JPH10255767A - Set battery for use in electric vehicle - Google Patents

Set battery for use in electric vehicle

Info

Publication number
JPH10255767A
JPH10255767A JP9055796A JP5579697A JPH10255767A JP H10255767 A JPH10255767 A JP H10255767A JP 9055796 A JP9055796 A JP 9055796A JP 5579697 A JP5579697 A JP 5579697A JP H10255767 A JPH10255767 A JP H10255767A
Authority
JP
Japan
Prior art keywords
active material
negative electrode
electric vehicle
type
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9055796A
Other languages
Japanese (ja)
Other versions
JP3363738B2 (en
Inventor
Yoshihiro Shoji
良浩 小路
Naoya Nakanishi
直哉 中西
Kazunari Okita
一成 大北
Yoshito Konno
義人 近野
Ikuro Yonezu
育郎 米津
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05579697A priority Critical patent/JP3363738B2/en
Publication of JPH10255767A publication Critical patent/JPH10255767A/en
Application granted granted Critical
Publication of JP3363738B2 publication Critical patent/JP3363738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a set battery for use in an electric vehicle wherein both a maximum instantaneous output characteristic and a charging/discharging capacity are improved. SOLUTION: In a set battery for use in an electric vehicle, a plurality of series-connected unit cells of a kind A and a plurality of series-connected unit cells of a kind B being connected in parallel to each other, each of these unit cells includes a negative electrode including a carbon material as an active material, a positive electrode including, as an active material, a material capable of electrochemical reaction with lithium ions, and a nonaqueous electrolyte, an opposed capacity ratio of these positive/negative electrodes being set substantially at 1.0, a ratio of active material quantities per negative electrode unit area between the unit cells of the kinds A and B being caused to fall within a range from 0.45 to 0.75, and an active material quantity per negative electrode unit area of the unit cells of both the kinds is caused to fall within a range from 5 to 13mg/cm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電気自動車用の組電
池に関し、特に、その瞬間最大出力特性と充放電容量の
両方の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an assembled battery for an electric vehicle, and more particularly to an improvement in both an instantaneous maximum output characteristic and a charge / discharge capacity.

【0002】[0002]

【従来の技術】複数の単電池を含む電気自動車用組電池
のように、家庭用2次電池に比べて遙かに大きなエネル
ギ密度を必要とする2次電池を開発するために、渦巻型
電極を備えた2次電池が注目されている。なぜならば、
薄くて柔軟な帯状の正極と負極とを帯状のセパレータを
介して重ね合わせて巻回することによって得られる渦巻
型電極においては、正極と負極の実効面積を非常に大き
くすることができ、これによって2次電池のエネルギ密
度を増大させることができるからである。なお、ここに
いう渦巻型電極とは、必ずしも円形の断面を有する円柱
状のものに限られず、たとえば矩形断面を有する、角柱
状に巻回されたもしくは円柱状に巻回された後加圧変型
させた渦巻型電極などをも含む。
2. Description of the Related Art In order to develop a secondary battery requiring a much larger energy density than a home secondary battery, such as an assembled battery for an electric vehicle including a plurality of cells, a spiral electrode is required. Are attracting attention. because,
In a spiral electrode obtained by laminating and winding a thin and flexible strip-shaped positive electrode and a negative electrode via a strip-shaped separator, the effective area of the positive electrode and the negative electrode can be greatly increased, This is because the energy density of the secondary battery can be increased. In addition, the spiral electrode here is not necessarily limited to a columnar electrode having a circular cross section, and for example, has a rectangular cross section, is wound in a prismatic shape, or is deformed by pressure after being wound in a cylindrical shape. Also includes a spiral-shaped electrode and the like.

【0003】図2は、渦巻型電極の一例として、円柱状
渦巻型電極の巻回状態を模式的な斜視図で示している。
渦巻型電極においては、正極1は帯状の金属箔の集電体
とその両面に被着された粉末状の正極活物質とを含み、
負極2は帯状の金属箔の集電体とその両面に被着された
粉末状の負極活物質とを含んでいる。これらの帯状正極
1と帯状正極2のそれぞれには、電流を取出すための正
極集電タブ1aと負極集電タブ2aが接合されている。
FIG. 2 is a schematic perspective view showing a wound state of a cylindrical spiral electrode as an example of a spiral electrode.
In the spiral electrode, the positive electrode 1 includes a current collector of a strip-shaped metal foil and a powdery positive electrode active material attached to both surfaces thereof,
The negative electrode 2 includes a current collector of a band-shaped metal foil and a powdery negative electrode active material adhered to both surfaces thereof. Each of the strip-shaped positive electrode 1 and the strip-shaped positive electrode 2 is joined with a positive electrode current collecting tab 1a and a negative electrode current collecting tab 2a for extracting current.

