JP2009109086A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2009109086A
JP2009109086A JP2007282476A JP2007282476A JP2009109086A JP 2009109086 A JP2009109086 A JP 2009109086A JP 2007282476 A JP2007282476 A JP 2007282476A JP 2007282476 A JP2007282476 A JP 2007282476A JP 2009109086 A JP2009109086 A JP 2009109086A
Authority
JP
Japan
Prior art keywords
facility
cooling
water
heating
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007282476A
Other languages
Japanese (ja)
Inventor
Keizo Otsuka
恵三 大塚
Noboru Kaneko
襄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENCHIKU SETSUBI SEKKEI KENKYU
KENCHIKU SETSUBI SEKKEI KENKYUSHO KK
Original Assignee
KENCHIKU SETSUBI SEKKEI KENKYU
KENCHIKU SETSUBI SEKKEI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENCHIKU SETSUBI SEKKEI KENKYU, KENCHIKU SETSUBI SEKKEI KENKYUSHO KK filed Critical KENCHIKU SETSUBI SEKKEI KENKYU
Priority to JP2007282476A priority Critical patent/JP2009109086A/en
Publication of JP2009109086A publication Critical patent/JP2009109086A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning system carrying out equalization of electric power consumption and reducing facility costs and operation costs by cutting a cooling (heating) load during the peak of the summer (winter) season, and eliminating double cooling or heating such as carrying out precooling (preheating). <P>SOLUTION: In the air conditioning system, a plurality of air conditioners is installed in an air conditioning space, heat source water is heat-exchanged by a heat exchanger in a main cooling/heating facility, and it is recovered and circulated by a return pipe. One part or all of the heat source water is additionally cooled or heated by a supplementary cooling facility or a supplementary heating facility other than the main cooling facility or the main heating facility in response to operating states of the main cooling facility or the main heating facility, and it is supplied to an outward pipe or the return pipe. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、設備コストや運転コストの低減を図った空気調和システムに関する。   The present invention relates to an air conditioning system that reduces equipment costs and operating costs.

従来、ビル等の建物の空気調和システムは、図1に示すように、夏季においては、建物の屋上部分に設置されている冷却塔aから供給される冷水の熱源水を、往管bを通じて供給し、還管cを通じて再び冷却塔a内に戻されるようになっており、冷却塔aは密閉型の冷却塔で冷却水の循環はポンプdが担っている。
また、冬季においては、一対の三方弁e,fによって、熱源水の流れを冷却塔aからボイラgに切り換えて、温水の熱源水を、往管bを通じて供給し、還管cを通じて再びボイラg内に戻されるようになっている。
Conventionally, an air conditioning system for a building such as a building supplies heat source water of cold water supplied from a cooling tower a installed on the rooftop portion of the building through an outgoing pipe b in the summer, as shown in FIG. The cooling tower a is returned to the cooling tower a through the return pipe c. The cooling tower a is a closed type cooling tower, and the circulation of the cooling water is performed by the pump d.
In winter, the pair of three-way valves e and f switches the flow of the heat source water from the cooling tower a to the boiler g, supplies the hot water source water through the outgoing pipe b, and again returns to the boiler g through the return pipe c. It comes back inside.

そして、空調対象となる各階には、熱源水から冷媒に熱交換する空気調和器が各階の天井部に設置されており、例えば、1、2階にはマルチユニット方式の空気調和機hが図示されているが、往管b及び還管cから圧縮機と凝縮器を組み込んだ熱源ユニットiの熱交換器jで水−冷媒の熱交換を行い、複数の室内ユニットkに組み込まれたコイルとファンによって、空調空気を居室等に供給する。空気調和機hは所望のものでよく、例えば、3階では水冷ヒートポンプパッケージlの空気調和機hであり、4階では水冷式パッケージmの空気調和機hであり、いずれも圧縮機・コイル(熱交換器)・ファン(送風機)・凝縮器が組み込まれている。   In each floor to be air-conditioned, an air conditioner for exchanging heat from the heat source water to the refrigerant is installed on the ceiling of each floor. For example, on the first and second floors, a multi-unit air conditioner h is illustrated. However, the heat exchanger j of the heat source unit i incorporating the compressor and the condenser from the outgoing pipe b and the return pipe c performs water-refrigerant heat exchange, and the coil incorporated in the plurality of indoor units k Air conditioned air is supplied to the living room by a fan. The air conditioner h may be a desired one. For example, the air conditioner h of the water-cooled heat pump package 1 is on the third floor, and the air conditioner h of the water-cooled package m is on the fourth floor. Heat exchanger), fan (blower), and condenser are incorporated.

ところで、上述した空気調和システムでは、居室へ空調空気を供給する空気調和機hは、いずれも圧縮機・コイル(熱交換器)・ファン(送風機)・凝縮器が組み込まれているが、これらの能力選定時には、夏季ピーク時にあわせて選定することが一般的である。
このことは、年間の運転時間中で、僅か数パーセント該当するだけのために、空気調和機hの圧縮機・コイル(熱交換器)・ファン(送風機)・凝縮器も夏季ピーク時に合わせた大容量の装置にする必要があり設備コストが大きく、また、設備を設置した後も、大容量の装置を稼働させるために運転コストも大きくなるといった問題点があった。
このため、特許文献1に示されているように、夏季においては、室内に導入される空気を予め補助熱源装置の冷温水コイルで予備冷却し、この予備冷却した空気を本来の居室毎に設けた空気調和ユニットに供給して、各居室毎の空気調和ユニットの冷却能力の負荷を軽減し、最高負荷をカットすると共に消費電力の平準化を図った空調システムが提案されている。
特開平10−54619号公報
By the way, in the air conditioning system described above, the air conditioner h that supplies conditioned air to the living room includes a compressor, a coil (heat exchanger), a fan (blower), and a condenser. When selecting a capacity, it is common to select it at the peak of summer.
Since this is only a few percent of the annual operating hours, the compressor, coil (heat exchanger), fan (blower), and condenser of the air conditioner h are also large during the summer peak. There is a problem that the equipment cost is high because it is necessary to make the capacity of the apparatus, and the operation cost is high because the large capacity apparatus is operated even after the equipment is installed.
For this reason, as shown in Patent Document 1, in summer, air introduced into the room is preliminarily cooled by a cold / hot water coil of an auxiliary heat source device, and this precooled air is provided for each original living room. An air conditioning system has been proposed in which the air conditioning unit is supplied to the air conditioning unit to reduce the load of the cooling capacity of the air conditioning unit for each room, cut the maximum load and level the power consumption.
Japanese Patent Laid-Open No. 10-54619

