JP4536456B2 - Plasma chemical vapor deposition method - Google Patents

Plasma chemical vapor deposition method Download PDF

Info

Publication number
JP4536456B2
JP4536456B2 JP2004238251A JP2004238251A JP4536456B2 JP 4536456 B2 JP4536456 B2 JP 4536456B2 JP 2004238251 A JP2004238251 A JP 2004238251A JP 2004238251 A JP2004238251 A JP 2004238251A JP 4536456 B2 JP4536456 B2 JP 4536456B2
Authority
JP
Japan
Prior art keywords
electrode
plasma
chemical vapor
substrate
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004238251A
Other languages
Japanese (ja)
Other versions
JP2006057122A (en
Inventor
康明 林
里佐 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Nissin Electric Co Ltd
Original Assignee
Kyoto Institute of Technology NUC
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Nissin Electric Co Ltd filed Critical Kyoto Institute of Technology NUC
Priority to JP2004238251A priority Critical patent/JP4536456B2/en
Publication of JP2006057122A publication Critical patent/JP2006057122A/en
Application granted granted Critical
Publication of JP4536456B2 publication Critical patent/JP4536456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、化学気相堆積(CVD:chemical vapor deposition)法を応用して、基板上に形成対象物(例えばカーボンナノチューブ)を堆積成長させるためのプラズマ化学気相堆積装置及び該装置を用いるプラズマ化学気相堆積方法に関する。   The present invention applies a chemical vapor deposition (CVD) method, a plasma chemical vapor deposition apparatus for depositing and growing an object to be formed (for example, carbon nanotube) on a substrate, and a plasma using the apparatus. The present invention relates to a chemical vapor deposition method.

プラズマ化学気相堆積法は今日、炭素膜等の各種膜の形成に利用されている。カーボンナノチューブ(以下、「CNT」と称することがある。)の形成にも利用が試みられている。プラズマ化学気相堆積法は比較的低温下で形成対象物を堆積形成でき、高温に耐えられない低融点のガラス等からなる基板等上にも形成対象物を堆積形成できる利点がある。   Plasma chemical vapor deposition is currently used to form various films such as carbon films. An attempt has been made to form carbon nanotubes (hereinafter sometimes referred to as “CNT”). The plasma chemical vapor deposition method has an advantage that an object to be formed can be deposited at a relatively low temperature, and the object to be formed can be deposited on a substrate made of a low melting point glass that cannot withstand high temperatures.

ここでカーボンナノチューブ(CNT)を例にとってみると、CNTは、一般に直径が1〜数十ナノメートルであるのに対して長さはそれよりも百倍以上長い構造を有し、また機械的に堅牢であり、大きな電流を流すことができる。このことから、CNTは各種分野において利用が試みられており、今日では、電界電子放出型ディスプレイ(FED:Field Emission Display) における電子源材料として期待されている。   Taking carbon nanotubes (CNTs) as an example, CNTs are generally 1 to several tens of nanometers in diameter, while their length is 100 times longer than that, and they are mechanically robust. A large current can flow. For this reason, CNTs have been tried to be used in various fields, and today, CNTs are expected as electron source materials in field emission displays (FEDs).

CNTをFEDの電子源として利用するには、電子を放出するCNT端部に強い電界を印加しなければならず、そのためには、CNTを基板上に垂直に或いはできるだけ垂直に配向させて立ち上がらせる必要がある。   In order to use CNT as an electron source of FED, a strong electric field must be applied to the end of the CNT that emits electrons, and for that purpose, the CNT is raised vertically or vertically as much as possible. There is a need.

CNTを用いたFEDはすでに試作されているが、こうしたCNTの基板上への配向の方法としては、一般的には、別途製造した微粒子粉末状のCNTを溶液に分散させた後、該溶液をFED製造に要求される大きい基板上に塗布し、該塗膜に電界を印加してCNTを直立させる方法が採用されている。   FEDs using CNTs have already been prototyped. Generally, as a method for aligning such CNTs on a substrate, after separately dispersing finely divided particulate CNTs in a solution, the solution is used. A method of applying the CNTs upright by applying an electric field to the coating film on a large substrate required for FED production is employed.

しかし、この方法ではCNTが基板上に均一に分布し難く、配向性の点でもあまり良くなく、そのため、かかるCNTを用いたFEDにおいては画像の明るさにムラがあり、また、電界電子放出のために大きな電圧を必要としている。   However, this method makes it difficult for CNTs to be uniformly distributed on the substrate and is not very good in terms of orientation. Therefore, in an FED using such CNTs, there is unevenness in image brightness, and field electron emission In order to require a large voltage.

そこで一方では、マイクロ波放電、高周波放電や直流(DC)放電によるプラズマ化学気相堆積(CVD)法を利用して、CNTを基板上に直接、垂直配向性良く成長させることが試みられている。   Therefore, on the other hand, attempts have been made to grow CNTs directly on a substrate with good vertical alignment by utilizing plasma chemical vapor deposition (CVD) method using microwave discharge, high frequency discharge or direct current (DC) discharge. .

DC放電によるプラズマ化学気相堆積(CVD)法を利用してCNTを基板上に形成する方法では、熱フィラメントを併用し、該熱フィラメントから熱電子をCNT形成のためのプラズマ内へ供給して電離を促進する方法も提案されている(Journal of Vacuum
Science and Technology A, Vol.19, No.4, pp.1796-1799, 2001 参照)。
In a method of forming CNTs on a substrate using a plasma enhanced chemical vapor deposition (CVD) method using DC discharge, a hot filament is used in combination, and thermoelectrons are supplied from the hot filament into the plasma for CNT formation. A method of promoting ionization has also been proposed (Journal of Vacuum
Science and Technology A, Vol.19, No.4, pp.1796-1799, 2001).

また、特開2003−147533号公報は、二つの電極のうち一方の電極を基板ホルダとして該電極上に基板を設置し、該両電極間に高周波電圧を印加してCNT形成のための高周波放電プラズマを形成するとともに該両電極間にグリッド電極を配置し、これにグリッド電圧を印加することで、CNTの垂直配向性を向上させることを開示している。
文献「Applied Physics Letters, Vol.76, No.13, pp.1776-1778, 2000」には、2.45GHzのマイクロ波プラズマCVD装置において、基板に負電圧を印加して垂直配向したCNTを作製する方法が提案されている。
Japanese Patent Laid-Open No. 2003-147533 discloses a high-frequency discharge for forming CNTs by setting a substrate on one of two electrodes as a substrate holder and applying a high-frequency voltage between the electrodes. It discloses that the vertical alignment of CNTs is improved by forming a plasma and arranging a grid electrode between the two electrodes and applying a grid voltage thereto.
In the document “Applied Physics Letters, Vol.76, No.13, pp.1776-1778, 2000”, in a 2.45 GHz microwave plasma CVD apparatus, a negative voltage is applied to the substrate to produce vertically aligned CNTs. A method has been proposed.

