disclosed. The surface resistance value has anisotropy, and the antistatic performance is not stable enough.
JP 2001-106894 A Japanese Patent Laid-Open No. 2000-281885

本発明は、射出成形や押し出し成形が可能であり、帯電防止性能と絶縁性能を兼ね備え、低反り性で、耐熱性に優れたコイル封止材用熱可塑性樹脂組成物を提供することを目的とする。   An object of the present invention is to provide a thermoplastic resin composition for a coil sealing material that can be injection-molded or extruded, has both antistatic performance and insulating performance, has low warpage, and is excellent in heat resistance. To do.

本発明者らは、前記課題を解決する為、鋭意検討を重ねた結果、本発明をなすに至った。
即ち、本発明は、
[1] 表面抵抗値が1×10〜1×1011Ωの範囲であり、表面抵抗値の異方性が1.0〜2.0の範囲であり、線膨張係数の異方性が1.0〜2.5であり、かつ荷重たわみ温度が150℃〜280℃の範囲であることを特徴とするコイル封止材用熱可塑性樹脂組成物、
[2] 熱可塑性樹脂組成物がポリアリーレンサルファイド樹脂(A)、ポリフェニレンエーテル樹脂(B)からなる樹脂組成物に、相溶化剤(C)、カーボン系充填剤(D)、及び無機質充填剤(E)を配合してなることを特徴とする[1]に記載のコイル封止材用熱可塑性樹脂組成物、
[3] 熱可塑性樹脂組成物がポリアリーレンサルファイド樹脂(A)30〜90質量%、ポリフェニレンエーテル樹脂(B)70〜10質量%からなる樹脂組成物100質量部に対して、相溶化剤(C)1〜100質量部、及びカーボン系充填剤(D)と無機質充填剤(E)の合計量が5〜300質量部を配合してなることを特徴とする[1]又は[2]に記載のコイル封止材用熱可塑性樹脂組成物、
[4] カーボン系充填剤(D)がカーボンファイバー(D−1)、カーボングラファイト(D−2)、カーボンブラック(D−3)又はそれらの混合物であることを特徴とする[1]〜[3]のいずれかに記載のコイル封止材用熱可塑性樹脂組成物、
である。
In order to solve the above-mentioned problems, the present inventors have made extensive studies and have come to make the present invention.
That is, the present invention
[1] The surface resistance value is in the range of 1 × 10 6 to 1 × 10 11 Ω, the anisotropy of the surface resistance value is in the range of 1.0 to 2.0, and the anisotropy of the linear expansion coefficient is A thermoplastic resin composition for a coil sealing material, which is 1.0 to 2.5 and has a deflection temperature under load in a range of 150 ° C. to 280 ° C.,
[2] A resin composition comprising a thermoplastic resin composition comprising a polyarylene sulfide resin (A) and a polyphenylene ether resin (B), a compatibilizer (C), a carbon-based filler (D), and an inorganic filler ( E) is blended, and the thermoplastic resin composition for coil sealing materials according to [1],
[3] Compatibilizer (C) with respect to 100 parts by mass of the resin composition comprising 30 to 90% by mass of the polyarylene sulfide resin (A) and 70 to 10% by mass of the polyphenylene ether resin (B). 1) to 100 parts by mass, and the total amount of the carbon-based filler (D) and the inorganic filler (E) is 5 to 300 parts by mass. [1] or [2] A thermoplastic resin composition for a coil sealing material,
[4] The carbon-based filler (D) is carbon fiber (D-1), carbon graphite (D-2), carbon black (D-3) or a mixture thereof [1] to [1] 3] The thermoplastic resin composition for coil sealing materials according to any one of
It is.

本発明のコイル封止材用熱可塑性樹脂組成物は、射出成形品や押し出し成形品とした時に特に帯電防止性能と絶縁性能を兼ね備え、低反り性で、耐熱性に優れるといった効果を有する。   The thermoplastic resin composition for a coil sealing material of the present invention has an effect of having both anti-static performance and insulation performance, low warpage, and excellent heat resistance, particularly when an injection-molded product or an extruded product.

本発明について、以下具体的に説明する。
本発明におけるコイル封止材用熱可塑性樹脂組成物の表面抵抗値は1×10〜1×1011Ωの範囲であり、好ましくは1×10〜1×1010Ω、更に好ましくは、1×10〜1×10Ωである。表面抵抗値は成形品のショートを防ぐといった絶縁性能の観点から、1×10Ω以上が好ましく、成形品の帯電防止性能の観点から、1×1011Ω以下が好ましい。ここで、本発明における表面抵抗値は、樹脂温度310℃、金型温度65℃の射出成形温度条件で得た成形品を用い、印加電圧100V、印加時間5sec、測定距離1cmにて測定でき、測定電極端子は1〜7mm幅、0.1〜3mm厚みのもので測定できる。表面抵抗値を測定する為の成形品は、75mm四方、3mm厚以上のものが好ましい。また、測定電極端子を接触させる部分には導電性のペースト等は塗布しない。
The present invention will be specifically described below.
The surface resistance value of the thermoplastic resin composition for a coil sealing material in the present invention is in the range of 1 × 10 6 to 1 × 10 11 Ω, preferably 1 × 10 6 to 1 × 10 10 Ω, more preferably, 1 × 10 7 to 1 × 10 9 Ω. The surface resistance value is preferably 1 × 10 6 Ω or more from the viewpoint of insulation performance such as preventing short circuit of the molded product, and is preferably 1 × 10 11 Ω or less from the viewpoint of antistatic performance of the molded product. Here, the surface resistance value in the present invention can be measured at an applied voltage of 100 V, an application time of 5 sec, and a measurement distance of 1 cm using a molded product obtained under injection molding temperature conditions of a resin temperature of 310 ° C. and a mold temperature of 65 ° C. The measurement electrode terminal can be measured with a width of 1 to 7 mm and a thickness of 0.1 to 3 mm. The molded product for measuring the surface resistance is preferably 75 mm square, 3 mm thick or more. Moreover, a conductive paste or the like is not applied to the portion where the measurement electrode terminal is brought into contact.

