WO2017119137A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2017119137A1
WO2017119137A1 PCT/JP2016/050578 JP2016050578W WO2017119137A1 WO 2017119137 A1 WO2017119137 A1 WO 2017119137A1 JP 2016050578 W JP2016050578 W JP 2016050578W WO 2017119137 A1 WO2017119137 A1 WO 2017119137A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
heat
refrigerant
heat exchanger
temperature
Prior art date
Application number
PCT/JP2016/050578
Other languages
French (fr)
Japanese (ja)
Inventor
亮宗 石村
井上 誠司
森本 修
祐治 本村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/050578 priority Critical patent/WO2017119137A1/en
Priority to EP16883640.1A priority patent/EP3401609B1/en
Priority to JP2017560024A priority patent/JP6522162B2/en
Publication of WO2017119137A1 publication Critical patent/WO2017119137A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/00077Indoor units, e.g. fan coil units receiving heat exchange fluid entering and leaving the unit as a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the casing of the indoor unit in which the refrigerant does not circulate, and the casing of the heat medium flow controller are the outdoor unit in which the refrigerant circulates, and the casing of the heat medium converter.
  • a heat medium circulation circuit can be provided in the vicinity of the indoor space, and a refrigerant circulation circuit can be provided in a place separated from the indoor space.
  • the same operation as described in FIG. 3 is performed.
  • the refrigerant flowing through the refrigerant circuit A becomes gas refrigerant by the compressor 10 accommodated in the casing 54 of the outdoor unit 16 and flows into the heat exchanger related to heat medium 30 via the refrigerant flow switching device 11. Then, it condenses while dissipating heat in the heat exchanger 30 between heat media, and flows into the first expansion device 31.
  • the air conditioner 100 according to Embodiment 1 or the air conditioner 200 according to the modification can be installed.
  • the existing indoor unit and the heat medium pipe connected to the indoor unit can be diverted to easily update the equipment.
  • casing 46 of the heat medium flow controller 4 is separate from the housing
  • the opening degree of the heat medium flow control devices 50a, 50b, 50c can be controlled according to the air conditioning load of each of the load side heat exchangers 60a, 60b, 60c.

Abstract

An air-conditioning device whereby it is possible to reduce the amount of usage of refrigerant and prevent leakage of refrigerant to an indoor space. This air-conditioning device is equipped with: an outdoor unit housing which houses a compressor, a refrigerant flow path switching device, and a heat-source-side heat exchanger; a heat carrier converter housing which houses a throttle device and an inter-heat-carrier heat exchanger; a heat carrier flow rate adjuster housing which houses heat carrier flow rate adjusting devices; indoor unit housings which each house a load-side heat exchanger and an indoor blower; and a heat carrier conveying device which conveys a heat carrier. The compressor, the refrigerant flow path switching device, the heat-source-side heat exchanger, the throttle device, and the refrigerant passage of the inter-heat-carrier heat exchanger are connected by a refrigerant pipe circulating the refrigerant therethrough so as to configure a refrigerant circulation circuit. The heat carrier passage of the inter-heat-carrier heat exchanger, the heat carrier conveying device, the heat carrier flow rate adjusting devices, and the load-side heat exchangers are connected by a heat carrier pipe circulating the heat carrier therethrough so as to configure a heat carrier circulation circuit.