特開2003−147533号公報JP 2003-147533 A Journal of Vacuum Science and Technology A, Vol.19, No.4, pp.1796-1799, 2001Journal of Vacuum Science and Technology A, Vol.19, No.4, pp.1796-1799, 2001 Applied Physics Letters, Vol.76, No.13, pp.1776-1778 ,2000Applied Physics Letters, Vol.76, No.13, pp.1776-1778,2000

しかしながら、特開2003−147533号公報に開示された方法では基板に十分な負の電圧が印加されず、CNTの良好な垂直配向性が期待できない。また、マイクロ波プラズマCVD法では、プラズマの大きさがマイクロ波の波長(約12cm)で制限されているため、大きな面積の基板上にCNTを成長させることは困難である。   However, in the method disclosed in Japanese Patent Application Laid-Open No. 2003-147533, a sufficient negative voltage is not applied to the substrate, and good vertical alignment of CNT cannot be expected. In the microwave plasma CVD method, since the size of plasma is limited by the wavelength of the microwave (about 12 cm), it is difficult to grow CNTs on a substrate with a large area.

DCプラズマ法では、大きな面積の基板上へのCNTの成長は可能であるが、一般的なDCプラズマ法によると、異常放電が起きやすく、安定した定常的なプラズマの維持が困難であり、それがCNTの成長に影響を与えるという問題がある。   In the DC plasma method, it is possible to grow CNTs on a substrate having a large area. However, according to a general DC plasma method, abnormal discharge is likely to occur, and it is difficult to maintain a stable and steady plasma. Affects the growth of CNTs.

DCプラズマ法において、前記のように熱フィラメントを併用すると、該熱フィラメントから熱電子をCNT形成のためのプラズマ内へ供給して電離を促進することができ、それだけ安定した定常的なプラズマが維持される。
しかし、このように熱フィラメントを併用する場合、熱フィラメントとして用いる金属が、CNT成長のために真空容器内に導入された炭素を含むガスから分化した炭素と反応して炭化物を形成する。このため、CNT成長中に熱フィラメントが変形し温度分布が不均一となってプラズマが不安定になったりする。
In the DC plasma method, when a hot filament is used together as described above, thermoelectrons can be supplied from the hot filament into the plasma for CNT formation to promote ionization, and a stable and steady plasma can be maintained. Is done.
However, when the hot filament is used in this way, the metal used as the hot filament reacts with carbon differentiated from the gas containing carbon introduced into the vacuum vessel for CNT growth to form carbide. For this reason, the hot filament is deformed during CNT growth, the temperature distribution becomes non-uniform, and the plasma becomes unstable.

また、炭化物は脆いため、CNT成長中や基板の交換時にフィラメントが断線しやすくなり、このため、大面積基板上にCNTを成長させるためにCVD装置内に長さの長いフィラメントを張ることが難しく、基板のCNT成長面積に限界がある。   In addition, since the carbide is brittle, the filament is likely to break during CNT growth or during substrate replacement. For this reason, it is difficult to stretch a long filament in a CVD apparatus in order to grow CNT on a large area substrate. There is a limit to the CNT growth area of the substrate.

高周波プラズマCVD法では、一般に利用される高周波(13.56MHz)の波長は約22mであるため放電プラズマは大面積化が可能であり、従ってCNT成長基板の大面積化が可能となるが、高周波放電プラズマによると、基板表面に形成されるシース中の電界の大きさが不十分であり、そのためCNTを基板面に対し垂直に配向させて成長させることが困難である。   In the high-frequency plasma CVD method, since the wavelength of high-frequency (13.56 MHz) that is generally used is about 22 m, the discharge plasma can be increased in area, and thus the CNT growth substrate can be increased in area. According to the discharge plasma, the magnitude of the electric field in the sheath formed on the substrate surface is insufficient, so that it is difficult to grow by aligning CNTs perpendicular to the substrate surface.

以上、カーボンナノチューブの形成を例にとって説明したが、一般的に言っても、形成対象物を比較的大面積の基板上に該基板面に対し垂直配向性良好に立ち上がるように堆積成長させる場合には、かかるカーボンナノチューブ形成の場合と同様の問題が発生することがある。   As described above, the formation of carbon nanotubes has been described as an example. Generally speaking, however, the object to be formed is deposited and grown on a relatively large area substrate so as to stand up with good vertical alignment with respect to the substrate surface. May cause the same problem as in the case of such carbon nanotube formation.

そこで本発明は、参考までに言えば、形成対象物を比較的大面積の基板上に基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積装置を提供することや、かかるプラズマ化学気相堆積装置の1例として、カーボンナノチューブを比較的大面積の基板上に基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積装置を提供することも課題としているが、特に次のことを課題とする。 Therefore, for reference , the present invention provides a plasma chemical vapor deposition apparatus capable of depositing and growing an object to be formed on a relatively large area substrate so as to stand up with good vertical alignment with respect to the substrate surface. In addition, as an example of such a plasma chemical vapor deposition apparatus, a plasma chemical vapor deposition apparatus capable of depositing and growing carbon nanotubes on a substrate having a relatively large area so as to have good vertical alignment with respect to the substrate surface is provided. However, the following are the issues.

すなわち、本発明は、形成対象物を比較的大面積の基板上に基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積方法を提供することを課題とする。
また本発明は、かかるプラズマ化学気相堆積方法の1例として、カーボンナノチューブを比較的大面積の基板上に基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積方法を提供することを課題とする。
That is, an object of the present invention is to provide a plasma chemical vapor deposition method capable of depositing and growing an object to be formed on a substrate having a relatively large area so as to stand up with good vertical alignment with respect to the substrate surface.
In addition, as an example of such a plasma chemical vapor deposition method, the present invention provides a plasma chemical vapor deposition method in which carbon nanotubes can be deposited and grown on a substrate having a relatively large area so as to stand up with good vertical alignment with respect to the substrate surface. It is an object to provide a method.