しかしながら、上記の先行技術は、外気OAを取り入れて補助熱源装置の冷温水コイル(文献1:55)で予備冷却してから、この予備冷却した空気を本来の居室毎に設けた空気調和ユニット(1)に供給するので、特に、多層階の建物となると、予備冷却した空気を各空気調和ユニット(1)に供給するための配管を設けなければならず、その予備冷却した空気移送の配管の設計が面倒であり、保守も厄介なものとなるといった問題があった。
また、予備冷却した空気の供給量に不均衡が生じ、供給量が少ない空気調和ユニット(1)は、処理能力を大きくするために、圧縮機・コイル(熱交換器)・ファン(送風機)・凝縮器も大容量の装置にする必要があり、結局、設備コストが大きく、また、大容量の装置を稼働させるために運転コストも大きくなるといった問題点があった。
However, in the above prior art, after the outside air OA is taken in and preliminarily cooled by the cold / hot water coil (Reference 1:55) of the auxiliary heat source device, this precooled air is provided for each original living room ( 1), especially in multi-storey buildings, piping for supplying pre-cooled air to each air conditioning unit (1) must be provided. There was a problem that the design was troublesome and the maintenance was troublesome.
In addition, the air conditioning unit (1), which has an imbalance in the supply amount of precooled air and has a small supply amount, has a compressor, coil (heat exchanger), fan (blower), The condenser also needs to be a large-capacity device, resulting in a problem that the equipment cost is high and the operation cost is high because the large-capacity device is operated.

本発明は、このような問題点に鑑みてなされたもので、予備冷却といった二重の冷却や、暖房をすることなく、一度の冷却又は暖房で、最高負荷を軽減して、消費電力の平準化を図り、設備コストや運転コストを低減する空気調和システムを提供することである。   The present invention has been made in view of such problems, and it is possible to reduce the maximum load by performing single cooling or heating without double cooling such as preliminary cooling or heating, and leveling of power consumption. And providing an air conditioning system that reduces equipment costs and operating costs.

上記課題を解決するために、請求項1の発明は、熱源水を主冷却施設又は主加熱施設によって、熱源水を冷却又は加熱して往管から複数の熱交換器に供給し、該熱交換器を熱源とする複数の空気調和機を空調空間に配備するとともに、前記熱交換器で熱交換した熱源水を還管によって回収して循環させる空気調和システムにおいて、
前記主冷却施設又は主加熱施設の稼働状態に応じて、前記主冷却施設又は主加熱施設とは別の補充冷却施設又は補充加熱施設によって、前記熱源水の一部又は全部を追加冷却又は追加加熱して、前記往管又は還管に供給することを特徴とする。
請求項2の発明は、請求項1に記載の空気調和システムにおいて、前記補充冷却施設又は補充加熱施設は、地域冷暖房システムを用いた施設であることを特徴とする。
請求項3の発明は、請求項1に記載の空気調和システムにおいて、前記補充冷却施設又は補充加熱施設は、施設内の自己熱源を用いた施設であることを特徴とする。
請求項4の発明は、請求項1に記載の空気調和システムにおいて、前記補充冷却施設は、夜間電力を用いた蓄熱冷却装置であることを特徴とする。
In order to solve the above-mentioned problems, the invention of claim 1 is directed to cooling or heating the heat source water by the main cooling facility or the main heating facility and supplying the heat source water to the plurality of heat exchangers from the outgoing pipe. In an air conditioning system in which a plurality of air conditioners having a heat source as a heat source are arranged in an air-conditioned space, and heat source water heat exchanged by the heat exchanger is collected and circulated by a return pipe,
Depending on the operating state of the main cooling facility or the main heating facility, a part or all of the heat source water is additionally cooled or heated by a supplementary cooling facility or a supplemental heating facility different from the main cooling facility or the main heating facility. And it supplies to the said outgoing tube or a return pipe, It is characterized by the above-mentioned.
The invention according to claim 2 is the air conditioning system according to claim 1, wherein the supplementary cooling facility or supplementary heating facility is a facility using a district cooling and heating system.
The invention according to claim 3 is the air conditioning system according to claim 1, wherein the supplementary cooling facility or supplementary heating facility is a facility using a self-heat source in the facility.
According to a fourth aspect of the present invention, in the air conditioning system according to the first aspect, the supplementary cooling facility is a heat storage cooling device using nighttime power.