本発明における表面抵抗値の異方性は、1.0〜2.0であり、好ましくは1.0〜1.9、更に好ましくは1.0〜1.8である。表面抵抗値の異方性は、成形品の帯電防止性能の安定性の観点から、1.0〜2.0である。ここで、本発明における表面抵抗値の異方性とは、本発明における熱可塑性樹脂を成形した時の樹脂の流動方向の表面抵抗値と樹脂の流動と垂直方向の表面抵抗値の内から、大きい値を小さい値で除した値である。従って、異方性が全くない樹脂組成物の場合、1.0となる。
本発明における線膨張係数の異方性は1.0〜2.5であり、好ましくは1.0〜2.2、更に好ましくは1.0〜2.0である。成形品の反りを低減するといった観点から、線膨張係数の異方性を1.0〜2.5にすることが必要である。本発明における線膨張係数異方性とは垂直方向線膨張係数を流動方向線膨張係数で除して算出したものであり、流動方向とは射出成形時にゲートから金型内に樹脂が射出され、流動する方向を示し、垂直方向とは樹脂が流動する方向に対して垂直な方向を示す。従って線膨張係数異方性の全く無い材料の値は1.0となる。本発明における線膨張係数の測定方法は、ASTM E−831に準拠され、例えばTMA法によって測定できる。本発明における線膨張係数の測定はASTM D−638に準じて樹脂温度310℃、金型温度90℃にて成形したダンベルから図1((1)はゲート位置)に示される様に一方の端から108mmの位置より切り出した垂直方向(2)及び流動方向(3)のそれぞれ長さ10mm(両端の平行度は±0.025mm)、1片が3〜5mmである円柱の試験片(図2)をTMAの本体に設置し、−35℃から毎分5℃で65℃まで昇温して長さの変位量を測定することにより算出した。
The anisotropy of the surface resistance value in the present invention is 1.0 to 2.0, preferably 1.0 to 1.9, and more preferably 1.0 to 1.8. The anisotropy of the surface resistance value is 1.0 to 2.0 from the viewpoint of the stability of the antistatic performance of the molded product. Here, the anisotropy of the surface resistance value in the present invention is from the surface resistance value in the flow direction of the resin and the surface resistance value in the vertical direction of the resin flow when the thermoplastic resin in the present invention is molded, The value obtained by dividing the large value by the small value. Therefore, in the case of a resin composition having no anisotropy, it is 1.0.
The anisotropy of the linear expansion coefficient in the present invention is 1.0 to 2.5, preferably 1.0 to 2.2, and more preferably 1.0 to 2.0. From the viewpoint of reducing warpage of the molded product, it is necessary to set the anisotropy of the linear expansion coefficient to 1.0 to 2.5. The linear expansion coefficient anisotropy in the present invention is calculated by dividing the linear expansion coefficient in the vertical direction by the linear expansion coefficient in the flow direction, and the flow direction is a resin injected from the gate into the mold during injection molding, The direction which flows is shown, and a perpendicular direction shows a direction perpendicular | vertical with respect to the direction where resin flows. Therefore, the value of a material having no linear expansion coefficient anisotropy is 1.0. The method for measuring the linear expansion coefficient in the present invention is based on ASTM E-831 and can be measured, for example, by the TMA method. The linear expansion coefficient in the present invention is measured at one end as shown in FIG. 1 ((1) is the gate position) from a dumbbell molded at a resin temperature of 310 ° C. and a mold temperature of 90 ° C. according to ASTM D-638. 10 mm in length in the vertical direction (2) and the flow direction (3) cut out from a position of 108 mm from each other (parallelism of both ends is ± 0.025 mm), and a cylindrical test piece having a length of 3 to 5 mm (FIG. 2) ) Was installed in the main body of TMA, and the temperature was increased from −35 ° C. to 65 ° C. at 5 ° C. per minute, and the length displacement was calculated.

本発明における荷重たわみ温度は150〜280℃の範囲であり、好ましくは160〜270℃、更に好ましくは170〜260℃である。コイルで発生する熱により変形しないという観点から、荷重たわみ温度を150℃以上にすることが必要であり、成形性の観点から280℃以下にすることが必要である。本発明における荷重たわみ温度は樹脂温度310℃、金型温度90℃で成形した長さ120mm、幅6.4mm、高さ12.7mmの試験片を用い、測定方法はASTM D−648に準拠され、荷重1.82MPa、支点間距離100mm、加熱速度2℃/分にて、0.254mmたわんだ時の温度を測定した。   The deflection temperature under load in the present invention is in the range of 150 to 280 ° C, preferably 160 to 270 ° C, more preferably 170 to 260 ° C. From the viewpoint of not being deformed by the heat generated in the coil, the deflection temperature under load is required to be 150 ° C. or higher, and from the viewpoint of formability, it is required to be 280 ° C. or lower. The deflection temperature under load in the present invention is a test piece having a length of 120 mm, a width of 6.4 mm, and a height of 12.7 mm molded at a resin temperature of 310 ° C. and a mold temperature of 90 ° C., and the measuring method conforms to ASTM D-648. At a load of 1.82 MPa, a distance between fulcrums of 100 mm, and a heating rate of 2 ° C./min, the temperature when bent by 0.254 mm was measured.

また、本発明における表面抵抗値、線膨張係数、荷重たわみ温度を測定する為の成形品を作成に用いるペレットには従来公知のブラベンダー、ニーダー、バンバリーミキサー、押出機等によって得られるものであれば、パウダーからペレット化したもの、一旦ペレット化したものを更に押出機等により再ペレット化したもの、成形された成形品を粉砕したもの、更には成形された成形品を粉砕したものを押出機等によりペレット化したもの等を用いることができる。
本発明におけるポリアリーレンサルファイド樹脂(A)(以下「PAS」と略記する。)は、下記一般式(1)で示されるアリーレンサルファイドの繰り返し単位を通常50モル%以上、好ましくは70モル%以上、更に好ましくは90モル%以上を含む重合体である。
[−Ar−S−] (1)
(ここで、Arはアリーレン基を示す。)
In addition, pellets used for producing a molded product for measuring the surface resistance value, linear expansion coefficient, and deflection temperature under load in the present invention may be obtained by a conventionally known Brabender, kneader, Banbury mixer, extruder, or the like. Extruders that have been pelletized from powder, those that have been pelletized once, further pelletized with an extruder, etc., those that have been pulverized, and those that have been pulverized What was pelletized by etc. can be used.
In the polyarylene sulfide resin (A) (hereinafter abbreviated as “PAS”) in the present invention, the repeating unit of arylene sulfide represented by the following general formula (1) is usually 50 mol% or more, preferably 70 mol% or more. More preferably, it is a polymer containing 90 mol% or more.
[-Ar-S-] (1)
(Here, Ar represents an arylene group.)

アリーレン基としては、例えばp−フェニレン基、m−フェニレン基、置換フェニレン基(置換基とは炭素数1〜10のアルキル基、フェニル基が好ましい。)、p,p′−ジフェニレンスルホン基、p,p′−ビフェニレン基、p,p′−ジフェニレンカルボニル基、ナフチレン基等を挙げることができる。ここでPASは構成単位であるアリーレン基が1種のホモポリマーを用いても良いが、加工性や耐熱性の観点から、2種以上のアリーレン基を混合したコポリマーを用いても良い。これらのPASの中でも、p−フェニレンサルファイドの繰り返し単位を主構成要素とするポリフェニレンサルファイド樹脂が、加工性、耐熱性、寸法安定性に優れ、しかも工業的に入手が容易であることから、特に好ましい。   Examples of the arylene group include a p-phenylene group, an m-phenylene group, a substituted phenylene group (the substituent is preferably an alkyl group having 1 to 10 carbon atoms, and a phenyl group), a p, p′-diphenylene sulfone group, A p, p'-biphenylene group, a p, p'-diphenylenecarbonyl group, a naphthylene group, etc. can be mentioned. Here, PAS may use a homopolymer having a structural unit of arylene groups of one type, but from the viewpoint of processability and heat resistance, a copolymer in which two or more types of arylene groups are mixed may be used. Among these PASs, a polyphenylene sulfide resin having a repeating unit of p-phenylene sulfide as a main constituent element is particularly preferable because it is excellent in processability, heat resistance and dimensional stability, and is easily available industrially. .

