JP2005259600A - Efficient electronic emitter and its manufacturing method - Google Patents

Efficient electronic emitter and its manufacturing method Download PDF

Info

Publication number
JP2005259600A
JP2005259600A JP2004071438A JP2004071438A JP2005259600A JP 2005259600 A JP2005259600 A JP 2005259600A JP 2004071438 A JP2004071438 A JP 2004071438A JP 2004071438 A JP2004071438 A JP 2004071438A JP 2005259600 A JP2005259600 A JP 2005259600A
Authority
JP
Japan
Prior art keywords
group
aspect ratio
carbon nanotube
catalyst
electron emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004071438A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Katayama
光浩 片山
Shinichi Honda
信一 本多
Keiki Ri
奎毅 李
Kenjiro Oura
憲治郎 尾浦
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO GIKEN KK
Original Assignee
NANO GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO GIKEN KK filed Critical NANO GIKEN KK
Priority to JP2004071438A priority Critical patent/JP2005259600A/en
Publication of JP2005259600A publication Critical patent/JP2005259600A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To enable to reduce threshold voltage of a carbon nano-tube electron emitter and enable to obtain higher electric current density as for a highly efficient electron emitter and its manufacturing method. <P>SOLUTION: This emitter is provided with a particulate group which is selectively formed on a metal, a semiconductor, or an insulating substrate and which becomes a catalyst, with a carbon nano-tube group 10 having a high aspect ratio and being formed in the catalyst particulate group. The carbon nano-tube group is formed to have the length of 10 μm or more and to have the aspect ratio of 10,000 or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属、半導体あるいはガラス、セラミック等の絶縁性基板上の金属薄膜上に分散された触媒超微粒子集団、あるいは触媒となる金属および非遷移金属が一定割合の超微粒子集団が選択的に形成されており、当該超微粒子上に長尺および高アスペクト比のカーボンナノチューブ群が形成されたことを特徴とする高効率電子エミッタおよびその製造方法に関する。   In the present invention, a catalyst ultrafine particle group dispersed on a metal thin film on an insulating substrate such as a metal, a semiconductor, glass, or ceramic, or an ultrafine particle group having a certain ratio of a metal and a non-transition metal as a catalyst is selectively used. The present invention relates to a high-efficiency electron emitter and a method of manufacturing the same, wherein a group of long and high aspect ratio carbon nanotubes are formed on the ultrafine particles.

従来、高効率電子エミッタとしてカーボンナノチューブやカーボンナノファイバー等の炭素系材料が注目され研究開発されてきた。なかでも、カーボンナノチューブはその大きいアスペクト比から優れた電子放出能を示すことから、分散法やCVD法を用いて商品化開発が行われている(例えば、特許文献1参照)。   Conventionally, carbon-based materials such as carbon nanotubes and carbon nanofibers have attracted attention and have been researched and developed as high-efficiency electron emitters. Among them, since carbon nanotubes exhibit excellent electron emission ability due to their large aspect ratio, commercial development has been carried out using a dispersion method or a CVD method (see, for example, Patent Document 1).

特に、カーボンナノチューブを基板に対し垂直方向に配置し、その大きいアスペクト比を生かし、ナノメートルサイズの尖った先端に電界を集中させ電子放出素子として利用するケースにおいては、電界集中を有効に生じさせるために、カーボンナノチューブを適切な密度で形成することが必要であることがコンピュータシミュレーションにより示された。   In particular, in the case where carbon nanotubes are arranged in a direction perpendicular to the substrate, taking advantage of the large aspect ratio and concentrating the electric field on a sharp tip with a nanometer size, the electric field concentration is effectively generated. Therefore, it has been shown by computer simulation that it is necessary to form carbon nanotubes with an appropriate density.

しかし、単体の通常の方法で得られる数μmのカーボンナノチューブを最適に配置することによって得られる閾電圧は1〜2V/μm(1μA/cm)、電流密度は2〜3V/μm(1mA/cm)であり、電子放出電流密度ならびに閾電圧は不充分であった。
特開2001−48512号
However, the threshold voltage obtained by optimally arranging several μm carbon nanotubes obtained by a single ordinary method is 1-2 V / μm (1 μA / cm 2 ), and the current density is 2-3 V / μm (1 mA / cm 2 ), and the electron emission current density and the threshold voltage were insufficient.
JP 2001-48512 A

したがって、本発明においては、カーボンナノチューブ電子エミッタの閾電圧をより低下させ、かつ、より高い電流密度を得ることを課題とする。   Accordingly, it is an object of the present invention to further reduce the threshold voltage of the carbon nanotube electron emitter and obtain a higher current density.

