JP2008235148A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2008235148A
JP2008235148A JP2007076209A JP2007076209A JP2008235148A JP 2008235148 A JP2008235148 A JP 2008235148A JP 2007076209 A JP2007076209 A JP 2007076209A JP 2007076209 A JP2007076209 A JP 2007076209A JP 2008235148 A JP2008235148 A JP 2008235148A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
secondary battery
active material
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007076209A
Other languages
Japanese (ja)
Inventor
Chihiro Yada
千宏 矢田
Noriyuki Shimizu
紀之 清水
Yoshinori Kida
佳典 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2007076209A priority Critical patent/JP2008235148A/en
Publication of JP2008235148A publication Critical patent/JP2008235148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery using a lithium-contained metal oxide containing nickel and manganese as a positive electrode active material, which is improved sufficiently in charge and discharge characteristics at high rate by sufficiently reducing resistance at the time of charge and discharge. <P>SOLUTION: The non-aqueous electrolyte secondary battery is provided with a positive electrode 11 containing a positive electrode active material to store and release lithium ions, a negative electrode 12, and a non-aqueous electrolyte 14. A lithium-contained metal oxide having a layered structure as expressed by a general formula Li<SB>a</SB>Ni<SB>b</SB>Mn<SB>c</SB>Ti<SB>d</SB>M<SB>e</SB>O<SB>2</SB>(wherein M is an element of one kind or more selected from Na, K, B, F, Mg, Al, Co, Cr, V, Fe, Cu, Zn, Nb, Mo, Zr, Sn, and W, and a, b, c, and d satisfy conditions 1≤a<1.3, 0<b≤0.5, 0<c≤0.5, 0<d<0.09, 0.7≤b+c+d+e≤1.1) is used for the positive electrode active material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオンを吸蔵及び放出する正極活物質を含む正極と、負極と、非水電解質とを備えた非水電解質二次電池に係り、特に、上記の正極における正極活物質に、少なくともニッケルとマンガンとを含有するリチウム含有金属酸化物を用いた非水電解質二次電池において、正極活物質の抵抗を低減させて高率での充放電特性を向上させた点に特徴を有するものである。   The present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material that occludes and releases lithium ions, a negative electrode, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery using a lithium-containing metal oxide containing nickel and manganese is characterized by reducing the resistance of the positive electrode active material and improving the charge / discharge characteristics at a high rate. is there.

近年、高出力,高エネルギー密度の新型二次電池として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解質二次電池が広く利用されるようになった。   In recent years, non-aqueous electrolyte secondary batteries using a non-aqueous electrolyte and charging / discharging by moving lithium ions between the positive and negative electrodes are widely used as new secondary batteries with high output and high energy density. It came to be used.

そして、このような非水電解質二次電池においては、正極における正極活物質として、一般にコバルトを多く含有するコバルト酸リチウムLiCoO2等のリチウム含有金属酸化物が使用されている。 In such a non-aqueous electrolyte secondary battery, a lithium-containing metal oxide such as lithium cobaltate LiCoO 2 generally containing a large amount of cobalt is used as the positive electrode active material in the positive electrode.

しかし、この正極活物質に使用されるCoは希少な資源であるため、生産コストが高くつくと共に、安定した供給が困難になる等の問題があった。   However, since Co used in the positive electrode active material is a scarce resource, there are problems such as high production costs and difficulty in stable supply.

このため、近年においては、安価で安定した供給が行える正極活物質として、少なくともニッケルとマンガンとを含有するリチウム含有ニッケル−マンガン酸化物を用いることが検討されている。   For this reason, in recent years, the use of lithium-containing nickel-manganese oxides containing at least nickel and manganese as a positive electrode active material that can be supplied inexpensively and stably has been studied.

しかし、上記のリチウム含有ニッケル−マンガン酸化物は、従来のコバルト酸リチウムと比較して、充放電時における抵抗が高くなって、高率での充放電特性が著しく劣るという問題があった。   However, the lithium-containing nickel-manganese oxide has a problem that the resistance at the time of charging / discharging is higher than that of the conventional lithium cobalt oxide, and the charge / discharge characteristics at a high rate are remarkably inferior.

このため、近年においては、特許文献1に示されているように、上記のリチウム含有ニッケル−マンガン酸化物におけるニッケル及びマンガンの存在するサイトの一部をAlやCoやFeで置換させて、高率での充放電特性を改善することが提案されている。   For this reason, in recent years, as shown in Patent Document 1, a part of sites where nickel and manganese are present in the lithium-containing nickel-manganese oxide is replaced with Al, Co, or Fe. It has been proposed to improve the charge / discharge characteristics at a rate.