また、本発明で用いるPASは、320℃における溶融粘度(せん断速度1000/秒)が100〜10000ポイズの中から任意に選ぶ事ができ、更にPASの構造は、直鎖状のもの、分岐状のもの何れでも良く、またこれら構造の混合物であっても構わないが、好ましくは直鎖状の構造を持つPASである。更にこのPASは酸変性されたPASでも構わない。ここで酸変性したPASとは、上記PASを酸化合物で変性する事によって得られるものであり、該酸化合物としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、無水マレイン酸等の不飽和カルボン酸又はその無水物や、飽和型の脂肪族カルボン酸や芳香族置換カルボン酸等も挙げることができる。更に酢酸、塩酸、硫酸、リン酸、ケイ酸、炭酸等の無機化合物系の酸化合物も該酸化合物として挙げることができる。
本発明におけるポリフェニレンエーテル樹脂(以下「PPE」と略記する。)とは、下記一般式(2)、(3)で表される構造を有し、構成単位が一般式(2)及び(3)から選ばれる少なくとも1種からなる単独重合体、あるいは共重合体が使用できる。
The PAS used in the present invention can be arbitrarily selected from a melt viscosity (shear rate of 1000 / second) at 320 ° C. of 100 to 10000 poise, and the PAS structure is linear or branched. Any of these may be used, and a mixture of these structures may be used, but a PAS having a linear structure is preferred. Further, this PAS may be acid-modified PAS. Here, the acid-modified PAS is obtained by modifying the PAS with an acid compound, and the acid compound includes unsaturated acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, and maleic anhydride. Examples thereof also include carboxylic acids or anhydrides thereof, saturated aliphatic carboxylic acids and aromatic substituted carboxylic acids. In addition, inorganic acid compounds such as acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, silicic acid and carbonic acid can also be mentioned as the acid compound.
The polyphenylene ether resin (hereinafter abbreviated as “PPE”) in the present invention has a structure represented by the following general formulas (2) and (3), and the structural units are the general formulas (2) and (3). A homopolymer or copolymer comprising at least one selected from the group consisting of:

Figure 2006291076
Figure 2006291076

(式中、R1,R2,R3,R4,R5,R6は、炭素1〜4のアルキル基、アリール基、ハロゲン、水素等の一価の残基であり、R5,R6は同時に水素ではない。)
PPEの単独重合体の代表例としては、ポリ(2,6−ジメチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−エチル−1,4−フェニレン)エーテル、ポリ(2,6−ジエチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−n−プロピル−1,4−フェニレン)エーテル、ポリ(2,6−ジ−n−プロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−n−ブチル−1,4−フェニレン)エーテル、ポリ(2−エチル−6−イソプロピル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−クロロエチル−1,4−フェニレン)エーテル、ポリ(2−メチル−6−ヒドロキシエチル−1,4−フェニレン)エーテル、およびポリ(2−メチル−6−クロロエチル−1,4−フェニレン)エーテル、等のホモポリマーが挙げられる。
(In the formula, R1, R2, R3, R4, R5, and R6 are monovalent residues such as an alkyl group having 1 to 4 carbon atoms, an aryl group, halogen, and hydrogen, and R5 and R6 are not hydrogen at the same time. )
Representative examples of PPE homopolymers include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2,6 -Diethyl-1,4-phenylene) ether, poly (2-ethyl-6-n-propyl-1,4-phenylene) ether, poly (2,6-di-n-propyl-1,4-phenylene) ether Poly (2-methyl-6-n-butyl-1,4-phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2-methyl-6-chloroethyl-1) , 4-phenylene) ether, poly (2-methyl-6-hydroxyethyl-1,4-phenylene) ether, and poly (2-methyl-6-chloroethyl-1,4-phenylene) ether Include homopolymers and the like.

PPEの共重合体は、2,6−ジメチルフェノールと2,3,6−トリメチルフェノールとの共重合体、2,6−ジメチルフェノールとo−クレゾールとの共重合体、あるいは2,6−ジメチルフェノールと2,3,6−トリメチルフェノール及びo−クレゾールとの共重合体等、ポリフェニレンエーテル構造を主体としてなるポリフェニレンエーテル共重合体を包含する。また、このPPEは、還元粘度(0.5g/dl、クロロホルム溶液、30℃測定)が、0.15〜2.0の範囲である事が好ましく、上記したものの他に、マレイン酸,無水マレイン酸,フマル酸,イタコン酸,アクリル酸,アクリル酸エステル,メタクリル酸,メタクリル酸エステル等のα,β−不飽和カルボン酸又はその誘導体にて変性された変性ポリフェニレンエーテル樹脂でも良い。   The copolymer of PPE is a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol, a copolymer of 2,6-dimethylphenol and o-cresol, or 2,6-dimethyl. It includes polyphenylene ether copolymers mainly composed of a polyphenylene ether structure, such as a copolymer of phenol, 2,3,6-trimethylphenol and o-cresol. The PPE preferably has a reduced viscosity (0.5 g / dl, chloroform solution, measured at 30 ° C.) in the range of 0.15 to 2.0. In addition to the above, maleic acid, maleic anhydride A modified polyphenylene ether resin modified with an α, β-unsaturated carboxylic acid such as acid, fumaric acid, itaconic acid, acrylic acid, acrylic ester, methacrylic acid or methacrylic ester or a derivative thereof may be used.

本発明において用いられる相溶化剤(C)は、エポキシ樹脂、グリシジル基含化合物、α,β−不飽和カルボン酸の誘導体で変性した水添ブロック共重合体、オキサゾニル基含有化合物等の、PASとPPEの相溶化剤として公知である物質を使用する事が出来る。中でもスチレン−グリシジルメタクリレート共重合体、ゴム補強スチレン−グリシジルメタクリレート共重合体、スチレン−アクリロニトリル−グリシジルメタクリレート共重合体等のグリシジル基含有スチレン系樹脂を用いる事が特に好ましい。
本発明におけるカーボン系充填剤(D)としては、カーボンファイバー(D−1)、カーボングラファイト(D−2)およびカーボンブラック(D−3)が挙げられ、これらは単独で又は併用して用いることができる。
The compatibilizer (C) used in the present invention is an epoxy resin, a glycidyl group-containing compound, a hydrogenated block copolymer modified with an α, β-unsaturated carboxylic acid derivative, an oxazonyl group-containing compound, and the like. Substances known as compatibilizers for PPE can be used. Among them, it is particularly preferable to use a glycidyl group-containing styrene resin such as a styrene-glycidyl methacrylate copolymer, a rubber-reinforced styrene-glycidyl methacrylate copolymer, and a styrene-acrylonitrile-glycidyl methacrylate copolymer.
Examples of the carbon-based filler (D) in the present invention include carbon fiber (D-1), carbon graphite (D-2), and carbon black (D-3). These may be used alone or in combination. Can do.

本発明におけるカーボンファイバー(D−1)は、ピッチ系、PAN系いずれでも良く、平均径は1〜20μm、好ましくは3〜15μm、更に好ましくは5〜13μmであり、平均長は1〜20mm、好ましくは2〜15mm、更に好ましくは4〜10mmである。安定した帯電防止性能および耐熱性の観点から平均径が1μm以上、平均長が1mm以上であり、短絡を防止するといった観点から、平均径が20μm以下、平均長が20mm以下である。
本発明におけるカーボングラファイト(D−2)は平均粒径が0.2〜300μmであり、好ましくは1〜200μm、更に好ましくは2〜100μmである。帯電防止性能の観点から0.2μm以上であり、絶縁性、成形品の低反り性の観点から300μm以下である。
The carbon fiber (D-1) in the present invention may be either pitch type or PAN type, the average diameter is 1 to 20 μm, preferably 3 to 15 μm, more preferably 5 to 13 μm, and the average length is 1 to 20 mm. Preferably it is 2-15 mm, More preferably, it is 4-10 mm. From the viewpoint of stable antistatic performance and heat resistance, the average diameter is 1 μm or more, the average length is 1 mm or more, and from the viewpoint of preventing short circuit, the average diameter is 20 μm or less and the average length is 20 mm or less.
The carbon graphite (D-2) in the present invention has an average particle size of 0.2 to 300 μm, preferably 1 to 200 μm, more preferably 2 to 100 μm. From the viewpoint of antistatic performance, it is 0.2 μm or more, and from the viewpoint of insulation and low warpage of the molded product, it is 300 μm or less.