Description

空気調和装置Air conditioner
 本発明は、熱媒体を用いた空気調和装置に関するものである。 The present invention relates to an air conditioner using a heat medium.
 現在のビル用マルチエアコン等の空気調和装置では、室外機と複数台の室内機とが冷媒配管により接続されているものがある。このような冷媒配管の総延長が数百mになると、配管の延長に伴い使用する冷媒の量も非常に多くなる。このような空気調和装置において、冷媒漏れが発生し、漏れ出た冷媒が一つの部屋に流入すると、室内空間に冷媒が充満し、酸欠状態になってしまう可能性がある。 Some current air conditioners such as multi air conditioners for buildings have an outdoor unit and a plurality of indoor units connected by refrigerant piping. When the total length of such a refrigerant pipe is several hundreds of meters, the amount of refrigerant to be used is very large with the extension of the pipe. In such an air conditioner, when a refrigerant leaks and the leaked refrigerant flows into one room, the indoor space may be filled with the refrigerant, resulting in an oxygen deficient state.
 また、現在主流のR410A冷媒は、地球温暖化係数が2088であり、地球温暖化係数が大きいことが問題視されている。なお、地球温暖化係数は、Global Warming Potentialの略称としてGWPと称されることもある。そのため、地球温暖化係数が低い冷媒への転換が求められているが、これらの地球温暖化係数が低い冷媒は、可燃性を有しているものが多く、冷媒の発火などに配慮することも必要となっている。 Also, the current mainstream R410A refrigerant has a global warming potential of 2088, and it is regarded as a problem that the global warming potential is large. Note that the global warming potential is sometimes referred to as GWP as an abbreviation for Global Warming Potential. For this reason, conversion to refrigerants with a low global warming potential is required, but many of these refrigerants with low global warming potential are flammable, and it is also possible to consider the ignition of the refrigerant. It is necessary.
 例えば、特許文献1には、冷媒循環回路に冷媒を循環させ、また、熱媒体循環回路には有害でない水又はブラインなどの熱媒体を循環させ、冷媒の温熱又は冷熱を熱媒体に伝達させる二次ループ方式を採用した方法が提案されている。二次ループ方式が採用された、例えば、水空調システムや、チラーシステムなどにおいては、冷媒循環回路に室外機と熱媒体間熱交換器とが接続され、熱媒体循環回路に熱媒体間熱交換器と室内機とが接続されている。そして、熱媒体間熱交換器が室内空間ではない天井裏などに配置されることで、冷媒漏れによる酸欠や発火を防止すると共に、冷媒の搬送距離の短縮が試みられている。 For example, Patent Document 1 discloses that a refrigerant is circulated in a refrigerant circulation circuit, and a heat medium such as water or brine that is not harmful to the heat medium circulation circuit is circulated to transfer the hot or cold heat of the refrigerant to the heat medium. A method employing the next loop method has been proposed. For example, in a water air-conditioning system or a chiller system in which a secondary loop system is adopted, an outdoor unit and a heat exchanger between heat media are connected to the refrigerant circulation circuit, and heat exchange between heat media is performed in the heat medium circulation circuit. The unit and the indoor unit are connected. In addition, by arranging the heat exchanger related to heat medium in a ceiling or the like that is not an indoor space, it has been attempted to reduce the transport distance of the refrigerant while preventing oxygen deficiency and ignition due to refrigerant leakage.
国際公開第12/073293号International Publication No. 12/073293
 ところが、特許文献1のように、熱媒体間熱交換器が天井裏などに配置されていると、天井裏などを循環する冷媒循環回路の配管から冷媒が漏れ出た場合に、室内空間に侵入してしまう可能性があり、冷媒の漏洩による影響を防ぐことが難しい。また、冷媒配管は、室外機から天井裏まで延長されることになるため、必要な冷媒の量が減少されているとは言い難い。 However, as in Patent Document 1, when the heat exchanger between heat media is arranged on the ceiling or the like, if the refrigerant leaks from the piping of the refrigerant circulation circuit circulating in the ceiling or the like, the refrigerant enters the indoor space. It is difficult to prevent the effects of refrigerant leakage. Further, since the refrigerant pipe is extended from the outdoor unit to the ceiling, it is difficult to say that the amount of necessary refrigerant is reduced.
 また、特許文献1のような水空調システムとチラーシステムとにおいては、水空調システムでは熱媒体変換機内にある流量調整装置により室内機能力が制御される一方、チラーシステムでは各室内機にオプション部品として設置した流量調整装置により室内機能力が制御される。このように、熱媒体変換機を有する水空調システムとチラーシステムとは、共に室内に水等の熱媒体を供給する間接空調システムであるにも関わらず、各室内機への供給能力を制御する方法が異なり、共通化が成されていない。 Further, in the water air conditioning system and the chiller system as disclosed in Patent Document 1, in the water air conditioning system, the indoor functional force is controlled by the flow rate adjusting device in the heat medium converter, while in the chiller system, an optional component is provided for each indoor unit. The indoor functional force is controlled by a flow control device installed as. As described above, the water air conditioning system and the chiller system having the heat medium converter both control the supply capacity to each indoor unit despite being an indirect air conditioning system that supplies a heat medium such as water to the room. The method is different and no standardization has been made.
 本発明は、上記のような問題点を解決するためになされたものであり、ビル用マルチエアコンにおいて、冷媒の使用量を減らし、かつ、室内空間への冷媒漏洩の影響を軽減することができる空気調和装置を得ることを目的とする。 The present invention has been made to solve the above problems, and in a building multi-air conditioner, the amount of refrigerant used can be reduced and the influence of refrigerant leakage into the indoor space can be reduced. An object is to obtain an air conditioner.
 本発明に係る空気調和装置は、圧縮機、冷媒流路切替装置、及び、熱源側熱交換器を収容した室外機筐体と、絞り装置、及び、熱媒体間熱交換器を収容した熱媒体変換機筐体と、熱媒体流量調整装置を収容した熱媒体流量調整機筐体と、負荷側熱交換器、及び、室内送風機を収容した室内機筐体と、熱媒体を搬送する熱媒体搬送装置と、を備え、前記圧縮機、前記冷媒流路切替装置、前記熱源側熱交換器、前記絞り装置、及び、前記熱媒体間熱交換器の冷媒通路は、冷媒が流通する冷媒配管により接続され、冷媒循環回路を構成し、前記熱媒体間熱交換器の熱媒体通路、前記熱媒体搬送装置、前記熱媒体流量調整装置、及び、前記負荷側熱交換器は、熱媒体が流通する熱媒体配管により接続され、熱媒体循環回路を構成している。 An air conditioner according to the present invention includes a compressor, a refrigerant flow switching device, an outdoor unit housing containing a heat source side heat exchanger, a throttling device, and a heat medium containing a heat exchanger between heat media. Converter housing, heat medium flow controller housing containing heat medium flow control device, load side heat exchanger, indoor unit housing containing indoor blower, and heat medium carrying heat medium A refrigerant passage of the compressor, the refrigerant flow switching device, the heat source side heat exchanger, the expansion device, and the heat exchanger related to heat medium is connected by a refrigerant pipe through which refrigerant flows. A refrigerant circulation circuit, the heat medium passage of the heat exchanger between the heat medium, the heat medium transport device, the heat medium flow control device, and the load side heat exchanger are heat that the heat medium circulates. They are connected by medium piping and constitute a heat medium circulation circuit.
 本発明に係る空気調和装置によれば、冷媒が循環しない室内機の筐体、及び、熱媒体流量調整機の筐体は、冷媒が循環する室外機、及び、熱媒体変換機の筐体とは個別に設けられている。このため、室内空間の近傍に熱媒体循環回路を設け、室内空間から分離された場所に冷媒循環回路を設けることができる。これにより、必要となる冷媒の量を低減し、且つ、室内空間への冷媒漏洩を防止することもできる。 According to the air conditioner of the present invention, the casing of the indoor unit in which the refrigerant does not circulate, and the casing of the heat medium flow controller are the outdoor unit in which the refrigerant circulates, and the casing of the heat medium converter. Are provided individually. For this reason, a heat medium circulation circuit can be provided in the vicinity of the indoor space, and a refrigerant circulation circuit can be provided in a place separated from the indoor space. Thereby, the quantity of the required refrigerant | coolant can be reduced and the refrigerant | coolant leakage to indoor space can also be prevented.
本実施の形態に係る空気調和装置の回路構成の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioning apparatus which concerns on this Embodiment. 図1の空気調和装置の全冷房運転モード時における冷媒と熱媒体の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant and heat medium at the time of the cooling only operation mode of the air conditioning apparatus of FIG. 図1の空気調和装置の全暖房運転モード時における冷媒と熱媒体の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant and heat medium at the time of the heating only operation mode of the air conditioning apparatus of FIG. 変形例に係る空気調和装置の回路構成の一例を示す概略回路構成図である。It is a schematic circuit block diagram which shows an example of the circuit structure of the air conditioning apparatus which concerns on a modification. 変形例に係る空気調和装置の全冷房運転モード時における冷媒と熱媒体の流れを示す回路図である。It is a circuit diagram which shows the flow of the refrigerant | coolant and heat medium in the time of the cooling only operation mode of the air conditioning apparatus which concerns on a modification. 変形例に係る空気調和装置の全暖房運転モード時における冷媒と熱媒体の流れを示す回路図である。It is a circuit diagram which shows the refrigerant | coolant and the flow of a heat medium at the time of the heating only operation mode of the air conditioning apparatus which concerns on a modification.
 実施の形態.
 本実施の形態に係る空気調和装置100は、例えば、全室内機が冷房を行う全冷房運転モード又は全室内機が暖房を行う全暖房運転モードなどから運転モードを選択できる、ビル用マルチエアコンなどである。図1は、本実施の形態に係る空気調和装置100の回路構成の一例を示す概略回路構成図である。図1に示すように、本実施の形態に係る空気調和装置100は、冷媒循環回路Aと、熱媒体循環回路Bとにより接続された室外機1、熱媒体変換機3、熱媒体流量調整機4、室内機2a、2b、2cを備える。冷媒循環回路Aを循環する冷媒を利用した冷凍サイクルにより温熱又は冷熱が生成され、熱媒体循環回路Bを循環する熱媒体により室内空間に調和空気が供給される。
Embodiment.
The air conditioner 100 according to the present embodiment can be selected from, for example, a cooling only operation mode in which all indoor units cool, or a heating only operation mode in which all indoor units heat. It is. FIG. 1 is a schematic circuit configuration diagram illustrating an example of a circuit configuration of an air-conditioning apparatus 100 according to the present embodiment. As shown in FIG. 1, an air conditioner 100 according to the present embodiment includes an outdoor unit 1, a heat medium converter 3, and a heat medium flow controller that are connected by a refrigerant circuit A and a heat medium circuit B. 4. Provided with indoor units 2a, 2b, 2c. Hot or cold heat is generated by the refrigeration cycle using the refrigerant circulating in the refrigerant circuit A, and conditioned air is supplied to the indoor space by the heat medium circulating in the heat medium circuit B.
 [冷媒循環回路A]
 冷媒循環回路Aは、冷媒配管5により構成され、室外機1と熱媒体変換機3とを接続している。冷媒循環回路Aの冷媒配管5には、冷媒が流通する。冷媒は、特に限定するものではないが、例えば、地球温暖化係数が低い冷媒として、可燃性の性質を有するジフルオロメタンやテトラフルオロプロペンなどを用いることができる。
[Refrigerant circulation circuit A]
The refrigerant circulation circuit A is constituted by a refrigerant pipe 5 and connects the outdoor unit 1 and the heat medium relay unit 3. A refrigerant flows through the refrigerant pipe 5 of the refrigerant circuit A. The refrigerant is not particularly limited. For example, difluoromethane or tetrafluoropropene having flammable properties can be used as a refrigerant having a low global warming potential.
 [熱媒体循環回路B]
 熱媒体循環回路Bは、熱媒体配管6により構成され、熱媒体変換機3と熱媒体流量調整機4と室内機2a、2b、2cとを接続している。熱媒体変換機3と、熱媒体流量調整機4との間には、熱媒体搬送装置8が接続されている。熱媒体循環回路Bの熱媒体配管6には、人に対して無害な安全性の高い熱媒体が流通する。熱媒体としては、例えばブラインなどの不凍液、水、ブラインと水との混合液、水と防食効果が高い添加剤との混合液等を用いる。
[Heat medium circulation circuit B]
The heat medium circulation circuit B is configured by a heat medium pipe 6 and connects the heat medium converter 3, the heat medium flow controller 4 and the indoor units 2a, 2b, and 2c. A heat medium transport device 8 is connected between the heat medium converter 3 and the heat medium flow controller 4. A highly safe heat medium that is harmless to humans circulates in the heat medium pipe 6 of the heat medium circuit B. As the heat medium, for example, an antifreeze solution such as brine, water, a mixed solution of brine and water, a mixed solution of water and an additive having a high anticorrosion effect, or the like is used.
 空気調和装置100において、筐体15に収容された室外機1は、建物の屋上などの屋外や換気装置がある機械室等に設置され、筐体32に収容された熱媒体変換機3は、換気装置や冷媒漏洩検知装置等が設置された機械室に配置される。また、筐体46に収容された熱媒体流量調整機4は、機械室や天井裏空間に配置され、筐体24に収容された室内機2a、2b、2cは、空気調和を必要とする空間にそれぞれ設置される。なお、図1においては、室内機2a、2b、2cの3台接続されている場合を例に示しているが、室内機の台数は限定されない。 In the air conditioner 100, the outdoor unit 1 accommodated in the casing 15 is installed outdoors such as the rooftop of a building or in a machine room with a ventilation device, and the heat medium converter 3 accommodated in the casing 32 is It is arranged in a machine room where a ventilation device, a refrigerant leak detection device, etc. are installed. The heat medium flow controller 4 accommodated in the housing 46 is disposed in a machine room or a ceiling space, and the indoor units 2a, 2b, and 2c accommodated in the housing 24 are spaces that require air conditioning. Installed in each. Although FIG. 1 shows an example in which three indoor units 2a, 2b, and 2c are connected, the number of indoor units is not limited.
 [室外機1]
 室外機1の筐体15には、冷媒配管5で接続された圧縮機10と、四方弁等の冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ13とが収容されている。また、熱源側熱交換器12の付近には、室外送風機14が設けられており、熱源側熱交換器12に空気を送風する。圧縮機10、及び、室外送風機14の回転数等は、第一の制御装置23により制御される。
[Outdoor unit 1]
The casing 15 of the outdoor unit 1 accommodates a compressor 10 connected by a refrigerant pipe 5, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 13. . In addition, an outdoor blower 14 is provided in the vicinity of the heat source side heat exchanger 12 to blow air to the heat source side heat exchanger 12. The number of revolutions of the compressor 10 and the outdoor blower 14 is controlled by the first control device 23.