しかし、このようにニッケル及びマンガンの存在するサイトの一部をAlやCoやFeで置換させた場合においても、充放電時における抵抗を低減させて、高率での充放電特性を向上させることは困難であった。
特開2003−68306号公報
However, even when a part of the site where nickel and manganese are present is replaced with Al, Co, or Fe, the resistance at the time of charging / discharging is reduced and the charge / discharge characteristics at a high rate are improved. Was difficult.
JP 2003-68306 A

本発明は、リチウムイオンを吸蔵及び放出する正極活物質を含む正極と、負極と、非水電解質とを備えた非水電解質二次電池において、上記のように正極における正極活物質に、少なくともニッケルとマンガンとを含有するリチウム含有金属酸化物を用いた場合における上記のような問題を解決することを課題とするものである。   The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode containing a positive electrode active material that occludes and releases lithium ions, a negative electrode, and a non-aqueous electrolyte. An object of the present invention is to solve the above problems in the case of using a lithium-containing metal oxide containing manganese and manganese.

すなわち、本発明においては、少なくともニッケルとマンガンとを含有するリチウム含有金属酸化物を正極活物質に用いた非水電解質二次電池において、充放電時における抵抗を十分に低減させて、高率での充放電特性を十分に向上させることを課題とするものである。   That is, in the present invention, in a non-aqueous electrolyte secondary battery using a lithium-containing metal oxide containing at least nickel and manganese as a positive electrode active material, the resistance during charging and discharging is sufficiently reduced, and at a high rate. It is an object to sufficiently improve the charge / discharge characteristics.

本発明においては、上記のような課題を解決するため、リチウムイオンを吸蔵及び放出する正極活物質を含む正極と、負極と、非水電解質とを備えた非水電解質二次電池において、上記の正極活物質に、一般式LiNiMnTi2(式中、Mは、Na,K,B,F,Mg,Al,Co,Cr,V,Fe,Cu,Zn,Nb,Mo,Zr,Sn,Wから選択される1種以上の元素であり、a,b,c,dが、1≦a<1.3、0<b≦0.5、0<c≦0.5、0<d<0.09、0.7≦b+c+d+e≦1.1の条件を満たす。)で表わされる層状構造を有するリチウム含有金属酸化物を用いた。 In the present invention, in order to solve the above-described problems, in a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material that absorbs and releases lithium ions, a negative electrode, and a non-aqueous electrolyte, the positive electrode active material, the general formula Li a Ni b Mn c Ti d M e O 2 ( where, M is, Na, K, B, F , Mg, Al, Co, Cr, V, Fe, Cu, Zn, One or more elements selected from Nb, Mo, Zr, Sn, and W, and a, b, c, and d are 1 ≦ a <1.3, 0 <b ≦ 0.5, and 0 <c ≦ A lithium-containing metal oxide having a layered structure represented by 0.5, 0 <d <0.09, 0.7 ≦ b + c + d + e ≦ 1.1 is used.

ここで、上記の非水電解質二次電池においては、上記の一般式で表わされるリチウム含有金属酸化物におけるb,c,dがc=b+dの条件を満たすことが望ましく、また上記のdが0<d≦0.045の条件を満たすことがより好ましい。   Here, in the above non-aqueous electrolyte secondary battery, it is desirable that b, c, d in the lithium-containing metal oxide represented by the above general formula satisfy the condition of c = b + d, and the above d. Is more preferable to satisfy the condition of 0 <d ≦ 0.045.

本発明の非水電解質二次電池において、正極活物質として用いる上記の一般式LiNiMnTi2(式中、Mは、Na,K,B,F,Mg,Al,Co,Cr,V,Fe,Cu,Zn,Nb,Mo,Zr,Sn,Wから選択される1種以上の元素であり、a,b,c,dが、1≦a<1.3、0<b≦0.5、0<c≦0.5、0<d<0.09、0.7≦b+c+d+e≦1.1の条件を満たす。)で表わされる層状構造を有するリチウム含有金属酸化物は、Niの一部がTiによって置換された状態になっており、このようにNiの一部をTiによって置換させると、NiがLiサイトに入り込んで抵抗が上昇するのが抑制されると共に、正極活物質の表面にTiO2等のTiを主成分とする化合物が微量に析出し、このように析出した化合物の触媒作用によって正極活物質表面での反応が活性化されて抵抗が低減すると考えられる。 In the non-aqueous electrolyte secondary battery of the present invention, the above-described general formula Li a Ni b Mn c Ti d Me O 2 used as a positive electrode active material (wherein M is Na, K, B, F, Mg, Al) , Co, Cr, V, Fe, Cu, Zn, Nb, Mo, Zr, Sn, and W, and a, b, c, and d are 1 ≦ a <1.3. , 0 <b ≦ 0.5, 0 <c ≦ 0.5, 0 <d <0.09, 0.7 ≦ b + c + d + e ≦ 1.1. The lithium-containing metal oxide having a structure is in a state in which a part of Ni is substituted by Ti, and when a part of Ni is substituted by Ti in this way, Ni enters the Li site and the resistance increases. while the is suppressed, compounds based on Ti of TiO 2 or the like is deposited on the trace on the surface of the positive electrode active material, this The reaction of the positive electrode active material surface by the catalytic action of the precipitated compound as it is considered that the resistance is activated is reduced.