【0004】図2においては図面の煩雑化を避けるため
にただ1対の正極集電タブ1aと負極集電タブ2aが示
されているが、実際には帯状の正極1と負極2の長さ方
向に所定の間隔で複数の正極集電タブ1aと複数の負極
タブ2aが接合されている。これらの集電タブは、たと
えば電極活物質層上から集電体を貫通する鳩目止めによ
って取付けることができる。より好ましくは、集電タブ
が取付けられる領域において金属箔集電体が電極活物質
層から露出されており、集電タブがその集電体表面に直
接溶着されることによって取付けられる。この溶着に
は、スポット溶接,超音波溶接等の種々の溶接方法を用
いることができる。
FIG. 2 shows only one pair of the positive electrode current collecting tab 1a and the negative electrode current collecting tab 2a to avoid complication of the drawing. A plurality of positive electrode current collecting tabs 1a and a plurality of negative electrode tabs 2a are joined at predetermined intervals in the direction. These current collecting tabs can be attached by, for example, eyelets penetrating the current collector from above the electrode active material layer. More preferably, the metal foil current collector is exposed from the electrode active material layer in a region where the current collecting tab is mounted, and the current collecting tab is mounted by directly welding to the current collector surface. Various welding methods such as spot welding and ultrasonic welding can be used for this welding.

【0005】複数の正極集電タブ1aが接合された帯状
正極1と複数の負極集電タブ2aが接合された帯状負極
2は、図2に示されているように、セパレータ3を介し
て互いに積層されて巻回される。
As shown in FIG. 2, a strip-shaped positive electrode 1 having a plurality of positive electrode current collecting tabs 1a joined thereto and a band-shaped negative electrode 2 having a plurality of negative electrode current collecting tabs 2a joined thereto are provided with a separator 3 interposed therebetween. Laminated and wound.

【0006】図3は、図2に示されているような巻回に
よって得られた渦巻型電極とさらに電解液を含む単電池
(単セルともいう)の一例を示す概略的な斜視図であ
る。このような単電池において、たとえば電池缶10は
約64mmφの外径と約400mmの長さを有してい
る。図2に示されているような正極集電タブ1aと負極
集電タブ2aは、それぞれ正極端子11と負極端子12
に電気的に接続されており、これらの正極端子11と負
極端子12はそれぞれ正極絶縁パッキング13と負極絶
縁パッキング14によって電池缶10から電気的に分離
されている。
FIG. 3 is a schematic perspective view showing an example of a unit cell (also referred to as a unit cell) containing a spiral electrode obtained by winding as shown in FIG. 2 and an electrolytic solution. . In such a unit cell, for example, the battery can 10 has an outer diameter of about 64 mmφ and a length of about 400 mm. A positive current collecting tab 1a and a negative current collecting tab 2a as shown in FIG.
The positive terminal 11 and the negative terminal 12 are electrically separated from the battery can 10 by a positive insulating packing 13 and a negative insulating packing 14, respectively.

【0007】[0007]

【発明が解決しようとする課題】通常、電気自動車用組
電池は、図3に示されているような比較的大きな単電池
の複数個を直列接続して得られる。そのような組電池中
で直列接続された複数のセルにおいては、各セル間での
充放電の不均一性を防止するために、各セル間で同量の
電極活物質を含ませることにより容量の不均一性をでき
るだけ小さくすることが好ましいと考えられている(1
996年,電池討論会,第241頁参照)。
Normally, an assembled battery for an electric vehicle is obtained by connecting a plurality of relatively large cells as shown in FIG. 3 in series. In a plurality of cells connected in series in such an assembled battery, in order to prevent non-uniform charge / discharge between the cells, the capacity is increased by including the same amount of electrode active material between the cells. It is considered preferable to minimize the non-uniformity of
996, Battery Symposium, page 241).

【0008】しかし、組電池の容量を増大させるために
各セル中の粉末状の電極活物質量を増大させれば、活物
質が密に充填されてその中へ電解液が浸入しにくくな
る。すなわち、各セル中の電極活物質層の含液性が低下
し、電流負荷特性(瞬間最大出力特性)が低下する。他
方、電極活物質層の含液性を改善するために活物質の充
填密度を低下させれば、各セルの充放電容量が低下す
る。
However, if the amount of the powdered electrode active material in each cell is increased in order to increase the capacity of the battery pack, the active material is densely packed and the electrolyte does not easily penetrate therein. That is, the liquid content of the electrode active material layer in each cell decreases, and the current load characteristics (instantaneous maximum output characteristics) decrease. On the other hand, if the packing density of the active material is reduced to improve the liquid content of the electrode active material layer, the charge / discharge capacity of each cell is reduced.

【0009】ところで、電気自動車用組電池としては、
自動車の加速時には大きな瞬間最大出力を発揮すること
が望まれ、他方、1回の充電で長距離走行を可能にする
ために大きな充放電容量を有することも望まれる。しか
し、上述のように、各セル中の電極活物質層の充填密度
に関して、各セルの出力特性と容量とが相反する関係に
あるので、先行技術においては電気自動車用組電池の出
力特性と容量との双方を改善することは困難であった。
By the way, as an assembled battery for an electric vehicle,
When accelerating the vehicle, it is desired to exhibit a large instantaneous maximum output. On the other hand, it is also desired to have a large charge / discharge capacity in order to enable long-distance traveling with one charge. However, as described above, with respect to the packing density of the electrode active material layer in each cell, the output characteristics and capacity of each cell are in a conflicting relationship. It was difficult to improve both.

【0010】このような先行技術における課題に鑑み、
本発明は、瞬間最大出力特性と充放電容量の両方が改善
された電気自動車用組電池を提供することを目的として
いる。
In view of such problems in the prior art,
An object of the present invention is to provide an assembled battery for an electric vehicle in which both the instantaneous maximum output characteristics and the charge / discharge capacity are improved.