本発明は前記課題を解決するため、次のプラズマ化学気相堆積装置及びプラズマ化学気相堆積方法を提供する。
(1)プラズマ化学気相堆積装置
真空容器と、該真空容器内に設置された第1、第2及び第3の三つの電極とを含み、該真空容器は、形成対象物の堆積成長のためのガスを該真空容器内に導入するために該ガスの供給装置に接続されるガス導入部及び該真空容器内から排気するために排気装置に接続される排気部を有しており、該第1及び第2の電極は該両電極間に直流電圧が印加される電極であり、該第1電極は前記形成対象物を堆積成長させるための基板の支持体を兼ねており、該第3電極は高周波電圧を印加される電極であり、該真空容器は接地電位に設定されるプラズマ化学気相堆積装置。
In order to solve the above problems, the present invention provides the following plasma chemical vapor deposition apparatus and plasma chemical vapor deposition method.
(1) Plasma chemical vapor deposition apparatus includes a vacuum vessel and three first, second and third electrodes installed in the vacuum vessel, and the vacuum vessel is used for deposition growth of an object to be formed. A gas introduction portion connected to the gas supply device for introducing the gas into the vacuum vessel and an exhaust portion connected to an exhaust device for exhausting from the vacuum vessel, The first and second electrodes are electrodes to which a DC voltage is applied between the two electrodes. The first electrode also serves as a substrate support for depositing and growing the object to be formed, and the third electrode Is an electrode to which a high-frequency voltage is applied, and the vacuum vessel is a plasma chemical vapor deposition apparatus in which the vacuum vessel is set to a ground potential.

(2)プラズマ化学気相堆積方法
上記(1)のプラズマ化学気相堆積装置において、前記第1電極上に前記形成対象物を堆積成長させるための基板を設置し、前記ガス導入部から前記真空容器内へ前記ガスを導入するとともに該真空容器内を前記排気部からの排気により前記形成対象物の堆積成長のためのガス圧に設定しつつ前記第1及び第2電極間に直流電圧を印加して該第1及び第2電極間に直流放電プラズマを形成する一方、前記第3電極に高周波電圧を印加して該第3電極と該第2電極間に高周波放電プラズマを発生させ、該高周波放電プラズマを前記第1及び第2の電極間に拡散させつつ前記基板上に前記形成対象物を堆積成長させるプラズマ化学気相堆積方法。
(2) Plasma chemical vapor deposition method In the plasma chemical vapor deposition apparatus of (1), a substrate for depositing and growing the object to be formed is placed on the first electrode, and the vacuum is introduced from the gas introduction part. The gas is introduced into the container, and a DC voltage is applied between the first and second electrodes while the inside of the vacuum container is set to a gas pressure for deposition growth of the object to be formed by exhausting from the exhaust part. A DC discharge plasma is formed between the first electrode and the second electrode, while a high frequency voltage is applied to the third electrode to generate a high frequency discharge plasma between the third electrode and the second electrode. A plasma chemical vapor deposition method for depositing and growing the object to be formed on the substrate while diffusing discharge plasma between the first and second electrodes.

本発明に係るプラズマ化学気相堆積装置及びプラズマ化学気相堆積方法によると、真空容器内に第1、第2及び第3の三つの電極が配置される。そして、基板が第1電極に設置され、該第1電極と第2電極との間に形成されるDC放電プラズマのもとで、該基板上に形成対象物を堆積成長させることができる。このようにDC放電プラズマを利用するので比較的大面積の基板上への形成対象物の堆積成長が可能であるとともに、高周波放電プラズマの場合より形成対象物を基板面に対する垂直配向性良好に成長させることができる。   According to the plasma chemical vapor deposition apparatus and the plasma chemical vapor deposition method according to the present invention, the first, second, and third electrodes are disposed in the vacuum vessel. Then, the substrate is placed on the first electrode, and an object to be formed can be deposited and grown on the substrate under DC discharge plasma formed between the first electrode and the second electrode. Since DC discharge plasma is used in this way, it is possible to deposit and grow an object to be formed on a substrate having a relatively large area, and the object to be formed grows better in the vertical alignment with respect to the substrate surface than in the case of high-frequency discharge plasma. Can be made.

また、第3電極に高周波電圧が印加されることで形成される高周波放電プラズマがDC放電プラズマ内に拡散し、さらに言えば該高周波放電プラズマにおける電子がDC放電プラズマ内に拡散し、該DC放電プラズマ中での電離が促進され、これにより安定した定常的なDC放電プラズマが維持される。   Further, the high frequency discharge plasma formed by applying a high frequency voltage to the third electrode diffuses into the DC discharge plasma, and more specifically, electrons in the high frequency discharge plasma diffuse into the DC discharge plasma, and the DC discharge. Ionization in the plasma is promoted, thereby maintaining a stable and steady DC discharge plasma.

このように本発明に係るプラズマ化学気相堆積装置、プラズマ化学気相堆積方法によると、形成対象物の基板上への堆積成長にDC放電プラズマを利用し、該DC放電プラズマを安定に維持するため高周波放電プラズマを支援用として利用するので、比較的大面積の基板上に形成対象物を該基板面に対する垂直配向性良好に立ち上がるように、安定して堆積成長させることができる。   As described above, according to the plasma chemical vapor deposition apparatus and the plasma chemical vapor deposition method according to the present invention, the DC discharge plasma is used for deposition growth on the substrate of the object to be formed, and the DC discharge plasma is stably maintained. Therefore, since the high-frequency discharge plasma is used for support, the object to be formed can be stably deposited and grown on the substrate having a relatively large area so as to stand up with good vertical alignment with respect to the substrate surface.

本発明に係るプラズマ化学気相堆積装置、プラズマ化学気相堆積方法のいずれにおいても、前記第3電極が前記第1及び第2の電極間領域の外側に配置されているとともに前記第2電極が接地電位に設定される場合を例示できる。
また、この場合、前記第3電極が前記第2電極を間にして前記第1電極とは反対側に配置される場合を例示できる。
この場合は、前記第2電極は、該第2電極及び前記第3電極間の領域から該第2電極及び前記第1電極間の領域へ貫通する孔を形成した電極(例えばメッシュ状電極、パンチングメタル状電極等)とすることが望ましい。
In any of the plasma chemical vapor deposition apparatus and the plasma chemical vapor deposition method according to the present invention, the third electrode is disposed outside the region between the first and second electrodes, and the second electrode is The case where it is set to the ground potential can be exemplified.
In this case, the third electrode may be disposed on the opposite side of the first electrode with the second electrode in between.
In this case, the second electrode is an electrode in which a hole penetrating from the region between the second electrode and the third electrode to the region between the second electrode and the first electrode (for example, a mesh electrode, punching) It is desirable to use a metal electrode or the like.