本発明の高効率電子エミッタは、金属,半導体あるいは絶縁性基板上に選択的に形成された触媒となる微粒子集団と、該触媒微粒子集団に形成された高アスペクト比を有するカーボンナノチューブ群とを備えたものである。   The high-efficiency electron emitter of the present invention comprises a fine particle group that is a catalyst selectively formed on a metal, semiconductor, or insulating substrate, and a carbon nanotube group that is formed in the catalyst fine particle group and has a high aspect ratio. It is a thing.

カーボンナノチューブ群は、長さ10μm以上でかつアスペクト比が10000以上に形成されている。   The carbon nanotube group has a length of 10 μm or more and an aspect ratio of 10,000 or more.

触媒微粒子としては、少なくともFeおよびFeを含む化学物あるいは混合元素である。   The catalyst fine particles are chemicals or mixed elements containing at least Fe and Fe.

基板がSiであり、触媒微粒子がAl薄膜上に形成したFe薄膜を熱処理して得られるFe/Alであることを特徴とする請求項1に記載の高効率電子エミッタ。
本発明の高効率電子エミッタの製造方法は、基板上に金属薄膜を形成する工程と、前記金属薄膜上に触媒微粒子を形成する工程と、前記触媒微粒子をエッチングして集団形成する工程と、前記触媒微粒子集団に10μm以上の長尺でかつアスペクト比が10000以上のカーボンナノチューブ群を形成する工程とを含むものである。
The high-efficiency electron emitter according to claim 1, wherein the substrate is Si, and the catalyst fine particles are Fe / Al obtained by heat-treating an Fe thin film formed on an Al thin film.
The method for producing a high-efficiency electron emitter of the present invention includes a step of forming a metal thin film on a substrate, a step of forming catalyst fine particles on the metal thin film, a step of collectively forming the catalyst fine particles by etching, Forming a carbon nanotube group having a length of 10 μm or more and an aspect ratio of 10,000 or more in the catalyst fine particle population.

本発明の高効率電子エミッタおよびその製造方法によると、長尺カーボンナノチューブのアスペクト比の大きさを利用し、電子放出にかかわる先端部分の結晶性が良好なカーボンナノチューブが得られ、電子放出電流も大きくできる。   According to the high-efficiency electron emitter of the present invention and the manufacturing method thereof, a carbon nanotube having a good crystallinity at the tip portion related to electron emission can be obtained by utilizing the size of the aspect ratio of the long carbon nanotube, and the electron emission current is also reduced. Can be bigger.

また、パターン化による電界集中の促進により、電子放出サイトが大きいことと相まって、電子放出電流を大きくすることができる。   Further, by promoting the electric field concentration by patterning, the electron emission current can be increased in combination with the large electron emission site.

本発明によれば、カーボンナノチューブ電子エミッタの閾電圧をより低下させ、かつ、より高い電流密度を得ることができる。   According to the present invention, the threshold voltage of the carbon nanotube electron emitter can be further reduced and a higher current density can be obtained.

本発明の最良の実施形態を図1ないし図13に基づいて説明する。
熱CVD法による長尺のカーボンナノチューブの形成について述べる。
The best mode for carrying out the present invention will be described with reference to FIGS.
The formation of long carbon nanotubes by thermal CVD will be described.

表1に熱CVDの条件を示す。   Table 1 shows the conditions for thermal CVD.

基板としてはSi基板を用い、Si基板上に金属薄膜を形成し、かつ、金属薄膜上にマグネトロンスパッタリングにより、Alを10nm、Feを10nm形成した基板を用いている。   As the substrate, a Si substrate is used, a metal thin film is formed on the Si substrate, and a substrate in which Al is formed to 10 nm and Fe is formed to 10 nm on the metal thin film by magnetron sputtering is used.