【0011】[0011]

【課題を解決するための手段】本発明による電気自動車
用組電池においては、種類Aの複数の直列接続された単
電池と種類Bの複数の直列接続された単電池とが相互に
並列接続されており、これらの単電池の各々は炭素材料
を活物質として含む負極,リチウムイオンと電気化学反
応可能な材料を活物質として含む正極,および非水電解
液を含み、それらの正負極の対向容量比は実質的に1.
0に設定されており、種類Aと種類Bの単電池間におけ
る負極単位面積当りの活物質量比が0.45〜0.75
の範囲内にあり、かつ両種類の単電池の負極単位面積当
りの活物質密度が5〜13mg/cm2 の範囲内にある
ことを特徴としている。
In the assembled battery for an electric vehicle according to the present invention, a plurality of series-connected cells of type A and a plurality of series-connected cells of type B are connected in parallel with each other. Each of these cells includes a negative electrode containing a carbon material as an active material, a positive electrode containing a material capable of electrochemically reacting with lithium ions as an active material, and a non-aqueous electrolyte, and the opposite capacity of the positive and negative electrodes. The ratio is substantially 1.
0, and the ratio of the amount of active material per unit area of the negative electrode between the type A and type B cells is 0.45 to 0.75.
And the active material density per unit area of the negative electrode of both types of unit cells is in the range of 5 to 13 mg / cm 2 .

【0012】このような電気自動車用組電池は、より好
ましくは、種類Aの単電池が6〜8mg/cm2 の範囲
内の負極活物質密度を有し、種類Bの単電池は11〜1
3mg/cm2 の範囲内の負極活物質密度を有してい
る。
[0012] In such an electric vehicle assembled battery, more preferably, the type A cells have a negative electrode active material density in the range of 6 to 8 mg / cm 2 , and the type B cells are 11 to 1
It has a negative electrode active material density within a range of 3 mg / cm 2 .

【0013】電気自動車用組電池において、さらに好ま
しくは、負極活物質の炭素材料として黒鉛粉末が用いら
れ、この黒鉛粉末における黒鉛結晶のC軸方向の結晶子
の大きさの値Lcは150Å以上であり、かつC軸方向
の原子面間隔の値d002 は3.38Å以下である。
In the battery pack for an electric vehicle, graphite powder is more preferably used as a carbon material of the negative electrode active material, and the value Lc of the crystallite in the C-axis direction of the graphite crystal in the graphite powder is 150 ° or more. And the value d 002 of the atomic plane spacing in the C-axis direction is 3.38 ° or less.

【0014】[0014]

【発明の実施の形態】図1は、本発明の実施の形態の一
例による電気自動車用組電池を示す模式的なブロック図
である。この組電池においては、互いに直列接続された
種類Aの5個の単電池と互いに直列接続された種類Bの
5個の単電池とを含んでいる。そして、種類Aの単電池
のシリーズと種類Bの単電池のシリーズとは互いに並列
接続されている。
FIG. 1 is a schematic block diagram showing an assembled battery for an electric vehicle according to an embodiment of the present invention. This assembled battery includes five cells of type A connected in series to each other and five cells of type B connected in series to each other. The series of type A cells and the series of type B cells are connected to each other in parallel.

【0015】これらの単電池AとBが図3に示されてい
るような円柱状のセルで形成される場合、電池缶10内
に図2に示されているような帯状正極1と帯状負極2が
巻回された渦巻型電極が挿入され、その後に電池缶10
内に非水電解液が注入される。
When these unit cells A and B are formed of cylindrical cells as shown in FIG. 3, a band-shaped positive electrode 1 and a band-shaped negative electrode as shown in FIG. 2 is wound, and the spirally wound electrode is inserted.
A non-aqueous electrolyte is injected into the inside.

【0016】正極の粉末状活物質としては、マンガン,
コバルト,ニッケル,バナジウム,ニオブ,モリブデ
ン,および銅の少なくとも1つを含む金属酸化物の他
に、フッ化炭素,硫化鉄等の少なくとも1つを含むもの
を用いることができる。
As the powdery active material of the positive electrode, manganese,
In addition to a metal oxide containing at least one of cobalt, nickel, vanadium, niobium, molybdenum, and copper, an oxide containing at least one of carbon fluoride, iron sulfide, and the like can be used.

【0017】粉末状の負極活物質としては、通常は炭素
材料が用いられ、たとえば黒鉛粉末やコークス等が用い
られ得る。
As the powdered negative electrode active material, a carbon material is usually used, and for example, graphite powder, coke or the like can be used.

【0018】非水電解液の溶質としては、LiPF6
LiBF4 ,LiCF3 SO3 ,LiAsF6 ,LiN
(CF3 SO2 2 ,LiOSO2 (CF2 3
3 ,LiClO4 等の少なくとも1つを含むものを用
いることができる。
As the solute of the non-aqueous electrolyte, LiPF 6 ,
LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiN
(CF 3 SO 2 ) 2 , LiOSO 2 (CF 2 ) 3 C
A material containing at least one of F 3 and LiClO 4 can be used.