 圧縮機10は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成される。冷媒流路切替装置11は、冷房運転モード時における冷媒の流れと、暖房運転モード時における冷媒の流れとを切り替えるものである。 The compressor 10 sucks a low-temperature and low-pressure refrigerant and compresses the refrigerant to bring it into a high-temperature and high-pressure state, and is composed of, for example, an inverter compressor capable of capacity control. The refrigerant flow switching device 11 switches the refrigerant flow in the cooling operation mode and the refrigerant flow in the heating operation mode.
 熱源側熱交換器12は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能するものであり、ファン等の室外送風機14から供給される空気と冷媒との間で熱交換を行なう。 The heat source side heat exchanger 12 functions as a condenser during the cooling operation and functions as an evaporator during the heating operation, and performs heat exchange between the air supplied from the outdoor blower 14 such as a fan and the refrigerant. .
 アキュムレータ13は、全暖房運転モード時における余剰冷媒を溜める機能や圧縮機10へ液冷媒が流入することを防止する働きをするものである。 The accumulator 13 functions to store excess refrigerant in the heating only operation mode and to prevent liquid refrigerant from flowing into the compressor 10.
 また、室外機1には、圧力検出装置として第一の圧力検出装置20と第二の圧力検出装置21が設けられている。第一の圧力検出装置20は、圧縮機10の吐出側と冷媒流路切替装置11とを繋ぐ冷媒配管5に設けられており、圧縮機10により圧縮され吐出した高温高圧の冷媒の圧力を検出するものである。また、第二の圧力検出装置21は、冷媒流路切替装置11と圧縮機10の吸入側とを繋ぐ冷媒配管5に設けられており、圧縮機10に吸入される低温低圧の冷媒の圧力を検出するものである。 Further, the outdoor unit 1 is provided with a first pressure detection device 20 and a second pressure detection device 21 as pressure detection devices. The first pressure detection device 20 is provided in the refrigerant pipe 5 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11, and detects the pressure of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 10. To do. The second pressure detection device 21 is provided in the refrigerant pipe 5 that connects the refrigerant flow switching device 11 and the suction side of the compressor 10, and determines the pressure of the low-temperature and low-pressure refrigerant sucked into the compressor 10. It is to detect.
 また、室外機1には、温度検出装置として第一の温度検出装置22が設けられている。第一の温度検出装置22は、圧縮機10の吐出側と冷媒流路切替装置11を繋ぐ冷媒配管5に設けられており、圧縮機10により圧縮され吐出した高温高圧の冷媒の温度を検出する。第一の温度検出装置22としては、サーミスタ等を用いることができる。 Further, the outdoor unit 1 is provided with a first temperature detection device 22 as a temperature detection device. The first temperature detection device 22 is provided in the refrigerant pipe 5 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11 and detects the temperature of the high-temperature and high-pressure refrigerant that is compressed and discharged by the compressor 10. . As the first temperature detecting device 22, a thermistor or the like can be used.
 [熱媒体変換機3]
 熱媒体変換機3の筐体32には、冷媒と熱媒体とが熱交換する熱媒体間熱交換器30と、冷媒を減圧する第一の絞り装置31と冷媒漏洩検出装置7とが収容されている。熱媒体間熱交換器30は、冷媒側及び熱媒体側から構成されており、冷媒側は、冷媒循環回路Aを構成する冷媒配管5に接続され、熱媒体側は、熱媒体循環回路Bを構成する熱媒体配管6に接続されている。冷媒漏洩検出装置7は、空気中の冷媒濃度を検出し、一定値以上の値が検出された場合に警報を発する警報器などである。
[Heat medium converter 3]
The casing 32 of the heat medium relay unit 3 accommodates a heat exchanger related to heat medium 30 that exchanges heat between the refrigerant and the heat medium, a first expansion device 31 that depressurizes the refrigerant, and the refrigerant leak detection device 7. ing. The heat exchanger related to heat medium 30 includes a refrigerant side and a heat medium side, the refrigerant side is connected to the refrigerant pipe 5 constituting the refrigerant circuit A, and the heat medium side includes the heat medium circuit B. It is connected to the heat medium piping 6 which comprises. The refrigerant leakage detection device 7 is an alarm device that detects the refrigerant concentration in the air and issues an alarm when a value equal to or greater than a certain value is detected.
 熱媒体間熱交換器30は、凝縮器、又は、蒸発器として機能し、冷媒と熱媒体とで熱交換を行ない、室外機1で生成され冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器30として、プレート式熱交換器等などを用いると良く、室内空間への冷媒漏洩のリスクを低減させるためにダブルウォール式のプレート式熱交換器を用いると更に良い。 The heat exchanger related to heat medium 30 functions as a condenser or an evaporator, performs heat exchange between the refrigerant and the heat medium, and transmits cold heat or heat generated in the outdoor unit 1 and stored in the refrigerant to the heat medium. To do. A plate-type heat exchanger or the like may be used as the heat exchanger 30 between heat media, and a double-wall plate-type heat exchanger is further preferably used in order to reduce the risk of refrigerant leakage into the indoor space.
 第一の絞り装置31は、熱媒体間熱交換器30の冷媒側の冷媒配管に接続され、冷媒を減圧して膨張させるものであり、減圧弁や膨張弁として機能する。第一の絞り装置31は、第二の制御装置45により開口面積等が制御される。第一の絞り装置31としては、制御により開度が可変な、例えば、電子式膨張弁等であると良い。 The first expansion device 31 is connected to the refrigerant pipe on the refrigerant side of the heat exchanger 30 between the heat mediums, expands the refrigerant under reduced pressure, and functions as a pressure reducing valve and an expansion valve. The opening area of the first diaphragm 31 is controlled by the second controller 45. The first throttling device 31 is preferably an electronic expansion valve or the like whose opening degree is variable by control.
 また、熱媒体変換機3の筐体32には、圧力検出装置として第三の圧力検出装置44が設けられている。第三の圧力検出装置44は、熱媒体間熱交換器30に接続される冷媒配管5の第一の絞り装置31とは反対側に設けられており、熱媒体間熱交換器30へ流入もしくは流出する冷媒の圧力を検出するものである。 The casing 32 of the heat medium relay unit 3 is provided with a third pressure detection device 44 as a pressure detection device. The third pressure detection device 44 is provided on the opposite side of the refrigerant pipe 5 connected to the heat exchanger 30 to the first expansion device 31 and flows into the heat exchanger 30. The pressure of the refrigerant flowing out is detected.
 また、熱媒体変換機3の筐体32には、温度検出装置として第二の温度検出装置40と、第三の温度検出装置41と、第四の温度検出装置42と、第五の温度検出装置43と、が収容されている。第二の温度検出装置40は、熱媒体間熱交換器30に接続される冷媒配管5の第一の絞り装置31とは反対側に設けられており、第三の温度検出装置41は、熱媒体間熱交換器30と第一の絞り装置31とを接続する冷媒配管5上に設けられている。また、第四の温度検出装置42は、熱媒体間熱交換器30の流入側に接続されている熱媒体配管上に設けられ、第五の温度検出装置43は、熱媒体間熱交換器30の流出側に接続されている熱媒体配管上に設けられている。 Further, the casing 32 of the heat medium relay 3 has a second temperature detection device 40, a third temperature detection device 41, a fourth temperature detection device 42, and a fifth temperature detection device as temperature detection devices. The device 43 is accommodated. The second temperature detection device 40 is provided on the side opposite to the first expansion device 31 of the refrigerant pipe 5 connected to the heat exchanger related to heat medium 30, and the third temperature detection device 41 includes a heat It is provided on the refrigerant pipe 5 that connects the inter-medium heat exchanger 30 and the first expansion device 31. The fourth temperature detection device 42 is provided on the heat medium pipe connected to the inflow side of the heat exchanger related to heat medium 30, and the fifth temperature detection device 43 is used for the heat exchanger 30 related to the heat medium. It is provided on the heat medium piping connected to the outflow side.
 なお、図1においては、熱媒体間熱交換器30と第一の絞り装置31とをそれぞれ1個ずつ設けた例を示しているが、これに限定するものではない。熱媒体間熱交換器30と第一の絞り装置31とは、空気調和装置100の冷房能力や暖房能力に応じて、複数並列に接続されていても良い。 In addition, in FIG. 1, although the example which each provided the heat exchanger 30 between the heat media 30 and the 1st expansion device 31 is shown, it does not limit to this. A plurality of the heat exchangers related to heat medium 30 and the first expansion device 31 may be connected in parallel depending on the cooling capacity or heating capacity of the air conditioner 100.
 [熱媒体流量調整機4]
 熱媒体流量調整機4の筐体46には、熱媒体配管6により接続された熱媒体流量調整装置50a、50b、50cが収容されている。熱媒体配管6は、熱媒体を室内機2a、2b、2cに分配する分岐部61と、室内機2a、2b、2cから流れてくる熱媒体を集結させる合流部62とを備える。また、熱媒体流量調整機4の筐体46には、温度検出装置として、第六の温度検出装置51a、51b、51cと、第七の温度検出装置52a、52b、52cとが収容されている。図1においては、3台の室内機2a、2b、2cが熱媒体流量調整機4に接続されている例を示しているが、室内機の台数は、一台でも良く、2台以上の複数台でも良い。
[Heat medium flow controller 4]
Heat medium flow control devices 50 a, 50 b, and 50 c connected by the heat medium pipe 6 are accommodated in the casing 46 of the heat medium flow controller 4. The heat medium pipe 6 includes a branch portion 61 that distributes the heat medium to the indoor units 2a, 2b, and 2c, and a junction portion 62 that collects the heat medium flowing from the indoor units 2a, 2b, and 2c. The casing 46 of the heat medium flow controller 4 houses sixth temperature detection devices 51a, 51b, 51c and seventh temperature detection devices 52a, 52b, 52c as temperature detection devices. . Although FIG. 1 shows an example in which three indoor units 2a, 2b, and 2c are connected to the heat medium flow controller 4, the number of indoor units may be one or more than two. A table may be used.
 熱媒体流量調整装置50a、50b、50cは、熱媒体流量調整機4から室内機2a、2b、2cへ向かう熱媒体が通過する分岐部61直後の熱媒体配管6上に設けられており、室内機2a、2b、2cに供給される熱媒体の流量を調整する。熱媒体流量調整機4は、それぞれの室内機2a、2b、2cの空調負荷に応じて調整された流量の熱媒体を室内機2a、2b、2cに分配する。流量の調整においては、熱媒体流量調整装置50a、50b、50cの開口面積等が第三の制御装置53により制御される。熱媒体の流量を任意に調整できるように、熱媒体流量調整装置50a、50b、50cとして、例えば、開口面積を制御できる二方弁等を用いることができる。なお、熱媒体流量調整装置50a、50b、50cは、図1に示すように、分岐部61の直後に位置する熱媒体配管6上に設けられていてもよく、合流部62直前に位置する熱媒体配管6上に設けられていてもよい。 The heat medium flow control devices 50a, 50b, and 50c are provided on the heat medium pipe 6 immediately after the branching portion 61 through which the heat medium from the heat medium flow control device 4 to the indoor units 2a, 2b, and 2c passes. The flow rate of the heat medium supplied to the machines 2a, 2b and 2c is adjusted. The heat medium flow controller 4 distributes the heat medium having a flow rate adjusted according to the air conditioning load of each indoor unit 2a, 2b, 2c to the indoor units 2a, 2b, 2c. In the adjustment of the flow rate, the third control device 53 controls the opening area and the like of the heat medium flow control devices 50a, 50b, and 50c. For example, a two-way valve that can control the opening area can be used as the heat medium flow control devices 50a, 50b, and 50c so that the flow rate of the heat medium can be arbitrarily adjusted. As shown in FIG. 1, the heat medium flow control devices 50 a, 50 b, and 50 c may be provided on the heat medium pipe 6 that is located immediately after the branching portion 61, and the heat medium that is located immediately before the junction portion 62. It may be provided on the medium pipe 6.
 第六の温度検出装置51a、51b、51cは、熱媒体流量調整機4から室内機2a、2b、2cへ向かう熱媒体が通過する分岐部61直後の熱媒体配管6上に設けられており、室内機2a、2b、2cへ供給される熱媒体の温度を検出するものである。第七の温度検出装置52a、52b、52cは、各室内機2a、2b、2cから戻ってくる熱媒体が熱媒体流量調整機4に流入する合流部62直前の熱媒体配管6上に設けられており、室内機2a、2b、2cから流出する熱媒体の温度を検出するものである。 The sixth temperature detectors 51a, 51b, 51c are provided on the heat medium pipe 6 immediately after the branching portion 61 through which the heat medium from the heat medium flow controller 4 to the indoor units 2a, 2b, 2c passes, The temperature of the heat medium supplied to the indoor units 2a, 2b, and 2c is detected. The seventh temperature detectors 52a, 52b, 52c are provided on the heat medium pipe 6 just before the junction 62 where the heat medium returning from the indoor units 2a, 2b, 2c flows into the heat medium flow controller 4. The temperature of the heat medium flowing out from the indoor units 2a, 2b, 2c is detected.
 [熱媒体搬送装置8]
 熱媒体搬送装置8は、熱媒体変換機3と熱媒体流量調整機4とを接続する熱媒体配管6の途中に設けられている。熱媒体搬送装置8は、例えば、ポンプ等の熱媒体を循環させる装置である。熱媒体の循環により、熱媒体変換機3で冷媒側から供給された温熱、又は、冷熱を室内機2a、2b、2cに供給することができる。熱媒体搬送装置8は、図1に示すように、熱媒体変換機3と熱媒体流量調整機4とを接続する熱媒体配管6の途中に設けてもよく、熱媒体変換機3の内部の熱媒体配管6に設けてもよく、熱媒体流量調整機4の内部の熱媒体配管6に設けても良い。
[Heat medium transfer device 8]
The heat medium transport device 8 is provided in the middle of the heat medium pipe 6 that connects the heat medium converter 3 and the heat medium flow controller 4. The heat medium transport device 8 is a device that circulates a heat medium such as a pump, for example. Through the circulation of the heat medium, the heat or cold supplied from the refrigerant side in the heat medium converter 3 can be supplied to the indoor units 2a, 2b, and 2c. As shown in FIG. 1, the heat medium transport device 8 may be provided in the middle of the heat medium pipe 6 that connects the heat medium converter 3 and the heat medium flow controller 4. The heat medium pipe 6 may be provided, or the heat medium pipe 6 inside the heat medium flow controller 4 may be provided.
