JP2005251513A - Battery assembly using nonaqueous electrolyte secondary battery - Google Patents

Battery assembly using nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005251513A
JP2005251513A JP2004058878A JP2004058878A JP2005251513A JP 2005251513 A JP2005251513 A JP 2005251513A JP 2004058878 A JP2004058878 A JP 2004058878A JP 2004058878 A JP2004058878 A JP 2004058878A JP 2005251513 A JP2005251513 A JP 2005251513A
Authority
JP
Japan
Prior art keywords
battery
electrolyte secondary
nonaqueous electrolyte
positive electrode
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004058878A
Other languages
Japanese (ja)
Inventor
Toyoki Fujiwara
豊樹 藤原
Hideki Kitao
英樹 北尾
Kazuhisa Takeda
和久 武田
Takaaki Ikemachi
隆明 池町
Toshiyuki Noma
俊之 能間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004058878A priority Critical patent/JP2005251513A/en
Publication of JP2005251513A publication Critical patent/JP2005251513A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery assembly excellent in high temperature preservation durability and also well balanced in both voltage and capacity, in one using a plurality of nonaqueous electrolyte secondary batteries. <P>SOLUTION: The battery assembly is composed of one or more battery groups in which the plurality of nonaqueous electrolyte secondary batteries are connected with one another. At least one battery group is composed by connecting a first nonaqueous electrolyte secondary battery A using a lithium manganese compounding oxide having a spinel conformation as a positive electrode activator and a second nonaqueous electrolyte secondary battery B using a lithium transition metal compounding oxide containing at least Ni and having a layered conformation as a positive electrode activator are connected in parallel with each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数の非水電解質二次電池から構成される組電池に関し、特に高温保存耐久性に優れた組電池に関するものである。   The present invention relates to an assembled battery composed of a plurality of nonaqueous electrolyte secondary batteries, and more particularly to an assembled battery having excellent high-temperature storage durability.

従来、スピネル構造を有するリチウムマンガン複合酸化物を正極に用いた非水電解質二次電池が知られており(特許文献1参照)、該二次電池を直列或いは並列に接続して組電池を構成することによって、高い電池電圧を得ることが出来る。
一方、層状構造を有するリチウムニッケル複合酸化物を正極に用いた非水電解質二次電池が知られており(特許文献2参照)、該二次電池を直列或いは並列に接続して組電池を構成することによって、大きな電池容量を得ることが出来る。
特開平10−172568号公報 特開2003−346797号公報 特開平10−255767号公報
Conventionally, a nonaqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure as a positive electrode is known (see Patent Document 1), and the assembled battery is configured by connecting the secondary batteries in series or in parallel. By doing so, a high battery voltage can be obtained.
On the other hand, a non-aqueous electrolyte secondary battery using a lithium nickel composite oxide having a layered structure as a positive electrode is known (see Patent Document 2), and the assembled battery is configured by connecting the secondary batteries in series or in parallel. By doing so, a large battery capacity can be obtained.
Japanese Patent Laid-Open No. 10-172568 JP 2003-346797 A Japanese Patent Laid-Open No. 10-255767

しかしながら、スピネル構造を有するリチウムマンガン複合酸化物を正極に用いた非水電解質二次電池は、電圧は高いが、高温環境下において電池容量の低下が大きい問題があった。又、該非水電解質二次電池は、容量が小さいため、組電池を構成した場合、高温保存耐久性と容量に課題があった。
これに対し、層状構造を有するリチウムニッケル複合酸化物を正極に用いた非水電解質二次電池は、組電池を構成した場合、容量は大きいが、単セル当たりの電圧が低く、然も高温保存耐久性も十分ではなかった。
However, a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure as a positive electrode has a problem that although the voltage is high, the battery capacity is greatly reduced in a high temperature environment. Further, since the non-aqueous electrolyte secondary battery has a small capacity, there is a problem in high-temperature storage durability and capacity when an assembled battery is formed.
In contrast, a non-aqueous electrolyte secondary battery using a lithium nickel composite oxide having a layered structure for the positive electrode has a large capacity when the assembled battery is configured, but the voltage per unit cell is low, but it is stored at a high temperature. Durability was not sufficient.