【0019】非水電解液の溶媒としては、エチレンカー
ボネイト、プロピレンカーボネイト、ブチレンカーボネ
イト、ビニレンカーボネイト、シクロペンタノン、スル
フォラン、3−メチルスルフォラン、2,4−ジメチル
スルフォラン、3−メチル−1,3−オキサゾリジン−
2−オン、γ−ブチルラクトン、ジメチルカーボネイ
ト、ジエチルカーボネイト、エチルメチルカーボネイ
ト、メチルプロピルカーボネイト、ブチルメチルカーボ
ネイト、エチルプロピルカーボネイト、ブチルエチルカ
ーボネイト、ジプロピルカーボネイト、1,2−ジメト
キシエタン、テトラヒドロフラン、2−メチルテトラヒ
ドロフラン、1,3−ジオキシソラン、酢酸メチル、酢
酸エチル等の少なくとも1つを含むものを用いることが
できる。
As the solvent of the non-aqueous electrolyte, ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, 3-methyl-1, 3-oxazolidine-
2-one, γ-butyl lactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2- A material containing at least one of methyltetrahydrofuran, 1,3-dioxysolan, methyl acetate, ethyl acetate, and the like can be used.

【0020】以上のように形成され得る図1の組電池に
おいて、種類Aの単電池における負極単位面積当りの活
物質量が種類Bの単電池に比べて0.45〜0.75の
範囲内に設定され、かつ両種類の単電池の負極単位面積
当りの活物質密度は5〜13mg/cm2 の範囲内に設
定される。ただし、いずれの単電池においても正負極の
対向容量比は実質的に1.0に設定される。
In the assembled battery of FIG. 1 which can be formed as described above, the amount of the active material per unit area of the negative electrode of the type A cell is in the range of 0.45 to 0.75 as compared with the type B cell. The active material density per unit area of the negative electrode of both types of unit cells is set in the range of 5 to 13 mg / cm 2 . However, in each of the cells, the opposed capacity ratio between the positive and negative electrodes is set to substantially 1.0.

【0021】より好ましくは、種類Aの単電池は6〜8
mg/cm2 の範囲内の負極活物質密度を有し、種類B
の単電池は11〜13mg/cm2 の範囲内の負極活物
質密度を有するように設定される。
More preferably, the type A cell is 6 to 8
having a negative electrode active material density in the range of mg / cm 2 ,
Are set to have a negative electrode active material density in the range of 11 to 13 mg / cm 2 .

【0022】さらに好ましくは、種類Aと種類Bのいず
れかの単電池においても負極の活物質として黒鉛粉末が
用いられ、この黒鉛粉末において黒鉛結晶のC軸方向の
結晶子の大きさの値Lcは150Å以上であり、かつC
軸方向の原子面間隔の値d00 2 は3.38Å以下のもの
を用いるのが良い。
More preferably, a graphite powder is used as an active material of the negative electrode in any of the cells of the type A and the type B, and in this graphite powder, the value Lc of the crystallite size in the C-axis direction of the graphite crystal is obtained. Is not less than 150 ° and C
It is preferable to use a value d 00 2 of the atomic plane spacing in the axial direction of 3.38 ° or less.

【0023】[0023]

【実施例】以下において、本発明のいくつかの実施例に
よる組電池を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, assembled batteries according to some embodiments of the present invention will be described.

【0024】[実施例1] (種類Aの単電池用渦巻型電極Aeの作製) 正極の作製:5μmの平均粒径を有するLiCoO2
末の正極活物質と人造黒鉛粉末の導電材とを9:1の重
量比で混合して正極合剤が調製された。この正極合剤
と、ポリフッ化ビニリデンをN−メチル−2−ピロリド
ン(NMP)に5重量%溶かした結着剤溶液とが固形分
重量比95:5で混練されてスラリーが調製された。こ
のスラリーは、20μmの厚さを有するアルミ箔の集電
体の両面にドクタブレード法によって塗布された。この
とき、正極用スラリーは負極との対向容量比(単位面積
当りの正極容量/単位面積当りの負極容量)が1.0に
なるように塗布される。集電体に塗布されたスラリー状
の正極活物質層は150℃で2時間真空乾燥され、粗電
極が作製された。この粗電極を圧延した後に両側縁をス
リットすることにより、0.100mmの厚さ,310
mmの幅,および5900mmの長さを有する帯状の正
極が作製された。なお、この圧延の前後において、アル
ミ箔の集電体の厚さはほとんど変化しない。
[Example 1] (Preparation of spiral electrode Ae for type A single cell) Preparation of positive electrode: A positive electrode active material of LiCoO 2 powder having an average particle size of 5 μm and a conductive material of artificial graphite powder were mixed in 9 pieces. The mixture was mixed at a weight ratio of 1: 1 to prepare a positive electrode mixture. This positive electrode mixture and a binder solution obtained by dissolving 5% by weight of polyvinylidene fluoride in N-methyl-2-pyrrolidone (NMP) were kneaded at a solid content weight ratio of 95: 5 to prepare a slurry. This slurry was applied to both surfaces of an aluminum foil current collector having a thickness of 20 μm by a doctor blade method. At this time, the slurry for the positive electrode is applied so that the facing capacity ratio with respect to the negative electrode (positive capacity per unit area / negative capacity per unit area) becomes 1.0. The slurry-like positive electrode active material layer applied to the current collector was vacuum-dried at 150 ° C. for 2 hours to produce a coarse electrode. After rolling the coarse electrode, slitting both side edges results in a thickness of 0.100 mm, 310 mm.
A strip-shaped positive electrode having a width of 5 mm and a length of 5900 mm was produced. Before and after the rolling, the thickness of the aluminum foil current collector hardly changes.