 熱媒体搬送装置8を熱媒体変換機3の内部に配置した場合には、熱媒体搬送装置8は、例えば、熱媒体間熱交換器30の前後に設置した第四の温度検出装置42と第五の温度検出装置43との温度差が所定値になるように出力を制御すればよい。これにより、室内の空調負荷に応じた動力で熱媒体搬送装置8を運転することができるので、消費電力を少なくできる。 When the heat medium transport device 8 is arranged inside the heat medium converter 3, the heat medium transport device 8 includes, for example, a fourth temperature detection device 42 and a fourth temperature detection device 42 installed before and after the heat exchanger 30 between heat media. What is necessary is just to control an output so that the temperature difference with the five temperature detection apparatuses 43 may become a predetermined value. Thereby, since the heat carrier transport device 8 can be operated with power according to the indoor air conditioning load, power consumption can be reduced.
 熱媒体変換機3を室内機2a、2b、2cから近い距離に配置した場合は、熱媒体の移動距離が小さくなり、熱媒体循環回路Bを循環する際の圧力損失が小さくなるため、熱媒体搬送装置8の小型化や、消費電力の削減が可能になる。 When the heat medium relay unit 3 is arranged at a distance close to the indoor units 2a, 2b, and 2c, the moving distance of the heat medium becomes small and the pressure loss when circulating through the heat medium circulation circuit B becomes small. The transport device 8 can be reduced in size and power consumption can be reduced.
 [室内機2a、2b、2c]
 室内機2a、2b、2cは、それぞれの筐体24に、負荷側熱交換器60a、60b、60c、及び、室内送風機61a、61b、61cを収容し、熱媒体配管6により熱媒体流量調整機4に接続されている。負荷側熱交換器60a、60b、60cは、ファン等の室内送風機61a、61b、61cから供給される空気と熱媒体との間で熱交換を行い、室内空間に供給される暖房用空気又は冷房用空気を生成するものである。
[ Indoor units 2a, 2b, 2c]
The indoor units 2a, 2b, and 2c accommodate the load- side heat exchangers 60a, 60b, and 60c and the indoor blowers 61a, 61b, and 61c in the respective casings 24, and the heat medium flow adjuster by the heat medium pipe 6. 4 is connected. The load- side heat exchangers 60a, 60b, and 60c exchange heat between the air supplied from the indoor fans 61a, 61b, and 61c such as fans and the heat medium, and the heating air or cooling supplied to the indoor space It produces working air.
 [第一の制御装置23、第二の制御装置45、第三の制御装置53]
 第一の制御装置23、第二の制御装置45、第三の制御装置53は、マイコン等で構成され、それぞれ、室外機1、熱媒体変換機3、及び、熱媒体流量調整機4に搭載されている。
[First control device 23, second control device 45, third control device 53]
The first control device 23, the second control device 45, and the third control device 53 are configured by a microcomputer or the like, and are mounted on the outdoor unit 1, the heat medium converter 3, and the heat medium flow controller 4, respectively. Has been.
 室外機1に搭載されている第一の制御装置23は、各種検出手段で検出された情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、室外送風機14の回転数及びON/OFF、及び、冷媒流路切替装置11の切り替え等を制御するものである。 The first control device 23 mounted on the outdoor unit 1 determines the drive frequency of the compressor 10, the rotational speed of the outdoor blower 14, and ON / OFF based on information detected by various detection means and instructions from the remote controller. And switching of the refrigerant flow switching device 11 and the like.
 熱媒体変換機3に搭載されている第二の制御装置45は、第一の絞り装置31を制御するものであり、例えば、熱媒体間熱交換器30で冷媒が蒸発する場合は冷媒の過熱度に基づき制御を行い、冷媒が凝縮する場合は冷媒の過冷却度に基づき制御を行う。制御には、第二の温度検出装置40、第三の温度検出装置41、第三の圧力検出装置44、第一の圧力検出装置20、又は、第二の圧力検出装置21の内のいずれか二つの検出値を使用することができる。 The second control device 45 mounted on the heat medium relay unit 3 controls the first throttling device 31. For example, when the refrigerant evaporates in the heat exchanger related to heat medium 30, the refrigerant is overheated. Control is performed based on the degree, and when the refrigerant condenses, control is performed based on the degree of supercooling of the refrigerant. For the control, one of the second temperature detection device 40, the third temperature detection device 41, the third pressure detection device 44, the first pressure detection device 20, or the second pressure detection device 21 is used. Two detection values can be used.
 第二の制御装置45は、通信等により熱媒体変換機3の内部、又は、近傍に設置された熱媒体搬送装置8の出力を制御可能な構成としても良い。この場合は、熱媒体搬送装置8の出力は、熱媒体間熱交換器30の前後に設置された熱媒体側の第四の温度検出装置42と、第五の温度検出装置43との検出値に基づき制御を行う。例えば、制御目標値を第四の温度検出装置42と第五の温度検出装置43とにより検出された検出値の差などにすると、室内側の負荷に応じた流量で熱媒体を供給することができる。 The second control device 45 may be configured to be able to control the output of the heat medium transfer device 8 installed in or near the heat medium converter 3 by communication or the like. In this case, the output of the heat medium transport device 8 is the detection value of the fourth temperature detection device 42 on the heat medium side installed before and after the heat exchanger 30 between heat media and the fifth temperature detection device 43. Control based on For example, when the control target value is a difference between detection values detected by the fourth temperature detection device 42 and the fifth temperature detection device 43, the heat medium is supplied at a flow rate corresponding to the load on the indoor side. it can.
 熱媒体流量調整機4に搭載されている第三の制御装置53は、熱媒体流量調整装置50a、50b、50cの開口面積等を制御するものであり、各室内機2a、2b、2cで必要とされる負荷に応じた流量の熱媒体が供給される。熱媒体流量調整装置50a、50b、50cの開口面積等は、第六の温度検出装置51a、51b、51cと、第七の温度検出装置52a、52b、52cとの内の少なくとも一つ以上の検出値を取得し、温度差に基づき制御すれば良い。例えば、第六の温度検出装置51aと第七の温度検出装置52aとのように室内機の出入口水温差を一定になるように制御すると、各室内機で要求される空調負荷に応じた能力制御ができる。 The third control device 53 mounted on the heat medium flow control device 4 controls the opening area of the heat medium flow control devices 50a, 50b, and 50c and is necessary for each indoor unit 2a, 2b, and 2c. A heat medium having a flow rate according to the load is supplied. The opening area of the heat medium flow control devices 50a, 50b, and 50c is detected by at least one of the sixth temperature detection devices 51a, 51b, and 51c and the seventh temperature detection devices 52a, 52b, and 52c. What is necessary is just to acquire a value and control based on a temperature difference. For example, when the indoor / outlet water temperature difference is controlled to be constant like the sixth temperature detection device 51a and the seventh temperature detection device 52a, the capacity control according to the air conditioning load required for each indoor unit Can do.
 上記においては、第一の制御装置23、第二の制御装置45、第三の制御装置53がそれぞれ異なる場所に搭載された例を説明したが、搭載場所は限定されず、いずれか一つの制御装置が通信等によりそれぞれの制御対象を動作させても良い。また、二つ以上の複数の制御装置を任意の装置に搭載しても良い。 In the above description, an example in which the first control device 23, the second control device 45, and the third control device 53 are mounted in different locations has been described, but the mounting location is not limited, and any one control is performed. The apparatus may operate each control target by communication or the like. Moreover, you may mount two or more several control apparatuses in arbitrary apparatuses.
 [運転モードの説明]
 次に、空気調和装置100が実行する各運転モードについて説明する。本実施の形態に係る空気調和装置100は、運転する全室内機が冷房を行う全冷房運転モード又は全室内機が暖房を行う全暖房運転モードを選択できるものである。
[Description of operation mode]
Next, each operation mode executed by the air conditioner 100 will be described. The air conditioner 100 according to the present embodiment can select a cooling only operation mode in which all indoor units to be operated cool or a heating only operation mode in which all indoor units perform heating.
 [全冷房運転モード]
 図2は、図1の空気調和装置100の全冷房運転モード時における冷媒と熱媒体の流れを示す回路図である。図2において、冷媒の流れ方向は実線矢印で、熱媒体の流れ方向は破線矢印で示している。以下の説明においては、室内機2a、2b、2cで冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。
[Cooling operation mode]
FIG. 2 is a circuit diagram showing the flow of the refrigerant and the heat medium when the air-conditioning apparatus 100 of FIG. 1 is in the cooling only operation mode. In FIG. 2, the flow direction of the refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow. In the following description, the cooling only operation mode will be described by taking as an example a case where a cooling load is generated in the indoor units 2a, 2b, and 2c.
 冷媒循環回路Aにおいては、熱源側を流れる冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。熱源側熱交換器12に流入した高温高圧ガス冷媒は、室外空気に放熱しながら凝縮し高圧の液冷媒となる。そして、熱源側熱交換器12から流出した高圧の液冷媒は、室外機1から流出し、冷媒配管5を通り、熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧の液冷媒は、第一の絞り装置31によって低温低圧の二相冷媒に減圧された後、蒸発器として作用する熱媒体間熱交換器30に流入し、吸熱により近傍を冷却して低温低圧のガスとなる。熱媒体間熱交換器30から流出した低温低圧のガス冷媒は、冷媒配管5を通り室外機1へ流入する。室外機1に流入した冷媒は、冷媒流路切替装置11とアキュムレータ13を通り、圧縮機10へ吸入される。 In the refrigerant circuit A, the refrigerant flowing on the heat source side is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 through the refrigerant flow switching device 11. The high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 is condensed while dissipating heat to the outdoor air, and becomes high-pressure liquid refrigerant. Then, the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1, passes through the refrigerant pipe 5, and flows into the heat medium relay unit 3. The high-pressure liquid refrigerant that has flowed into the heat medium relay unit 3 is depressurized to a low-temperature and low-pressure two-phase refrigerant by the first throttling device 31 and then flows into the heat exchanger related to heat medium 30 that functions as an evaporator to absorb heat. The vicinity is cooled to become a low-temperature and low-pressure gas. The low-temperature and low-pressure gas refrigerant that has flowed out of the heat exchanger related to heat medium 30 flows into the outdoor unit 1 through the refrigerant pipe 5. The refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10.
 一方、熱媒体循環回路Bにおいては、熱媒体が熱媒体配管6の熱媒体搬送装置8により加圧され、熱媒体配管6を循環する。熱媒体搬送装置8で加圧された熱媒体は、熱媒体変換機3に流入し、熱媒体間熱交換器30の熱源側冷媒に吸熱されて冷やされた状態となり、流出する。熱媒体は、熱媒体変換機3から流出した後、熱媒体流量調整機4まで搬送され、熱媒体流量調整機4に流入する。熱媒体流量調整機4に流入した熱媒体は、分岐部61において分配され、熱媒体流量調整装置50a、50b、50cのそれぞれを通過して、熱媒体流量調整機4から流出し、熱媒体配管6を介して室内機2a、2b、2cのそれぞれに流入する。熱媒体は、室内機2a、2b、2cの負荷側熱交換器60a、60b、60cにおいて室内空気から吸熱して室内空間の冷房を行い、室内機2a、2b、2cから流出する。流出した熱媒体は、熱媒体配管6を流通し、熱媒体流量調整機4の合流部62において集結し、熱媒体搬送装置8に流入する。 On the other hand, in the heat medium circulation circuit B, the heat medium is pressurized by the heat medium conveying device 8 of the heat medium pipe 6 and circulates through the heat medium pipe 6. The heat medium pressurized by the heat medium transport device 8 flows into the heat medium converter 3, is absorbed by the heat source side refrigerant of the heat exchanger related to heat medium 30, is cooled, and flows out. After the heat medium flows out of the heat medium converter 3, it is transported to the heat medium flow controller 4 and flows into the heat medium flow controller 4. The heat medium that has flowed into the heat medium flow controller 4 is distributed at the branching section 61, passes through each of the heat medium flow controllers 50a, 50b, and 50c, and flows out of the heat medium flow controller 4 to form the heat medium pipe. 6 flows into each of the indoor units 2a, 2b and 2c. The heat medium absorbs heat from indoor air in the load side heat exchangers 60a, 60b, 60c of the indoor units 2a, 2b, 2c to cool the indoor space, and flows out of the indoor units 2a, 2b, 2c. The heat medium that has flowed out flows through the heat medium pipe 6, gathers at the junction 62 of the heat medium flow controller 4, and flows into the heat medium transport device 8.
 [全暖房運転モード]
 図3は、図1の空気調和装置100の全暖房運転モード時における冷媒と熱媒体の流れを示す回路図である。図3に示すように、冷媒の流れ方向は実線矢印で、熱媒体の流れ方向は破線矢印で示されている。以下の説明においては、室内機2a、2b、2cで温熱負荷が発生している場合を例に全暖房運転モードについて説明する。
[Heating operation mode]
FIG. 3 is a circuit diagram illustrating the flow of the refrigerant and the heat medium when the air-conditioning apparatus 100 of FIG. 1 is in the heating only operation mode. As shown in FIG. 3, the flow direction of the refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow. In the following description, the heating only operation mode will be described by taking as an example a case where a thermal load is generated in the indoor units 2a, 2b, and 2c.
 冷媒循環回路Aにおいては、熱源側を流れる冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して室外機1を流出し、冷媒配管5を通り熱媒体変換機3へ流入する。熱媒体変換機3に流入した高温高圧のガス冷媒は、凝縮器として機能する熱媒体間熱交換器30で放熱しながら凝縮し、高圧の液冷媒となって第一の絞り装置31に流入する。そして、第一の絞り装置31によって低温低圧の二相冷媒に減圧された後、熱媒体変換機3を流出し、冷媒配管5を通り、室外機1に流入する。室外機1に流入した低温低圧のガス冷媒は、蒸発器として作用する熱源側熱交換器12に流入し、室外空気から吸熱することで蒸発し、低温低圧のガスになる。熱源側熱交換器12から流出した低温低圧のガス冷媒は、冷媒流路切替装置11とアキュムレータ13を通り、圧縮機10へ吸入される。 In the refrigerant circuit A, the refrigerant flowing on the heat source side is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the refrigerant flow switching device 11 and flows into the heat medium relay unit 3 through the refrigerant pipe 5. The high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is condensed while dissipating heat in the heat exchanger related to heat medium 30 that functions as a condenser, and flows into the first expansion device 31 as a high-pressure liquid refrigerant. . Then, after the pressure is reduced to the low-temperature and low-pressure two-phase refrigerant by the first expansion device 31, the heat medium converter 3 flows out, passes through the refrigerant pipe 5, and flows into the outdoor unit 1. The low-temperature and low-pressure gas refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 that functions as an evaporator, and evaporates by absorbing heat from the outdoor air to become low-temperature and low-pressure gas. The low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10.