そして、本発明の非水電解質二次電池においては、上記のように正極活物質の抵抗が十分に低減される結果、高率での充放電特性が十分に向上されるようになる。   And in the non-aqueous electrolyte secondary battery of this invention, as a result of fully reducing the resistance of a positive electrode active material as mentioned above, the charging / discharging characteristic in a high rate comes to fully improve.

次に、本発明の非水電解質二次電池における具体的な実施形態について説明する。   Next, specific embodiments of the nonaqueous electrolyte secondary battery of the present invention will be described.

本発明の非水電解質二次電池においては、上記のようにリチウムイオンを吸蔵及び放出する正極活物質を含む正極と、負極と、非水電解質とを備えた非水電解質二次電池において、上記の正極活物質に、一般式LiNiMnTi2(式中、Mは、Na,K,B,F,Mg,Al,Co,Cr,V,Fe,Cu,Zn,Nb,Mo,Zr,Sn,Wから選択される1種以上の元素であり、a,b,c,dが、1≦a<1.3、0<b≦0.5、0<c≦0.5、0<d<0.09、0.7≦b+c+d+e≦1.1の条件を満たす。)で表わされる層状構造を有するリチウム含有金属酸化物を用いるようにした。 In the non-aqueous electrolyte secondary battery of the present invention, in the non-aqueous electrolyte secondary battery including the positive electrode including the positive electrode active material that absorbs and releases lithium ions as described above, the negative electrode, and the non-aqueous electrolyte, positive electrode active material, in the general formula Li a Ni b Mn c Ti d M e O 2 ( wherein, M represents, Na, K, B, F , Mg, Al, Co, Cr, V, Fe, Cu, Zn of , Nb, Mo, Zr, Sn, W, and a, b, c, d are 1 ≦ a <1.3, 0 <b ≦ 0.5, 0 <c ≦ 0.5, 0 <d <0.09, 0.7 ≦ b + c + d + e ≦ 1.1.) A lithium-containing metal oxide having a layered structure represented by: did.

ここで、上記の正極活物質においては、特に、NiとMnとのモル比が1:1であるLiNi0.45Mn0.452等のリチウム含有金属酸化物において、そのNiの一部がTiによって置換されたものである場合、すなわちMnのモル比cと、Niのモル比bと、Tiのモル比dとがc=b+dの条件を満たす場合に、正極活物質における抵抗がさらに低減されるようになる。 Here, in the positive electrode active material described above, in particular, in a lithium-containing metal oxide such as Li a Ni 0.45 Mn 0.45 O 2 in which the molar ratio of Ni and Mn is 1: 1, a part of the Ni is Ti In other words, when the molar ratio c of Mn, the molar ratio b of Ni, and the molar ratio d of Ti satisfy the condition of c = b + d, the resistance in the positive electrode active material is further increased. Will be reduced.

また、上記の一般式に示されるリチウム含有金属酸化物において、Niの一部を置換するTiの量が多くなると、正極活物質における充放電容量が低下すると共に、反応速度が比較的遅いTi4+とTi3+との間の酸化還元反応が生じるおそれがあるため、上記のようにTiのモル比dが0.09未満のものを用いるようにし、好ましくはモル比dが0.45以下になったものを用いるようにする。 Further, in the lithium-containing metal oxide represented by the above general formula, when the amount of Ti substituting a part of Ni increases, the charge-discharge capacity decreases in the positive electrode active material, the reaction rate relatively slow Ti 4 Since a redox reaction between + and Ti 3+ may occur, a Ti molar ratio d of less than 0.09 is used as described above, and preferably the molar ratio d is 0.45 or less. Use the ones that become.

そして、本発明の非水電解質二次電池においては、上記のような正極活物質を用いることを特徴とするものであり、それ以外については、従来の非水電解質二次電池と同様に構成することができる。   And in the nonaqueous electrolyte secondary battery of this invention, it is characterized by using the above positive electrode active materials, and it is comprised similarly to the conventional nonaqueous electrolyte secondary battery about other than that. be able to.

そして、この非水電解質二次電池において、その負極に用いる負極活物質としては、一般に使用されている公知のものを用いることができ、電池のエネルギー密度を向上させる観点からは、リチウム金属や、リチウム合金や、黒鉛等の炭素材料等の充放電反応の電位が比較的低い材料を用いることが望ましい。   And in this non-aqueous electrolyte secondary battery, as a negative electrode active material used for the negative electrode, generally known materials can be used. From the viewpoint of improving the energy density of the battery, lithium metal, It is desirable to use a material having a relatively low charge / discharge reaction potential, such as a lithium alloy or a carbon material such as graphite.