図1にカーボンナノチューブ成長前のFe/Al触媒微粒子のSEM像を示す。   FIG. 1 shows an SEM image of Fe / Al catalyst fine particles before carbon nanotube growth.

図2に基板上に作成したカーボンナノチューブの断面SEM像、図3に図2のカーボンナノチューブの断面SEM像の先端部分の拡大図、図4に図2のカーボンナノチューブの断面SEM像のボディ部分の拡大図を示す。   2 is a cross-sectional SEM image of the carbon nanotube prepared on the substrate, FIG. 3 is an enlarged view of the tip portion of the cross-sectional SEM image of the carbon nanotube in FIG. 2, and FIG. 4 is a body part of the cross-sectional SEM image of the carbon nanotube in FIG. An enlarged view is shown.

図5にFe/Al/Si上に作成した多層カーボンナノチューブのTEM像、図6に図5の多層カーボンナノチューブ構造のグラファイト層の拡大図を示す。   FIG. 5 shows a TEM image of the multi-walled carbon nanotube formed on Fe / Al / Si, and FIG. 6 shows an enlarged view of the graphite layer of the multi-walled carbon nanotube structure of FIG.

カーボンナノチューブは、長さ80〜140μm、平均直径10nm以下、密度1010/cmである結晶性のよい多層カーボンナノチューブである、
図7,8に、カーボンナノチューブのパターン化について示す。基板上に形成した触媒をフォトリソグラフィにより、直径50μm、ピッチ250μmにてパターン化する。10はカーボンナノチューブ群を示しており、各カーボンナノチューブの一本の長さは120μm、直径は10nmであり、アスペクト比は12000(>10000)となる。
The carbon nanotubes are multi-walled carbon nanotubes with good crystallinity having a length of 80 to 140 μm, an average diameter of 10 nm or less, and a density of 10 10 / cm 2 .
7 and 8 show the patterning of carbon nanotubes. The catalyst formed on the substrate is patterned by photolithography with a diameter of 50 μm and a pitch of 250 μm. Reference numeral 10 denotes a group of carbon nanotubes. Each carbon nanotube has a length of 120 μm, a diameter of 10 nm, and an aspect ratio of 12000 (> 10000).

図9に、パターン化されたカーボンナノチューブの電界電子放出特性を示す。横軸は電界E(V/μm)、縦軸は電子放出電流密度J(A/cm)を示している。図9より、ターンオン電界(1μA/cm)としてVon=0.4V/μm、閾値電界(1mA/cm)としてVth=0.7V/μmという極めて優れたE−J特性を示す高効率電子エミッタ特性が得られることが明らかになった。 FIG. 9 shows the field electron emission characteristics of the patterned carbon nanotubes. The horizontal axis represents the electric field E (V / μm), and the vertical axis represents the electron emission current density J (A / cm 2 ). From FIG. 9, it is shown that the turn-on electric field (1 μA / cm 2 ) is V on = 0.4 V / μm and the threshold electric field (1 mA / cm 2 ) is Vth = 0.7 V / μm. It became clear that the electron emitter characteristic was obtained.

図10に、パターン化された長尺カーボンナノチューブの電子放出像(対向する蛍光体塗布アノード上の発光パターン)を示している。
このようなパターン化による高効率化について理由を検討するため、電界電子放出特性(F−Nプロット)を調べた。図11にその結果を示す。この結果より、パターン化ありの場合と、パターン化なしの場合の双方とも、J/E−1/E特性は直線上に乗り、電界放出であることを示している。
FIG. 10 shows an electron emission image of a patterned long carbon nanotube (light emission pattern on the opposing phosphor-coated anode).
In order to examine the reason for high efficiency by such patterning, field electron emission characteristics (FN plot) were examined. FIG. 11 shows the result. This result shows that the J / E 2 -1 / E characteristic is on a straight line in both the case with patterning and the case without patterning, indicating field emission.

ただし、F−N式は、
ln(J/E)=lnA−(1/E)・(C/β)
ここで、
A=1.56×10−6・β/φ
C=6.83×10φ3/2
以下、仕事関数φ=5eVとしている。
However, the FN formula is
ln (J / E 2 ) = lnA− (1 / E) · (C / β)
here,
A = 1.56 × 10 −6 · β 2 / φ
C = 6.83 × 10 9 φ 3/2
Hereinafter, the work function φ = 5 eV.