本発明によれば、主冷却施設又は主加熱施設の熱源水の一部又は全部を、補充冷却施設又は補充加熱施設で追加冷却又は追加加熱して、往管又は還管に供給しているので、従来のように、システムの能力選定を年間運転時間が数パーセントの夏季ピーク時にあわせて機器が大容量のものとすることや、冷却水配管を含めたシステム全体が過大になることを防ぐことができ、空気調和パッケージの機器やシステムの冷却水配管、冷却塔、冷却水ポンプ等を小型にすることができ、また、先行技術のように、予備冷却といった二重の冷却や、暖房をすることなく、居室等に空調空間に設けた空気調和器で一度の冷却又は暖房で済み、従来のように外気取込配管を設ける必要がなく、最高負荷を軽減することができることから、消費電力の平準化を図り、設備コストや運転コストを低減することができる。   According to the present invention, part or all of the heat source water of the main cooling facility or the main heating facility is additionally cooled or additionally heated in the supplementary cooling facility or the supplemental heating facility and supplied to the outgoing pipe or the return pipe. As in the past, the system capacity selection should be adjusted to the capacity of the equipment at the peak of summer when the annual operation time is several percent, and the entire system including the cooling water piping should be prevented from becoming excessive. Air conditioning package equipment and system cooling water piping, cooling towers, cooling water pumps, etc. can be miniaturized, and double cooling such as pre-cooling and heating as in the prior art Without air conditioning pipes installed in the air-conditioned space in the living room etc., it is only necessary to cool or heat once, and there is no need to provide outside air intake piping as in the conventional case, and the maximum load can be reduced. Leveling Ri, it is possible to reduce the equipment cost and operating cost.

本発明の好適な空気調和システムの実施例を図面に沿って説明するが、本発明の特徴の1つは、水冷式パッケージ、水冷式ヒートポンプパッケージ等の冷暖房空気調和システムにおいて、冷却(加熱)水温度を調整する補充冷却施設又は補充加熱施設を組み込むことにより、ピーク時付加の機器能力向上を図り、パッケージ機種の小型化およびシステム装置の小型化を可能とするものである。   An embodiment of a preferred air conditioning system of the present invention will be described with reference to the drawings. One of the features of the present invention is that cooling (heating) water is used in a cooling / heating air conditioning system such as a water-cooled package or a water-cooled heat pump package. By incorporating a replenishment cooling facility or replenishment heating facility that adjusts the temperature, it is possible to improve the equipment capacity at the time of peak, and to reduce the size of the package model and the system device.

図2は、本発明の実施例のシステム全体の概略を示したもので、熱回路の往管1と還管2の実線部分は夏季の冷房の場合の熱源水の流れを、点線部分は冬季の場合の熱源水の流れを示している。
夏季においては、建物Aの屋上部分ARに設置されている主冷却施設たる冷却塔3の排熱によって冷却された冷水の熱源水Bを、往管1を通じて供給し、還管2を通じて再び冷却塔3内に戻されるようになっており、従来と同様に、冷却塔3は密閉型の冷却塔で冷却水の循環はポンプ4によって行われるが、夏季は一対の三方弁51,52によって、ボイラー6をバイパスして、冷却塔3を稼働するように管路で熱源水Bが流れる構成にしている。
すなわち、この空気調和システムの夏季の通常運転では、熱源水Bは、冷却塔3(排熱により冷却)→三方弁52→往管1→還管2→三方弁51→ポンプ4→冷却塔3の順で循環し、冬季の通常運転では、主加熱施設たるボイラー6が主体的構成となるが、熱源水Bは、ボイラー6(加熱により温水)→三方弁51→ポンプ4→三方弁52→往管1→還管2→ボイラー6の順で循環する。
FIG. 2 shows the outline of the whole system of the embodiment of the present invention, where the solid line portions of the outgoing pipe 1 and the return pipe 2 of the thermal circuit indicate the flow of heat source water in the case of cooling in the summer, and the dotted line portion indicates the winter season. The flow of heat source water in the case of.
In summer, the heat source water B cooled by the exhaust heat of the cooling tower 3 which is the main cooling facility installed in the roof part AR of the building A is supplied through the outgoing pipe 1 and again through the return pipe 2 As in the prior art, the cooling tower 3 is a closed type cooling tower, and the cooling water is circulated by the pump 4, but in the summer, a pair of three-way valves 51 and 52 are used to form a boiler. 6 is bypassed, and the heat source water B flows through the pipe line so as to operate the cooling tower 3.
That is, in the summer normal operation of this air conditioning system, the heat source water B is supplied to the cooling tower 3 (cooled by exhaust heat) → three-way valve 52 → outward pipe 1 → return pipe 2 → three-way valve 51 → pump 4 → cooling tower 3 In the normal operation in winter, the boiler 6 as the main heating facility is mainly configured, but the heat source water B is the boiler 6 (hot water by heating) → the three-way valve 51 → the pump 4 → the three-way valve 52 → It circulates in the order of outgoing pipe 1 → return pipe 2 → boiler 6.

本発明の特徴の1つは、往管1の末端と還管2の末端の間に、主に夏季に稼働する補充冷却施設を、主に冬季に稼働する補充加熱施設(図示せず)を付加したものであるが、図2においては、夏季の場合の補充冷却施設7を設けたものである。
本実施例では、この補充冷却施設7として、冷熱源施設71と冷却水温度補償装置(C.T.C)72との組み合わせた蓄熱冷却装置で、冷熱源施設71としては夜間電力を用いた空冷チラー711と、空冷チラー711から冷水をポンプ712で蓄熱槽713に送り、この冷水によって、蓄熱槽713内に冷水や氷の形で蓄熱冷却し、必要に応じて、この蓄熱槽713から、熱源水Cをポンプ714で熱交換器73に供給し、冷却水温度補償装置(C.T.C)72によって制御される往管1の熱源水Bの一部或いは全部を 熱交換器73によって冷却する。
なお、補充冷却施設は、本実施例では往管1の末端と還管2の末端の間に設けたが、後述するように、排熱により冷却する冷却塔3の能力を補うものであるから、熱源水Bの循環配管路中に補充冷却施設により冷却が加わるような構成にすればよい。
One of the features of the present invention is that a supplementary cooling facility that operates mainly in summer and a supplementary heating facility (not shown) that operates mainly in winter are arranged between the end of the outgoing pipe 1 and the end of the return pipe 2. In addition, in FIG. 2, the supplementary cooling facility 7 in the case of summer is provided.
In the present embodiment, the supplementary cooling facility 7 is a heat storage cooling device that is a combination of a cold heat source facility 71 and a cooling water temperature compensation device (CTC) 72, and the cold heat source facility 71 is an air-cooled chiller 711 that uses nighttime power. Then, cold water is sent from the air-cooled chiller 711 to the heat storage tank 713 by the pump 712, and the cold water is stored and cooled in the form of cold water or ice in the heat storage tank 713. If necessary, the heat source water C is supplied from the heat storage tank 713. The heat exchanger 73 supplies the heat exchanger 73 with the pump 714, and the heat exchanger 73 cools a part or all of the heat source water B of the outgoing pipe 1 controlled by the cooling water temperature compensator (CTC) 72.
In this embodiment, the supplementary cooling facility is provided between the end of the outgoing pipe 1 and the end of the return pipe 2. However, as will be described later, it supplements the ability of the cooling tower 3 to cool by exhaust heat. A configuration may be adopted in which cooling is added to the circulation piping path of the heat source water B by the supplementary cooling facility.