また、非水電解質としても、一般に使用されている非水系溶媒に電解質塩を溶解させたものを用いることができる。   Further, as the non-aqueous electrolyte, a solution obtained by dissolving an electrolyte salt in a generally used non-aqueous solvent can be used.

そして、非水系溶媒としては、一般に使用されている環状炭酸エステル、鎖状炭酸エステル、エステル類、環状エーテル類、鎖状エーテル類、ニトリル類、アミド類及びこれらを組み合わせたものを用いることができる。   As the non-aqueous solvent, commonly used cyclic carbonates, chain carbonates, esters, cyclic ethers, chain ethers, nitriles, amides, and combinations thereof can be used. .

ここで、環状炭酸エステルとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等を用いることができ、これらの水素の一部又は全部がフッ素化されたものを用いることも可能であり、例えば、トリフルオロプロピレンカーボネート、フルオロエチルカーボネート等を用いることができる。   Here, as the cyclic carbonate, for example, ethylene carbonate, propylene carbonate, butylene carbonate and the like can be used, and it is also possible to use those in which a part or all of these hydrogens are fluorinated. Trifluoropropylene carbonate, fluoroethyl carbonate and the like can be used.

また、鎖状炭酸エステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等を用いることができ、これらの水素の一部又は全部がフッ素化されたものを用いることも可能である。   As the chain carbonate, for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl isopropyl carbonate, etc. can be used, and some or all of these hydrogens are fluorinated. It is also possible to use what has been made.

また、エステル類としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトン等を用いることができる。   Examples of esters that can be used include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone.

また、環状エステルとしては、例えば、1,3−ジオキソラン、4−メチル−1,3ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、プロピレンオキシド、1,2−ブチレンオキシド、1,4−ジオキサン、1,3,5−トリオキサン、フラン、2−メチルフラン、1,8−シネオール、クラウンエーテル等を用いることができる。   Examples of the cyclic ester include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,4-dioxane, 1,3. , 5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether and the like can be used.

また、鎖状エーテル類としては、例えば、1,2−ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o−ジメトキシベンゼン、1,2−ジエトキシエタン、1,2−ジブトキシエタン、ジエチレングリコール、ジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1−ジメトキシメタン、1,1−ジエトキシエタン、トリエチレングリコールジエチルエーテル、テトラエチレングリコールジメチル等を用いることができる。   Examples of the chain ethers include 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, and butyl phenyl. Ether, pentylphenyl ether, methoxytoluene, benzylethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol, dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di Butyl ether, 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol diethyl ether Le can be used tetraethylene glycol dimethyl like.

また、ニトリル類としては、例えば、アセトニトリル等を用いることができ、アミド類としては、例えば、ジメチルホルムアミド等を用いることができる。   Moreover, as nitriles, acetonitrile etc. can be used, for example, As amides, dimethylformamide etc. can be used, for example.

また、上記の非水系溶媒に溶解させる電解質塩としては、例えば、LiPF6、LiBF4、LiCF3SO3、LiC49SO3、LiN(CF3SO22、LiN(C25SO22、LiAsF6、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiC(C25SO23、LiClO4、Li210Cl10、LiB(C242、LiB(C24)F2、LiP(C243、LiP(C2422、Li212Cl12及びこれらの混合物等を用いることができる。 Examples of the electrolyte salt dissolved in the non-aqueous solvent include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2) 2, LiAsF 6, LiN (CF 3 SO 2) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiClO 4, Li 2 B 10 Cl 10 , LiB (C 2 O 4 ) 2 , LiB (C 2 O 4 ) F 2 , LiP (C 2 O 4 ) 3 , LiP (C 2 O 4 ) 2 F 2 , Li 2 B 12 Cl 12 and Mixtures of these can be used.

さらに、電池のサイクル特性を向上させる観点からは、上記の電解質塩に、オキサラト錯体をアニオンとするリチウム塩を加えることが好ましく、特に、リチウムビース(オキサラト)ボレートを加えることがより好ましい。   Furthermore, from the viewpoint of improving the cycle characteristics of the battery, it is preferable to add a lithium salt having an oxalato complex as an anion to the above electrolyte salt, and it is more preferable to add lithium beads (oxalato) borate.

以下、この発明に係る非水電解質二次電池について実施例を挙げて具体的に説明すると共に、この実施例における非水電解質二次電池においては、正極活物質の抵抗が低減されることを、比較例を挙げて明らかにする。なお、本発明の非水電解質二次電池は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Hereinafter, the nonaqueous electrolyte secondary battery according to the present invention will be specifically described with examples, and in the nonaqueous electrolyte secondary battery in this example, the resistance of the positive electrode active material is reduced. A comparative example is given to clarify. The nonaqueous electrolyte secondary battery of the present invention is not limited to those shown in the following examples, and can be implemented with appropriate modifications within the scope not changing the gist thereof.