また、プラズマ密度増大のための磁石部材が前記三つの電極のうち少なくとも一つ又は(及び)前記真空容器内に設けられてもよい。   In addition, a magnet member for increasing the plasma density may be provided in at least one of the three electrodes or (and) the vacuum vessel.

本発明に係るプラズマ化学気相堆積装置、プラズマ化学気相堆積方法において、前記基板上への形成対象物は特に制限はないが、代表例としてカーボンナノチューブを挙げることができる。
すなわち、形成対象物の堆積成長のためのガスとしてカーボンナノチューブの堆積成長のためのガス(例えばメタンのような炭化水素を含むガス、或いは必要応じてさらに水素ガス)を採用することで、比較的大面積の基板上に、安定した定常プラズマを維持しながら該基板面に対する垂直配向性良好に立ち上がるカーボンナノチューブを形成することができる。
In the plasma chemical vapor deposition apparatus and the plasma chemical vapor deposition method according to the present invention, the object to be formed on the substrate is not particularly limited, but a carbon nanotube can be given as a representative example.
That is, by adopting a gas for deposition growth of carbon nanotubes (for example, a gas containing a hydrocarbon such as methane, or further a hydrogen gas if necessary) as a gas for the deposition growth of the formation target, Carbon nanotubes can be formed on a large-area substrate, with good vertical alignment with respect to the substrate surface, while maintaining stable steady plasma.

このようにして得られるカーボンナノチューブを成長させた基板は例えば電界電子放出型ディスプレイ(FED)の電子源として利用でき、本発明によると、50インチ以上の大きさのFEDの製造を可能にする電子源としての基板を提供することも可能である。   The substrate on which the carbon nanotubes thus obtained are grown can be used as an electron source of, for example, a field electron emission display (FED). According to the present invention, an electron capable of manufacturing an FED having a size of 50 inches or more can be used. It is also possible to provide a substrate as a source.

以上説明したように本発明によると、形成対象物を比較的大面積の基板上に基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積装置を提供することができる。
また本発明によると、かかるプラズマ化学気相堆積装置の1例として、カーボンナノチューブを比較的大面積の基板上に基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積装置を提供することができる。
As described above, according to the present invention, it is possible to provide a plasma enhanced chemical vapor deposition apparatus capable of depositing and growing an object to be formed on a substrate having a relatively large area so as to stand up with good vertical alignment with respect to the substrate surface. it can.
Further, according to the present invention, as an example of such a plasma enhanced chemical vapor deposition apparatus, a plasma chemical vapor phase capable of depositing and growing carbon nanotubes on a relatively large area substrate so as to stand up with good vertical alignment with respect to the substrate surface. A deposition apparatus can be provided.

さらに特に、本発明によると、形成対象物を比較的大面積の基板上に基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積方法を提供することができる。
また本発明によると、かかるプラズマ化学気相堆積方法の1例として、カーボンナノチューブを比較的大面積の基板上に基板面に対する垂直配向性良好に立ち上がるように堆積成長させることができるプラズマ化学気相堆積方法を提供することができる。
More particularly, according to the present invention, it is possible to provide a plasma chemical vapor deposition method capable of depositing and growing an object to be formed on a substrate having a relatively large area so as to stand up with good vertical alignment with respect to the substrate surface.
Further, according to the present invention, as an example of such a plasma enhanced chemical vapor deposition method, a plasma chemical vapor phase capable of depositing and growing carbon nanotubes on a substrate having a relatively large area so as to stand up with good vertical alignment with respect to the substrate surface. A deposition method can be provided.

以下、本発明の実施の形態について図面を参照して説明する。
図1はプラズマ化学気相堆積装置の1例Aの構成を概略的に示している。 図1に示す装置Aは、真空容器1と、真空容器1内に設置された平板形の第1、第2及び第3の三つの電極21、22、23を含んでいる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 schematically shows a configuration of an example A of a plasma chemical vapor deposition apparatus . The apparatus A shown in FIG. 1 includes a vacuum vessel 1 and three plate-shaped first, second and third electrodes 21, 22 and 23 installed in the vacuum vessel 1.

真空容器1は接地されており、ガス導入部11及び排気部12を有している。ガス導入部11にはガス供給装置3が接続され、排気部12には排気装置4が接続される。ガス供給装置3は、形成対象物の堆積成長のためのガスを供給するものである。排気装置4は真空容器1内から排気して、容器1内を形成対象物の堆積成長のためのガス圧に維持するためのものである。   The vacuum vessel 1 is grounded and has a gas introduction part 11 and an exhaust part 12. The gas supply unit 3 is connected to the gas introduction unit 11, and the exhaust unit 4 is connected to the exhaust unit 12. The gas supply device 3 supplies a gas for deposition growth of the formation target. The evacuation device 4 is for evacuating from the inside of the vacuum vessel 1 and maintaining the inside of the vessel 1 at a gas pressure for deposition growth of the formation target.

第1電極21は形成対象物を堆積成長させるための基板Sを支持する基板ホルダを兼ねている。第1、第2の電極21、22は対向配置されており、第1電極21には直流電源PW1が接続されているとともに第2電極は容器1を介して接地されている。これら両電極21、22間には、形成対象物の形成にあたって直流電源PW1から負の直流電圧が印加される。   The first electrode 21 also serves as a substrate holder that supports the substrate S for depositing and growing an object to be formed. The first and second electrodes 21 and 22 are arranged to face each other. A DC power source PW1 is connected to the first electrode 21 and the second electrode is grounded via the container 1. A negative DC voltage is applied between the electrodes 21 and 22 from the DC power source PW1 in forming the object to be formed.

第3電極23は、第2電極22を間にして第1電極21とは反対側に配置されており、これには高周波電源PW2が接続されている。形成対象物の形成にあたって電源PW2から電極23に高周波電圧が印加される。   The third electrode 23 is disposed on the opposite side of the first electrode 21 with the second electrode 22 in between, and a high frequency power supply PW2 is connected thereto. A high frequency voltage is applied from the power source PW2 to the electrode 23 in forming the object to be formed.