このような、主冷却施設の冷却塔3又は主加熱施設のボイラ6から熱源水Bを用いて、空調対象となる各階の空気調和機8(81〜83)を稼働させることは、従来と同様である。図2に示す各階の天井部に設置される空気調和機8は、その空調空間の情況に応じて適宜に選択されるが、いずれも圧縮機・コイル(熱交換器)・ファン(送風機)・凝縮器が組み込まれているが、例えば、図2の建物Aの4階A4には水冷式パッケージの空気調和機81が設置され、3階A3には水冷ヒートポンプパッケージの空気調和機82が設置され、2階A2にはマルチユニット方式の空気調和機83が設置されている、   Using the heat source water B from the cooling tower 3 of the main cooling facility or the boiler 6 of the main heating facility, the air conditioner 8 (81 to 83) on each floor to be air-conditioned is operated as in the conventional case. It is. The air conditioner 8 installed on the ceiling of each floor shown in FIG. 2 is appropriately selected according to the situation of the air-conditioned space, and all of them are a compressor, a coil (heat exchanger), a fan (blower), For example, a water-cooled package air conditioner 81 is installed on the fourth floor A4 of the building A in FIG. 2, and a water-cooled heat pump package air conditioner 82 is installed on the third floor A3. On the second floor A2, a multi-unit air conditioner 83 is installed.

ここで、水冷式パッケージの空気調和機81が往管1及び還管2に接続されている実施例を図3で説明する。
図3の水冷式パッケージの空気調和機81において、往管1及び還管2の熱源水Bは水−冷媒熱交換器811によって熱交換を行い、熱交換器811からの冷媒D1は膨張弁812に送られ冷媒は冷却されて冷媒−空気熱交換器813に送られ、熱交換器813と送風機814によって居室からの還気RAを冷却して、供給冷気SAとして空調空気を居室に供給する。熱交換器813で排熱した冷媒D1は圧縮機815に送られ水−冷媒熱交換器811に戻され循環する。
Here, an embodiment in which an air conditioner 81 of a water-cooled package is connected to the outgoing pipe 1 and the return pipe 2 will be described with reference to FIG.
In the air conditioner 81 of the water-cooled package of FIG. 3, the heat source water B of the outgoing pipe 1 and the return pipe 2 exchanges heat with a water-refrigerant heat exchanger 811, and the refrigerant D1 from the heat exchanger 811 is an expansion valve 812. The refrigerant is cooled and sent to the refrigerant-air heat exchanger 813, the return air RA from the room is cooled by the heat exchanger 813 and the blower 814, and the conditioned air is supplied to the room as the supply cold air SA. The refrigerant D1 exhausted by the heat exchanger 813 is sent to the compressor 815 and returned to the water-refrigerant heat exchanger 811 for circulation.

次に、水冷式ヒートポンプパッケージの空気調和機82が往管1及び還管2に接続されている実施例を図4で説明する。
同様に、図4の水冷式ヒートポンプパッケージの空気調和機82において、往管1及び還管2の熱源水Bは水−冷媒熱交換器821によって熱交換を行い、熱交換器821からの冷媒D2は膨張弁822に送られ冷媒は冷却されて冷媒−空気熱交換器823に送られ、熱交換器823と送風機824とによって居室からの還気RAを冷却して、供給冷気SAとして空調空気を居室に供給する。熱交換器823で排熱した冷媒D2は圧縮機825に送られ、四方弁826を介して水−冷媒熱交換器821に戻され循環する。本実施例では、水冷式ヒートポンプ式の空気調和機82であるので、四方弁826を切り換えて循環方向を逆にして、暖房にも対応する構成としている。
Next, an embodiment in which an air conditioner 82 of a water-cooled heat pump package is connected to the outgoing pipe 1 and the return pipe 2 will be described with reference to FIG.
Similarly, in the air conditioner 82 of the water-cooled heat pump package of FIG. 4, the heat source water B of the outgoing pipe 1 and the return pipe 2 exchanges heat with the water-refrigerant heat exchanger 821, and the refrigerant D2 from the heat exchanger 821 Is sent to the expansion valve 822, the refrigerant is cooled and sent to the refrigerant-air heat exchanger 823, the return air RA from the room is cooled by the heat exchanger 823 and the blower 824, and the conditioned air is supplied as the supplied cold air SA. Supply to the room. The refrigerant D2 exhausted by the heat exchanger 823 is sent to the compressor 825, and returned to the water-refrigerant heat exchanger 821 through the four-way valve 826 and circulated. In this embodiment, since it is a water-cooled heat pump type air conditioner 82, the four-way valve 826 is switched to reverse the circulation direction so that it can also be used for heating.