そこで本発明の目的は、非水電解質二次電池を複数用いた組電池において、高温保存耐久性に優れ、然も電圧と容量の両方にバランスのとれた組電池を提供することにある。   Accordingly, an object of the present invention is to provide an assembled battery using a plurality of non-aqueous electrolyte secondary batteries, which is excellent in high-temperature storage durability and still has a good balance between voltage and capacity.

本発明に係る組電池は、リチウムの吸蔵・放出が可能な正極と負極とを有する非水電解質二次電池を複数個用いたものであって、1或いは複数の電池群を具え、少なくとも1つの電池群は、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた第1の非水電解質二次電池Aと、正極活物質に少なくともNiを含有して層状構造を有するリチウム遷移金属複合酸化物を用いた第2の非水電解質二次電池Bとを、互いに並列に接続して構成されている。   The assembled battery according to the present invention uses a plurality of nonaqueous electrolyte secondary batteries having a positive electrode and a negative electrode capable of inserting and extracting lithium, and includes one or a plurality of battery groups, and includes at least one battery group. The battery group includes a first nonaqueous electrolyte secondary battery A using a lithium manganese composite oxide having a spinel structure as a positive electrode active material, and a lithium transition metal composite having a layered structure containing at least Ni in the positive electrode active material. A second nonaqueous electrolyte secondary battery B using an oxide is connected in parallel to each other.

前記少なくとも1つの電池群は、前記第1の非水電解質二次電池Aを直列接続してなる第1の電池列と、前記第2の非水電解質二次電池Bを直列接続してなる第2の電池列とを、互いに並列に接続して構成することも可能である。   The at least one battery group includes a first battery array formed by connecting the first nonaqueous electrolyte secondary batteries A in series and a second nonaqueous electrolyte secondary battery B connected in series. It is also possible to configure two battery rows connected in parallel to each other.

尚、前記第2の非水電解質二次電池において、前記層状構造を有するリチウム遷移金属複合酸化物は少なくともNi及びMnを含有している。   In the second nonaqueous electrolyte secondary battery, the lithium transition metal composite oxide having the layered structure contains at least Ni and Mn.

スピネル構造を有するリチウムマンガン複合酸化物は、B、F、Mg、Al、Ti、Cr、V、Fe、Co、Ni、Cu、Zn、Nb、Zrから選択される少なくとも一種類の元素を更に含んでいても良い。
又、少なくともNiを含有し、層状構造を有するリチウム遷移金属複合酸化物は、構造安定性を高める上でMnを含んでいることが好ましく、更にはCoを含んでいることがより好ましい。即ち、LiMnNiCo(a、x、y及びzは、0≦a≦1.2、x+y+z=1、0<x≦0.5、0<y≦0.5、z≧0を満足するものとする)で表されるものが好ましい。
前記のリチウム遷移金属複合酸化物には、B、F、Mg、A1、Ti、Cr、V、Fe、Cu、Zn、Nb、Y、Zr、Snから選択される少なくとも一種類の元素を更に含んでいても良い。
The lithium manganese composite oxide having a spinel structure further includes at least one element selected from B, F, Mg, Al, Ti, Cr, V, Fe, Co, Ni, Cu, Zn, Nb, and Zr. You can leave.
In addition, the lithium transition metal composite oxide containing at least Ni and having a layered structure preferably contains Mn and more preferably contains Co in order to improve the structural stability. That is, Li a Mn x Ni y Co z O 2 (a, x, y and z are 0 ≦ a ≦ 1.2, x + y + z = 1, 0 <x ≦ 0.5, 0 <y ≦ 0.5, It is preferable that z> 0 is satisfied.
The lithium transition metal composite oxide further includes at least one element selected from B, F, Mg, A1, Ti, Cr, V, Fe, Cu, Zn, Nb, Y, Zr, and Sn. You can leave.

更に、上記本発明の組電池においては、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた非水電解質二次電池の全セルの合計正極活物質重量と、正極活物質に少なくともNiを含有して層状構造を有するリチウム遷移金属複合酸化物を用いた非水電解質二次電池の全セルの合計正極活物質重量との比率は、9:1〜1:9の範囲であることが望ましく、好ましくは6:4〜1:9の範囲であり、更に好ましくは4:6〜1:9の範囲である。この範囲を外れた場合、高温保存特性の低下を招くおそれがある。   Furthermore, in the assembled battery of the present invention, the total positive electrode active material weight of all cells of the nonaqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure as the positive electrode active material, and at least Ni in the positive electrode active material. The ratio of the total positive electrode active material weight of all the cells of the non-aqueous electrolyte secondary battery using the lithium transition metal composite oxide having a layered structure and containing 9 to 9: 1 to 1: 9 Desirably, preferably in the range of 6: 4 to 1: 9, and more preferably in the range of 4: 6 to 1: 9. If it is out of this range, the high temperature storage characteristics may be deteriorated.

尚、負極活物質は特に限定されるものではないが、炭素材料であることが好ましい。炭素材料の中でも、特に黒鉛材料であることが好ましい。本発明に用いられる非水電解液の溶媒としては、従来より非水電解質二次電池の電解質の溶媒として用いられているものを用いることが出来る。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートを用いることが出来る。特に、環状カーボネートと鎖状カーボネートの混合溶媒であることが好ましい。   The negative electrode active material is not particularly limited, but is preferably a carbon material. Among carbon materials, graphite material is particularly preferable. As the solvent for the non-aqueous electrolyte used in the present invention, those conventionally used as the electrolyte solvent for non-aqueous electrolyte secondary batteries can be used. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate can be used. In particular, a mixed solvent of a cyclic carbonate and a chain carbonate is preferable.

本発明における非水電解質の溶質としては、一般に非水電解質二次電池の電解質として用いられるリチウム塩を用いることが出来る。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO)、LiN(CSO)、LiN(CFSO)(CSO)、LiC(CSO)、LiAsF、LiClO、Li(B(C))、Li(B(C)F)、Li(P(C)F)等、及びそれらの混合物が例示される。 As the solute of the nonaqueous electrolyte in the present invention, a lithium salt generally used as an electrolyte of a nonaqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li (B (C 2 O 4 ) 2 ), Li (B (C 2 O 4 ) F 2 ), Li (P (C 2 O 4 ) F 4 ) and the like, and mixtures thereof are exemplified.

本発明によれば、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた第1の非水電解質二次電池Aと、正極活物質に少なくともNiを含有して層状構造を有するリチウム遷移金属複合酸化物を用いた第2の非水電解質二次電池Bとを並列に接続して用いることにより、高温保存耐久性に優れ、電圧と容量の両方にバランスのとれた組電池を得ることが出来る。   According to the present invention, the first nonaqueous electrolyte secondary battery A using a lithium manganese composite oxide having a spinel structure as the positive electrode active material, and the lithium transition having a layered structure containing at least Ni in the positive electrode active material By using the second nonaqueous electrolyte secondary battery B using the metal composite oxide connected in parallel, an assembled battery having excellent high-temperature storage durability and balanced in both voltage and capacity is obtained. I can do it.