第2電極22は、電極22、23間の領域から電極22、21間の領域へ貫通する孔を形成した電極であり、ここではメッシュ板からなっている。   The 2nd electrode 22 is an electrode which formed the hole penetrated from the field between electrodes 22 and 23 to the field between electrodes 22 and 21, and consists of a mesh board here.

次に以上説明した装置Aを用いて基板S上にカーボンナノチューブ(CNT)を成長させる例について説明する。
先ず、図示省略の真空容器扉を開いて第1電極21上に基板Sを設置し、該扉を閉じて容器1を気密に閉じる。
Next, an example in which carbon nanotubes (CNT) are grown on the substrate S using the apparatus A described above will be described.
First, a vacuum container door (not shown) is opened, the substrate S is placed on the first electrode 21, and the container 1 is closed in an airtight manner by closing the door.

次いで、ガス供給装置3からガス導入部11を経て、水素ガスで例えば20%程度に希釈したメタンガスを容器1内へ導入する一方、排気装置4を運転して容器1内をCNT形成のためのガス圧(1Pa(パスカル)〜 10kPa程度の範囲の所定のガス圧)に維持しつつ、電源PW1から電極21に100V以上、より好ましくは500V以上の、基板上に比較的大きい電界を発生させ得る所定の負の直流(DC)電圧を印加するとともに、電極23に電源PW2から1W/cm2 〜50W/cm2 程度の範囲の所定の高周波電力を印加する。 Subsequently, methane gas diluted with hydrogen gas to about 20%, for example, is introduced into the container 1 from the gas supply device 3 via the gas introduction unit 11, while the exhaust device 4 is operated to form CNTs in the container 1. While maintaining the gas pressure (predetermined gas pressure in the range of 1 Pa (Pascal) to 10 kPa), a relatively large electric field of 100 V or more, more preferably 500 V or more can be generated from the power source PW1 to the electrode 21 on the substrate. It applies a predetermined negative current (DC) voltage, for applying a predetermined high-frequency power 1W / cm 2 ~50W / cm 2 in the range of about the electrode 23 from the power source PW2.

かくして電極21、22間にDC放電プラズマP1が形成され、電極22、23間に交流放電プラズマP2が形成される。交流放電プラズマP2の一部が、より詳しく言えばそれにおける電子が中間電極22の孔を通ってDC放電プラズマP1中へ定常的に拡散し、それにより該DC放電プラズマにおける電離が促進され、該DC放電プラズマが安定して定常的に維持される。かかるDC放電プラズマにより分解生成された炭素に基づいて基板S上にカーボンナノチューブが堆積成長する。   Thus, a DC discharge plasma P1 is formed between the electrodes 21 and 22, and an AC discharge plasma P2 is formed between the electrodes 22 and 23. A portion of the AC discharge plasma P2, more specifically, electrons therein steadily diffuse into the DC discharge plasma P1 through the holes in the intermediate electrode 22, thereby promoting ionization in the DC discharge plasma, The DC discharge plasma is stably and constantly maintained. Carbon nanotubes are deposited and grown on the substrate S based on the carbon decomposed and generated by the DC discharge plasma.

かかるDC放電プラズマ中では、印加された電圧の大半がDC放電プラズマP1と基板Sとの間のシースと呼ばれる部分にかかる。この部分の厚さは、例えば数百パスカル(数トール)のガス圧力の下では、1mm程度以下と薄く、したがって、極めて大きな電界の場となる。この電界により、電極(陰極)21上の基板S上に成長するCNTはプラズマの方向へと引っ張り上げられ、基板S面に対して垂直方向或いはそれに近い方向に配向しながら成長する。   In the DC discharge plasma, most of the applied voltage is applied to a portion called a sheath between the DC discharge plasma P1 and the substrate S. The thickness of this portion is as thin as about 1 mm or less under a gas pressure of, for example, several hundred Pascals (several torr), and therefore a very large electric field is generated. By this electric field, the CNT grown on the substrate S on the electrode (cathode) 21 is pulled up in the direction of the plasma, and grows while being oriented in the direction perpendicular to or near the substrate S surface.

また、基本的にはDC放電プラズマCVDによるカーボンナノチューブの形成であり、それだけ大きい基板面積に垂直配向性良好に立ち上がるカーボンナノチューブを成長させることができ、ひいては大面積のCNT−FEDの製造が可能になる。
なお、基板S上にCNTを成長させるに先立って、必要に応じ基板面をプラズマ照射処理してもよい。
In addition, it is basically the formation of carbon nanotubes by DC discharge plasma CVD, and it is possible to grow carbon nanotubes with good vertical alignment on such a large substrate area, which in turn makes it possible to produce large-area CNT-FEDs Become.
Prior to growing the CNTs on the substrate S, the substrate surface may be subjected to plasma irradiation treatment as necessary.

ここで、真空容器内における放電の安定性を調べる実験を行ったのでそれについて説明する。この実験では、容器1内に圧力2000Paの水素を満たし、電源PW2から印加する高周波電力として100W、200W、300Wの3種類を採用し、該各高周波電力のもとに電源PW1から電極21へ印加する負のDC電圧を変化させ、DC放電の安定性を調べた。結果を図2に示す。   Here, since the experiment which investigates the stability of the discharge in a vacuum vessel was conducted, it is demonstrated. In this experiment, the container 1 is filled with hydrogen at a pressure of 2000 Pa, and three types of high frequency power of 100 W, 200 W, and 300 W are applied from the power source PW2, and applied from the power source PW1 to the electrode 21 under the high frequency power. The stability of DC discharge was investigated by changing the negative DC voltage. The results are shown in FIG.

図2に示すように、高周波放電電力が大きいほど、DC放電プラズマが発生する放電開始の電圧が低く、また、安定したDC放電維持のためのDC電圧が高いことがわかる。よって、プラズマ化学気相堆積装置AによるCNTの形成においては、前記のように電極23に印加する高周波電力を大きくするとともに電極21に印加するDC電力も前記のように大きくし、それにより大面積の基板S上に垂直配向性良好にCNTを形成できる。   As shown in FIG. 2, it can be seen that the higher the high-frequency discharge power, the lower the voltage at which discharge occurs in the DC discharge plasma, and the higher the DC voltage for maintaining stable DC discharge. Therefore, in the formation of CNTs by the plasma chemical vapor deposition apparatus A, the high frequency power applied to the electrode 23 is increased as described above, and the DC power applied to the electrode 21 is also increased as described above, thereby increasing the area. CNTs can be formed on the substrate S with good vertical alignment.