更に、マルチユニット水冷式熱源機を用いた空気調和機83が往管1及び還管2に接続されている実施例を図5で説明する。
同様に、図5のマルチユニット水冷式熱源機を用いた空気調和機83は、中央の熱源ユニット831と複数の室内ユニット832(8322a,b,c)とから構成され、この中央の熱源ユニット831は水−冷媒熱交換器8311で熱交換を行い、それに伴う膨張弁8312、四方弁8313、圧縮機8314から構成され、複数の室内ユニット832は熱源ユニット831からの冷媒を複数の空調空間で冷媒−空気熱交換器8321で冷房(暖房)空気に変換して空調空気を供給するものである。
より具体的には、往管1及び還管2の熱源水Bは水−冷媒熱交換器8311によって熱交換を行い、熱交換器8311からの冷媒D3は膨張弁8312に送られ冷媒は冷却されて、これを主配管8331に移送し、この主配管8331から各室内ユニット832に分配して、各室内ユニット832の冷媒−空気熱交換器8321(8321a〜c)に送られ、熱交換器8321(8321a〜c)と各送風機8322a〜cによって、居室からの還気RAを冷却して、供給冷気SAとして空調空気を居室に供給する。
熱交換器8321(8321a〜c)で排熱した冷媒D3は、帰りの主配管8332によって集められ熱源ユニット831の圧縮機8314に送られ、四方弁8313を介して水−冷媒熱交換器8311に戻され循環する。本実施例の空気調和機83も、水冷式ヒートポンプ式の空気調和機でもあるので、四方弁8313を切り換えて循環方向を逆にして、暖房にも対応する構成としている。
Further, an embodiment in which an air conditioner 83 using a multi-unit water-cooled heat source apparatus is connected to the outgoing pipe 1 and the return pipe 2 will be described with reference to FIG.
Similarly, the air conditioner 83 using the multi-unit water-cooled heat source apparatus of FIG. 5 includes a central heat source unit 831 and a plurality of indoor units 832 (8322a, b, c). Is composed of an expansion valve 8312, a four-way valve 8313, and a compressor 8314, which exchange heat with a water-refrigerant heat exchanger 8311. The plurality of indoor units 832 use the refrigerant from the heat source unit 831 as a refrigerant in a plurality of conditioned spaces. -The air heat exchanger 8321 converts the air into cooling (heating) air and supplies the conditioned air.
More specifically, the heat source water B of the outgoing pipe 1 and the return pipe 2 exchanges heat by the water-refrigerant heat exchanger 8311, the refrigerant D3 from the heat exchanger 8311 is sent to the expansion valve 8312, and the refrigerant is cooled. This is transferred to the main pipe 8331, distributed from the main pipe 8331 to each indoor unit 832 and sent to the refrigerant-air heat exchanger 8321 (8321a to 8321c) of each indoor unit 832. (8321a-c) and the respective fans 8322a-c cool the return air RA from the living room and supply the conditioned air to the living room as the supply cold air SA.
The refrigerant D3 exhausted by the heat exchanger 8321 (8321a to 831c) is collected by the return main pipe 8332 and sent to the compressor 8314 of the heat source unit 831 to the water-refrigerant heat exchanger 8311 via the four-way valve 8313. Return and circulate. Since the air conditioner 83 of the present embodiment is also a water-cooled heat pump type air conditioner, the four-way valve 8313 is switched to reverse the circulation direction so that it can also be used for heating.

[作動]
以上のような空気調和システムの構成であるから、夏季の温度がピーク時以外の通常の状態では、主冷却施設たる冷却塔3の排熱によって冷却された冷水の熱源水Bを、往管1を通じて供給し、還管2を通じて再び冷却塔3内に戻されるようになっており、通常の運転がなされる。
そして、夏季の温度がピーク時等の上記空気調和システムの冷房能力に近づいた場合では、この補充冷却施設7の冷却水温度補償装置(C.T.C)72が働き、夜間電力を用いた空冷チラー711によって、蓄熱槽713内の冷水や氷の形で蓄熱された熱源から、熱交換器73を介して冷却水温度補償装置(C.T.C)72によって制御される往管1の熱源水Bの一部或いは全部を熱交換器73によって冷却する。
なお、この冷却水温度補償装置(C.T.C)72は、通常、ON-OFFの2方弁でも、流量制御弁でも、ポンプで流量を制御するシステムでもよい。また、暖房時には、冷却水温度が下がり過ぎることも(冷却水の適温温度範囲が存在)考えられるので、熱源水の一部又は全部を追加冷却又は追加加熱を冷却水温度補償装置(C.T.C)72により制御して、往管1又は還管2に供給する。
したがって、還管2の熱源水Bは通常の状態よりも冷やされて、冷却塔3に戻されるので、結果として、冷却塔3から往管1の熱源水Bは通常の状態よりも冷やされて、各階の空気調和機、例えば、水冷式パッケージの空気調和機81、水冷式ヒートポンプパッケージの空気調和機82、マルチユニット水冷式熱源機を用いた空気調和機83の熱交換器811,821,8311に供給される。すなわち、通常の冷却された熱源水Bであるので、各熱交換器811,821,8311に接続される圧縮機815,825,8314の最高能力内で稼働されることになる。
[Operation]
Since the air conditioning system is configured as described above, in a normal state other than the peak time in summer, the heat source water B cooled by the exhaust heat of the cooling tower 3 as the main cooling facility is used as the outgoing pipe 1. Through the return pipe 2 and returned to the cooling tower 3 again, and a normal operation is performed.
When the summer temperature approaches the cooling capacity of the air conditioning system, such as during peak hours, the cooling water temperature compensator (CTC) 72 of the supplementary cooling facility 7 works, and the air cooling chiller 711 using nighttime power works. A part or all of the heat source water B of the outer pipe 1 controlled by the cooling water temperature compensator (CTC) 72 via the heat exchanger 73 from the heat source stored in the form of cold water or ice in the heat storage tank 713 Is cooled by the heat exchanger 73.
The cooling water temperature compensator (CTC) 72 may be an ON-OFF two-way valve, a flow rate control valve, or a system that controls the flow rate with a pump. In addition, during heating, the cooling water temperature may be too low (there is an appropriate temperature range for the cooling water). Therefore, a part or all of the heat source water is additionally cooled or added to the cooling water temperature compensation device (CTC) 72. To supply the outgoing pipe 1 or the return pipe 2.
Therefore, the heat source water B in the return pipe 2 is cooled from the normal state and returned to the cooling tower 3, and as a result, the heat source water B in the outgoing pipe 1 from the cooling tower 3 is cooled from the normal state. The air conditioners on each floor, for example, the air conditioner 81 in a water-cooled package, the air conditioner 82 in a water-cooled heat pump package, and the heat exchangers 811, 821, 8311 of the air conditioner 83 using a multi-unit water-cooled heat source machine Is done. That is, since it is the normal cooled heat source water B, it will be operated within the maximum capacity of the compressors 815, 825, 8314 connected to the heat exchangers 811, 821, 8311.