(実施例1)
実施例1においては、正極を作製するにあたり、前記の一般式に示すリチウム含有金属酸化物からなる正極活物質として、Li2CO3と、共沈法によって得たNi0.405Mn0.45Ti0.045の水酸化物とを混合し、これらを空気中において900℃で焼成させて得たLi1.10Ni0.405Mn0.45Ti0.0452を用いるようにした。
(Example 1)
In Example 1, in preparing the positive electrode, Li 2 CO 3 and Ni 0.405 Mn 0.45 Ti 0.045 water obtained by the coprecipitation method were used as the positive electrode active material composed of the lithium-containing metal oxide represented by the above general formula. Li 1.10 Ni 0.405 Mn 0.45 Ti 0.045 O 2 obtained by mixing oxides and firing them at 900 ° C. in air was used.

そして、上記の正極活物質と、導電剤の炭素と、結着剤のポリフッ化ビニリデンを溶解させたN−メチル−2−ピロリドン溶液とを、正極活物質と導電剤と結着剤とが90:5:5の重量比になるようにし、これらを混練させて正極合剤スラリーを調製した。そして、この正極合剤スラリーをアルミニウム箔からなる集電体の上に塗布した後、これを乾燥し、圧延ローラーにより圧延した後、所定の大きさに切断して正極を作製した。   Then, the positive electrode active material, the conductive agent carbon, and the N-methyl-2-pyrrolidone solution in which the binder polyvinylidene fluoride is dissolved are mixed into a positive electrode active material, a conductive agent, and a binder. The positive electrode material mixture slurry was prepared by kneading them to a weight ratio of 5: 5. And after apply | coating this positive mix slurry on the electrical power collector which consists of aluminum foil, this was dried, after rolling with the rolling roller, it cut | disconnected to the predetermined magnitude | size and produced the positive electrode.

そして、図1に示すように、上記のようにして作製した正極を作用極11として用いる一方、負極となる対極12及び参照極13に金属リチウムを用い、また非水電解液14としては、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートを4:3:3の体積比で混合させた混合溶媒にヘキサフルオロリン酸リチウムLiPF6 を1mol/lの濃度になるように溶解させたものを用いて三電極式試験用セル10を作製した。 As shown in FIG. 1, the positive electrode produced as described above is used as the working electrode 11, while metallic lithium is used for the counter electrode 12 and the reference electrode 13 serving as the negative electrode, and the nonaqueous electrolyte solution 14 is ethylene. Three electrodes using lithium hexafluorophosphate LiPF 6 dissolved in a mixed solvent prepared by mixing carbonate, ethyl methyl carbonate and dimethyl carbonate in a volume ratio of 4: 3: 3 to a concentration of 1 mol / l A cell 10 for formula test was produced.

(比較例1)
比較例1においては、正極活物質にLi1.10Ni0.45Mn0.452を用い、それ以外は、上記の実施例1の場合と同様にして、正極を作製すると共に三電極式試験用セルを作製した。
(Comparative Example 1)
In Comparative Example 1, Li 1.10 Ni 0.45 Mn 0.45 O 2 was used as the positive electrode active material, and a positive electrode was prepared and a three-electrode test cell was prepared in the same manner as in Example 1 above. did.

(比較例2)
比較例2においては、正極活物質にLi1.10Ni0.36Mn0.45Ti0.092を用い、それ以外は、上記の実施例1の場合と同様にして、正極を作製すると共に三電極式試験用セルを作製した。
(Comparative Example 2)
In Comparative Example 2, Li 1.10 Ni 0.36 Mn 0.45 Ti 0.09 O 2 was used as the positive electrode active material, and other than that, a positive electrode was produced and a three-electrode test cell was performed in the same manner as in Example 1 above. Was made.

(比較例3)
比較例3においては、正極活物質にLi1.10Ni0.405Mn0.45Mg0.0452を用い、それ以外は、上記の実施例1の場合と同様にして、正極を作製すると共に三電極式試験用セルを作製した。
(Comparative Example 3)
In Comparative Example 3, Li 1.10 Ni 0.405 Mn 0.45 Mg 0.045 O 2 was used as the positive electrode active material, and a positive electrode was prepared and the three-electrode test cell was performed in the same manner as in Example 1 above. Was made.

(比較例4)
比較例4においては、正極活物質にLi1.10Ni0.36Mn0.45Mg0.092を用い、それ以外は、上記の実施例1の場合と同様にして、正極を作製すると共に三電極式試験用セルを作製した。
(Comparative Example 4)
In Comparative Example 4, Li 1.10 Ni 0.36 Mn 0.45 Mg 0.09 O 2 was used as the positive electrode active material, and a positive electrode was prepared and the three-electrode test cell was performed in the same manner as in Example 1 above. Was made.