本発明におけるカーボンブラック(D−3)は平均粒系が、1nm〜500nmであり、好ましくは5nm〜100nm、更に好ましくは10nm〜100nmである。帯電防止性能の観点から、1nm以上であり、絶縁性の観点から10μm以下である。
本発明における無機質充填剤(E)としては、ガラスファイバー、ガラスフレーク、マイカ、タルクおよび炭酸カルシウムが挙げられ、これらから選ばれる1種でまたは2種以上の混合物で用いることができる。無機質充填剤(E)は成形品の反り、優れた耐熱性、優れた機械的特性を得る為に重要である。また、特に本発明における表面抵抗値で1×10〜1×1011Ωを安定的に得る為には、カーボン系充填剤(D)と共に、この無機質充填剤(E)を含有することが非常に重要である。本発明において、カーボン系充填剤(D)と無機質充填剤(E)の合計量における無機質充填剤(E)の含有率は50〜95%であり、好ましくは60〜95%、更に好ましくは70〜95%である。
Carbon black (D-3) in the present invention has an average particle size of 1 nm to 500 nm, preferably 5 nm to 100 nm, and more preferably 10 nm to 100 nm. From the viewpoint of antistatic performance, it is 1 nm or more, and from the viewpoint of insulation, it is 10 μm or less.
Examples of the inorganic filler (E) in the present invention include glass fibers, glass flakes, mica, talc and calcium carbonate, and these can be used alone or in a mixture of two or more. The inorganic filler (E) is important for obtaining warpage of the molded product, excellent heat resistance, and excellent mechanical properties. In particular, in order to stably obtain 1 × 10 6 to 1 × 10 11 Ω as the surface resistance value in the present invention, the inorganic filler (E) may be contained together with the carbon-based filler (D). Very important. In the present invention, the content of the inorganic filler (E) in the total amount of the carbon-based filler (D) and the inorganic filler (E) is 50 to 95%, preferably 60 to 95%, more preferably 70. ~ 95%.

本発明におけるガラスファイバーは平均繊維径が8〜25μm、平均繊維長が20〜5000μmであることが好ましく、従来公知のカップリング剤、収束剤で処理されている事が特に好ましい。平均繊維径及び平均繊維長は、強度の観点から、それぞれ8μm以上、20μm以上であり、外観の観点から、それぞれ25μm以下、5000μm以下である。
ガラスフレークの形状としては、長径が1000μm以下、好ましくは1〜800μmの範囲であり、且つアスペクト比(長径と厚みとの比)が5以上、好ましくは10以上、更に好ましくは30以上である。ガラスフレークの長径は、樹脂成分との均一混合の容易性や成形品の物性バラツキの観点から1000μm以下が好ましい。一方、アスペクト比は成形品の耐熱性、剛性、耐衝撃性の点から5以上が好ましい。該ガラスフレークは、市販されているものをそのまま用いる事が出来るが、樹脂に配合する際に適宜粉砕して用いても良い。上記ガラスフレークは、樹脂との親和性を改良する目的で、例えばシラン系やチタネート系等の種々のカップリング剤で処理したガラスフレークを使用できる。
The glass fiber in the present invention preferably has an average fiber diameter of 8 to 25 μm and an average fiber length of 20 to 5000 μm, and is particularly preferably treated with a conventionally known coupling agent and sizing agent. The average fiber diameter and the average fiber length are respectively 8 μm or more and 20 μm or more from the viewpoint of strength, and are respectively 25 μm or less and 5000 μm or less from the viewpoint of appearance.
As the shape of the glass flakes, the major axis is 1000 μm or less, preferably 1 to 800 μm, and the aspect ratio (ratio of major axis to thickness) is 5 or more, preferably 10 or more, more preferably 30 or more. The major axis of the glass flakes is preferably 1000 μm or less from the viewpoint of easy uniform mixing with the resin component and variations in physical properties of the molded product. On the other hand, the aspect ratio is preferably 5 or more from the viewpoint of heat resistance, rigidity and impact resistance of the molded product. As the glass flakes, commercially available ones can be used as they are, but they may be appropriately pulverized when used in the resin. For the purpose of improving the affinity with the resin, the glass flakes treated with various coupling agents such as silane and titanate can be used.

タルクの粒径に関しては、特に制限はなく、従来より慣用されている粒径、例えば、平均粒径として0.1μm〜30μm程度が適当である。
マイカについては、スゾライト・マイカ(商標)が好適に使用できる。長径が1000μm以下、好ましくは500μm以下、更に好ましくは200μm以下のものが好適で、剛性賦与の観点から重量平均アスペクト比(マイカの平均直径/平均厚み)が10以上、好ましくは30以上、更に好ましくは100以上である。前記マイカは樹脂との親和性を改良する為、カップリング剤で表面処理したマイカが特に良好に使用できる。
炭酸カルシウムの粒径に関しては、特に制限はなく、例えば平均粒径が0.01〜10μm程度が適当である。
The particle size of talc is not particularly limited, and a conventionally used particle size, for example, an average particle size of about 0.1 μm to 30 μm is appropriate.
As for mica, Suzolite Mica (trademark) can be preferably used. The major axis is preferably 1000 μm or less, preferably 500 μm or less, more preferably 200 μm or less, and the weight average aspect ratio (average mica diameter / average thickness) is 10 or more, preferably 30 or more, more preferably from the viewpoint of imparting rigidity. Is 100 or more. Since the mica improves the affinity with the resin, mica surface-treated with a coupling agent can be used particularly well.
The particle size of calcium carbonate is not particularly limited, and for example, an average particle size of about 0.01 to 10 μm is appropriate.

本発明において、熱可塑性樹脂はポリアリーレンサルファイド樹脂(A)30〜90質量%、ポリフェニレンエーテル樹脂(B)70〜10質量%からなる樹脂組成物100質量部に対して、相溶化剤(C)1〜100質量部、及びカーボン系充填剤(D)と無機質充填剤(E)の合計量が5〜300質量部である。好ましくは、ポリアリーレンサルファイド樹脂(A)40〜80質量%、ポリフェニレンエーテル樹脂(B)60〜20質量%からなる樹脂組成物100質量部に対して、相溶化剤(C)2〜50質量部、及びカーボン系充填剤(D)と無機質充填剤(E)の合計量が10〜250質量部であり、更に好ましくは、ポリアリーレンサルファイド樹脂(A)50〜70質量%、ポリフェニレンエーテル樹脂(B)50〜30質量%からなる樹脂組成物100質量部に対して、相溶化剤(C)3〜10質量部、及びカーボン系充填剤(D)と無機質充填剤(E)の合計量が20〜200質量部である。流動性の観点から、ポリアリーレンサルファイド樹脂(A)30質量%以上、ポリフェニレンエーテル樹脂(B)70質量%以下であり、成形品の反り、成形時に成形品にバリが発生しない(低バリ性)といった成形性の観点から、ポリアリーレンサルファイド樹脂(A)90質量%以下、ポリフェニレンエーテル樹脂(B)10質量%以上である。カーボン系充填剤(D)と無機質充填剤(E)の合計量は樹脂組成物100質量部に対し、5〜300質量部の範囲であることは、本発明における表面抵抗値の安定性、即ち帯電防止性能と絶縁性能を兼ね備えた熱可塑性樹脂組成物を得る為に非常に重要であり、更には、剛性、耐熱性の観点から5質量部以上であり、成形品の反り、成形時の流動性の観点から、300質量部以下である。   In the present invention, the thermoplastic resin is used as a compatibilizer (C) with respect to 100 parts by mass of the resin composition comprising 30 to 90% by mass of the polyarylene sulfide resin (A) and 70 to 10% by mass of the polyphenylene ether resin (B). 1-100 mass parts and the total amount of a carbon type filler (D) and an inorganic filler (E) are 5-300 mass parts. Preferably, the compatibilizer (C) is 2 to 50 parts by mass with respect to 100 parts by mass of the resin composition composed of 40 to 80% by mass of the polyarylene sulfide resin (A) and 60 to 20% by mass of the polyphenylene ether resin (B). , And the total amount of the carbon-based filler (D) and the inorganic filler (E) is 10 to 250 parts by mass, more preferably 50 to 70% by mass of the polyarylene sulfide resin (A), the polyphenylene ether resin (B ) 3 to 10 parts by mass of the compatibilizer (C) and the total amount of the carbon filler (D) and the inorganic filler (E) is 20 with respect to 100 parts by mass of the resin composition consisting of 50 to 30% by mass. -200 parts by mass. From the viewpoint of fluidity, the polyarylene sulfide resin (A) is 30% by mass or more and the polyphenylene ether resin (B) is 70% by mass or less, and warpage of the molded product, and no burrs are generated in the molded product (low burrs). From the viewpoint of moldability, the polyarylene sulfide resin (A) is 90% by mass or less and the polyphenylene ether resin (B) is 10% by mass or more. The total amount of the carbon-based filler (D) and the inorganic filler (E) is in the range of 5 to 300 parts by mass with respect to 100 parts by mass of the resin composition. It is very important for obtaining a thermoplastic resin composition having both antistatic performance and insulation performance. Furthermore, it is 5 parts by mass or more from the viewpoint of rigidity and heat resistance, warping of molded products, flow during molding. From the viewpoint of property, it is 300 parts by mass or less.