この圧縮機815,825,8314の負荷が軽減される作用原理を、図6のモリエ線図を用いて説明する。
水冷式パッケージ、水冷式ヒートポンプパッケージ等は、基本的には圧縮式冷凍機に該当する圧縮機815,825,8314で構成されており、冷凍機・圧縮機の動きはモリエ線図に表記したように蒸発・圧縮・凝縮・膨張のサイクルの繰り返しになる。
図6のモリエ線図の横軸は冷媒のエンタルピーh(KJ/Kg)で、縦軸は冷媒の圧力P(MPa)であり、対象の冷媒の飽和液線X1,飽和ガス線X2が存在するとき、凝縮温度は、凝縮器(エバポレータ)で冷却水に熱を放熱するので冷却水の温度が下がると凝縮温度が下がる。したがって、モリエ線図上の動きは(1)→(2)→(3)→(4)の動きが、冷却水温度が下がることにより、(1')→(2)→(3')→(4')の動きに変わるが、そのた結果、(1)→(2)が(1')→(2)に変わることにより、蒸発量が増えるイコール能力が向上することになる。そして、(2)→(3)が(2)→(3')に変わることにより、圧縮機の仕事量が減り、効率の向上が見られる。また、(3)→(4)が(3')→(4')に移動して凝縮量は増えるが能力上は変わらない(4)→(1)が、(4’)→(1')に移動して膨張弁を通過して気化する。
したがって、上述した実施例においても、夏季の温度がピーク時には、補充冷却施設7を稼働し、還管2及び往水1の熱源水Bの冷却水温度が下がることにより、(1')→(2)→(3')→(4')の動きに変わり、圧縮機815,825,8314の仕事量が減ることになる。
The principle of operation that reduces the load on the compressors 815, 825, and 8314 will be described with reference to the Mollier diagram of FIG.
The water-cooled package, water-cooled heat pump package, etc. are basically composed of compressors 815, 825, and 8314 that correspond to the compression refrigerator, and the movement of the refrigerator and compressor is evaporated as shown in the Mollier diagram.・ The cycle of compression, condensation, and expansion is repeated.
The horizontal axis of the Mollier diagram in FIG. 6 is the enthalpy h (KJ / Kg) of the refrigerant, the vertical axis is the pressure P (MPa) of the refrigerant, and there are a saturated liquid line X1 and a saturated gas line X2 of the target refrigerant. At this time, since the condensation temperature radiates heat to the cooling water by the condenser (evaporator), the condensation temperature decreases as the cooling water temperature decreases. Therefore, the movement on the Mollier diagram is (1) → (2) → (3) → (4), and the cooling water temperature decreases, so (1 ') → (2) → (3') → Although the movement changes to (4 ′), as a result, (1) → (2) changes from (1 ′) → (2), thereby improving the equal ability to increase the evaporation amount. When (2) → (3) is changed from (2) → (3 ′), the amount of work of the compressor is reduced, and the efficiency is improved. Also, (3) → (4) moves from (3 ') → (4') and the amount of condensation increases, but the capacity does not change (4) → (1), but (4 ') → (1' ) To pass through the expansion valve and vaporize.
Therefore, also in the above-described embodiment, when the summer temperature is at its peak, the supplementary cooling facility 7 is operated, and the cooling water temperature of the heat source water B of the return pipe 2 and the outgoing water 1 is lowered, so that (1 ′) → ( 2) → (3 ′) → (4 ′), and the work of the compressors 815, 825, 8314 is reduced.