次に図1の装置Aによる基板上へのCNT成長の実験例について説明する。CNT形成に先立ち基板面はプラズマ照射処理した。
実験条件
(1) 基板 :材質 鉄、 サイズ 1cm×1cm×(厚さ)0.2mm
(2) プラズマ照射処理
使用ガス :水素ガス
容器1内ガス圧 :2000Pa
DC電圧 :−320V
高周波周波数 :13.56MHz
高周波電力 :300W(高周波電力密度 12W/cm2
照射時間 :15分
(3) CNT形成
使用ガス :水素ガスで20%に希釈したメタンガス
容器1内ガス圧 :2000Pa
DC電圧 :−450V
高周波周波数 :13.56MHz
高周波電力 :300W(高周波電力密度 12W/cm2
形成時間 :15分
Next, an experimental example of CNT growth on the substrate by the apparatus A of FIG. 1 will be described. Prior to the CNT formation, the substrate surface was subjected to plasma irradiation treatment.
Experimental conditions
(1) Substrate: Material Iron, Size 1cm x 1cm x (Thickness) 0.2mm
(2) Plasma irradiation treatment Gas used: Hydrogen gas Gas pressure in container 1: 2000 Pa
DC voltage: -320V
High frequency frequency: 13.56 MHz
High frequency power: 300 W (high frequency power density 12 W / cm 2 )
Irradiation time: 15 minutes
(3) CNT formation Gas used: Methane gas diluted to 20% with hydrogen gas Gas pressure in container 1: 2000 Pa
DC voltage: -450V
High frequency frequency: 13.56 MHz
High frequency power: 300 W (high frequency power density 12 W / cm 2 )
Formation time: 15 minutes

かくして得られたCNTを走査型電子顕微鏡で観察したところ、図3に示すように、直径100ナノメートル程度のCNTが基板面から立ち上がるように配向成長していることを確認できた。以上、装置AによるCNTの形成について説明してきたが、装置Aは他の物質の堆積成長にも利用できる。   When the CNT thus obtained was observed with a scanning electron microscope, it was confirmed that CNTs having a diameter of about 100 nanometers were aligned and grown so as to rise from the substrate surface as shown in FIG. Although the formation of CNTs by the apparatus A has been described above, the apparatus A can also be used for the deposition growth of other substances.

いずれにしても、DC放電プラズマ及び(又は)高周波放電プラズマの密度を増大させるために電極及び(又は)真空容器内に磁石を設けてもよい。
図4、図5、図6はそれぞれ図1の装置において磁石を設ける場合の例を示している。 図4〜図6の各プラズマ化学気相堆積装置において図1の装置Aと実質上同じ部品、部分には図1と同じ参照符号を付してある。
In any case, a magnet may be provided in the electrode and / or the vacuum vessel in order to increase the density of the DC discharge plasma and / or the high frequency discharge plasma.
4, 5, and 6 each show an example in which a magnet is provided in the apparatus of FIG. 1. In each plasma chemical vapor deposition apparatus of FIGS. 4 to 6, substantially the same components and parts as those of the apparatus A of FIG. 1 are denoted by the same reference numerals as those of FIG.

図4の装置Bでは、高周波電極23に4個の磁石M1〜M4が配設され、磁石M1からM2へ、磁石M4からM3へ、それぞれ磁力線が形成される。
図5の装置Cでは、高周波放電プラズマP2の発生領域を挟む一対の磁石M5、M6が真空容器1内に配置されており、一方の磁石M5から他方の磁石M6へ磁力線が形成される。
図6の装置Dでは、電極21の背後に磁石M7が、電極23の背後に磁石M8が配置されており、磁石M8からM7へ磁力線が形成される。
なお、磁力線の向きは図4〜図6に示す向きに限定される必要はなく、例えばそれらとは反対の向きであってもよい。
In the apparatus B of FIG. 4, four magnets M1 to M4 are disposed on the high-frequency electrode 23, and magnetic lines of force are formed from the magnets M1 to M2 and from the magnets M4 to M3, respectively.
In the apparatus C of FIG. 5, a pair of magnets M5 and M6 sandwiching the generation region of the high-frequency discharge plasma P2 is disposed in the vacuum vessel 1, and magnetic lines of force are formed from one magnet M5 to the other magnet M6.
In the apparatus D of FIG. 6, the magnet M7 is disposed behind the electrode 21 and the magnet M8 is disposed behind the electrode 23, and magnetic lines of force are formed from the magnet M8 to M7.
The direction of the lines of magnetic force need not be limited to the direction shown in FIGS. 4 to 6, and may be the opposite direction, for example.

また、電極への電源の接続態様や、各電極の配置や形状は図1に示すものに限定されない。例えば、図7、図8、図9に示す装置E、F、Gのようにしてもよい。
図7〜図9の各プラズマ化学気相堆積装置において図1の装置Aと実質上同じ部品、部分には図1と同じ参照符号を付してある。
Moreover, the connection aspect of the power supply to an electrode, and arrangement | positioning and shape of each electrode are not limited to what is shown in FIG. For example, the devices E, F, and G shown in FIGS. 7, 8, and 9 may be used.
In each of the plasma chemical vapor deposition apparatuses of FIGS. 7 to 9, substantially the same parts and portions as those of the apparatus A of FIG.

図7の装置Eでは、DC電圧を印加する電極(第1電極)21とこれに対向する接地電極(第2電極)22’との間に高周波電圧を印加する電極(第3電極)23’を配置し、且つ、電極22’は孔あきでない電極とされる一方、電極23’は放電用の孔を形成した電極とされている。例えばこの孔により高周波ホローカソード放電を発生させ、プラズマ密度を増大させることもできる。
図8の装置F(真空容器は図示省略)では、DC電圧を印加する電極(第1電極)21’が円柱状に形成されており、これに同心円的に筒状のメッシュ状接地電極(第2電極)22”及び高周波印加電極(第3電極)23”が配置されている。基板については、円筒形状の基板S’が電極21’上に外嵌設置される。
図9の装置Gは、図7に示す装置Eにおいて、高周波印加電極(第3電極)23’がDC放電プラズマ生成領域を囲む筒状の電極23a’に置き換えられている。
In the apparatus E of FIG. 7, an electrode (third electrode) 23 ′ for applying a high-frequency voltage between an electrode (first electrode) 21 for applying a DC voltage and a ground electrode (second electrode) 22 ′ opposed thereto. The electrode 22 ′ is a non-perforated electrode, while the electrode 23 ′ is an electrode having a discharge hole. For example, this hole can generate a high frequency hollow cathode discharge to increase the plasma density.
In the apparatus F of FIG. 8 (a vacuum vessel is not shown), an electrode (first electrode) 21 ′ for applying a DC voltage is formed in a columnar shape, and concentrically cylindrical mesh ground electrode (first electrode). Two electrodes) 22 "and a high-frequency applying electrode (third electrode) 23". As for the substrate, a cylindrical substrate S ′ is fitted on the electrode 21 ′.
In the apparatus G of FIG. 9, the high frequency application electrode (third electrode) 23 ′ is replaced with a cylindrical electrode 23a ′ surrounding the DC discharge plasma generation region in the apparatus E shown in FIG.

本発明は比較的大面積の基板上に形成対象物(例えばカーボンナノチューブ)を基板面に対する垂直配向性良好に堆積成長させることに利用でき、ひいてはカーボンナノチューブを電子源に利用した大面積の電界電子放出型ディスプレイの製造にも利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for depositing and growing an object to be formed (for example, carbon nanotube) on a substrate having a relatively large area with good vertical alignment with respect to the substrate surface. It can also be used to manufacture emissive displays.

プラズマ化学気相堆積装置の1例の構成の概略を示す図である。It is a figure which shows the outline of a structure of one example of a plasma chemical vapor deposition apparatus . 図1の装置による放電安定性を調べた実験の結果を示す図である。It is a figure which shows the result of the experiment which investigated the discharge stability by the apparatus of FIG. 図1の装置により形成したカーボンナノチューブ例の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the example of the carbon nanotube formed with the apparatus of FIG. プラズマ化学気相堆積装置の他の例の概略を示す図である。It is a figure which shows the outline of the other example of a plasma chemical vapor deposition apparatus . プラズマ化学気相堆積装置のさらに他の例の概略を示す図である。It is a figure which shows the outline of the further another example of a plasma chemical vapor deposition apparatus . プラズマ化学気相堆積装置のさらに他の例の概略を示す図である。It is a figure which shows the outline of the further another example of a plasma chemical vapor deposition apparatus . プラズマ化学気相堆積装置のさらに他の例の概略を示す図である。It is a figure which shows the outline of the further another example of a plasma chemical vapor deposition apparatus . プラズマ化学気相堆積装置のさらに他の例の概略を示す図である。It is a figure which shows the outline of the further another example of a plasma chemical vapor deposition apparatus . プラズマ化学気相堆積装置のさらに他の例の概略を示す図である。It is a figure which shows the outline of the further another example of a plasma chemical vapor deposition apparatus .

符号の説明Explanation of symbols

A プラズマ化学気相堆積装置
1 真空容器
11 ガス導入部
12 排気部
21 第1電極(DC電圧印加電極)
22 第2電極(接地電極)
23 第3電極(高周波電圧印加電極)
3 ガス供給装置
4 排気装置
S 基板
PW1 DC電源
PW2 高周波電源
P1 DC放電プラズマ
P2 高周波放電プラズマ
B、C、D プラズマ化学気相堆積装置
M1〜M8 磁石
E、F、G プラズマ化学気相堆積装置
21’DC電圧印加電極
22’、22” 接地電極
23’、23”、23a’ 高周波印加電極
S’ 基板
A Plasma chemical vapor deposition apparatus 1 Vacuum container 11 Gas introduction part 12 Exhaust part 21 1st electrode (DC voltage application electrode)
22 Second electrode (ground electrode)
23 Third electrode (high frequency voltage application electrode)
3 Gas supply device 4 Exhaust device S Substrate PW1 DC power supply PW2 High frequency power supply P1 DC discharge plasma P2 High frequency discharge plasma B, C, D Plasma chemical vapor deposition apparatus M1 to M8 Magnets E, F, G Plasma chemical vapor deposition apparatus 21 'DC voltage application electrode 22', 22 "ground electrode 23 ', 23", 23a' high frequency application electrode S 'substrate

Claims (6)

真空容器と、該真空容器内に設置された第1、第2及び第3の三つの電極とを含み、該真空容器は、形成対象物の堆積成長のためのガスを該真空容器内に導入するために該ガスの供給装置に接続されるガス導入部及び該真空容器内から排気するために排気装置に接続される排気部を有しており、該第1及び第2の電極は該両電極間に直流電圧が印加される電極であり、該第1電極は前記形成対象物を堆積成長させるための基板の支持体を兼ねており、該第3電極は高周波電圧を印加される電極であり、該真空容器は接地電位に設定されるプラズマ化学気相堆積装置において、前記第1電極上に前記形成対象物を堆積成長させるための基板を設置し、前記ガス導入部から前記真空容器内へ前記ガスを導入するとともに該真空容器内を前記排気部からの排気により前記形成対象物の堆積成長のためのガス圧に設定しつつ前記第1及び第2電極間に直流電圧を印加して該第1及び第2電極間に直流放電プラズマを形成する一方、前記第3電極に高周波電圧を印加して該第3電極と該第2電極間に高周波放電プラズマを発生させ、該高周波放電プラズマを前記第1及び第2の電極間に拡散させつつ前記基板上に前記形成対象物を堆積成長させることを特徴とするプラズマ化学気相堆積方法。 A vacuum vessel and first, second, and third electrodes disposed in the vacuum vessel, the vacuum vessel introducing a gas for deposition growth of an object to be formed into the vacuum vessel A gas introduction unit connected to the gas supply device and an exhaust unit connected to the exhaust device for exhausting from the inside of the vacuum vessel. The first and second electrodes are The first electrode serves as a substrate support for depositing and growing the object to be formed, and the third electrode is an electrode to which a high-frequency voltage is applied. In the plasma chemical vapor deposition apparatus in which the vacuum vessel is set to a ground potential, a substrate for depositing and growing the object to be formed is placed on the first electrode, and the inside of the vacuum vessel is introduced from the gas introduction unit. And introducing the gas into the vacuum vessel A DC voltage is applied between the first and second electrodes while setting a gas pressure for the deposition growth of the object to be formed by evacuation, thereby forming a DC discharge plasma between the first and second electrodes. Meanwhile, a high frequency voltage is applied to the third electrode to generate a high frequency discharge plasma between the third electrode and the second electrode, and the high frequency discharge plasma is diffused between the first and second electrodes while A plasma chemical vapor deposition method comprising depositing and growing the object to be formed on a substrate. 前記第3電極が前記第1及び第2の電極間領域の外側に配置されているとともに前記第2電極が接地電位に設定される請求項1記載のプラズマ化学気相堆積方法2. The plasma enhanced chemical vapor deposition method according to claim 1, wherein the third electrode is disposed outside the region between the first and second electrodes, and the second electrode is set to a ground potential. 前記第3電極が前記第2電極を間にして前記第1電極とは反対側に配置されている請求項2記載のプラズマ化学気相堆積方法3. The plasma enhanced chemical vapor deposition method according to claim 2, wherein the third electrode is disposed on the opposite side of the first electrode with the second electrode in between. 前記第2電極は、該第2電極及び前記第3電極間の領域から該第2電極及び前記第1電極間の領域へ貫通する孔を形成した電極である請求項3記載のプラズマ化学気相堆積方法The plasma chemical vapor phase according to claim 3, wherein the second electrode is an electrode in which a hole penetrating from a region between the second electrode and the third electrode to a region between the second electrode and the first electrode is formed. Deposition method . プラズマ密度増大のための磁石部材が前記三つの電極のうち少なくとも一つ又は(及び)前記真空容器内に設けられている請求項1から4のいずれかに記載のプラズマ化学気相堆積方法The plasma chemical vapor deposition method according to any one of claims 1 to 4, wherein a magnet member for increasing plasma density is provided in at least one of the three electrodes or (and) in the vacuum vessel. 前記ガスとして前記基板上にカーボンナノチューブを堆積成長させるためのガスを採用し、該基板上に該基板面から立ち上がるカーボンナノチューブを成長させる請求項1から5のいずれかに記載のプラズマ化学気相堆積方法。6. The plasma chemical vapor deposition according to claim 1, wherein a gas for depositing and growing carbon nanotubes on the substrate is adopted as the gas, and carbon nanotubes rising from the substrate surface are grown on the substrate. Method.
JP2004238251A 2004-08-18 2004-08-18 Plasma chemical vapor deposition method Active JP4536456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004238251A JP4536456B2 (en) 2004-08-18 2004-08-18 Plasma chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004238251A JP4536456B2 (en) 2004-08-18 2004-08-18 Plasma chemical vapor deposition method