 一方、熱媒体循環回路Bにおいては、熱媒体搬送装置8で加圧された熱媒体は、熱媒体変換装置に流入し、熱媒体間熱交換器30の熱源側冷媒の温熱により温められて流出する。熱媒体変換機3から流出する。熱媒体は、熱媒体変換機3から流出した後、熱媒体流量調整機4まで搬送され、熱媒体流量調整機4に流入する。熱媒体流量調整機4に流入した熱媒体は、分岐部61において分配され、熱媒体流量調整装置50a、50b、50cのそれぞれを通過して、熱媒体流量調整機4から流出し、熱媒体配管6を介して室内機2a、2b、2cのそれぞれに流入する。熱媒体は、室内機2a、2b、2cの負荷側熱交換器60a、60b、60cにおいて室内空気へ放熱することで、室内空間の暖房を行いながら室内機2a、2b、2cから流出する。流出した熱媒体は、熱媒体配管6と熱媒体流量調整機4を介して再び熱媒体搬送装置8に流入する。 On the other hand, in the heat medium circulation circuit B, the heat medium pressurized by the heat medium transport device 8 flows into the heat medium conversion device, and is heated by the heat of the heat source side refrigerant in the heat exchanger 30 between the heat media and flows out. To do. It flows out from the heat medium relay 3. After the heat medium flows out of the heat medium converter 3, it is transported to the heat medium flow controller 4 and flows into the heat medium flow controller 4. The heat medium that has flowed into the heat medium flow controller 4 is distributed at the branching section 61, passes through each of the heat medium flow controllers 50a, 50b, and 50c, and flows out of the heat medium flow controller 4 to form the heat medium pipe. 6 flows into each of the indoor units 2a, 2b and 2c. The heat medium radiates heat to the indoor air in the load side heat exchangers 60a, 60b, 60c of the indoor units 2a, 2b, 2c, and flows out from the indoor units 2a, 2b, 2c while heating the indoor space. The heat medium that has flowed out again flows into the heat medium transport device 8 through the heat medium pipe 6 and the heat medium flow controller 4.
 このように、室外機1、室内機2a、2b、2c、熱媒体変換機3、及び、熱媒体流量調整機4は、それぞれ個別の筐体15、24、32、46に収容されている。そして、室外機1と熱媒体変換機3とは冷媒循環回路Aにより接続され、熱媒体変換機3、熱媒体流量調整機4、及び、室内機2a、2b、2cは、熱媒体循環回路Bにより接続されている。つまり、熱媒体流量調整機4の筐体46は、熱媒体変換機3の筐体32とは別個である。このため、冷媒循環回路Aを室外空間に配置し、熱媒体循環回路Bを室内空間に配置し、冷媒漏洩による影響を低減することができる。更に、室外に十分なスペースを確保できない場所であっても、それぞれの筐体15、24、32、46を分散させることで自由度のある配置が可能である。構成要素がそれぞれの筐体15、24、32、46に分散されていることで、それぞれの筐体15、24、32、46のサイズを抑制することもできる。 As described above, the outdoor unit 1, the indoor units 2a, 2b, and 2c, the heat medium converter 3, and the heat medium flow controller 4 are accommodated in the individual casings 15, 24, 32, and 46, respectively. The outdoor unit 1 and the heat medium converter 3 are connected by the refrigerant circulation circuit A, and the heat medium converter 3, the heat medium flow controller 4 and the indoor units 2a, 2b, and 2c are the heat medium circuit B. Connected by. That is, the housing 46 of the heat medium flow controller 4 is separate from the housing 32 of the heat medium converter 3. For this reason, the refrigerant circulation circuit A can be disposed in the outdoor space, and the heat medium circulation circuit B can be disposed in the indoor space, thereby reducing the influence of refrigerant leakage. Furthermore, even in a place where a sufficient space cannot be secured outside the room, it is possible to arrange the housings 15, 24, 32, 46 with flexibility by dispersing them. Since the constituent elements are distributed in the respective casings 15, 24, 32, and 46, the sizes of the respective casings 15, 24, 32, and 46 can be suppressed.
 なお、図2及び図3の例において、圧縮機10は、第一の圧力検出装置20、又は、第二の圧力検出装置21の検出値のうち少なくとも一方が所定の値になるように第一の制御装置23を用いて制御される。例えば、全冷房運転モードの場合には、第二の圧力検出装置21の検出値から求められる蒸発温度が所定の値になるように制御すると、室内機2a、2b、2cで必要な冷熱負荷に応じた冷媒流量を供給できる。また、全暖房運転モードの場合には第一の圧力検出装置20の検出値から求めることができる凝縮温度が所定の値になるように制御すると、室内機2a、2b、2cで必要な温熱負荷に応じた冷媒流量を供給できる。 2 and 3, the compressor 10 is configured so that at least one of the detection values of the first pressure detection device 20 or the second pressure detection device 21 has a predetermined value. The control device 23 is used. For example, in the case of the cooling only operation mode, if the evaporation temperature obtained from the detection value of the second pressure detection device 21 is controlled to a predetermined value, the cooling load required for the indoor units 2a, 2b, and 2c is increased. The corresponding refrigerant flow rate can be supplied. In the heating only operation mode, if the condensing temperature that can be obtained from the detection value of the first pressure detection device 20 is controlled to be a predetermined value, the thermal load required for the indoor units 2a, 2b, and 2c. The refrigerant flow rate according to
 室外送風機14は、第一の圧力検出装置20、又は、第二の圧力検出装置21の検出値のうち少なくとも一方が所定の値になるように第一の制御装置23を用いて制御される。例えば、全冷房運転モードの場合には、第一の圧力検出装置20の検出値から求められる凝縮温度が所定の値になるように制御すると良い。また、全暖房運転モードの場合には第二の圧力検出装置21の検出値から求めることができる蒸発温度が所定の値になるように制御すると良い。 The outdoor blower 14 is controlled using the first control device 23 so that at least one of the detection values of the first pressure detection device 20 or the second pressure detection device 21 has a predetermined value. For example, in the case of the cooling only operation mode, the condensation temperature obtained from the detection value of the first pressure detection device 20 may be controlled to be a predetermined value. In the heating only operation mode, it is preferable to control the evaporation temperature that can be obtained from the detection value of the second pressure detection device 21 to a predetermined value.
 第一の絞り装置31は、全冷房運転モードの場合には、第二の温度検出装置40と第三の温度検出装置41との差として得られる過熱度が一定になるように第二の制御装置45を用いて開度が制御される。又は、他にも第三の圧力検出装置44から求めた蒸発温度と第二の温度検出装置40の検出温度との差から得られる過熱度が一定になるように制御しても良く、室外機1に搭載されている第二の圧力検出装置21から求めた値を蒸発温度として使用しても良い。全暖房運転モードの場合には、第三の圧力検出装置44の検出値から演算した凝縮温度と第二の温度検出装置40の検出値との差として得られる過冷却度が一定になるように開度が第二の制御装置45を用いて制御される。又は、他にも第一の圧力検出装置20の検出値から演算した凝縮温度と第二の温度検出装置40の検出値との差として得られる過冷却度が一定になるように制御しても良い。 When the first expansion device 31 is in the cooling only operation mode, the second control is performed so that the degree of superheat obtained as a difference between the second temperature detection device 40 and the third temperature detection device 41 is constant. The opening degree is controlled using the device 45. Alternatively, the degree of superheat obtained from the difference between the evaporation temperature obtained from the third pressure detection device 44 and the detection temperature of the second temperature detection device 40 may be controlled to be constant. The value obtained from the second pressure detection device 21 mounted on 1 may be used as the evaporation temperature. In the heating only operation mode, the degree of supercooling obtained as a difference between the condensation temperature calculated from the detection value of the third pressure detection device 44 and the detection value of the second temperature detection device 40 is constant. The opening degree is controlled using the second control device 45. Alternatively, the degree of supercooling obtained as a difference between the condensation temperature calculated from the detection value of the first pressure detection device 20 and the detection value of the second temperature detection device 40 may be controlled to be constant. good.
 熱媒体流量調整装置50a、50b、50cは、第六の温度検出装置51a、51b、51cの検出値と第七の温度検出装置52a、52b、52cの検出値との温度差が所定値になるように開度が調整される。これにより、各室内にて必要とされる空調負荷がまかなわれる。所定値は、全冷房運転モードの場合には、例えば、2℃~7℃などであり、全暖房運転モードの場合には、例えば、5℃~10℃などである。温度差が所定値より小さい場合、熱媒体流量調整装置50a、50b、50cの開度は閉方向に調整され、温度差が所定値より大きい場合、開度は開方向に調整される。このように、熱媒体は、室内にて必要とされる空調負荷に応じて必要な流量に制御されて負荷側熱交換器60a、60b、60cに流入する。 In the heat medium flow control devices 50a, 50b, and 50c, the temperature difference between the detection values of the sixth temperature detection devices 51a, 51b, and 51c and the detection values of the seventh temperature detection devices 52a, 52b, and 52c becomes a predetermined value. The opening is adjusted as follows. Thereby, the air-conditioning load required in each room is covered. The predetermined value is, for example, 2 ° C. to 7 ° C. in the cooling only operation mode, and is, for example, 5 ° C. to 10 ° C. in the heating only operation mode. When the temperature difference is smaller than the predetermined value, the opening degree of the heat medium flow control devices 50a, 50b, 50c is adjusted in the closing direction, and when the temperature difference is larger than the predetermined value, the opening degree is adjusted in the opening direction. Thus, the heat medium is controlled to a necessary flow rate according to the air conditioning load required in the room and flows into the load- side heat exchangers 60a, 60b, and 60c.
 熱媒体搬送装置8は、一定回転数の出力で良く、開度を調整し、熱媒体間熱交換器30の前後に設置されている第四の温度検出装置42の検出値と第五の温度検出装置43との温度差が所定値になるようにされていても良い。この場合、所定値は、全冷房運転モードの場合には、例えば、2℃~7℃などでよく、全暖房運転モードの場合には、例えば、5℃~10℃などでよい。 The heat medium transport device 8 may be output at a constant rotational speed, adjust the opening degree, and the detected value and the fifth temperature of the fourth temperature detecting device 42 installed before and after the heat exchanger related to heat medium 30. The temperature difference from the detection device 43 may be a predetermined value. In this case, the predetermined value may be 2 ° C. to 7 ° C., for example, in the case of the cooling only operation mode, and may be 5 ° C. to 10 ° C., for example, in the case of the heating only operation mode.
 なお、図2及び図3の説明では、室内機2a、2b、2cが全冷房運転モード又は全暖房運転モードを実施する場合を例にとり説明したが、停止やサーモオフ等で冷房運転を行わない室内機が存在する運転モードとしてもよい。このような場合には、冷房運転を行わない室内機に接続される熱媒体流量調整装置50a、50b、50cを、例えば、全閉など、熱媒体が流れない開度とすれば、熱媒体搬送動力の損失を低減できる。 In the description of FIGS. 2 and 3, the case where the indoor units 2a, 2b, and 2c perform the cooling only operation mode or the heating only operation mode has been described as an example. It is good also as the operation mode in which a machine exists. In such a case, if the heat medium flow control devices 50a, 50b, and 50c connected to the indoor unit that does not perform the cooling operation are set to an opening degree at which the heat medium does not flow, for example, fully closed, the heat medium conveyance Power loss can be reduced.
 変形例.
 図4は、変形例に係る空気調和装置200の回路構成の一例を示す概略回路構成図である。図4に示すように、変形例に係る空気調和装置200は、冷媒循環回路Aにより接続された各構成要素を収容する室外機16の筐体54と、熱媒体流量調整機4の筐体46と、室内機2a、2b、2cの筐体24とにより構成されている。また、室外機16には、冷媒漏洩検出装置7が配置されている。
Modified example.
FIG. 4 is a schematic circuit configuration diagram illustrating an example of a circuit configuration of an air conditioner 200 according to a modification. As shown in FIG. 4, the air conditioner 200 according to the modified example includes a casing 54 of the outdoor unit 16 that houses each component connected by the refrigerant circulation circuit A, and a casing 46 of the heat medium flow controller 4. And the casing 24 of the indoor units 2a, 2b, and 2c. In addition, the refrigerant leak detection device 7 is disposed in the outdoor unit 16.
 室外機1の筐体54が収容する各構成要素は、冷媒配管5で接続された圧縮機10と、四方弁等の冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ13と、熱媒体間熱交換器30と、第一の絞り装置31とである。熱媒体間熱交換器30には、室外機16の外部から延長する熱媒体配管6が接続している。つまり、変形例に係る空気調和装置200は、本実施の形態に係る空気調和装置100において筐体15及び筐体32に分離させて収容していた構成要素を、室外機16の筐体54に一体的に収容しているものであり、一般に、チラーユニットなどと呼ばれる。室外機16から延び出る熱媒体循環回路Bは、空調負荷に応じた流量の熱媒体を分配する熱媒体流量調整機4に接続し、それぞれの室内機2a、2b、2cに更に接続されている。 Each component housed in the casing 54 of the outdoor unit 1 includes a compressor 10 connected by a refrigerant pipe 5, a refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 13. The intermediate heat exchanger 30 and the first expansion device 31. A heat medium pipe 6 extending from the outside of the outdoor unit 16 is connected to the heat exchanger 30 between heat medium. That is, in the air conditioner 200 according to the modification, the components that are separated and accommodated in the casing 15 and the casing 32 in the air conditioner 100 according to the present embodiment are stored in the casing 54 of the outdoor unit 16. The unit is housed integrally and is generally called a chiller unit. The heat medium circulation circuit B extending from the outdoor unit 16 is connected to the heat medium flow controller 4 that distributes the heat medium having a flow rate corresponding to the air conditioning load, and is further connected to each of the indoor units 2a, 2b, and 2c. .
 [全冷房運転モード]
 図5は、変形例に係る空気調和装置200の全冷房運転モード時における冷媒と熱媒体の流れを示す回路図である。図5において、冷媒の流れ方向は実線矢印で、熱媒体の流れ方向は破線矢印で示されている。
[Cooling operation mode]
FIG. 5 is a circuit diagram illustrating the flow of the refrigerant and the heat medium when the air-conditioning apparatus 200 according to the modification is in the cooling only operation mode. In FIG. 5, the flow direction of the refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