この結果、最高負荷をカットすることができるので、各空気調和機の圧縮機815,825,8314の能力は、特に、夏季時のピークの負荷に合わせる必要がなく、通常時の負荷に合わせた能力の小さな小型圧縮機の使用が可能となり、これに伴って、圧縮機以外の各空気調和機の熱交換器811,813,821,823,8311,8321や膨張弁812,822,8312も能力が低く小型のものでよく、空気調和パッケージの小型化が可能になり、結果として、システムの冷却水配管、冷却塔、冷却水ポンプ等の装置も小型化が可能になるため、システム全体の小型化も可能となる。更に、装置製造時におけるCO2削減効果ばかりでなく、運転時においても、適正機器が選定されていることにより、高効率運転が図られ省エネルギー化を可能とし、設備コストの低減や運転コストの低減が可能である。
また、補充冷却施設又は補充加熱施設としては種々のケースが考えられ、本実施例では、補充冷却施設7の冷熱源施設71としては夜間電力を用いた空冷チラー711と蓄熱槽713と構成を用いたが、施設内に自己熱源が存在する場合は、この自己冷(温)熱源設備より分岐して冷却水(温水)との間に熱交換器を介して補充冷却装置(補充加熱装置)として利用してもよい。この自己熱源を利用する補充冷却施設又は補充加熱施設としては、前記の空冷チラー711を用いる以外に、施設内にガス・油・電気等による冷温水発生器を用いた冷却施設又は加熱施設としてもよい。
また、補充冷却施設又は補充加熱施設として、施設に地域冷暖房システム等のDHCを導入している場合には、DHCの冷房装置側又は暖房装置側より分岐させて、冷却水との間に熱交換機を介して補助冷却装置として利用してもよい。
いずれにしても、特に、夏季(冬季)時のピークの最高負荷をカットすることができ、消費電力の平準化を図ることができる。
As a result, since the maximum load can be cut, the capacity of the compressors 815, 825, 8314 of each air conditioner does not need to be adjusted to the peak load especially in the summer, and the capacity is adjusted to the normal load. It is possible to use small compact compressors, and the heat exchangers 811,813,821,823,8311,8321 and expansion valves 812,822,8312 and expansion valves 812,822,8312 of each air conditioner other than the compressor can be small and can be used for air conditioning. The package can be downsized, and as a result, the system cooling water piping, cooling tower, cooling water pump, and other devices can be downsized, and the entire system can be downsized. Furthermore, not only the CO 2 reduction effect at the time of equipment manufacture but also the appropriate equipment is selected at the time of operation, enabling high efficiency operation and energy saving, reducing equipment cost and operating cost. Is possible.
Various cases can be considered as the supplementary cooling facility or supplemental heating facility. In this embodiment, the cooling source facility 71 of the supplementary cooling facility 7 uses an air-cooled chiller 711 and a heat storage tank 713 using nighttime power. However, if there is a self-heat source in the facility, it is branched from this self-cooling (warm) heat source facility as a replenishing cooling device (replenishing heating device) via a heat exchanger between cooling water (warm water). May be used. As a supplementary cooling facility or supplementary heating facility that uses this self-heat source, in addition to using the air-cooled chiller 711, the facility may also be a cooling facility or heating facility that uses a cold / hot water generator by gas, oil, electricity, etc. Good.
Further, when a DHC such as a district cooling / heating system is introduced into the facility as a supplementary cooling facility or a supplemental heating facility, the DHC is branched from the cooling device side or the heating device side, and a heat exchanger is provided between the cooling water and the cooling water. May be used as an auxiliary cooling device.
In any case, in particular, the peak maximum load during summer (winter) can be cut, and power consumption can be leveled.

なお、本発明の特徴を損なうものでなければ、上記の実施例に限定されるものでないことは勿論である。例えば、実施例では、特に有効である夏季の冷却について述べたが、冬季の異常に寒い低温ピーク時でも同じであり、補充加熱施設として上述した地域冷暖房システム等のDHCにおける暖房の熱源以外にも、別途、補充ボイラ等を配備して、最高負荷をカットするようにしてもよいことは勿論である。
また、実施例では、空冷チラー711と蓄熱槽713とを建物の地下に設置してあるが、屋上に設置してもよく、更に、水や冷媒を流れの方向を切り変える為に3方弁を用いたが、同じ機能を有するのであれば2方弁を2個組み合わせたものでもよい。
Needless to say, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired. For example, in the embodiment, the cooling in summer which is particularly effective has been described. However, the same applies to an abnormally cold low temperature peak in winter. In addition to the heating source in the DHC such as the district heating and cooling system described above as a supplemental heating facility, Of course, a replenishment boiler or the like may be separately provided to cut the maximum load.
In the embodiment, the air-cooled chiller 711 and the heat storage tank 713 are installed in the basement of the building, but they may be installed on the rooftop, and further, a three-way valve for switching the direction of flow of water and refrigerant. However, it may be a combination of two two-way valves as long as they have the same function.

従来の空気調和システムの全体の概略を示す説明図、Explanatory drawing which shows the outline of the whole of the conventional air conditioning system, 本発明の実施例の空気調和システムの全体の概略を示す説明図、Explanatory drawing which shows the outline of the whole air conditioning system of the Example of this invention, 本発明の空気調和システムに使用する水冷式パッケージのブロック図、Block diagram of a water-cooled package used in the air conditioning system of the present invention, 本発明の空気調和システムに使用する水冷式ヒートポンプパッケージのブロック図、Block diagram of a water-cooled heat pump package used in the air conditioning system of the present invention, 本発明の空気調和システムに使用するマルチユニット水冷式熱源機のブロック図、The block diagram of the multi-unit water cooling type heat source machine used for the air conditioning system of the present invention, 本発明の作動原理を説明するモリエ線図のグラフである。It is a graph of the Mollier diagram explaining the operation principle of the present invention.

符号の説明Explanation of symbols

B…熱源水、D1,D2,D3…冷媒、
1…往管、2…還管、3…冷却塔、4…ポンプ、51,52…三方弁、
6…ボイラー、
7…補充冷却施設、71…冷熱源施設、711…空冷チラー、
712,714…ポンプ、713…蓄熱槽、
72…冷却水温度補償装置(C.T.C)、73…熱交換器、
8…空気調和機、81…水冷式パッケージの空気調和機、
811,821,8311…水−冷媒熱交換器、812,822,8312…膨張弁、
813,823,8321,8321a〜c…冷媒−空気熱交換器、
814,824,8322a〜c…送風機、815,825,8314…圧縮機、826,8313…四方弁、
82…水冷式ヒートポンプパッケージの空気調和機、
83…マルチユニット水冷式熱源機の空気調和機、8331,8332…主配管、
B ... Heat source water, D1, D2, D3 ... Refrigerant,
1 ... Outgoing pipe, 2 ... Return pipe, 3 ... Cooling tower, 4 ... Pump, 51, 52 ... Three-way valve,
6 ... boiler,
7 ... replenishment cooling facility, 71 ... cold heat source facility, 711 ... air cooling chiller,
712,714 ... Pump, 713 ... Heat storage tank,
72 ... Cooling water temperature compensation device (CTC), 73 ... Heat exchanger,
8 ... Air conditioner, 81 ... Water-cooled package air conditioner,
811,821,8311 ... water-refrigerant heat exchanger, 812,822,8312 ... expansion valve,
813,823,8321,8321a-c ... refrigerant-air heat exchanger,
814,824,8322a-c ... blower, 815,825,8314 ... compressor, 826,8313 ... four-way valve,
82 ... Air conditioner with water-cooled heat pump package,
83 ... Multi-unit water-cooled heat source air conditioner, 8331,8332 ... Main piping,