Publications (2)

Publication Number Publication Date
JP2006057122A JP2006057122A (en) 2006-03-02
JP4536456B2 true JP4536456B2 (en) 2010-09-01

Family

ID=36104846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238251A Active JP4536456B2 (en) 2004-08-18 2004-08-18 Plasma chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JP4536456B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505786B2 (en) * 2010-03-02 2014-05-28 日新電機株式会社 Carbon nanotube structure manufacturing method and electron emission source using the same
JP5688996B2 (en) * 2011-03-07 2015-03-25 株式会社神戸製鋼所 Plasma source and film forming apparatus equipped with the plasma source
CN103493602B (en) * 2011-07-14 2016-06-08 株式会社岛津制作所 Plasma processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147072A (en) * 1987-12-04 1989-06-08 Mitsubishi Electric Corp Method and apparatus for forming thin film
JP2002313784A (en) * 2001-04-12 2002-10-25 Anelva Corp Magnetron type parallel flat plate surface treating equipment
JP2003124192A (en) * 2001-10-11 2003-04-25 Tokyo Electron Ltd Plasma processor
JP2003147533A (en) * 2001-09-28 2003-05-21 Hanyang Hak Won Co Ltd Plasma enhanced chemical vapor deposition apparatus and method of producing carbon nanotube using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147072A (en) * 1987-12-04 1989-06-08 Mitsubishi Electric Corp Method and apparatus for forming thin film
JP2002313784A (en) * 2001-04-12 2002-10-25 Anelva Corp Magnetron type parallel flat plate surface treating equipment
JP2003147533A (en) * 2001-09-28 2003-05-21 Hanyang Hak Won Co Ltd Plasma enhanced chemical vapor deposition apparatus and method of producing carbon nanotube using the same
JP2003124192A (en) * 2001-10-11 2003-04-25 Tokyo Electron Ltd Plasma processor

Also Published As

Publication number Publication date
JP2006057122A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
KR100928409B1 (en) Devices and Processes for Carbon Nanotube Growth
US8992880B2 (en) Method of manufacturing onion-like carbon
KR20040090448A (en) Method of manufacturing electron-emitting source
JP3837451B2 (en) Method for producing carbon nanotube
JP4536456B2 (en) Plasma chemical vapor deposition method
Wang et al. Macroscopic field emission properties of aligned carbon nanotubes array and randomly oriented carbon nanotubes layer
Yap et al. Formation of vertically aligned carbon nanotubes by dual-RF-plasma chemical vapor deposition
JP4853861B2 (en) Method and apparatus for forming carbon nanostructure
Zheng et al. Nitrogen-doped few-layer graphene grown vertically on a Cu substrate via C60/nitrogen microwave plasma and its field emission properties
US20090078561A1 (en) Apparatus and Methods for Growing Nanofibres and Nanotips
JP5032042B2 (en) Plasma CVD apparatus and film forming method
Ren et al. Large arrays of well-aligned carbon nanotubes
Kyung et al. Improvement of field emission from screen-printed carbon nanotubes by He∕(N2, Ar) atmospheric pressure plasma treatment
US20050266764A1 (en) Method of stabilizing field emitter
Kyung et al. The effect of atmospheric pressure plasma treatment on the field emission characteristics of screen printed carbon nanotubes
JP2002069756A (en) Apparatus and method for forming carbon nanofiber
JP4707336B2 (en) Manufacturing method of electron source using carbon nanofiber
JP2005255492A (en) Apparatus and method of manufacturing carbon nano-structure
JP2009067663A (en) Method of growing carbon nanotube on carbon fiber sheet and carbon nanotube emitter
KR20010088087A (en) Selective deposition method of carbon nanotubes
Kyung et al. Growth and field-emission properties of multiwalled carbon nanotubes synthesized by a pin-to-plate-type atmospheric pressure plasma enhanced chemical vapor deposition
Han et al. High field-emission current of carbon nanotubes grown on TiN-coated Ta substrate for electron emitters in a microwave power amplifier
JP5264055B2 (en) Field emission chip
KR100543959B1 (en) Method for conducting field emission using shell-shaped carbon nano particle
JP2004006283A (en) Plasma generation device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350