 室内機2a、2b、2cで冷熱負荷が発生している全冷房運転モードにおいては、図2において説明したのと同様の動作が行われる。具体的には、冷媒循環回路Aを流れる冷媒は、室外機16の筐体54が収容する圧縮機10によりガス冷媒となり、冷媒流路切替装置11を介して熱源側熱交換器12に流入し、室外空気への放熱により高圧の液冷媒となって流出する。その後、第一の絞り装置31により減圧され、蒸発器として作用する熱媒体間熱交換器30に流入し、熱媒体配管6を流通する熱媒体から吸熱することで、冷媒は低温低圧のガスとなる。 In the cooling only operation mode in which a cooling load is generated in the indoor units 2a, 2b, and 2c, the same operation as described in FIG. 2 is performed. Specifically, the refrigerant flowing through the refrigerant circuit A becomes gas refrigerant by the compressor 10 accommodated in the casing 54 of the outdoor unit 16 and flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11. Then, it flows out as a high-pressure liquid refrigerant by heat radiation to the outdoor air. Thereafter, the refrigerant is decompressed by the first expansion device 31, flows into the heat exchanger related to heat medium 30 acting as an evaporator, and absorbs heat from the heat medium flowing through the heat medium pipe 6, so that the refrigerant becomes a low-temperature and low-pressure gas. Become.
 一方、熱媒体循環回路Bは、室外機16の外部から延長する熱媒体配管6が接続する熱媒体間熱交換器30において、冷媒に吸熱されて冷やされた状態となって熱媒体間熱交換器30から流出する。その後、熱媒体は、熱媒体配管6により熱媒体流量調整機4の筐体46と、室内機2a、2b、2cの筐体24との内部の各構成要素に搬送され、熱媒体循環回路Bを循環する。 On the other hand, in the heat exchanger circuit 30 to which the heat medium pipe 6 extending from the outside of the outdoor unit 16 is connected, the heat medium circuit B is in a state of being cooled by being absorbed by the refrigerant and being heat-exchanged between the heat medium. Out of the vessel 30. Thereafter, the heat medium is transferred to the respective components inside the housing 46 of the heat medium flow controller 4 and the housings 24 of the indoor units 2a, 2b, and 2c through the heat medium pipe 6, and the heat medium circuit B Circulate.
 [全暖房運転モード]
 図6は、変形例に係る空気調和装置200の全暖房運転モード時における冷媒と熱媒体の流れを示す回路図である。図6において、冷媒の流れ方向は実線矢印で、熱媒体の流れ方向は破線矢印で示されている。
[Heating operation mode]
FIG. 6 is a circuit diagram illustrating the flow of the refrigerant and the heat medium when the air-conditioning apparatus 200 according to the modification is in the heating only operation mode. In FIG. 6, the flow direction of the refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
 室内機2a、2b、2cで温熱負荷が発生している全暖房運転モードにおいては、図3において説明したのと同様の動作が行われる。具体的には、冷媒循環回路Aを流れる冷媒は、室外機16の筐体54が収容する圧縮機10によりガス冷媒となり、冷媒流路切替装置11を介して熱媒体間熱交換器30に流入し、熱媒体間熱交換器30で放熱しながら凝縮し、第一の絞り装置31に流入する。そして、第一の絞り装置31により減圧された後、熱源側熱交換器12に流入し、室外空気から吸熱しながら蒸発し低圧のガス冷媒となり、冷媒流路切替装置11とアキュムレータ13を介して圧縮機10へ吸入される。 In the heating only operation mode in which the thermal load is generated in the indoor units 2a, 2b, and 2c, the same operation as described in FIG. 3 is performed. Specifically, the refrigerant flowing through the refrigerant circuit A becomes gas refrigerant by the compressor 10 accommodated in the casing 54 of the outdoor unit 16 and flows into the heat exchanger related to heat medium 30 via the refrigerant flow switching device 11. Then, it condenses while dissipating heat in the heat exchanger 30 between heat media, and flows into the first expansion device 31. Then, after the pressure is reduced by the first expansion device 31, the refrigerant flows into the heat source side heat exchanger 12, evaporates while absorbing heat from the outdoor air, and becomes a low-pressure gas refrigerant, via the refrigerant flow switching device 11 and the accumulator 13. It is sucked into the compressor 10.
 一方、熱媒体循環回路Bは、室外機16の外部から延長する熱媒体配管6が接続する熱媒体間熱交換器30において、冷媒の温熱が熱媒体に伝えられ、温められた熱媒体状態となって熱媒体変換機3から流出する。その後、熱媒体は、熱媒体配管6により熱媒体流量調整機4の筐体46と、室内機2a、2b、2cの筐体24との内部の各構成要素に搬送され、熱媒体循環回路Bを循環する。 On the other hand, in the heat exchanger circuit 30 connected to the heat medium pipe 6 extending from the outside of the outdoor unit 16, the heat medium circulation circuit B transmits the warm heat of the refrigerant to the heat medium, And flows out of the heat medium relay unit 3. Thereafter, the heat medium is transferred to the respective components inside the housing 46 of the heat medium flow controller 4 and the housings 24 of the indoor units 2a, 2b, and 2c through the heat medium pipe 6, and the heat medium circuit B Circulate.
 このように、冷媒循環回路Aを流通する冷媒による一連の動作は、全て室外機の筐体54が収容する各構成要素により行われるため、室内空間への冷媒漏洩のリスクを大きく低減することができる。また、熱媒体循環回路Bに配置した熱媒体流量調整機4により室内機2a、2b、2cのそれぞれの空調負荷に応じた流量で熱媒体が分配されるため、それぞれの部屋における快適性が向上する。これにより、建物の構造や建物の使用用途に応じたシステムの構成自由度の高い設備更新が可能となる。 In this way, since a series of operations by the refrigerant flowing through the refrigerant circuit A is performed by each component housed in the outdoor unit casing 54, the risk of refrigerant leakage into the indoor space can be greatly reduced. it can. In addition, since the heat medium is distributed at a flow rate corresponding to the air conditioning load of each of the indoor units 2a, 2b, and 2c by the heat medium flow controller 4 arranged in the heat medium circuit B, the comfort in each room is improved. To do. This makes it possible to update equipment with a high degree of freedom in system configuration according to the structure of the building and the intended use of the building.
 また、チラーユニット等の熱媒体を利用した空調システムが既設されている建物では、実施の形態1に係る空気調和装置100、又は、変形例に係る空気調和装置200を設置することができる。この場合には、既存の室内機とそれに接続する熱媒体配管などを転用し、設備更新を容易に行うことが可能である。また、熱媒体流量調整機4の筐体46が熱媒体変換機3の筐体32と別個になっているため、上述した実施の形態における熱媒体流量調整機4を利用することで、既存の設備に必要な設備更新が最小限に抑制される。これのように、ユニットが共通化されることでコストダウンの効果を期待することもできる。 Also, in a building where an air conditioning system using a heat medium such as a chiller unit is already installed, the air conditioner 100 according to Embodiment 1 or the air conditioner 200 according to the modification can be installed. In this case, the existing indoor unit and the heat medium pipe connected to the indoor unit can be diverted to easily update the equipment. Moreover, since the housing | casing 46 of the heat medium flow controller 4 is separate from the housing | casing 32 of the heat medium converter 3, by using the heat medium flow controller 4 in embodiment mentioned above, existing Equipment renewal required for equipment is minimized. In this way, the effect of cost reduction can be expected by sharing the unit.
 なお、熱媒体間熱交換器30は、熱媒体変換機3の筐体32、及び、室外機1の筐体15との個別の筐体を用いた実施の形態、又は、室外機1の筐体54を用いた変形例の形態のいずれの形態であっても、共有することができるとよい。この場合、既設された配管に併せていずれかの形態を選択し、共有の熱媒体間熱交換器30を搭載することができる。 Note that the heat exchanger related to heat medium 30 is an embodiment using separate housings of the housing 32 of the heat medium converter 3 and the housing 15 of the outdoor unit 1, or the housing of the outdoor unit 1. Any form of the modified example using the body 54 may be shared. In this case, any form can be selected in accordance with the existing piping, and the shared heat exchanger related to heat medium 30 can be mounted.
 以上説明した、本実施の形態に係る空気調和装置100によれば、冷媒が循環しない室内機2a、2b、2cの筐体24、及び、熱媒体流量調整機4の筐体46は、冷媒が循環する室外機1、及び、熱媒体間熱交換器30の筐体15、32とは個別に設けられている。そして、筐体15、24、32、46のそれぞれは、所望の配置位置に設置され、室外機1と、熱媒体変換機3とが冷媒循環回路Aにより接続され、熱媒体変換機3と、熱媒体流量調整機4と、室内機2a、2b、2cとが熱媒体循環回路Bにより接続される。これにより、室内空間から離れた位置で冷媒と熱媒体との熱交換を行い、熱媒体循環回路Bにより移送した冷熱を室内機2a、2b、2cのそれぞれに分配することができるため、冷媒の必要量を低減し、且つ、室内空間への冷媒漏洩を防止することができる。 According to the air conditioning apparatus 100 according to the present embodiment described above, the casing 24 of the indoor units 2a, 2b, and 2c in which the refrigerant does not circulate and the casing 46 of the heat medium flow controller 4 are refrigerant. The outdoor unit 1 that circulates and the casings 15 and 32 of the heat exchanger related to heat medium 30 are provided separately. And each of housing | casing 15, 24, 32, 46 is installed in a desired arrangement position, the outdoor unit 1 and the heat medium converter 3 are connected by the refrigerant circuit A, the heat medium converter 3, The heat medium flow controller 4 and the indoor units 2a, 2b, and 2c are connected by a heat medium circuit B. Thereby, heat exchange between the refrigerant and the heat medium can be performed at a position away from the indoor space, and the cold heat transferred by the heat medium circuit B can be distributed to each of the indoor units 2a, 2b, and 2c. The required amount can be reduced, and refrigerant leakage to the indoor space can be prevented.
 熱媒体間熱交換器30を共有できるため、既設された配管に併せていずれかの形態を選択し、共有の熱媒体間熱交換器30を搭載することが可能となり、室内機への熱媒体供給の制御方法が統一され、ユニット共通化が可能となる。 Since the heat exchanger 30 between heat media can be shared, it is possible to select any form according to the existing piping and to mount the heat exchanger 30 between the heat media, and to heat the indoor unit The supply control method is unified, and unit sharing is possible.
 熱媒体間熱交換器30と熱媒体流量調整機4とが別個の筐体に収容されているため、設置自由度が高まり、設備更新の際のシステム変更が容易となり、システム選択の自由度が向上する。 Since the inter-heat medium heat exchanger 30 and the heat medium flow controller 4 are housed in separate housings, the degree of freedom of installation is increased, the system can be easily changed when the equipment is updated, and the degree of freedom of system selection is increased. improves.
 室外機1の筐体15と、熱媒体変換機3の筐体32とを共通としたチラーユニットを形成し、既設の配管を転用して設置することができる。 A chiller unit in which the casing 15 of the outdoor unit 1 and the casing 32 of the heat medium relay unit 3 are formed in common can be installed by diverting existing piping.
 冷媒が流通する室外機1と、熱媒体変換機3とを室外に配置することで、人が存在する室内空間において冷媒が漏洩することを防止できる。 By arranging the outdoor unit 1 through which the refrigerant circulates and the heat medium relay unit 3 outdoors, it is possible to prevent the refrigerant from leaking in the indoor space where a person exists.
 熱媒体流量調整装置50a、50b、50cの開度は、負荷側熱交換器60a、60b、60cそれぞれの空調負荷に応じて制御することができる。 The opening degree of the heat medium flow control devices 50a, 50b, 50c can be controlled according to the air conditioning load of each of the load side heat exchangers 60a, 60b, 60c.
 負荷側熱交換器60a、60b、60cの入口及び出口の温度から負荷側熱交換器60a、60b、60cそれぞれの空調負荷を算出することができる。 The air conditioning load of each of the load side heat exchangers 60a, 60b, 60c can be calculated from the temperatures of the inlets and outlets of the load side heat exchangers 60a, 60b, 60c.
 熱媒体間熱交換器30に流入する熱媒体の温度と流出する熱媒体の温度との差に基づき室内の空調負荷を算出して熱媒体搬送装置8が運転されるため、消費電力が抑制される。 Since the indoor air conditioning load is calculated based on the difference between the temperature of the heat medium flowing into the heat exchanger 30 and the temperature of the heat medium flowing out, the heat medium transport device 8 is operated, so that power consumption is suppressed. The
 それぞれの室外機1の筐体15、熱媒体変換機3の筐体32、熱媒体流量調整機4の筐体46には、収容された構成要素を制御する制御装置が配置されているので、筐体15、32、46をそれぞれ所望の位置に配置することができる。 Since the casing 15 of each outdoor unit 1, the casing 32 of the heat medium relay unit 3, and the casing 46 of the heat medium flow controller 4 are arranged with control devices that control the housed components. The casings 15, 32, and 46 can be arranged at desired positions, respectively.
 熱媒体変換機3の筐体32、又は、室外機1の筐体15に設けた冷媒漏洩検出装置7により冷媒配管5から漏洩した冷媒を検出することで、漏洩による影響を抑制することができる。 By detecting the refrigerant leaked from the refrigerant pipe 5 by the refrigerant leakage detection device 7 provided in the casing 32 of the heat medium relay unit 3 or the casing 15 of the outdoor unit 1, it is possible to suppress the influence of the leakage. .
 1、16 室外機、2a、2b、2c 室内機、3 熱媒体変換機、4 熱媒体流量調整機、5 冷媒配管、6 熱媒体配管、7 冷媒漏洩検出装置、8 熱媒体搬送装置、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 アキュムレータ、14 室外送風機、15、24、32、46、54 筐体、20 第一の圧力検出装置、21 第二の圧力検出装置、22 第一の温度検出装置、23 第一の制御装置、30 熱媒体間熱交換器、31 第一の絞り装置、40 第二の温度検出装置、41 第三の温度検出装置、42 第四の温度検出装置、43 第五の温度検出装置、44 第三の圧力検出装置、45 第二の制御装置、50a、50b、50c 熱媒体流量調整装置、51a、51b、51c 第六の温度検出装置、52a、52b、52c 第七の温度検出装置、53 第三の制御装置、60a、60b、60c 負荷側熱交換器、61 分岐部、61a、61b、61c 室内送風機、62 合流部、100、200 空気調和装置。 1, 16 outdoor unit, 2a, 2b, 2c indoor unit, 3 heat medium converter, 4 heat medium flow controller, 5 refrigerant pipe, 6 heat medium pipe, 7 refrigerant leak detection device, 8 heat medium transport device, 10 compression Machine, 11 refrigerant flow switching device, 12 heat source side heat exchanger, 13 accumulator, 14 outdoor fan, 15, 24, 32, 46, 54 housing, 20 first pressure detection device, 21 second pressure detection device , 22 1st temperature detection device, 23 1st control device, 30 heat exchanger between heat medium, 31 1st expansion device, 40 2nd temperature detection device, 41 3rd temperature detection device, 42 4th Temperature detection device, 43 fifth temperature detection device, 44 third pressure detection device, 45 second control device, 50a, 50b, 50c heat medium flow control device, 51a, 51b, 51c sixth Degree detection device, 52a, 52b, 52c, seventh temperature detection device, 53, third control device, 60a, 60b, 60c, load side heat exchanger, 61, branching unit, 61a, 61b, 61c, indoor fan, 62, junction unit, 100, 200 Air conditioner.