Claims (4)

熱源水を主冷却施設又は主加熱施設によって、熱源水を冷却又は加熱して往管から複数の熱交換器に供給し、該熱交換器を熱源とする複数の空気調和機を空調空間に配備するとともに、前記熱交換器で熱交換した熱源水を還管によって回収して循環させる空気調和システムにおいて、
前記主冷却施設又は主加熱施設の稼働状態に応じて、前記主冷却施設又は主加熱施設とは別の補充冷却施設又は補充加熱施設によって、前記熱源水の一部又は全部を追加冷却又は追加加熱して、前記往管又は還管に供給することを特徴とする空気調和システム。
The heat source water is cooled or heated by the main cooling facility or the main heating facility and supplied to the plurality of heat exchangers from the outgoing pipe, and a plurality of air conditioners using the heat exchanger as a heat source are arranged in the air-conditioned space. In addition, in the air conditioning system for recovering and circulating the heat source water heat exchanged by the heat exchanger by a return pipe,
Depending on the operating state of the main cooling facility or the main heating facility, a part or all of the heat source water is additionally cooled or heated by a supplementary cooling facility or a supplemental heating facility different from the main cooling facility or the main heating facility. And the air conditioning system characterized by supplying to the said outgoing tube or a return pipe.
前記補充冷却施設又は補充加熱施設は、地域冷暖房システムを用いた施設であることを特徴とする請求項1に記載の空気調和システム。   The air conditioning system according to claim 1, wherein the supplementary cooling facility or supplementary heating facility is a facility using a district cooling and heating system. 前記補充冷却施設又は補充加熱施設は、施設内の自己熱源を用いた施設であることを特徴とする請求項1に記載の空気調和システム。   The air conditioning system according to claim 1, wherein the supplementary cooling facility or supplementary heating facility is a facility using a self-heat source in the facility. 前記補充冷却施設は、夜間電力を用いた蓄熱冷却装置であることを特徴とする請求項1に記載の空気調和システム。   The air conditioning system according to claim 1, wherein the supplementary cooling facility is a heat storage cooling device using nighttime electric power.
JP2007282476A 2007-10-30 2007-10-30 Air conditioning system Pending JP2009109086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282476A JP2009109086A (en) 2007-10-30 2007-10-30 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282476A JP2009109086A (en) 2007-10-30 2007-10-30 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2009109086A true JP2009109086A (en) 2009-05-21

Family

ID=40777755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282476A Pending JP2009109086A (en) 2007-10-30 2007-10-30 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2009109086A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155301A (en) * 2011-05-02 2011-08-11 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2013002770A (en) * 2011-06-20 2013-01-07 Takasago Thermal Eng Co Ltd Operation method and construction method of air conditioning system
US8839638B2 (en) 2008-02-13 2014-09-23 Hitachi, Ltd. Cooling system for electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942741A (en) * 1995-08-02 1997-02-14 N T T Facilities:Kk Operation controller for heat storage air conditioner system
JPH1078266A (en) * 1996-09-04 1998-03-24 Nippon P-Mac Kk Control method for hydrothermal source air conditioning device and hydrauthermal source air conditioning device having protective function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942741A (en) * 1995-08-02 1997-02-14 N T T Facilities:Kk Operation controller for heat storage air conditioner system
JPH1078266A (en) * 1996-09-04 1998-03-24 Nippon P-Mac Kk Control method for hydrothermal source air conditioning device and hydrauthermal source air conditioning device having protective function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8839638B2 (en) 2008-02-13 2014-09-23 Hitachi, Ltd. Cooling system for electronic equipment
JP2011155301A (en) * 2011-05-02 2011-08-11 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2013002770A (en) * 2011-06-20 2013-01-07 Takasago Thermal Eng Co Ltd Operation method and construction method of air conditioning system

Similar Documents

Publication Publication Date Title
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
JP2006313034A (en) Geothermal unit
JP2006292313A (en) Geothermal unit
JP5572711B2 (en) Air conditioning and hot water supply system
JP6000373B2 (en) Air conditioner
JP2005299935A (en) Air conditioner
US10429102B2 (en) Two phase loop distributed HVACandR system
JP5295481B2 (en) Air conditioning system
JP2018185109A (en) Air heat source Heat pump type air conditioner
JP5955409B2 (en) Air conditioner
US20130061622A1 (en) Refrigerating and air-conditioning apparatus
KR20190087196A (en) Hybrid air conditioning apparatus and method for controlling the same
US10941948B2 (en) Tank system for liquid desiccant air conditioning system
JP5373959B2 (en) Air conditioner
JP2004211998A (en) Air conditioning system
JP2006010137A (en) Heat pump system
JP2009109086A (en) Air conditioning system
JP2004156806A (en) Warm/cold thermal system
JP4809055B2 (en) Air conditioner and other function addition equipment
KR101308028B1 (en) Thermal energy sharing system for multi buildings
JPH11344240A (en) Air conditioning heat source
WO2014128971A1 (en) Air conditioner
JP2004293889A (en) Ice thermal storage unit, ice thermal storage type air conditioner and its operating method
JP2014194301A (en) Air conditioning system and air conditioning system operation method
JPH01174834A (en) Air conditioning system for building

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101105