【0025】負極の作製:スチレンブタジエンゴム(S
BR)のディスパージョンと黒鉛粉末を水に分散させ
て、さらに増粘剤であるカルボキシメチルセルロース
(CMC)を添加して負極用スラリーが調製された。こ
のとき用いられた黒鉛粉末のC軸方向における結晶子の
大きさLcは1000Åより大きく、C軸方向の平均原
子面間隔d002は3.35Åであり、そして平均粒径は
20μmであった。また、このスラリーが乾燥された後
の負極における重量組成比が(黒鉛粉末):SBR:C
MC=100重量部:5重量部:1重量部になるように
調製された。このようなスラリーが厚さ18μmの銅箔
の集電体の両面に塗布され、乾燥されて粗電極が作製さ
れた。このとき、銅箔の集電体の片面上には8mg/c
2 の活物質量が被着された。この粗電極を圧延して両
側縁をスリットすることにより、0.140mmの厚
さ,320mmの幅,および6000mmの長さを有す
る帯状の負極が得られた。
Preparation of negative electrode: Styrene butadiene rubber (S
The dispersion of (BR) and the graphite powder were dispersed in water, and carboxymethyl cellulose (CMC) as a thickener was further added to prepare a slurry for a negative electrode. The graphite powder used at this time had a crystallite size Lc in the C-axis direction of more than 1000 °, an average atomic plane distance d 002 in the C-axis direction of 3.35 °, and an average particle size of 20 μm. The weight composition ratio of the negative electrode after the slurry was dried was (graphite powder): SBR: C
MC: 100 parts by weight: 5 parts by weight: 1 part by weight. Such a slurry was applied to both surfaces of a copper foil current collector having a thickness of 18 μm and dried to prepare a coarse electrode. At this time, 8 mg / c was applied on one side of the copper foil current collector.
m 2 of active material was deposited. By rolling this coarse electrode and slitting both side edges, a strip-shaped negative electrode having a thickness of 0.140 mm, a width of 320 mm, and a length of 6000 mm was obtained.

【0026】(種類Bの単電池用渦巻型電極Beの作
製) 正極の作製:種類Aの電池用渦巻型電極Aeの場合と同
様に、種類Bの電池用渦巻型電極Beのための正極が作
製された。
(Preparation of Type B Single-Cell Spiral Electrode Be) Preparation of Positive Electrode: As in the case of the type A battery spiral electrode Ae, a positive electrode for the type B battery spiral electrode Be is used. Made.

【0027】負極の作製:渦巻型電極Aeと同様に渦巻
型電極Be用の負極が作製されたが、渦巻型電極Be用
の負極の活物質量は11mg/cm2 に設定された。
Preparation of Negative Electrode: A negative electrode for the spiral electrode Be was prepared in the same manner as the spiral electrode Ae, but the active material amount of the negative electrode for the spiral electrode Be was set to 11 mg / cm 2 .

【0028】(電解液とセパレータ)非水電解液として
は、EC(エチレンカーボネイト)とDEC(ジエチル
カーボネイト)を2:3の体積比で含む混合溶媒にLi
PF6 の溶質を1モル/リットルだけ溶かした溶液が用
いられた。また、セパレータとしては、ポリプロピレン
製の微多孔膜が用いられた。
(Electrolyte and Separator) As a non-aqueous electrolyte, a mixed solvent containing EC (ethylene carbonate) and DEC (diethyl carbonate) in a volume ratio of 2: 3 is used.
Solution of solute of PF 6 by 1 mol / l was used. As the separator, a microporous film made of polypropylene was used.

【0029】(単電池の組立)以上のようにして用意さ
れた帯状正極と帯状負極をセパレータを介して巻回する
ことにより渦巻型電極AeとBeを作製し、円筒形の電
池缶内に挿入した後に電解液が注入されて図3に示され
ているようなリチウム2次電池が作製された。
(Assembly of a single cell) The band-shaped positive electrode and the band-shaped negative electrode prepared as described above are wound around a separator to produce spiral electrodes Ae and Be, and inserted into a cylindrical battery can. After that, an electrolytic solution was injected to produce a lithium secondary battery as shown in FIG.

【0030】(組電池の作製)図1に示されているよう
に、渦巻型電極Aeを含む種類Aの単電池5個が直列接
続され、渦巻型電極Beを含む種類Bの単電池の5個が
直列接続された。そして、これらの単電池Aのシリーズ
と単電池Bのシリーズが互いに並列接続されて組電池に
された。
(Fabrication of assembled battery) As shown in FIG. 1, five type A cells including a spiral electrode Ae are connected in series, and a type B single cell including a spiral electrode Be is connected. Were connected in series. Then, the series of the cell A and the series of the cell B were connected in parallel to each other to form an assembled battery.

【0031】(初期充放電試験)このように作製された
組電池において、25℃の温度の下に0.125Cの電
流量で20.50Vまで充電した後に、1Cの電流量で
13.75Vまで放電させ、そのときに得られた容量が
初期放電容量として定められた。
(Initial charge / discharge test) The battery thus prepared was charged to 20.50 V at a current of 0.125 C at a temperature of 25 ° C., and then increased to 13.75 V at a current of 1 C. The battery was discharged, and the capacity obtained at that time was defined as the initial discharge capacity.