Claims (14)

  1.  圧縮機、冷媒流路切替装置、及び、熱源側熱交換器を収容した室外機筐体と、
     絞り装置、及び、熱媒体間熱交換器を収容した熱媒体変換機筐体と、
     熱媒体流量調整装置を収容した熱媒体流量調整機筐体と、
     負荷側熱交換器、及び、室内送風機を収容した室内機筐体と、
     熱媒体を搬送する熱媒体搬送装置と、を備え、
     前記圧縮機、前記冷媒流路切替装置、前記熱源側熱交換器、前記絞り装置、及び、前記熱媒体間熱交換器の冷媒通路は、冷媒が流通する冷媒配管により接続され、冷媒循環回路を構成し、
     前記熱媒体間熱交換器の熱媒体通路、前記熱媒体搬送装置、前記熱媒体流量調整装置、及び、前記負荷側熱交換器は、熱媒体が流通する熱媒体配管により接続され、熱媒体循環回路を構成している、
     空気調和装置。
    An outdoor unit housing containing a compressor, a refrigerant flow switching device, and a heat source side heat exchanger;
    A heat medium converter housing housing the expansion device and the heat exchanger between heat mediums;
    A heat medium flow controller housing housing the heat medium flow controller,
    A load-side heat exchanger, and an indoor unit housing that houses the indoor fan,
    A heat medium transport device for transporting the heat medium,
    Refrigerant passages of the compressor, the refrigerant flow switching device, the heat source side heat exchanger, the expansion device, and the heat exchanger related to heat medium are connected by a refrigerant pipe through which refrigerant flows, and a refrigerant circulation circuit is provided. Configure
    The heat medium passage of the heat exchanger between the heat medium, the heat medium conveying device, the heat medium flow rate adjusting device, and the load side heat exchanger are connected by a heat medium pipe through which the heat medium flows, and the heat medium circulation Composing the circuit,
    Air conditioner.
  2.  前記熱媒体間熱交換器は、
     前記室外機筐体、及び、前記熱媒体変換機筐体を一つの筐体に収容した形態と、
     前記室外機筐体、及び、前記熱媒体変換機筐体を個別の筐体に収容した形態と、
     において共有される、
     請求項1に記載の空気調和装置。
    The heat exchanger related to heat medium is
    A form in which the outdoor unit casing and the heat medium converter casing are housed in a single casing,
    A form in which the outdoor unit housing and the heat medium converter housing are housed in individual housings,
    Shared in the
    The air conditioning apparatus according to claim 1.
  3.  前記熱媒体間熱交換器、及び、前記熱媒体流量調整装置は、
     それぞれ個別に設けられた前記熱媒体流量調整機筐体、及び、前記熱媒体変換機筐体に収容されている、
     請求項1又は2のいずれかに記載の空気調和装置。
    The heat exchanger related to heat medium and the heat medium flow control device are:
    Each of the heat medium flow regulator housings provided individually and housed in the heat medium converter housing,
    The air conditioning apparatus according to claim 1 or 2.
  4.  前記室外機筐体と、前記熱媒体変換機筐体とを一つの筐体に収容した、
     請求項1~3のいずれか一項に記載の空気調和装置。
    The outdoor unit casing and the heat medium converter casing are housed in a single casing.
    The air conditioner according to any one of claims 1 to 3.
  5.  前記室外機筐体、及び、前記熱媒体変換機筐体は、室外空間に配置され、
     前記熱媒体流量調整機筐体、及び、前記室内機筐体は、室内空間に配置された、
     請求項1~4のいずれか一項に記載の空気調和装置。
    The outdoor unit housing and the heat medium converter housing are disposed in an outdoor space,
    The heat medium flow controller housing and the indoor unit housing are disposed in an indoor space,
    The air conditioner according to any one of claims 1 to 4.
  6.  前記熱媒体搬送装置は、前記熱媒体変換機筐体に収容されている、
     請求項1~5のいずれか一項に記載の空気調和装置。
    The heat medium transport device is housed in the heat medium converter housing.
    The air conditioner according to any one of claims 1 to 5.
  7.  前記熱媒体流量調整装置は、前記負荷側熱交換器の入口温度と、出口温度との温度差が所定値となるように、熱媒体の流量を調整する、
     請求項1~6のいずれか一項に記載の空気調和装置。
    The heat medium flow control device adjusts the flow rate of the heat medium so that a temperature difference between the inlet temperature and the outlet temperature of the load side heat exchanger becomes a predetermined value.
    The air conditioner according to any one of claims 1 to 6.
  8.  前記入口温度を検出する第一の温度検出装置と、
     前記出口温度を検出する第二の温度検出装置と、を備えた、
     請求項7に記載の空気調和装置。
    A first temperature detecting device for detecting the inlet temperature;
    A second temperature detecting device for detecting the outlet temperature,
    The air conditioning apparatus according to claim 7.
  9.  前記第一の温度検出装置、及び、前記第二の温度検出装置は、前記熱媒体変換機筐体に収容されている、
     請求項8に記載の空気調和装置。
    The first temperature detection device and the second temperature detection device are accommodated in the heat medium converter housing,
    The air conditioning apparatus according to claim 8.
  10.  前記入口温度と前記出口温度との温度差の所定値は、
     前記熱源側熱交換器が蒸発器として機能する暖房運転時において、前記熱源側熱交換器が凝縮器として機能する冷房運転時よりも大きい
     請求項7~9のいずれか一項に記載の空気調和装置。
    The predetermined value of the temperature difference between the inlet temperature and the outlet temperature is:
    The air conditioning according to any one of claims 7 to 9, wherein the heat source side heat exchanger is larger in heating operation functioning as an evaporator than the cooling operation in which the heat source side heat exchanger functions as a condenser. apparatus.
  11.  前記熱媒体変換機筐体は、
     前記熱媒体間熱交換器に流入する熱媒体の温度を検出する第三の温度検出装置と、
     前記熱媒体間熱交換器から流出する熱媒体の温度を検出する第四の温度検出装置と、を収容し、
     前記熱媒体搬送装置は、
     前記第三の温度検出装置の検出値と、前記第四の温度検出装置の検出値との差が所定値となるように、熱媒体の流量を調整している、
     請求項1~10のいずれか一項に記載の空気調和装置。
    The heat medium converter casing is
    A third temperature detecting device for detecting the temperature of the heat medium flowing into the heat exchanger related to heat medium;
    A fourth temperature detecting device for detecting the temperature of the heat medium flowing out of the heat exchanger related to heat medium;
    The heat medium transport device is
    The flow rate of the heat medium is adjusted so that the difference between the detection value of the third temperature detection device and the detection value of the fourth temperature detection device becomes a predetermined value.
    The air conditioner according to any one of claims 1 to 10.
  12.  前記第三の温度検出装置の検出値と、前記第四の温度検出装置の検出値との差の所定値は、
     前記熱源側熱交換器が蒸発器として機能する暖房運転時において、前記熱源側熱交換器が凝縮器として機能する冷房運転時よりも大きい、
     請求項11に記載の空気調和装置。
    The predetermined value of the difference between the detection value of the third temperature detection device and the detection value of the fourth temperature detection device is:
    In heating operation in which the heat source side heat exchanger functions as an evaporator, the heat source side heat exchanger is larger than in cooling operation in which it functions as a condenser.
    The air conditioning apparatus according to claim 11.
  13.  前記室外機筐体に収容され、前記圧縮機、及び、前記冷媒流路切替装置を制御する第一の制御装置と、
     前記熱媒体変換機筐体に収容され、前記絞り装置を制御する第二の制御装置と、
     前記熱媒体流量調整機筐体に収容され、前記熱媒体流量調整装置を制御する第三の制御装置と、を備えた、
     請求項1~12のいずか一項に記載の空気調和装置。
    A first controller that is housed in the outdoor unit housing and controls the compressor and the refrigerant flow switching device;
    A second control device that is housed in the heat medium converter housing and controls the expansion device;
    A third controller that is housed in the heat medium flow controller housing and controls the heat medium flow controller.
    The air conditioner according to any one of claims 1 to 12.
  14.  前記室外機筐体、及び、前記熱媒体変換機筐体のうち、少なくとも一方には、冷媒漏洩検出装置が設けられている、
     請求項1~13のいずれか一項に記載の空気調和装置。
    At least one of the outdoor unit casing and the heat medium converter casing is provided with a refrigerant leakage detection device.
    The air conditioner according to any one of claims 1 to 13.
PCT/JP2016/050578 2016-01-08 2016-01-08 Air-conditioning device WO2017119137A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/050578 WO2017119137A1 (en) 2016-01-08 2016-01-08 Air-conditioning device
EP16883640.1A EP3401609B1 (en) 2016-01-08 2016-01-08 Air-conditioning device
JP2017560024A JP6522162B2 (en) 2016-01-08 2016-01-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050578 WO2017119137A1 (en) 2016-01-08 2016-01-08 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2017119137A1 true WO2017119137A1 (en) 2017-07-13