(比較例5)
比較例5においては、正極活物質にLi1.10Ni0.405Mn0.45Al0.0452を用い、それ以外は、上記の実施例1の場合と同様にして、正極を作製すると共に三電極式試験用セルを作製した。
(Comparative Example 5)
In Comparative Example 5, a positive electrode was produced in the same manner as in Example 1 except that Li 1.10 Ni 0.405 Mn 0.45 Al 0.045 O 2 was used as the positive electrode active material, and a three-electrode test cell was prepared. Was made.

(比較例6)
比較例6においては、正極活物質にLi1.10Ni0.36Mn0.45Al0.092を用い、それ以外は、上記の実施例1の場合と同様にして、正極を作製すると共に三電極式試験用セルを作製した。
(Comparative Example 6)
In Comparative Example 6, a positive electrode was produced in the same manner as in Example 1 except that Li 1.10 Ni 0.36 Mn 0.45 Al 0.09 O 2 was used as the positive electrode active material, and a three-electrode test cell was prepared. Was made.

次に、上記のようにして作製した実施例1及び比較例1〜6の各三電極式試験用セルについて、0.08mA/cm2の定電流で4.3V( vs.Li/Li+)まで定電流充電させた後、4.3V( vs.Li/Li+)の定電圧で電流値が0.008mA/cm2になるまで定電圧充電を行い、その後10分間休止させた後、0.08mA/cm2の定電流で2.0V (vs.Li/Li+)まで放電させて10分間の休止させる充放電サイクルを5サイクル行い、5サイクル目に得られた放電容量の50%の容量を求めた。 Next, for each of the three-electrode test cells of Example 1 and Comparative Examples 1 to 6 produced as described above, 4.3 V (vs. Li / Li + ) at a constant current of 0.08 mA / cm 2. Until the current value reaches 0.008 mA / cm 2 at a constant voltage of 4.3 V (vs. Li / Li + ), and after resting for 10 minutes, 5 charge / discharge cycles were performed with a constant current of 0.08 mA / cm 2 and discharged to 2.0 V (vs. Li / Li + ) for 10 minutes, and 50% of the discharge capacity obtained at the fifth cycle. The capacity was determined.

そして、5サイクル目に得られた放電容量の50%の容量になるまで充電させ、この時の充電深度を充電深度SOC50%として、充電深度SOCが50%の各三電極式試験用セルにおける開回路電圧を測定した。   Then, charging is performed until the capacity reaches 50% of the discharge capacity obtained in the fifth cycle, and the charging depth at this time is defined as the charging depth SOC 50%, and each three-electrode test cell having a charging depth SOC of 50% is opened. The circuit voltage was measured.

その後、上記の各三電極式試験用セルを上記の開回路電圧の状態から、それぞれ0.08mA/cm2,0.4mA/cm2,0.8mA/cm2,1.6mA/cm2の各電流密度でそれぞれ10秒間の放電及び充電を行い、それぞれ放電及び充電から10秒後の電池電圧(vs.Li/Li+)を求め、各電流密度における放電時及び充電時の各電池電圧をプロットしてI−V特性を調べ、得られた直線の傾きから各三電極式試験用セルにおける放電時のIV抵抗及び充電時のIV抵抗を求め、その結果を下記の表1に示した。 Then, each three-electrode test cell of the above from the state of open circuit voltage of the respective 0.08mA / cm 2, 0.4mA / cm 2, 0.8mA / cm 2, of 1.6 mA / cm 2 Discharge and charge at each current density for 10 seconds, respectively, obtain the battery voltage (vs. Li / Li + ) after 10 seconds from each discharge and charge, and calculate the battery voltage at the time of discharge and charge at each current density. The IV characteristics were examined by plotting, and the IV resistance during discharging and the IV resistance during charging in each three-electrode test cell were determined from the slope of the obtained straight line. The results are shown in Table 1 below.

Figure 2008235148
Figure 2008235148

この結果から明らかなように、正極活物質に、Niの一部がTiによって置換されて前記の一般式に示すリチウム含有金属酸化物の条件を満たすLi1.10Ni0.405Mn0.45Ti0.0452を用いた実施例1のものにおいては、Niの一部がTiによって置換されていないLi1.10Ni0.45Mn0.452を用いた比較例1のものや、Niの一部がTiによって置換されているがTiのモル比dが0.09になって前記の一般式に示すリチウム含有金属酸化物の条件を満たしていないLi1.10Ni0.36Mn0.45Ti0.092を用いた比較例2のものに比べて、充電時及び放電時におけるIV抵抗が低減されていた。 As is clear from this result, Li 1.10 Ni 0.405 Mn 0.45 Ti 0.045 O 2 satisfying the condition of the lithium-containing metal oxide represented by the above general formula by replacing part of Ni with Ti is used for the positive electrode active material. In Example 1, the Ni part is not substituted by Ti, but Li 1.10 Ni 0.45 Mn 0.45 O 2 is used, and the Ni part is substituted by Ti. Compared with the comparative example 2 using Li 1.10 Ni 0.36 Mn 0.45 Ti 0.09 O 2 which does not satisfy the condition of the lithium-containing metal oxide shown in the general formula because the molar ratio d of Ti is 0.09. The IV resistance during charging and discharging was reduced.

また、Niの一部がTi以外のMgやAlで置換された正極活物質を用いた比較例3〜6のものにおいては、Niの一部を置換していないLi1.10Ni0.45Mn0.452を用いた比較例1のものよりも、充電時及び放電時におけるIV抵抗が逆に高くなっており、充電時及び放電時におけるIV抵抗を低減させる効果は得られなかった。 Further, in Comparative Examples 3 to 6 using a positive electrode active material in which a part of Ni was substituted with Mg or Al other than Ti, Li 1.10 Ni 0.45 Mn 0.45 O 2 in which a part of Ni was not substituted. The IV resistance at the time of charging and discharging was higher than that of Comparative Example 1 using the above, and the effect of reducing the IV resistance at the time of charging and discharging was not obtained.

本発明の実施例1及び比較例1〜6において作製した正極を作用極に用いた三電極式試験用セルの概略説明図である。It is a schematic explanatory drawing of the three-electrode-type test cell which used the positive electrode produced in Example 1 and Comparative Examples 1-6 of this invention for the working electrode.

符号の説明Explanation of symbols

10 三電極式試験用セル
11 作用極(正極)
12 対極(負極)
13 参照極
14 非水電解液
10 Three-electrode test cell 11 Working electrode (positive electrode)
12 Counter electrode (negative electrode)
13 Reference electrode 14 Non-aqueous electrolyte

Claims (3)

リチウムイオンを吸蔵及び放出する正極活物質を含む正極と、負極と、非水電解質とを備えた非水電解質二次電池において、上記の正極活物質に、一般式LiNiMnTi2(式中、Mは、Na,K,B,F,Mg,Al,Co,Cr,V,Fe,Cu,Zn,Nb,Mo,Zr,Sn,Wから選択される1種以上の元素であり、a,b,c,dが、1≦a<1.3、0<b≦0.5、0<c≦0.5、0<d<0.09、0.7≦b+c+d+e≦1.1の条件を満たす。)で表わされる層状構造を有するリチウム含有金属酸化物を用いたことを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material that occludes and releases lithium ions, a negative electrode, and a non-aqueous electrolyte, the positive electrode active material includes the general formula Li a Ni b Mn c Ti d MeO 2 (wherein M is one selected from Na, K, B, F, Mg, Al, Co, Cr, V, Fe, Cu, Zn, Nb, Mo, Zr, Sn, W) A, b, c, d are 1 ≦ a <1.3, 0 <b ≦ 0.5, 0 <c ≦ 0.5, 0 <d <0.09, 0.7 ≦ b + c + d + e ≦ 1.1.) A non-aqueous electrolyte secondary battery using a lithium-containing metal oxide having a layered structure represented by: 請求項1に記載の非水電解質二次電池において、上記の一般式で表わされるリチウム含有金属酸化物におけるb,c,dが、c=b+dの条件を満たすことを特徴とする非水電解質二次電池。   2. The non-aqueous electrolyte secondary battery according to claim 1, wherein b, c, d in the lithium-containing metal oxide represented by the general formula satisfies a condition of c = b + d. Electrolyte secondary battery. 請求項1又は請求項2に記載の非水電解質二次電池において、上記の一般式で表わされるリチウム含有金属酸化物におけるdが、0<d≦0.045の条件を満たすことを特徴とする非水電解質二次電池。   3. The nonaqueous electrolyte secondary battery according to claim 1, wherein d in the lithium-containing metal oxide represented by the general formula satisfies a condition of 0 <d ≦ 0.045. Non-aqueous electrolyte secondary battery.
JP2007076209A 2007-03-23 2007-03-23 Non-aqueous electrolyte secondary battery Pending JP2008235148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076209A JP2008235148A (en) 2007-03-23 2007-03-23 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076209A JP2008235148A (en) 2007-03-23 2007-03-23 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2008235148A true JP2008235148A (en) 2008-10-02

Family

ID=39907706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076209A Pending JP2008235148A (en) 2007-03-23 2007-03-23 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2008235148A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114534A1 (en) * 2010-03-19 2011-09-22 トヨタ自動車株式会社 Lithium secondary battery and cathode active material for said lithium secondary battery
CN104701525A (en) * 2010-03-19 2015-06-10 丰田自动车株式会社 Lithium secondary battery and positive electrode active substance for lithium secondary battery
CN105895893A (en) * 2016-03-15 2016-08-24 武汉理工大学 Lithium vanadium molybdenum oxide positive electrode material for lithium-ion battery and preparation method of lithium vanadium molybdenum oxide positive electrode material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073718A1 (en) * 2001-03-14 2002-09-19 Yuasa Corporation Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same
JP2003068298A (en) * 2001-08-24 2003-03-07 Seimi Chem Co Ltd Lithium containing transition metal composite oxide and its producing method
JP2003168430A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005235628A (en) * 2004-02-20 2005-09-02 Nec Corp Positive electrode for lithium secondary batteries, and lithium secondary battery
JP2006202647A (en) * 2005-01-21 2006-08-03 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006269308A (en) * 2005-03-25 2006-10-05 Mitsubishi Materials Corp Positive electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2007123255A (en) * 2005-09-27 2007-05-17 Ishihara Sangyo Kaisha Ltd Lithium transition metal complex oxide, its manufacturing method, and lithium cell made by using the same
JP2008147068A (en) * 2006-12-12 2008-06-26 Ise Chemicals Corp Lithium composite oxide for nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073718A1 (en) * 2001-03-14 2002-09-19 Yuasa Corporation Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same
JP2003068298A (en) * 2001-08-24 2003-03-07 Seimi Chem Co Ltd Lithium containing transition metal composite oxide and its producing method
JP2003168430A (en) * 2001-11-30 2003-06-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2005235628A (en) * 2004-02-20 2005-09-02 Nec Corp Positive electrode for lithium secondary batteries, and lithium secondary battery
JP2006202647A (en) * 2005-01-21 2006-08-03 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2006269308A (en) * 2005-03-25 2006-10-05 Mitsubishi Materials Corp Positive electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
JP2007123255A (en) * 2005-09-27 2007-05-17 Ishihara Sangyo Kaisha Ltd Lithium transition metal complex oxide, its manufacturing method, and lithium cell made by using the same
JP2008147068A (en) * 2006-12-12 2008-06-26 Ise Chemicals Corp Lithium composite oxide for nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114534A1 (en) * 2010-03-19 2011-09-22 トヨタ自動車株式会社 Lithium secondary battery and cathode active material for said lithium secondary battery
JPWO2011114534A1 (en) * 2010-03-19 2013-06-27 トヨタ自動車株式会社 Lithium secondary battery and positive electrode active material for lithium secondary battery
JP5574195B2 (en) * 2010-03-19 2014-08-20 トヨタ自動車株式会社 Lithium secondary battery and positive electrode active material for lithium secondary battery
CN104701525A (en) * 2010-03-19 2015-06-10 丰田自动车株式会社 Lithium secondary battery and positive electrode active substance for lithium secondary battery
US9887430B2 (en) 2010-03-19 2018-02-06 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and positive electrode active material for the lithium secondary battery
CN105895893A (en) * 2016-03-15 2016-08-24 武汉理工大学 Lithium vanadium molybdenum oxide positive electrode material for lithium-ion battery and preparation method of lithium vanadium molybdenum oxide positive electrode material
CN105895893B (en) * 2016-03-15 2018-07-17 武汉理工大学 A kind of lithium molybdenum barium oxide anode material for lithium-ion batteries and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5142544B2 (en) Nonaqueous electrolyte secondary battery
JP5159134B2 (en) Nonaqueous electrolyte secondary battery
JP4832229B2 (en) Nonaqueous electrolyte secondary battery
JP5668537B2 (en) Nonaqueous electrolyte secondary battery
JP5425504B2 (en) Non-aqueous electrolyte battery
JP4739770B2 (en) Nonaqueous electrolyte secondary battery
WO2017098679A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2009004285A (en) Cathode active material, manufacturing method of cathode active material, and nonaqueous electrolyte secondary battery
JP2007234565A (en) Nonaqueous electrolyte secondary battery
JP2007087820A (en) Nonaqueous electrolyte secondary battery
JP2007123251A (en) Nonaqueous electrolyte secondary battery
JP5159133B2 (en) Nonaqueous electrolyte secondary battery
JP2009217981A (en) Non-aqueous electrolyte secondary battery
JP2007073424A (en) Nonaqueous electrolyte secondary battery
JP5100069B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR100982599B1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2007242420A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing anode active material for nonaqueous electrolyte secondary battery
JP2006156230A (en) Nonaqueous electrolyte secondary battery and its charging method
JP2008251526A (en) Nonaqueous electrolyte secondary battery, and positive electrode
JP4707430B2 (en) Positive electrode and non-aqueous electrolyte secondary battery
JP2011243585A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2006032232A (en) Nonaqueous electrolyte secondary battery
JP2006164695A (en) Nonaqueous electrolyte secondary battery
JP2008235148A (en) Non-aqueous electrolyte secondary battery
JP2007123236A (en) Electrode for nonaqueous electrolyte secondary battery and nonaqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108