【0032】(最大出力の測定)得られた組電池におい
て、25℃の温度の下に0.125Cの電流量で20.
5Vまで充電した後に、0Cから3Cまでの各電流で1
0秒間ずつ放電し、そのときの電圧が測定された。得ら
れた電流−電圧曲線において最も大きな出力値が最大出
力値とされた。
(Measurement of maximum output) In the obtained assembled battery, at a temperature of 25 ° C and a current amount of 0.125C, 20.
After charging to 5V, 1 at each current from 0C to 3C
The battery was discharged for 0 seconds, and the voltage at that time was measured. The largest output value in the obtained current-voltage curve was regarded as the maximum output value.

【0033】[実施例2,3および比較例1〜3]負極
の活物質量が表1の電極AeとBe欄に示されているよ
うに設定された以外は実施例1の場合と同様に実施例
2,3および比較例1〜3による組電池が作製されて電
池特性の試験が行なわれた。なお、従来の典型的な組電
池は比較例1によるものである。
Examples 2 and 3 and Comparative Examples 1 to 3 In the same manner as in Example 1 except that the amount of the active material of the negative electrode was set as shown in the column of electrodes Ae and Be in Table 1. Battery packs according to Examples 2 and 3 and Comparative Examples 1 to 3 were manufactured and tested for battery characteristics. Note that the conventional typical battery pack is based on Comparative Example 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1の結果から、負極の活物質量が少ない
電極Aeはその充填密度が小さいので電解液の含液性に
優れ、高い瞬間出力(電流負荷特性)を発揮することが
できると考えられる。他方、比較例3の組電池において
は、電極Beの活物質量が多すぎてその充填密度が大き
いので、十分な含液性を得ることができなくて活物質の
すべてが充放電に寄与し得ないために放電容量が低下し
たものと考えられる。
From the results shown in Table 1, it is considered that the electrode Ae having a small amount of the active material of the negative electrode has a low packing density, so that the electrode Ae is excellent in the liquid content of the electrolyte and can exhibit a high instantaneous output (current load characteristic). Can be On the other hand, in the battery pack of Comparative Example 3, since the amount of the active material of the electrode Be was too large and the packing density thereof was large, sufficient liquid-containing property could not be obtained, and all of the active material contributed to charge and discharge. It is considered that the discharge capacity was lowered because it could not be obtained.

【0036】[実施例4,5および比較例4,5]負極
の活物質量が表2の電極AeとBeの欄に示されている
ように設定された以外は実施例1の場合と同様に、実施
例4,5および比較例4,5による組電池が作製されて
電池の特性試験が行なわれた。
Examples 4 and 5 and Comparative Examples 4 and 5 The same as in Example 1 except that the amount of the active material of the negative electrode was set as shown in the column of electrodes Ae and Be in Table 2. Then, assembled batteries according to Examples 4 and 5 and Comparative Examples 4 and 5 were manufactured, and a battery characteristic test was performed.

【0037】[0037]

【表2】 [Table 2]

【0038】[実施例6〜8および比較例6〜8]負極
の活物質にコークスが用いられ、その活物質量が表3の
電極AeとBeの欄に示されているように設定された以
外は実施例1の場合と同様に、実施例6〜8および比較
例6〜8による組電池が作製されて電池の特性試験が行
なわれた。
Examples 6 to 8 and Comparative Examples 6 to 8 Coke was used as the active material of the negative electrode, and the amount of the active material was set as shown in the columns of the electrodes Ae and Be in Table 3. Except for the above, the assembled batteries according to Examples 6 to 8 and Comparative Examples 6 to 8 were manufactured in the same manner as in Example 1, and the battery characteristic test was performed.

【0039】[0039]

【表3】 [Table 3]

【0040】以上のような表1,表2,および表3の結
果から明らかなように、電池A中の負極活物質量が5m
g/cm2 未満の場合には組電池の充放電容量が著しく
低下し、逆に電池B中の負極活物質量が13mg/cm
2 を超えれば組電池の最大出力特性が低下することがわ
かる。また、組電池が十分な最大出力特性を有するため
には電池A中の負極活物質量が8mg/cm2 以下であ
ることが好ましく、十分な容量を有するためには電池B
中の負極活物質量が11mg/cm2 以上であるのが好
ましいことがわかる。このような関係から、組電池にお
いて、電池Aの負極単位面積当りの活物質量は電池Bに
比べて0.45〜0.75の範囲内にあることが好まし
い。
As is apparent from the results of Tables 1, 2 and 3, the amount of the negative electrode active material in Battery A was 5 m
When the amount is less than g / cm 2, the charge / discharge capacity of the assembled battery is significantly reduced, and conversely, the amount of the negative electrode active material in Battery B is 13 mg / cm 2.
It can be seen that if it exceeds 2 , the maximum output characteristics of the battery pack will decrease. Also, the amount of the negative electrode active material in the battery A is preferably 8 mg / cm 2 or less in order for the battery pack to have sufficient maximum output characteristics, and the battery B in order to have sufficient capacity.
It can be seen that the amount of the negative electrode active material in the inside is preferably 11 mg / cm 2 or more. From such a relationship, in the battery pack, the amount of the active material per unit area of the negative electrode of the battery A is preferably in the range of 0.45 to 0.75 as compared with the battery B.

【0041】なお、負極集電体の銅箔の厚みは18μm
であるので、表1〜3に示された面積当りの活物質量を
Ad(mg/cm2 )とすれば、三次元的充填密度Dd
(g/cc)は次式で表わされる。
The thickness of the copper foil of the negative electrode current collector was 18 μm.
Therefore, assuming that the amount of active material per area shown in Tables 1 to 3 is Ad (mg / cm 2 ), the three-dimensional packing density Dd
(G / cc) is represented by the following equation.