Family

ID=59274506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050578 WO2017119137A1 (en) 2016-01-08 2016-01-08 Air-conditioning device

Country Status (3)

Country Link
EP (1) EP3401609B1 (en)
JP (1) JP6522162B2 (en)
WO (1) WO2017119137A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155506A1 (en) * 2018-02-06 2019-08-15 三菱電機株式会社 Air conditioning system
WO2020065766A1 (en) * 2018-09-26 2020-04-02 三菱電機株式会社 Air conditioning device
JP2020071008A (en) * 2018-11-02 2020-05-07 三菱電機株式会社 Heat pump device
JP2021046952A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner
EP3859248A4 (en) * 2018-09-28 2021-11-17 Daikin Industries, Ltd. Heat exchange unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057550A1 (en) * 2012-10-10 2014-04-17 三菱電機株式会社 Air conditioning device
JP2014102011A (en) * 2012-11-16 2014-06-05 Mitsubishi Heavy Ind Ltd Multi-type air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212825B2 (en) * 2008-04-30 2015-12-15 Mitsubishi Electric Corporation Air conditioner
US9188371B2 (en) * 2010-02-17 2015-11-17 Mitsubishi Electric Corporation Air-conditioning apparatus with separate component casings
US9285128B2 (en) * 2010-03-16 2016-03-15 Mitsubishi Electric Corporation Air-conditioning apparatus with multiple outdoor, indoor, and multiple relay units

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057550A1 (en) * 2012-10-10 2014-04-17 三菱電機株式会社 Air conditioning device
JP2014102011A (en) * 2012-11-16 2014-06-05 Mitsubishi Heavy Ind Ltd Multi-type air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155506A1 (en) * 2018-02-06 2019-08-15 三菱電機株式会社 Air conditioning system
JPWO2019155506A1 (en) * 2018-02-06 2020-11-19 三菱電機株式会社 Air conditioning system
WO2020065766A1 (en) * 2018-09-26 2020-04-02 三菱電機株式会社 Air conditioning device
GB2589515A (en) * 2018-09-26 2021-06-02 Mitsubishi Electric Corp Air conditioning device
GB2589515B (en) * 2018-09-26 2022-05-25 Mitsubishi Electric Corp Air-conditioning device
US11815281B2 (en) 2018-09-26 2023-11-14 Mitsubishi Electric Corporation Air-conditioning device with a heat medium heat exchanger
EP3859248A4 (en) * 2018-09-28 2021-11-17 Daikin Industries, Ltd. Heat exchange unit
EP3859248B1 (en) * 2018-09-28 2024-03-20 Daikin Industries, Ltd. Heat exchange unit
JP2020071008A (en) * 2018-11-02 2020-05-07 三菱電機株式会社 Heat pump device
JP7243132B2 (en) 2018-11-02 2023-03-22 三菱電機株式会社 heat pump equipment
JP2021046952A (en) * 2019-09-17 2021-03-25 東芝キヤリア株式会社 Air conditioner
JP7356306B2 (en) 2019-09-17 2023-10-04 東芝キヤリア株式会社 air conditioner

Also Published As

Publication number Publication date
JP6522162B2 (en) 2019-05-29
EP3401609B1 (en) 2022-06-22
JPWO2017119137A1 (en) 2018-09-06
EP3401609A4 (en) 2019-01-02
EP3401609A1 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US8844301B2 (en) Air-conditioning apparatus
JP6072077B2 (en) Air conditioner
JP6095764B2 (en) Air conditioner
US9494361B2 (en) Air-conditioning apparatus with improved defrost operation mode
WO2014097439A1 (en) Air-conditioning device
WO2017119137A1 (en) Air-conditioning device
JP6072076B2 (en) Air conditioner
EP2541169A1 (en) Air conditioner and air-conditioning hot-water-supplying system
US8959940B2 (en) Refrigeration cycle apparatus
WO2016194145A1 (en) Air-conditioning device
US9188371B2 (en) Air-conditioning apparatus with separate component casings
US20140290298A1 (en) Refrigeration cycle apparatus
US20180259219A1 (en) Air-conditioning apparatus
JP5312616B2 (en) Air conditioner
WO2015087421A1 (en) Air conditioner
JP6429901B2 (en) Air conditioner
WO2014128971A1 (en) Air conditioner
JPWO2016189599A1 (en) Air conditioner
WO2023007700A1 (en) Air conditioner
WO2022162864A1 (en) Air-conditioning device
JP5791717B2 (en) Air conditioner
GB2622555A (en) Air-conditioning device and method for installing air-conditioning device
WO2015079531A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560024

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016883640

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016883640

Country of ref document: EP

Effective date: 20180808