また、本発明におけるコイル封止材用熱可塑性樹脂組成物には必要に応じて、ポリスチレン樹脂、ゴム補強のポリスチレン樹脂(ハイインパクト−ポリスチレン樹脂)、ABS樹脂等のスチレン系樹脂、ポリカーボネート樹脂、ポリブチレンテレフタレート樹脂、液晶ポリエステル、ポリエチレンテレフタレート樹脂、ポリアミド樹脂、ポリプロピレン樹脂、ポリアセタール樹脂等が添加できる。
更に必要に応じて通常の熱可塑性樹脂に添加される添加剤、例えば熱安定剤、紫外線吸収剤、難燃剤、離型剤、滑剤、染料、顔料などを配合する事も特に制限されるものではない。
In addition, the thermoplastic resin composition for a coil sealing material in the present invention may include polystyrene resin, rubber-reinforced polystyrene resin (high impact polystyrene resin), styrene resin such as ABS resin, polycarbonate resin, Butylene terephthalate resin, liquid crystal polyester, polyethylene terephthalate resin, polyamide resin, polypropylene resin, polyacetal resin and the like can be added.
Furthermore, it is not particularly limited to add additives that are added to ordinary thermoplastic resins as necessary, for example, heat stabilizers, UV absorbers, flame retardants, mold release agents, lubricants, dyes, pigments and the like. Absent.

また、本発明のコイル封止材用熱可塑性樹脂組成物の調製は、ブラベンダー、ニーダー、バンバリーミキサー、押出機などの従来公知の技術によって達成されるが、特に好ましくは押出機である。また、各構成成分の配合の順番は特に限定されるものではなく、例えば、PAS(A)にPPE(B)を相溶化剤(C)と共に押し出し混合したペレットにカーボン系充填剤(D)及び無機質充填剤(E)を配合して押し出し混合する方法、PAS(A)、PPE(B)、相溶化剤(C)、カーボン系充填剤(D)、無機質充填剤(E)を同時に押し出し混合する方法、PAS(A)又はPPE(B)と相溶化剤(C)、カーボン系充填剤(D)及び無機質充填剤(E)を予め押し出し混合したマスターバッチにPPE(B)又はPAS(A)を混合して押し出し混合する方法、PAS(A)とカーボン系充填剤(D)及び/又は無機質充填剤(E)を予め押し出し混合したマスターバッチとPPE(B)とカーボン系充填剤(D)及び/又は無機質充填剤(E)を予め押し出し混合したマスターバッチを相溶化剤(C)と共に混合する方法、PAS(A)、PPE(B)、カーボン系充填剤(D)、無機質充填剤(E)を相溶化剤(C)と共に予め押し出し混合したマスターバッチとPAS(A)及び/又はPPE(B)を混合する方法等である。   Moreover, the preparation of the thermoplastic resin composition for a coil sealing material of the present invention is achieved by a conventionally known technique such as Brabender, kneader, Banbury mixer, and extruder, and an extruder is particularly preferable. In addition, the order of blending each component is not particularly limited. For example, the carbon-based filler (D) and the pellet obtained by extruding and mixing PPE (B) with the compatibilizer (C) in PAS (A) Extruded and mixed with inorganic filler (E), PAS (A), PPE (B), compatibilizer (C), carbon-based filler (D), and inorganic filler (E) simultaneously extruded and mixed Method, PAS (A) or PPE (B), compatibilizer (C), carbon-based filler (D) and inorganic filler (E) are pre-extruded and mixed into a master batch with PPE (B) or PAS (A ) And extruding and mixing, a master batch in which PAS (A) and carbon filler (D) and / or inorganic filler (E) are extruded and mixed in advance, PPE (B) and carbon filler (D And / or A method of mixing a master batch obtained by extruding and mixing an inorganic filler (E) with a compatibilizer (C), PAS (A), PPE (B), carbon-based filler (D), and inorganic filler (E). For example, a master batch that has been extruded and mixed together with the compatibilizer (C) and PAS (A) and / or PPE (B) are mixed.

本発明のコイル封止材用熱可塑性樹脂組成物は、一般的な射出成形、インジェクションプレス成形、又はガスインジェクション成形等の公知の成形方法にて成形を行う事が可能である。特に本発明で得られたコイル封止材用熱可塑性樹脂組成物を用いて、電機・電子機器、自動車機器、化学機器などを構成するコイル封止部品材、モーター封止部品材、トランジスタ封止部品材、バッテリー部品材に使用できる。   The thermoplastic resin composition for a coil sealing material of the present invention can be molded by a known molding method such as general injection molding, injection press molding, or gas injection molding. In particular, using the thermoplastic resin composition for a coil sealing material obtained in the present invention, a coil sealing component material, a motor sealing component material, a transistor sealing constituting an electric / electronic device, an automobile device, a chemical device, etc. Can be used for parts and battery parts.

本発明を実施例に基づいて説明する。実施例及び比較例における測定法及び用語は以下の通りである。
〈表面抵抗値及び異方性〉
超絶縁計(SM8220:東亜ディーケーケー製)を用いて、縦75±5mm、横75±5mm、厚さ3±5mmの成形品表面に、3±1mm幅、0.8±0.4の面積で接触する測定電極端子を10±2mmの距離で接触させ、印加電圧100V、印加時間5sec後の抵抗値を読み取った。抵抗値は射出成形時にゲートから金型内に樹脂が射出されて流動する方向、またその垂直方向、それぞれの方向で測定し、大きい値を小さい値で除した値を異方性とした。また、表面抵抗値は流動方向、垂直方向とも同一成形品内で5箇所を測定して平均値を取り、成形品は少なくとも3枚測定し、安定性を確認した。また、測定電極端子を接触させる部分には導電性のペースト等は塗布しなかった。
The present invention will be described based on examples. The measurement methods and terms in Examples and Comparative Examples are as follows.
<Surface resistance and anisotropy>
Using a superinsulator (SM8220: manufactured by Toa DKK), on the surface of a molded product with a length of 75 ± 5 mm, a width of 75 ± 5 mm, and a thickness of 3 ± 5 mm, an area of 3 ± 1 mm width and 0.8 ± 0.4 The contacting measurement electrode terminals were brought into contact with each other at a distance of 10 ± 2 mm, and the resistance value after an applied voltage of 100 V and an application time of 5 sec was read. The resistance value was measured in each of the directions in which the resin was injected from the gate into the mold during the injection molding and in the vertical direction, and the value obtained by dividing the large value by the small value was defined as anisotropy. In addition, the surface resistance value was measured at five locations in the same molded product in both the flow direction and the vertical direction to obtain an average value, and at least three molded products were measured to confirm the stability. Also, no conductive paste or the like was applied to the portion where the measurement electrode terminal was brought into contact.

〈線膨張係数及び異方性〉
ASTM D−696に準拠したTMA法による。ASTM D−638に準じて樹脂温度310℃、金型温度90℃にて成形したダンベルから図1の様に切り出した各試験片3mm×3mm×10mmを、TMAを用いて−35℃から毎分5℃で65℃まで昇温して長さの変移量から線膨張係数を測定した。また、線膨張係数異方性は射出成形時にゲートから金型内に樹脂が射出されて流動する方向となる流動方向のサンプルを用いて測定した線膨張係数で樹脂が流動する方向に対して垂直な方向となる垂直方向のサンプルを用いて測定した線膨張係数を除して算出した。
<Linear expansion coefficient and anisotropy>
According to the TMA method based on ASTM D-696. Each test piece 3 mm × 3 mm × 10 mm cut out from a dumbbell molded at a resin temperature of 310 ° C. and a mold temperature of 90 ° C. according to ASTM D-638 as shown in FIG. The temperature was raised to 65 ° C. at 5 ° C., and the linear expansion coefficient was measured from the amount of change in length. The linear expansion coefficient anisotropy is perpendicular to the direction in which the resin flows with a linear expansion coefficient measured using a sample in the flow direction in which the resin is injected from the gate into the mold during injection molding. It was calculated by dividing the coefficient of linear expansion measured using a sample in the vertical direction, which is the correct direction.

〈荷重たわみ温度〉
樹脂温度310℃、金型温度90℃の射出成形樹脂温度条件で成形した長さ120mm、幅6.4mm、高さ12.7mmの試験片を用い、ASTM D−648に準拠した方法である、荷重1.82MPa、支点間距離100mm、加熱速度2℃/分にて、0.254mmたわんだ時の温度を測定した。
〈絶縁性能〉
図3の様に、縦20mm、横20mm、厚さ1mmの銅版2枚を10mm×20mmの部分が成形品内部に入るように、かつ、2枚の銅版が対辺の中央に位置するように、金型に設置し、樹脂部の大きさが縦75mm、横75mm、厚さ3mmの成形品となるようなインサート成形品を樹脂温度310℃、金型温度65℃の射出成形温度条件で得た後、銅版2枚に200Vの直流電圧を掛け、ショートの有無を確認した。成形品は5枚を評価し、1枚でもショート(通電)した場合を×、ショート(通電)しない場合を○で示した。
<Load deflection temperature>
A test piece having a length of 120 mm, a width of 6.4 mm, and a height of 12.7 mm molded under an injection molding resin temperature condition of a resin temperature of 310 ° C. and a mold temperature of 90 ° C. is a method based on ASTM D-648. The temperature when bent by 0.254 mm was measured at a load of 1.82 MPa, a distance between fulcrums of 100 mm, and a heating rate of 2 ° C./min.
<Insulation performance>
As shown in FIG. 3, two copper plates having a length of 20 mm, a width of 20 mm, and a thickness of 1 mm are placed so that a 10 mm × 20 mm portion enters the inside of the molded product, and the two copper plates are positioned at the center of the opposite side. An insert-molded product that was placed in a mold and had a resin part size of 75 mm in length, 75 mm in width, and 3 mm in thickness was obtained under injection molding temperature conditions of a resin temperature of 310 ° C. and a mold temperature of 65 ° C. Thereafter, a DC voltage of 200 V was applied to the two copper plates, and the presence or absence of a short circuit was confirmed. Five molded products were evaluated. The case where even one sheet was short-circuited (energized) was indicated by x, and the case where no short-circuit (energized) was performed was indicated by ○.

〈成形品反り〉
縦150mm、横150mm、厚さ2mmの成形品を樹脂温度310℃、金型温度90℃、ゲート径を1.5mm、ゲート位置を任意の角からX軸方向に75mm、Y軸方向に20mmの位置に設けて作成し、3次元測定機(AE122:ミツトヨ製)を用いて任意の規定15点におけるZ軸方向の位置を測定し、最低位置と最高位置の差を算出した後、1mm以下である場合を○、1mmを超える場合を×で示した。
〈耐熱性〉
成形品反りを測定した成形品と同じ条件で測定し、130℃に温度調整したオーブンに24時間放置した後に、3次元測定機(AE122:ミツトヨ製)を用いて任意の規定15点におけるZ軸方向の位置を測定し、最低位置と最高位置の差を算出した後、2mm以下である場合を○、2mmを超える場合を×で示した。
〈機械的特性〉
樹脂温度310℃、金型温度90℃の射出成形樹脂温度条件で成形した長さ120mm、幅6.4mm、高さ12.7mmの試験片を用い、ASTM D−790に準拠して、曲げ弾性率を測定し、その値が4000MPa以上である場合を○、4000MPa未満である場合を×で示した。
<Molded product warpage>
A molded product having a length of 150 mm, a width of 150 mm, and a thickness of 2 mm has a resin temperature of 310 ° C., a mold temperature of 90 ° C., a gate diameter of 1.5 mm, a gate position of 75 mm in the X-axis direction and 20 mm in the Y-axis direction from any angle. Prepared at the position, measured the position in the Z-axis direction at any specified 15 points using a three-dimensional measuring machine (AE122: manufactured by Mitutoyo), and after calculating the difference between the lowest position and the highest position, 1 mm or less Some cases were marked with ◯, and more than 1 mm with x.
<Heat-resistant>
Z-axis at any specified 15 points using a three-dimensional measuring machine (AE122: manufactured by Mitutoyo) after measuring the warpage of the molded product under the same conditions as the molded product and leaving it in an oven adjusted to 130 ° C. for 24 hours. After measuring the position in the direction and calculating the difference between the lowest position and the highest position, the case where it is 2 mm or less is indicated by ○, and the case where it exceeds 2 mm is indicated by ×.
<Mechanical properties>
Using a test piece with a length of 120 mm, a width of 6.4 mm, and a height of 12.7 mm molded under the injection molding resin temperature conditions of a resin temperature of 310 ° C. and a mold temperature of 90 ° C., bending elasticity according to ASTM D-790 The rate was measured, and the case where the value was 4000 MPa or more was indicated by ◯, and the case where it was less than 4000 MPa was indicated by x.

〈使用樹脂及び充填剤〉
1)PAS(A)
溶融粘度(フローテスターを用いて、300℃、荷重196N、L/D=10/1で6分間保持した後測定した値。)が500ポイズである直鎖状構造を有するポリフェニレンサルファイド。
2)PPE(B)
極限粘度[η]が0.52(30℃、クロロホルム中)であるポリ2,6−ジメチル−1,4−フェニレンエーテル(密度1.06g/cm3
3)相溶化剤(C)
グリシジルメタクリレートを5重量%含有するスチレン−グリシジルメタクリレート共重合体(重量平均分子量110,000)
4)カーボン系充填剤(D)
カーボンファイバー(D−1):パイロフィルチョップドファイバ−TR066A(三菱レーヨン製)、カーボングラファイト(D−2):鱗片状グラファイトF#2(日本黒鉛工業製)、カーボンブラック(D−3):ケッチェンブラックEC600JD(ケッチェンブラックインターナショナル製)
5)無機質充填剤(E)
ガラスファイバー(E−1):RES03−TPO15(日本板硝子社製)、ガラスフレーク(E−2):REFG−302(日本板硝子製)、タルク:ハイトロンA(竹原化学工業製)
<Used resin and filler>
1) PAS (A)
Polyphenylene sulfide having a linear structure having a melt viscosity of 500 poise (melting viscosity (measured using a flow tester at 300 ° C., load 196 N, L / D = 10/1 for 6 minutes)).
2) PPE (B)
Poly 2,6-dimethyl-1,4-phenylene ether (density 1.06 g / cm 3 ) having an intrinsic viscosity [η] of 0.52 (30 ° C. in chloroform)
3) Compatibilizer (C)
Styrene-glycidyl methacrylate copolymer containing 5% by weight of glycidyl methacrylate (weight average molecular weight 110,000)
4) Carbon filler (D)
Carbon fiber (D-1): Pyrofil chopped fiber-TR066A (manufactured by Mitsubishi Rayon), carbon graphite (D-2): scaly graphite F # 2 (manufactured by Nippon Graphite Industry), carbon black (D-3): Chain Black EC600JD (Ketjen Black International)
5) Inorganic filler (E)
Glass fiber (E-1): RES03-TPO15 (manufactured by Nippon Sheet Glass), glass flake (E-2): REFG-302 (manufactured by Nippon Sheet Glass), talc: Hytron A (manufactured by Takehara Chemical Industries)

[実施例1〜4]
表1に示すような各成分の配合組成にて、温度290〜320℃、スクリュー回転数500rpmに設定した二軸押出機(ZSK−40:WERNER&PFLEIDERE社製)にて溶融混練りし、組成物ペレットを得た。このペレットを用いて成形品を作成し、各種試験を行った。評価結果を表1に示した。
実施例1〜5は成形品の表面抵抗値の安定性は良く、絶縁性に優れ、反りが小さく、耐熱性、成形性、機械的特性に優れていた。
[Examples 1 to 4]
The composition composition of each component as shown in Table 1 was melt-kneaded with a twin screw extruder (ZSK-40: manufactured by WERNER & PFLEIDERE) set at a temperature of 290 to 320 ° C. and a screw rotation speed of 500 rpm, and the composition pellets Got. Using this pellet, a molded product was prepared and subjected to various tests. The evaluation results are shown in Table 1.
In Examples 1 to 5, the stability of the surface resistance value of the molded product was good, the insulation was excellent, the warp was small, and the heat resistance, moldability, and mechanical properties were excellent.

[比較例1〜2]
表1に示すような各成分の配合組成にて、温度290〜320℃、スクリュー回転数500rpmに設定した二軸押出機(ZSK−40:WERNER&PFLEIDERE社製)にて溶融混練りし、組成物ペレットを得た。このペレットを用いて成形品を作成し、各種試験を行った。評価結果を表1に示した。
比較例1は、ショートが発生し、成形品にバリが発生し、反りも大きくなった。比較例2は、ショートが発生する成形品と発生しない成形品があり、即ち安定した絶縁性能が得られず、かつ成形品の反りが大きくなった。
[Comparative Examples 1-2]
The composition composition of each component as shown in Table 1 was melt-kneaded with a twin screw extruder (ZSK-40: manufactured by WERNER & PFLEIDERE) set at a temperature of 290 to 320 ° C. and a screw rotation speed of 500 rpm, and the composition pellets Got. Using this pellet, a molded product was prepared and subjected to various tests. The evaluation results are shown in Table 1.
In Comparative Example 1, short-circuiting occurred, burrs were generated in the molded product, and warpage was increased. In Comparative Example 2, there are a molded product in which a short circuit occurs and a molded product in which a short circuit does not occur, that is, a stable insulation performance cannot be obtained, and warping of the molded product is increased.

Figure 2006291076
Figure 2006291076

本発明のコイル封止材用熱可塑性樹脂組成物は、電機・電子機器、自動車機器、化学機器などを構成する作動用あるいは、駆動用のコイル部品におけるコイル封止材の分野で好適に利用できる。   The thermoplastic resin composition for a coil sealing material of the present invention can be suitably used in the field of coil sealing material in a coil component for operation or drive constituting an electric / electronic device, an automobile device, a chemical device and the like. .

線膨張係数測定用成形品切り出し位置を示すダンベル型成形品の斜視図である。It is a perspective view of the dumbbell-shaped molded article which shows the molded article cutting position for linear expansion coefficient measurement. 線膨張係数測定用成形品の斜視図である。It is a perspective view of the molded article for measuring a linear expansion coefficient. 絶縁性測定用インサート成形品の上面図である。It is a top view of the insert molded product for insulation measurement.

符号の説明Explanation of symbols

(1)線膨張係数測定用成形品ゲート位置
(2)線膨張係数垂直方向切り出し位置
(3)線膨張係数流動方向切り出し位置
(4)絶縁性能評価用樹脂成形品ゲート位置
(5)電極用銅板
(6)電極用銅板
(1) Linear expansion coefficient measurement molded product gate position (2) Linear expansion coefficient vertical cutout position (3) Linear expansion coefficient flow direction cutout position (4) Insulation performance evaluation resin molded product gate position (5) Electrode copper plate (6) Copper plate for electrodes

Claims (4)

表面抵抗値が1×10〜1×1011Ωの範囲であり、表面抵抗値の異方性が1.0〜2.0の範囲であり、線膨張係数の異方性が1.0〜2.5であり、かつ荷重たわみ温度が150℃〜280℃の範囲であることを特徴とするコイル封止材用熱可塑性樹脂組成物。 The surface resistance value is in the range of 1 × 10 6 to 1 × 10 11 Ω, the anisotropy of the surface resistance value is in the range of 1.0 to 2.0, and the anisotropy of the linear expansion coefficient is 1.0. A thermoplastic resin composition for a coil sealing material, which is ˜2.5 and has a deflection temperature under load of 150 ° C. to 280 ° C. 熱可塑性樹脂組成物がポリアリーレンサルファイド樹脂(A)、ポリフェニレンエーテル樹脂(B)からなる樹脂組成物に、相溶化剤(C)、カーボン系充填剤(D)、及び無機質充填剤(E)を配合してなることを特徴とする請求項1に記載のコイル封止材用熱可塑性樹脂組成物。   A thermoplastic resin composition comprising a polyarylene sulfide resin (A) and a polyphenylene ether resin (B), a compatibilizer (C), a carbon-based filler (D), and an inorganic filler (E). The thermoplastic resin composition for a coil sealing material according to claim 1, wherein the thermoplastic resin composition is blended. 熱可塑性樹脂組成物がポリアリーレンサルファイド樹脂(A)30〜90質量%、ポリフェニレンエーテル樹脂(B)70〜10質量%からなる樹脂組成物100質量部に対して、相溶化剤(C)1〜100質量部、及びカーボン系充填剤(D)と無機質充填剤(E)の合計量が5〜300質量部を配合してなることを特徴とする請求項1又は2に記載のコイル封止材用熱可塑性樹脂組成物。   Compatibilizing agent (C) 1 to 100 parts by mass of a resin composition comprising 30 to 90% by mass of polyarylene sulfide resin (A) and 70 to 10% by mass of polyphenylene ether resin (B). The coil sealing material according to claim 1 or 2, wherein 100 parts by mass and a total amount of the carbon-based filler (D) and the inorganic filler (E) are blended in an amount of 5 to 300 parts by mass. Thermoplastic resin composition. カーボン系充填剤(D)がカーボンファイバー(D−1)、カーボングラファイト(D−2)、カーボンブラック(D−3)又はそれらの混合物であることを特徴とする請求項1〜3のいずれか1項に記載のコイル封止材用熱可塑性樹脂組成物。   The carbon-based filler (D) is carbon fiber (D-1), carbon graphite (D-2), carbon black (D-3), or a mixture thereof. Item 2. The thermoplastic resin composition for a coil sealing material according to item 1.
JP2005114989A 2005-04-12 2005-04-12 Thermoplastic resin composition as coil-sealing material Pending JP2006291076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114989A JP2006291076A (en) 2005-04-12 2005-04-12 Thermoplastic resin composition as coil-sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114989A JP2006291076A (en) 2005-04-12 2005-04-12 Thermoplastic resin composition as coil-sealing material

Publications (1)

Publication Number Publication Date
JP2006291076A true JP2006291076A (en) 2006-10-26

Family

ID=37411991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114989A Pending JP2006291076A (en) 2005-04-12 2005-04-12 Thermoplastic resin composition as coil-sealing material

Country Status (1)

Country Link
JP (1) JP2006291076A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114056A1 (en) 2006-03-30 2007-10-11 Asahi Kasei Chemicals Corporation Resin composition and molded product thereof
JP2014517108A (en) * 2011-05-18 2014-07-17 ビーエーエスエフ ソシエタス・ヨーロピア Thermoplastic molding material composed of polyarylene ether and polyphenylene sulfide having improved processing stability
JP2017514970A (en) * 2014-05-06 2017-06-08 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Articles comprising a poly (phenylene ether) -polysiloxane copolymer composition
US10189990B2 (en) 2015-04-27 2019-01-29 Sabic Global Technologies B.V. Poly(phenylene ether) composition and article

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172059A (en) * 1986-01-27 1987-07-29 Toray Ind Inc Polyphenylene sulfide resin composition
JPH07278433A (en) * 1994-04-12 1995-10-24 Mitsubishi Chem Corp Thermoplastic resin composition
JPH10237301A (en) * 1997-02-26 1998-09-08 Toray Ind Inc Polyphenylene sulfide resin composition
JP2003119383A (en) * 2001-10-15 2003-04-23 Toray Ind Inc Polyarylene sulfide resin composition
JP2003147200A (en) * 2001-11-14 2003-05-21 Toray Ind Inc Polyarylene sulfide resin composition
JP2003171551A (en) * 2001-12-07 2003-06-20 Toray Ind Inc Polyarylene sulfide resin composition and application thereof
JP2003327828A (en) * 2002-05-14 2003-11-19 Toray Ind Inc Polyarylene sulfide resin composition and optical pick-up part consisting of the same
JP2004231697A (en) * 2003-01-28 2004-08-19 Asahi Kasei Chemicals Corp Resin chassis for projector
JP2005082760A (en) * 2003-09-10 2005-03-31 Asahi Kasei Chemicals Corp Resin composition for precision molded article
JP2005105024A (en) * 2003-09-29 2005-04-21 Sumitomo Bakelite Co Ltd Polyphenylene sulfide resin composition and molded article
JP2006316245A (en) * 2004-12-21 2006-11-24 Asahi Kasei Chemicals Corp Polyphenylene sulfide resin composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172059A (en) * 1986-01-27 1987-07-29 Toray Ind Inc Polyphenylene sulfide resin composition
JPH07278433A (en) * 1994-04-12 1995-10-24 Mitsubishi Chem Corp Thermoplastic resin composition
JPH10237301A (en) * 1997-02-26 1998-09-08 Toray Ind Inc Polyphenylene sulfide resin composition
JP2003119383A (en) * 2001-10-15 2003-04-23 Toray Ind Inc Polyarylene sulfide resin composition
JP2003147200A (en) * 2001-11-14 2003-05-21 Toray Ind Inc Polyarylene sulfide resin composition
JP2003171551A (en) * 2001-12-07 2003-06-20 Toray Ind Inc Polyarylene sulfide resin composition and application thereof
JP2003327828A (en) * 2002-05-14 2003-11-19 Toray Ind Inc Polyarylene sulfide resin composition and optical pick-up part consisting of the same
JP2004231697A (en) * 2003-01-28 2004-08-19 Asahi Kasei Chemicals Corp Resin chassis for projector
JP2005082760A (en) * 2003-09-10 2005-03-31 Asahi Kasei Chemicals Corp Resin composition for precision molded article
JP2005105024A (en) * 2003-09-29 2005-04-21 Sumitomo Bakelite Co Ltd Polyphenylene sulfide resin composition and molded article
JP2006316245A (en) * 2004-12-21 2006-11-24 Asahi Kasei Chemicals Corp Polyphenylene sulfide resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114056A1 (en) 2006-03-30 2007-10-11 Asahi Kasei Chemicals Corporation Resin composition and molded product thereof
US8487035B2 (en) 2006-03-30 2013-07-16 Asahi Kasei Chemicals Corporation Resin composition and molded product thereof
US8658731B2 (en) 2006-03-30 2014-02-25 Asahi Kasei Chemicals Corporation Resin composition and molded product thereof
JP2014517108A (en) * 2011-05-18 2014-07-17 ビーエーエスエフ ソシエタス・ヨーロピア Thermoplastic molding material composed of polyarylene ether and polyphenylene sulfide having improved processing stability
JP2017514970A (en) * 2014-05-06 2017-06-08 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Articles comprising a poly (phenylene ether) -polysiloxane copolymer composition
US10113055B2 (en) 2014-05-06 2018-10-30 Sabic Global Technologies B.V. Article comprising poly(phenylene ether)-polysiloxane copolymer composition
US10189990B2 (en) 2015-04-27 2019-01-29 Sabic Global Technologies B.V. Poly(phenylene ether) composition and article

Similar Documents

Publication Publication Date Title
JP5405104B2 (en) Resin composition and molded product thereof
US7592382B2 (en) Flame retardant poly(arylene ether)/polyamide compositions, methods, and articles
EP1508595B1 (en) Polyphenylene sulfide resin composition
EP2285906B1 (en) Flame resistant polyphthalamide/poly(arylene ether) composition
US6353050B1 (en) Thermoplastic blend comprising poly(arylene ether) and polyamide
EP2344574B1 (en) Poly(arylene ether)/polyamide composition and method of making
US8257613B2 (en) Filled compositions and a method of making
EP1345240B1 (en) Method of forming a conductive thermoplastic composition
JP2006291076A (en) Thermoplastic resin composition as coil-sealing material
EP3052569B1 (en) Reinforced polyphthalamide/poly(phenylene ether) composition
EP0666575A1 (en) Electroconductive resin composition
JP2008007663A (en) Resin composition
JP2005298545A (en) Method for producing electroconductive resin composition
JP3265407B2 (en) Thermoplastic resin composition
JP4130318B2 (en) Thermoplastic resin composition
JP4173377B2 (en) Resin composition
JP2004269664A (en) Excellent case body made of resin
US7037986B2 (en) Lead free solder friendly thermoplastic blends and methods of manufacture thereof
JP4502647B2 (en) Conductive resin composition and molded body
JP2004340237A (en) Mechanism component made of resin
JPH059375A (en) Electrically conductive thermoplastic resin composition effective to suppress generation of sulfur oxide gas and electric and electronic part
JPH05194863A (en) Thermoplastic resin composition suppressed in formation of sulfur oxide gas and electrical or electronic component obtained therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

RD03 Notification of appointment of power of attorney

Effective date: 20080401

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Effective date: 20101216

Free format text: JAPANESE INTERMEDIATE CODE: A02