【0042】Dd=Ad×10-3/0.0061 ここで、0.0061の数値は、{(負極の最終厚さ1
40μm)−(銅箔の厚さ18μm)}/2=0.00
61cmとして得られるものである。
Dd = Ad × 10 −3 /0.0061 Here, the numerical value of 0.0061 is Δ (final thickness of negative electrode 1
40 μm) − (18 μm thick copper foil)} / 2 = 0.00
It is obtained as 61 cm.

【0043】[0043]

【発明の効果】以上のように、本発明によれば、電極活
物質の充填密度の比較的小さな種類Aの単電池と電極活
物質密度の比較的大きな種類Bの単電池を組合せた組電
池を作製することにより、瞬間最大出力特性と充放電容
量の両方が改善された電気自動車用組電池を提供するこ
とができる。
As described above, according to the present invention, an assembled battery comprising a type A cell having a relatively low density of electrode active material and a type B cell having a relatively high electrode active material density is combined. By preparing a battery pack, it is possible to provide an assembled battery for an electric vehicle in which both the instantaneous maximum output characteristics and the charge / discharge capacity are improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例による電気自動車用
組電池を示す模式的なブロック図である。
FIG. 1 is a schematic block diagram showing an assembled battery for an electric vehicle according to an example of an embodiment of the present invention.

【図2】渦巻型電極の巻回状態を説明するための模式的
な斜視図である。
FIG. 2 is a schematic perspective view for explaining a wound state of a spiral electrode.

【図3】自動車用組電池に用いられる円柱状の単電池の
外観の一例を示す概略的な斜視図である。
FIG. 3 is a schematic perspective view showing an example of the external appearance of a columnar unit cell used for an automobile battery pack.

【符号の説明】[Explanation of symbols]

1 帯状正極 1a 正極集電タブ 2 帯状負極 2a 負極集電タブ 3 セパレータ 10 電池缶 11 正極端子 12 負極端子 13 正極絶縁パッキング 14 負極絶縁パッキング DESCRIPTION OF SYMBOLS 1 Strip-shaped positive electrode 1a Positive electrode current collecting tab 2 Strip-shaped negative electrode 2a Negative electrode current collecting tab 3 Separator 10 Battery can 11 Positive terminal 12 Negative terminal 13 Positive insulating packing 14 Negative insulating packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近野 義人 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yoshito Chino 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Ikuro Yonezu 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Toshiyuki Noma 2-5-5 Sanyo Electric Co., Ltd., Moriguchi-shi, Osaka (72) Inventor Koji Nishio Keihan-Hondori, Moriguchi-shi, Osaka 2-5-5 Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気自動車用組電池であって、 前記組電池においては種類Aの複数の直列接続された単
電池と種類Bの複数の直列接続された単電池とが互いに
並列接続されており、 前記単電池の各々は、炭素材料を活物質として含む負
極,リチウムイオンと電気化学反応可能な材料を活物質
として含む正極,および非水電解液を含み、それらの正
負極の対向容量比は実質的に1.0に設定されており、 前記種類Aと種類Bの単電池間における負極単位面積当
りの活物質量比が0.45〜0.75の範囲内にあり、
かつ前記両種類の単電池の負極単位面積当りの活物質密
度が5〜13mg/cm2 の範囲内にあることを特徴と
する電気自動車用組電池。
1. An assembled battery for an electric vehicle, wherein a plurality of type A series-connected cells and a plurality of type B series-connected cells are connected in parallel to each other. Each of the unit cells includes a negative electrode containing a carbon material as an active material, a positive electrode containing a material capable of electrochemically reacting with lithium ions as an active material, and a non-aqueous electrolyte. It is substantially set to 1.0, the active material amount ratio per unit area of the negative electrode between the type A and type B cells is in the range of 0.45 to 0.75,
An assembled battery for an electric vehicle, wherein the active material density per unit area of the negative electrode of the two types of unit cells is in the range of 5 to 13 mg / cm 2 .
【請求項2】 前記種類Aの単電池は6〜8mg/cm
2 の範囲内の負極活物質密度を有し、前記種類Bの単電
池は11〜13mg/cm2 の範囲内の負極活物質密度
を有することを特徴とする請求項1に記載の電気自動車
用組電池。
2. The cell of the type A is 6 to 8 mg / cm.
2. The electric vehicle according to claim 1, wherein the cell of the type B has a negative electrode active material density in a range of 11 to 13 mg / cm 2 . Battery pack.
【請求項3】 前記負極の活物質としての炭素材料は黒
鉛粉末であり、この黒鉛粉末において黒鉛結晶のC軸方
向の結晶子の大きさの値Lcは150Å以上であり、か
つC軸方向の原子面間隔の値d002 は3.38Å以下で
あることを特徴とする請求項1または2に記載の電気自
動車用組電池。
3. The carbon material as an active material of the negative electrode is a graphite powder, and in this graphite powder, a value Lc of a crystallite in a C-axis direction of the graphite crystal is 150 ° or more, and 3. The battery pack for an electric vehicle according to claim 1, wherein the value d 002 of the atomic plane spacing is 3.38 ° or less. 4.
JP05579697A 1997-03-11 1997-03-11 Battery pack for electric vehicles Expired - Fee Related JP3363738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05579697A JP3363738B2 (en) 1997-03-11 1997-03-11 Battery pack for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05579697A JP3363738B2 (en) 1997-03-11 1997-03-11 Battery pack for electric vehicles