パターン化ありの場合、F−N式から求めた電界集中因子β≒14000であり、パターン化なしの場合、β≒6000であった。   In the case of patterning, the electric field concentration factor β≈14000 obtained from the FN equation, and in the case of no patterning, β≈6000.

以上のことから、パターン化による高効率化は、電解集中因子βの増大、電子放出サイトの増大、結晶性の向上等によることが判る。   From the above, it can be seen that the high efficiency by patterning is due to an increase in the electrolytic concentration factor β, an increase in electron emission sites, an improvement in crystallinity, and the like.

さらに、ガラス基板を用いるときに必要と考えられるプロセス温度の低温化について検討した。図12に、成長温度550℃で直径50μm、ピッチ100μmの低温合成パターン化カーボンナノチューブの電界電子放出特性を示す。この図から、低温(550℃)合成の試料においても、ターンオン電界1.3V/μm、閾値電界2.3V/μmの優れた電子放出特性が得られることが判った。   Furthermore, the process temperature reduction considered to be necessary when using a glass substrate was examined. FIG. 12 shows the field electron emission characteristics of low-temperature synthetic patterned carbon nanotubes with a growth temperature of 550 ° C. and a diameter of 50 μm and a pitch of 100 μm. From this figure, it was found that excellent electron emission characteristics with a turn-on electric field of 1.3 V / μm and a threshold electric field of 2.3 V / μm can be obtained even in a low-temperature (550 ° C.) synthesized sample.

図13にエミッション電流の安定性を示す。図より、エミッション電流が安定していることが判る。   FIG. 13 shows the stability of the emission current. From the figure, it can be seen that the emission current is stable.

なお、上記のカーボンナノチューブの長さ、アスペクト比、パターン化によるピッチ等は一例であり、これに限るものではない。   The length, aspect ratio, patterning pitch, and the like of the carbon nanotubes described above are merely examples, and the present invention is not limited thereto.

本発明は、低消費電力,高輝度光源への応用、大型低消費電力,高輝度薄型ディスプレイ(FED:Field Emission Display)として有用である。   INDUSTRIAL APPLICABILITY The present invention is useful as a low power consumption, application to a high luminance light source, a large size low power consumption, high luminance thin display (FED: Field Emission Display).

本発明の実施の形態におけるカーボンナノチューブ成長前のFe/Al触媒微粒子のSEM像SEM image of Fe / Al catalyst fine particles before carbon nanotube growth in an embodiment of the present invention 本発明の実施の形態における基板上に作成したカーボンナノチューブの断面SEM像Cross-sectional SEM image of carbon nanotubes formed on a substrate in an embodiment of the present invention 図2のカーボンナノチューブの断面SEM像の先端部分の拡大図Enlarged view of the tip of the cross-sectional SEM image of the carbon nanotube of FIG. 図2のカーボンナノチューブの断面SEM像のボディ部分の拡大図Enlarged view of the body part of the cross-sectional SEM image of the carbon nanotube of FIG. 本発明の実施の形態におけるFe/Al/Si上に作成した多層カーボンナノチューブのTEM像TEM image of multi-walled carbon nanotube prepared on Fe / Al / Si in an embodiment of the present invention 図5の多層カーボンナノチューブ構造のグラファイト層の拡大図Enlarged view of the graphite layer of the multi-walled carbon nanotube structure of FIG. 本発明の実施の形態におけるカーボンナノチューブのパターン化の様子を示す斜視図The perspective view which shows the mode of patterning of the carbon nanotube in embodiment of this invention 本発明の実施の形態におけるカーボンナノチューブの斜視図The perspective view of the carbon nanotube in an embodiment of the invention 本発明の実施の形態におけるパターン化されたカーボンナノチューブからの発光と電界電子放出特性図Emission and field electron emission characteristics from patterned carbon nanotubes in an embodiment of the present invention 本発明の実施の形態におけるパターン化された長尺カーボンナノチューブの電子放出像Electron emission image of patterned long carbon nanotube in an embodiment of the present invention 本発明の実施の形態における電界電子放出特性図Field Electron Emission Characteristics in Embodiment of the Present Invention 本発明の実施の形態における低温合成パターン化カーボンナノチューブの電界電子放出特性図Field emission characteristic diagram of low-temperature synthetic patterned carbon nanotubes in an embodiment of the present invention 本発明の実施の形態におけるエミッション電流の安定性を示すグラフThe graph which shows the stability of the emission current in embodiment of this invention

符号の説明Explanation of symbols

10 カーボンナノチューブ群 10 Carbon nanotube group

Claims (5)

金属,半導体あるいは絶縁性基板上に選択的に形成された触媒となる微粒子集団と、該触媒微粒子集団に形成された高アスペクト比を有するカーボンナノチューブ群とを備えた高効率電子エミッタ。   A high-efficiency electron emitter comprising a group of fine particles as a catalyst selectively formed on a metal, semiconductor, or insulating substrate, and a group of carbon nanotubes having a high aspect ratio formed in the catalyst fine particle group. 前記カーボンナノチューブ群が、長さ10μm以上でかつアスペクト比が10000以上に形成されていることを特徴とする請求項1に記載の高効率電子エミッタ。   2. The high efficiency electron emitter according to claim 1, wherein the carbon nanotube group has a length of 10 μm or more and an aspect ratio of 10,000 or more. 触媒微粒子として少なくともFeおよびFeを含む化学物あるいは混合元素であることを特徴とする請求項1に記載の高効率電子エミッタ。   2. The high-efficiency electron emitter according to claim 1, wherein the catalyst fine particle is a chemical or mixed element containing at least Fe and Fe. 前記基板がSiであり、前記触媒微粒子がAl薄膜上に形成したFe薄膜を熱処理して得られるFe/Alであることを特徴とする請求項1に記載の高効率電子エミッタ。   2. The high efficiency electron emitter according to claim 1, wherein the substrate is Si and the catalyst fine particles are Fe / Al obtained by heat-treating an Fe thin film formed on an Al thin film. 基板上に金属薄膜を形成する工程と、前記金属薄膜上に触媒微粒子を形成する工程と、前記触媒微粒子をエッチングして集団形成する工程と、前記触媒微粒子集団に10μm以上の長尺でかつアスペクト比が10000以上のカーボンナノチューブ群を形成する工程とを含む高効率電子エミッタの製造方法。   Forming a metal thin film on the substrate; forming catalyst fine particles on the metal thin film; etching the catalyst fine particles to form a group; and forming the catalyst fine particle group with a length of 10 μm or more and an aspect ratio Forming a group of carbon nanotubes having a ratio of 10,000 or more.
JP2004071438A 2004-03-12 2004-03-12 Efficient electronic emitter and its manufacturing method Pending JP2005259600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004071438A JP2005259600A (en) 2004-03-12 2004-03-12 Efficient electronic emitter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004071438A JP2005259600A (en) 2004-03-12 2004-03-12 Efficient electronic emitter and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005259600A true JP2005259600A (en) 2005-09-22

Family

ID=35085102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004071438A Pending JP2005259600A (en) 2004-03-12 2004-03-12 Efficient electronic emitter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005259600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227076A (en) * 2006-02-22 2007-09-06 Dialight Japan Co Ltd Field emission electron source and manufacturing method
JP2011210439A (en) * 2010-03-29 2011-10-20 Toppan Printing Co Ltd Electron emission element, method of manufacturing the same, and surface light emitting element using the electron emission element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111917A (en) * 1997-06-18 1999-01-19 Canon Inc Production of carbon nanotube
JP2001057146A (en) * 1999-07-15 2001-02-27 Lucent Technol Inc Nanoscale conductor assembly, manufacture thereof, field emission device, microwave vacuum tube amplifier and display device
JP2001167721A (en) * 1999-11-05 2001-06-22 Cheol Jin Lee Electric field discharge display element and manufacturing method of the same
JP2002220215A (en) * 2000-11-21 2002-08-09 Futaba Corp Method for manufacturing nano carbon and nano carbon manufactured by the method, device for manufacturing nano carbon, method of patterning nano carbon and nano carbon base material patterned by use of the method and electron emission source using the patterned nano carbon base material
JP2004026532A (en) * 2002-06-24 2004-01-29 Honda Motor Co Ltd Method for forming carbon nanotube
JP2004060130A (en) * 2002-07-31 2004-02-26 Futaba Corp Carbon fiber, method for producing the same, and electron emission element
JP2004512247A (en) * 2000-10-27 2004-04-22 コミツサリア タ レネルジー アトミーク Apparatus for electron cyclotron resonance plasma deposition process and single-walled carbon nanotubes and nanotubes obtained thereby

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111917A (en) * 1997-06-18 1999-01-19 Canon Inc Production of carbon nanotube
JP2001057146A (en) * 1999-07-15 2001-02-27 Lucent Technol Inc Nanoscale conductor assembly, manufacture thereof, field emission device, microwave vacuum tube amplifier and display device
JP2001167721A (en) * 1999-11-05 2001-06-22 Cheol Jin Lee Electric field discharge display element and manufacturing method of the same
JP2004512247A (en) * 2000-10-27 2004-04-22 コミツサリア タ レネルジー アトミーク Apparatus for electron cyclotron resonance plasma deposition process and single-walled carbon nanotubes and nanotubes obtained thereby
JP2002220215A (en) * 2000-11-21 2002-08-09 Futaba Corp Method for manufacturing nano carbon and nano carbon manufactured by the method, device for manufacturing nano carbon, method of patterning nano carbon and nano carbon base material patterned by use of the method and electron emission source using the patterned nano carbon base material
JP2004026532A (en) * 2002-06-24 2004-01-29 Honda Motor Co Ltd Method for forming carbon nanotube
JP2004060130A (en) * 2002-07-31 2004-02-26 Futaba Corp Carbon fiber, method for producing the same, and electron emission element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227076A (en) * 2006-02-22 2007-09-06 Dialight Japan Co Ltd Field emission electron source and manufacturing method
JP2011210439A (en) * 2010-03-29 2011-10-20 Toppan Printing Co Ltd Electron emission element, method of manufacturing the same, and surface light emitting element using the electron emission element

Similar Documents

Publication Publication Date Title
Zhu et al. Efficient field emission from ZnO nanoneedle arrays
Kwo et al. Characteristics of flat panel display using carbon nanotubes as electron emitters
Kim et al. Effects of the ion irradiation of screen-printed carbon nanotubes for use in field emission display applications
US20090200912A1 (en) Methods for Growing Carbon Nanotubes on Single Crystal Substrates
JP2007123280A (en) CARBON NANOTUBE HAVING ZnO PROTRUSION
JP2007242613A (en) Electroluminescent element using nano-rod
Shimoi et al. Highly crystalline single-walled carbon nanotube field emitters: Energy-loss-free high current output and long durability with high power
Li et al. Ultralow threshold field emission from ZnO nanorod arrays grown on ZnO film at low temperature
JP2008078081A (en) Field emission electron source and its manufacturing method
JP2005524198A (en) Electron field emitter and related compositions
JP2005259600A (en) Efficient electronic emitter and its manufacturing method
Jo et al. Field emission of carbon nanotubes grown on carbon cloth
Zeng et al. Atomic vacancy defects in the electronic properties of semi-metallic carbon nanotubes
KR20070113841A (en) Method for manufacturing a field emitter electrode using the vertical alignment of carbon nanotubes
Zhu et al. Superior integrated field emission cathode with ultralow turn‐on field and high stability based on SiC nanocone arrays
Srivastava et al. Effect of substrate morphology on growth and field emission properties of carbon nanotube films
Jain et al. Copper nanowire–carbon nanotube hierarchical structure for enhanced field emission
JP4780546B2 (en) Method for producing carbon nanotube and method for producing current control element
TWI309428B (en) Emission source having carbon nanotube
Tseng et al. Field emission characteristics of a single free standing carbon nanotube with gate electrode
Jung et al. A simple method to control the diameter of carbon nanotubes and the effect of the diameter in field emission
Liu et al. Field emission from combined structures of carbon nanotubes and carbon nanofibers
JP4554260B2 (en) Expanded carbon fiber, method for producing the same, field emission device including the same, and field emission display
US7404750B2 (en) Method for reducing leakage current in a vacuum field emission display
JP2008166153A (en) Electron emitter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100805