その作用機構は、以下のように推察される。異種の電池を並列に接続した場合、各々の正極並びに各々の負極は等電位となり、特に正極では、電圧の高いスピネル構造を有するリチウムマンガン複合酸化物と電圧の低い層状構造を有するリチウムニッケル複合酸化物との混成電位となる。即ち、電圧の高いスピネル構造を有するリチウムマンガン複合酸化物は、電圧の低い層状構造を有するリチウムニッケル複合酸化物により電位を押し下げられ、逆に、電圧の低い層状構造を有するリチウムニッケル複合酸化物は電圧の高いスピネル構造を有するリチウムマンガン複合酸化物により電位を押し上げられるため、各々は単独で存在する時とは異なるエネルギー状態をとることになる。このことが高温保存特性に大きく影響しているものと考えられる。   The action mechanism is presumed as follows. When different types of batteries are connected in parallel, each positive electrode and each negative electrode are equipotential. In particular, in the positive electrode, a lithium manganese composite oxide having a high voltage spinel structure and a lithium nickel composite oxide having a low voltage layer structure. It becomes a mixed potential with the object. That is, the lithium manganese composite oxide having a high voltage spinel structure can be lowered in potential by the lithium nickel composite oxide having a low voltage layer structure, and conversely, the lithium nickel composite oxide having a low voltage layer structure is Since the potential is boosted by the lithium manganese composite oxide having a high voltage spinel structure, each takes an energy state different from that when it exists alone. This is considered to greatly affect the high temperature storage characteristics.

以下、本発明の実施の形態につき、図面に沿って具体的に説明する。
本発明に係る組電池は、図1に示す如く、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた第1の非水電解質二次電池Aと、正極活物質に少なくともNiを含有して層状構造を有するリチウム遷移金属複合酸化物を用いた第2の非水電解質二次電池Bとを、互いに並列に接続して、1つの電池群が構成されている。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
As shown in FIG. 1, the assembled battery according to the present invention includes a first nonaqueous electrolyte secondary battery A using a lithium manganese composite oxide having a spinel structure as a positive electrode active material, and at least Ni in the positive electrode active material. Thus, the second nonaqueous electrolyte secondary battery B using the lithium transition metal composite oxide having a layered structure is connected in parallel to each other to form one battery group.

本発明の組電池の効果を確認するべく、後述する方法で3種類の組電池(実施例1、比較例1、比較例2)を作製し、それぞれの高温保存特性を調べた。   In order to confirm the effect of the assembled battery of the present invention, three types of assembled batteries (Example 1, Comparative Example 1 and Comparative Example 2) were prepared by the method described later, and the high-temperature storage characteristics of each were examined.

実施例1
[正極の作製]
正極活物質としてスピネル構造を有するLi1.1Mn1.9と、導電剤としての炭素と、結着剤としてのポリフッ化ビニリデンと、分散媒としてのN−メチル−2−ピロリドンを、活物質と導電剤と結着剤の重量比が90:5:5の比率になるようにして加えた後に混練して、正極スラリーを作製した。作製したスラリーを集電体としてのアルミニウム箔上に塗布して乾燥させ、その後、圧延ローラーを用いて圧延し、集電タブを取り付けることにより、第1の正極を作製した。正極活物質として層状構造を有するLiNi0.4Co0.3Mn0.3を用いた以外は第1の正極と同様にして第2の正極を作製した。第1の正極のLi1.1Mn1.9重量と第2の正極のLiNi0.4Co0.3Mn0.3重量の比が4:6となるように調整し、第1の正極と第2の正極を並列に接続することで正極とした。
Example 1
[Production of positive electrode]
Li 1.1 Mn 1.9 O 4 having a spinel structure as a positive electrode active material, carbon as a conductive agent, polyvinylidene fluoride as a binder, and N-methyl-2-pyrrolidone as a dispersion medium, The active material, the conductive agent and the binder were added so that the weight ratio was 90: 5: 5, and then kneaded to prepare a positive electrode slurry. The produced slurry was applied onto an aluminum foil as a current collector and dried, then rolled using a rolling roller, and a current collecting tab was attached to produce a first positive electrode. A second positive electrode was produced in the same manner as the first positive electrode except that LiNi 0.4 Co 0.3 Mn 0.3 O 2 having a layered structure was used as the positive electrode active material. Adjust the ratio of Li 1.1 Mn 1.9 O 4 weight of the first positive electrode to LiNi 0.4 Co 0.3 Mn 0.3 O 2 weight of the second positive electrode to 4: 6, The first positive electrode and the second positive electrode were connected in parallel to form a positive electrode.

[電解液の調製]
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7で混合した溶媒に対し、LiPFを1mo1/1溶解して、電解液を調製した。
[Preparation of electrolyte]
An electrolyte solution was prepared by dissolving 1 mol / l LiPF 6 in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7.

[電池の作製]
上記で作製した正極を作用極として、対極および参照極にリチウム金属を用い、図2に示す三電極式ビーカーセルを作製し、上記電解液を注入して組電池Xを作製した。尚、図2において、1は作用極、2は対極(リチウム金属)、3は参照極(リチウム金属)、4は電解液である。
[Production of battery]
Using the positive electrode prepared above as a working electrode, lithium metal was used for the counter electrode and the reference electrode, and a three-electrode beaker cell shown in FIG. In FIG. 2, 1 is a working electrode, 2 is a counter electrode (lithium metal), 3 is a reference electrode (lithium metal), and 4 is an electrolyte.

[電池の定格容量測定]
電池の容量確認は9.3mA→3.1mAの2段階充電で4.3Vまで充電した後、放電終止電圧を3.1Vに設定し、9.3mAで3.1Vまで放電したときの放電容量を定格容量とした。
[Battery rated capacity measurement]
To check the battery capacity, after charging to 4.3V by two-step charging from 9.3mA to 3.1mA, set the discharge end voltage to 3.1V, and discharge capacity when discharging to 3.1V at 9.3mA Was the rated capacity.

[保存特性試験]
上記充電条件により、4.3Vまで満充電した後、45℃に保持した恒温槽内で10日間の保存試験を行った後、容量確認を行い、容量復帰率を求めた。容量復帰率は、保存試験後の電池定格容量を保存試験前の電池定格容量で割って算出した。
[Storage characteristics test]
Under the above charging conditions, the battery was fully charged to 4.3 V, and then subjected to a storage test for 10 days in a thermostatic bath maintained at 45 ° C., then the capacity was confirmed and the capacity recovery rate was determined. The capacity recovery rate was calculated by dividing the battery rated capacity after the storage test by the battery rated capacity before the storage test.

比較例1
実施例1の第1の正極のみを並列に接続したこと以外は実施例1と同様にして組電池X1を作製した。
Comparative Example 1
An assembled battery X1 was produced in the same manner as in Example 1 except that only the first positive electrode of Example 1 was connected in parallel.

比較例2
実施例1の第2の正極のみを並列に接続したこと以外は実施例1と同様にして組電池X2を作製した。
実施例及び比較例で行った45℃での保存試験の結果を下記表に表わす。
Comparative Example 2
An assembled battery X2 was produced in the same manner as in Example 1 except that only the second positive electrode of Example 1 was connected in parallel.
The results of the storage test at 45 ° C. conducted in Examples and Comparative Examples are shown in the following table.

Figure 2005251513
Figure 2005251513

試験の結果から明らかなように、正極にLi1.1Mn1.9とLiNi0.4Co0.3Mn0.3を並列に接続した組電池Xは、各々を並列に接続した組電池X1、X2よりも容量復帰率が高く、高温保存特性が向上したことが分かる。
従って、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた非水電解質二次電池と、正極活物質に少なくともNiを含有して層状構造を有するリチウム遷移金属複合酸化物を用いた非水電解質二次電池とを並列に接続して用いることにより、高温保存耐久性に優れ、電圧と容量の両方にバランスのとれた組電池を得ることが出来る。
As is clear from the test results, the assembled battery X in which Li 1.1 Mn 1.9 O 4 and LiNi 0.4 Co 0.3 Mn 0.3 O 2 are connected in parallel to the positive electrode is connected to each other in parallel. It can be seen that the capacity recovery rate is higher than that of the connected assembled batteries X1 and X2, and the high-temperature storage characteristics are improved.
Therefore, a non-aqueous electrolyte secondary battery using a lithium manganese composite oxide having a spinel structure as a positive electrode active material and a non-aqueous electrolyte using a lithium transition metal composite oxide having a layered structure containing at least Ni in the positive electrode active material. By using a water electrolyte secondary battery connected in parallel, an assembled battery having excellent high-temperature storage durability and balanced voltage and capacity can be obtained.

尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた第1の非水電解質二次電池Aを直列接続してなる第1の電池列と、正極活物質に少なくともNiを含有して層状構造を有するリチウム遷移金属複合酸化物を用いた第2の非水電解質二次電池Bを直列接続してなる第2の電池列とを、互いに並列に接続して、本発明の組電池を構成することも可能である。   In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, a first battery array in which a first nonaqueous electrolyte secondary battery A using a lithium manganese composite oxide having a spinel structure as a positive electrode active material is connected in series, and the positive electrode active material contains at least Ni. And a second battery array in which the second non-aqueous electrolyte secondary batteries B using the lithium transition metal composite oxide having a layered structure are connected in series to each other in parallel, It is also possible to configure.

本発明に係る組電池の構成を示す図である。It is a figure which shows the structure of the assembled battery which concerns on this invention. 三極式ビーカーセルの構成を示す図である。It is a figure which shows the structure of a tripolar beaker cell.

符号の説明Explanation of symbols

A 第1の非水電解質二次電池
B 第2の非水電解質二次電池
A 1st nonaqueous electrolyte secondary battery B 2nd nonaqueous electrolyte secondary battery

Claims (3)

複数の非水電解質二次電池を互いに接続してなる1或いは複数の電池群から構成される組電池において、少なくとも1つの電池群は、正極活物質にスピネル構造を有するリチウムマンガン複合酸化物を用いた第1の非水電解質二次電池Aと、正極活物質に少なくともNiを含有して層状構造を有するリチウム遷移金属複合酸化物を用いた第2の非水電解質二次電池Bとを、互いに並列に接続して構成されていることを特徴とする組電池。   In an assembled battery composed of one or a plurality of battery groups formed by connecting a plurality of nonaqueous electrolyte secondary batteries to each other, at least one battery group uses a lithium manganese composite oxide having a spinel structure as a positive electrode active material. The first non-aqueous electrolyte secondary battery A and the second non-aqueous electrolyte secondary battery B using a lithium transition metal composite oxide containing at least Ni as a positive electrode active material and having a layered structure are mutually connected. An assembled battery characterized by being connected in parallel. 前記少なくとも1つの電池群は、前記第1の非水電解質二次電池Aを直列接続してなる第1の電池列と、前記第2の非水電解質二次電池Bを直列接続してなる第2の電池列とを、互いに並列に接続して構成されている請求項1に記載の組電池。   The at least one battery group includes a first battery array formed by connecting the first nonaqueous electrolyte secondary batteries A in series and a second nonaqueous electrolyte secondary battery B connected in series. 2. The assembled battery according to claim 1, wherein two battery arrays are connected in parallel to each other. 前記第2の非水電解質二次電池において前記層状構造を有するリチウム遷移金属複合酸化物が少なくともNi及びMnを含有している請求項1又は請求項2に記載の組電池。
The assembled battery according to claim 1 or 2, wherein the lithium transition metal composite oxide having the layered structure in the second nonaqueous electrolyte secondary battery contains at least Ni and Mn.
JP2004058878A 2004-03-03 2004-03-03 Battery assembly using nonaqueous electrolyte secondary battery Pending JP2005251513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058878A JP2005251513A (en) 2004-03-03 2004-03-03 Battery assembly using nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058878A JP2005251513A (en) 2004-03-03 2004-03-03 Battery assembly using nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2005251513A true JP2005251513A (en) 2005-09-15

Family

ID=35031788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058878A Pending JP2005251513A (en) 2004-03-03 2004-03-03 Battery assembly using nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2005251513A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192437A (en) * 2007-02-05 2008-08-21 Sanyo Electric Co Ltd Battery unit

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112318A (en) * 1996-10-08 1998-04-28 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JPH10149807A (en) * 1996-11-19 1998-06-02 Shin Kobe Electric Mach Co Ltd Assembled battery
JPH10255767A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Set battery for use in electric vehicle
JPH11144764A (en) * 1997-11-06 1999-05-28 Toshiba Corp Lithium ion secondary battery and battery assembly using the lithium ion secondary battery
JPH11354118A (en) * 1998-06-08 1999-12-24 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000077071A (en) * 1998-08-27 2000-03-14 Nec Corp Nonaqueous electrolyte secondary battery
JP2001185143A (en) * 1999-12-24 2001-07-06 Toshiba Corp Secondary battery using non-aqueous electrolyte and its battery pack
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP2004055346A (en) * 2002-07-19 2004-02-19 Nissan Motor Co Ltd Battery pack, composite battery pack, and vehicle mounting it
JP2004055425A (en) * 2002-07-23 2004-02-19 Nissan Motor Co Ltd Laminated secondary battery and battery element body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112318A (en) * 1996-10-08 1998-04-28 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JPH10149807A (en) * 1996-11-19 1998-06-02 Shin Kobe Electric Mach Co Ltd Assembled battery
JPH10255767A (en) * 1997-03-11 1998-09-25 Sanyo Electric Co Ltd Set battery for use in electric vehicle
JPH11144764A (en) * 1997-11-06 1999-05-28 Toshiba Corp Lithium ion secondary battery and battery assembly using the lithium ion secondary battery
JPH11354118A (en) * 1998-06-08 1999-12-24 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000077071A (en) * 1998-08-27 2000-03-14 Nec Corp Nonaqueous electrolyte secondary battery
JP2001185143A (en) * 1999-12-24 2001-07-06 Toshiba Corp Secondary battery using non-aqueous electrolyte and its battery pack
JP2003346798A (en) * 2002-05-24 2003-12-05 Nec Corp Secondary battery and battery pack using the same and method of use of secondary battery
JP2004055346A (en) * 2002-07-19 2004-02-19 Nissan Motor Co Ltd Battery pack, composite battery pack, and vehicle mounting it
JP2004055425A (en) * 2002-07-23 2004-02-19 Nissan Motor Co Ltd Laminated secondary battery and battery element body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192437A (en) * 2007-02-05 2008-08-21 Sanyo Electric Co Ltd Battery unit

Similar Documents

Publication Publication Date Title
US7452631B2 (en) Non-aqueous electrolyte secondary battery
JP5132048B2 (en) Nonaqueous electrolyte secondary battery
US20110212367A1 (en) Non-aqueous electrolyte secondary battery
US7438991B2 (en) Nonaqueous electrolyte secondary cell and method for charging same
US20110223490A1 (en) Nonaqueous electrolyte secondary battery
JP2007234565A (en) Nonaqueous electrolyte secondary battery
KR101901886B1 (en) Electrolyte for secondary battery and secondary battery containing the same
JP2007200865A (en) Nonaqueous electrolyte secondary battery
US20160380309A1 (en) Long-life lithium-ion batteries
KR102135631B1 (en) Positive electrode for lithium accumulator
KR20040084761A (en) Non-Aqueous Electrolyte Secondary Battery, Positive Electrode Active Material and Method of Manufacturing the Same
JP2007095354A (en) Charge and discharge method of nonaqueous electrolyte secondary battery
JP5159133B2 (en) Nonaqueous electrolyte secondary battery
US20050266312A1 (en) Non-aqueous electrolyte secondary battery
CN101267046B (en) Electrolyte for lithium ion rechargeable battery and lithium ion rechargeable battery including the same
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2009218112A (en) Nonaqueous electrolyte secondary battery and manufacturing method therefor
JP3349399B2 (en) Lithium secondary battery
JP4707430B2 (en) Positive electrode and non-aqueous electrolyte secondary battery
JPWO2004042861A1 (en) Nonaqueous electrolyte secondary battery charging method and nonaqueous electrolyte secondary battery
JP2005251513A (en) Battery assembly using nonaqueous electrolyte secondary battery
JP5666561B2 (en) Nonaqueous electrolyte secondary battery
JP2008235148A (en) Non-aqueous electrolyte secondary battery
JP2007134218A (en) Nonaqueous electrolyte secondary battery
JP4518821B2 (en) Nonaqueous electrolyte secondary battery electrode and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427