Publications (2)

Publication Number Publication Date
JPH10255767A true JPH10255767A (en) 1998-09-25
JP3363738B2 JP3363738B2 (en) 2003-01-08

Family

ID=13008883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05579697A Expired - Fee Related JP3363738B2 (en) 1997-03-11 1997-03-11 Battery pack for electric vehicles

Country Status (1)

Country Link
JP (1) JP3363738B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251513A (en) * 2004-03-03 2005-09-15 Sanyo Electric Co Ltd Battery assembly using nonaqueous electrolyte secondary battery
JP2005293977A (en) * 2004-03-31 2005-10-20 Enerstruct Kk Compound battery
JP2008218248A (en) * 2007-03-06 2008-09-18 Hitachi Powdered Metals Co Ltd Lithium secondary battery
JP2009038037A (en) * 2008-10-14 2009-02-19 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2009152208A (en) * 2009-01-09 2009-07-09 Sanyo Electric Co Ltd Power supply unit for vehicle
JP2010507215A (en) * 2006-10-16 2010-03-04 エルジー・ケム・リミテッド High power secondary battery system with asymmetrically charged cells
JP2011040410A (en) * 2010-10-20 2011-02-24 Sony Corp Nonaqueous electrolyte secondary battery
JP2012109280A (en) * 2012-03-12 2012-06-07 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2013530510A (en) * 2011-06-09 2013-07-25 エルジー ケム. エルティーディ. Electrode assembly and lithium secondary battery including the same
JP2015144142A (en) * 2015-05-11 2015-08-06 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
US10651458B2 (en) 2004-01-16 2020-05-12 Hitachi Chemical Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
GB2591755A (en) * 2020-02-05 2021-08-11 Dar Yun Energy Science Tech Co Ltd Power-supplying battery of electric vehicle

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10651458B2 (en) 2004-01-16 2020-05-12 Hitachi Chemical Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
JP2005251513A (en) * 2004-03-03 2005-09-15 Sanyo Electric Co Ltd Battery assembly using nonaqueous electrolyte secondary battery
JP2005293977A (en) * 2004-03-31 2005-10-20 Enerstruct Kk Compound battery
JP2010507215A (en) * 2006-10-16 2010-03-04 エルジー・ケム・リミテッド High power secondary battery system with asymmetrically charged cells
JP2008218248A (en) * 2007-03-06 2008-09-18 Hitachi Powdered Metals Co Ltd Lithium secondary battery
JP2009038037A (en) * 2008-10-14 2009-02-19 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2009152208A (en) * 2009-01-09 2009-07-09 Sanyo Electric Co Ltd Power supply unit for vehicle
JP2011040410A (en) * 2010-10-20 2011-02-24 Sony Corp Nonaqueous electrolyte secondary battery
JP2013530510A (en) * 2011-06-09 2013-07-25 エルジー ケム. エルティーディ. Electrode assembly and lithium secondary battery including the same
CN103959536A (en) * 2011-06-09 2014-07-30 株式会社Lg化学 Electrode assembly and lithium secondary battery comprising same
US9537178B2 (en) 2011-06-09 2017-01-03 Lg Chem, Ltd. Electrode assembly and lithium secondary battery including the same
US9692027B2 (en) 2011-06-09 2017-06-27 Lg Chem, Ltd. Electrode assembly and lithium secondary battery including the same
JP2012109280A (en) * 2012-03-12 2012-06-07 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2015144142A (en) * 2015-05-11 2015-08-06 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
GB2591755A (en) * 2020-02-05 2021-08-11 Dar Yun Energy Science Tech Co Ltd Power-supplying battery of electric vehicle

Also Published As

Publication number Publication date
JP3363738B2 (en) 2003-01-08

Similar Documents

Publication Publication Date Title
JP5049680B2 (en) Nonaqueous electrolyte battery and battery pack
EP1716610B1 (en) Lithium secondary cell with high charge and discharge rate capability
US20080070122A1 (en) Cathode active material and lithium battery employing the same
JP5094084B2 (en) Nonaqueous electrolyte secondary battery
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
EP2875539A1 (en) Nonaqueous electrolyte secondary battery
JP2013084566A (en) Nonaqueous electrolytic secondary cell
JP2008097879A (en) Lithium ion secondary battery
JP2008091236A (en) Nonaqueous electrolyte secondary battery
EP3322024A1 (en) Nonaqueous electrolyte battery and battery pack
JP3363738B2 (en) Battery pack for electric vehicles
CN104868168A (en) Nonaqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2017168265A (en) Nonaqueous electrolyte battery, battery pack and vehicle
JPH10270016A (en) Nonaqueous electrolyte secondary battery
US10170760B2 (en) Lithium ion secondary battery
JP5865951B2 (en) Nonaqueous electrolyte battery and battery pack
JP4512776B2 (en) Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same
JP2007134245A (en) Electrolyte solution and battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP2022077319A (en) Anode active material
JP5573875B2 (en) Nonaqueous electrolyte solution and lithium ion secondary battery
KR20000050974A (en) A hybrid type super rechargeable battery with lithium secondary batteries and super capacitors and its fabricating method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121025

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131025

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees