JP2005234359A - 走査光学系光学特性測定装置、走査光学系光学特性測定装置校正方法、走査光学系及び画像形成装置 - Google Patents

走査光学系光学特性測定装置、走査光学系光学特性測定装置校正方法、走査光学系及び画像形成装置 Download PDF

Info

Publication number
JP2005234359A
JP2005234359A JP2004045023A JP2004045023A JP2005234359A JP 2005234359 A JP2005234359 A JP 2005234359A JP 2004045023 A JP2004045023 A JP 2004045023A JP 2004045023 A JP2004045023 A JP 2004045023A JP 2005234359 A JP2005234359 A JP 2005234359A
Authority
JP
Japan
Prior art keywords
scanning
optical
optical system
sub
characteristic measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004045023A
Other languages
English (en)
Inventor
Kenichi Shimizu
研一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004045023A priority Critical patent/JP2005234359A/ja
Publication of JP2005234359A publication Critical patent/JP2005234359A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】この発明は、移動ステージのピッチング、ヨーイング等の誤差が測定精度を直接低下させ、ステージの移動による時間的ズレによる温度条件の変化で測定精度が低下する課題を解決しようとするものである。
【解決手段】この発明は、光ビームにより像面上を走査して書込及び読取の少なくとも一方を行う走査光学系ユニット6により、前記光ビームが前記像面上を主走査方向に走査する走査線の位置を、副走査方向に配列された複数の受光素子を有する光センサ7、または前記走査線の位置を検出可能な光センサにより測定する走査光学系光学特性測定装置において、前記光センサ7は前記像面に合わせて像高方向に少なくとも3台以上並べた固定式光センサとし、該光センサ7により、前記光ビームの前記像面上における副走査位置を複数個所で測定するものである。
【選択図】図1

Description

本発明は走査光学系の走査位置を測定する走査光学系光学特性測定装置、走査光学系光学特性測定装置の校正を行う走査光学系光学特性測定装置校正方法、走査光学系及びレーザプリンタ,デジタル複写機等の画像形成装置に関する。
レーザ光束を被走査面上に光スポットとして集光させて被走査面上を走査する走査光学系は、レーザプリンタやデジタル複写機といった各種の画像形成装置に関して広く知られている。特に近年、走査光学系による走査の「高密度化やマルチビーム化」が意図され、光スポットによる走査位置に「より高精度」が要求されるようになってきている。上記光スポットは被走査面上を移動して被走査面を走査するが、その被走査面上における光スポットの理想的な移動方向を主走査方向と呼び、その主走査方向に直交する方向を副走査方向と呼ぶことは周知の通りである。また、光スポットの軌道を「主走査ライン」と呼ぶ。
ここで言う「被走査面」は仮想的な平面であり、実体的には光導電性の感光体の感光面である。主走査ラインは、正確な直線であることが理想的であるが、実際には種々の要因で厳密な直線にはならず僅かな曲がりが生じる。また、レーザ光束の偏向を回転多面鏡により行って光スポットを被走査面上で移動させる場合には、回転多面鏡の各偏向反射面ごとの偏向による主走査ラインが、回転多面鏡のいわゆる「面倒れ」の影響で副走査方向に微小距離変動することが考えられる。このような主走査ラインの「曲がり」や「副走査方向の微小距離変動」は、所定の許容範囲内に収める必要があるが、走査を高密度化する場合や、マルチビームで走査を行う場合の許容範囲はかなり狭い。
走査光学系を実際に組み立てる際やその組み立て後、上記主走査ラインの曲がりや副走査方向の変動を調整したり、これらが設計通りの許容幅内に収まっているかどうかを検査したりするため、被走査面上の所望の主走査位置でその副走査方向の走査位置を測定する必要が生じる。この走査光学系の走査位置の測定には、CCDセンサ一般が用いられ、このCCDセンサは、その受光エレメント(光素子列)の配列方向を被走査面に等価な測定面上の副走査方向に合わせて配置される。
図6(b)は、上記CCDセンサを用いた測定装置による走査位置測定での、上記CCDセンサの受光信号分布(光強度分布)を示す図である。図6(b)では、副走査方向の受光エレメントアドレスを横軸にとり、CCDセンサの受光エレメントの受光信号レベルを縦軸にとっている。図6(b)に示すように、一般に副走査方向にみた受光信号の分布はピーク状のもので、1ビームの走査により受光信号に1つのピークが現れる。そして、このピークの断面形状の面積中心をカウントすることにより、受光信号の分布の最大値を推定して副走査方向の走査位置を求めることができる。
図19は従来の光センサ移動式測定機を示す。半導体レーザ2は、レーザ光源1に接続され、走査光学系のユニット6内に設置されている。半導体レーザ2から放出されたレーザビームは、コリメータレンズ及びシリドリカルレンズ3によって、ポリゴンミラー4の鏡面に集光される。ポリゴンミラー4に集光されたレーザビームは、ポリゴンミラー4の鏡面で反射されてfθレンズ5を通過し、被走査面(像面)上に光スポットとして結像され、主走査方向であるy軸方向に走査される。
ポリゴンミラー4により走査されるレーザビームは、被走査面上で光スポットの軌道上に配置されてステージ28に移動可能に支持された1台の光センサ7のCCD受光部8を照射する。CCD受光部8には副走査方向(z軸方向)に配列された5000画素の光素子列からなる受光エレメントがある。
また、CCDカメラ7のCCD受光部8からの受光信号レベルとしての出力信号は、画像入力ボード10を経てパーソナルコンピュータ(以下パソコンという)11に取り込まれる。画像入力ボード10は、CCD受光部8からの受光信号レベル、特に各光素子の出力信号の分布(光強度の分布)を測定する。そして、パソコン11の演算装置は、出力断面形状の面積中心をカウントできるソフトを有しており、各光素子の出力信号の分布(光強度の分布)からその出力断面形状の面積中心を演算し、これを副走査方向の走査位置情報として処理する。
パソコン11の演算装置は、上記走査位置の測定を、CCDカメラ7のCCD受光部8から画像入力ボード10を経て取り込んだ各受光信号により像高方向の複数ポイントで行って複数箇所の副走査方向の走査位置情報を求め、これらの走査位置情報を基に走査線の曲がり、傾き、ピッチムラ、ピッチ偏差などを求める。
特許文献1には、光センサを主走査方向に移動させる光ビーム測定装置が記載されている。特許文献2には、間欠照射ビームのビーム径を測定するビーム径測定装置が記載されている。特許文献3には、走査位置測定における光センサのデータ取得範囲に関する走査光学系の測定装置が記載されている。特許文献4には、ラインセンサを有する画像読取装置が記載されている。
特開平11−223551号公報 特開2001−221614 特開2000−121315 特開平8−139872号公報
ところで、光ビームの副走査方向の走査位置を測定する目的は、光ビームの全像高に渡る副走査位置から走査線の曲りや傾きを求めたり、マルチビームでのピッチ偏差を求めたりすることにある。特に、マルチビームでのピッチ偏差は、サブミクロンの精度が要求されるため、CCDセンサを移動させるステージの位置精度や温度変化等による測定誤差も無視できない。
走査位置の測定に使用される光センサは、ラインCCDセンサであり、複数の光素子からなる受光エレメントが光素子間ピッチ7μmで配列されている。各光素子からの出力は、光素子に照射される光エネルギに対して直線的に変化し、画像入力ボードによるA/D変換で、256段階の出力値となる。そして、この出力値の重心となる位置を計算することで、副走査方向の走査位置を算出する。
従来は単一のCCDセンサを移動ステージにより測定位置まで移動し、その位置での測定が終了すると次の位置に移動する動作を繰返し、全像高に渡っての測定を行っていた。このような方式では、移動ステージのピッチング、ヨーイング等の誤差が測定精度を直接低下させてしまうという問題があった。また、ステージの移動による時間的ズレにより、温度条件が変化してしまい、これによる測定精度低下という問題もあった。
本発明の目的は、上記問題がなく、光ビームの副走査方向の走査位置を高精度で測定できる走査光学系光学特性測定装置を提供することにある。
本発明の他の目的は、走査光学系光学特性測定装置に光ビームの副走査方向の絶対走査位置を測定させることができる走査光学系光学特性測定装置校正方法を提供することにある。
本発明の他の目的は、精度良く光ビームの副走査方向の走査位置を調整することができる走査光学系を提供することにある。
本発明の他の目的は、副走査方向の色ずれを低減した画像出力が可能となる画像形成装置を提供することを目的とする。
上記目的を達成するため、請求項1に係る発明は、光ビームにより像面上を走査して書込及び読取の少なくとも一方を行う走査光学系により、前記光ビームが前記像面上を主走査方向に走査する走査線の位置を、副走査方向に配列された複数の受光素子を有する光センサ、または前記走査線の位置を検出可能な光センサにより測定する走査光学系光学特性測定装置において、前記光センサは前記像面に合わせて像高方向に少なくとも3台以上並べた固定式光センサとし、該光センサにより、前記光ビームの前記像面上における副走査位置を複数個所で測定するものである。
請求項2に係る発明は、請求項1記載の走査光学系光学特性測定装置において、前記各光センサ毎に像面方向への位置調整を行う調整手段を設けたものである。
請求項3に係る発明は、請求項1記載の走査光学系光学特性測定装置において、前記各光センサ毎に感度のゲイン調整を行う調整手段を設けたものである。
請求項4に係る発明は、請求項1記載の走査光学系光学特性測定装置において、前記各光センサ毎に異なった透過率のNDフィルタを装着する装着手段を設けたものである。
請求項5に係る発明は、請求項1記載の走査光学系光学特性測定装置において、全ての前記光センサをセンサ切換え手段を介して単一のデータ入力処理装置に接続することで、前記各光センサの測定値を順番に取り込むようにしたものである。
請求項6に係る発明は、請求項1記載の走査光学系光学特性測定装置において、全ての前記光センサを個々に別々のデータ入力処理装置に接続することで、全ての前記光センサの測定値を同時に取り込むようにしたものである。
請求項7に係る発明は、請求項1記載の走査光学系光学特性測定装置において、前記走査光学系が複数の光ビームを同時に走査する場合、各々の前記光ビームを分離して認識するアルゴリズムにより、同時に複数の前記光ビームによる前記走査位置の測定を行うものである。
請求項8に係る発明は、請求項7記載の走査光学系光学特性測定装置において、前記光センサの生データの微分値を計算し、その結果から複数の前記光ビームより各々の光ビームを分離して認識するものである。
請求項9に係る発明は、請求項1記載の走査光学系光学特性測定装置において、前記光ビームを複数の走査方向に分離するビーム分割手段を有し、該ビーム分割手段により分離した光ビームが走査線の主走査位置を検出可能なセンサを走査することにより、走査線の副走査位置と主走査位置を同時に測定するものである。
請求項10に係る発明は、請求項1記載の走査光学系光学特性測定装置の校正を行う走査光学系光学特性測定装置校正方法であって、前記各光センサを構成している複数の受光素子の、同一アドレス同士の副走査方向の相対的位置関係を測定して前記各光センサの副走査方向相対的位置関係補正値を求め、この補正値により光ビーム副走査位置測定結果を補正し、光ビーム副走査位置の絶対位置を算出するものである。
請求項11に係る発明は、請求項10記載の走査光学系光学特性測定装置校正方法において、前記各光センサ間の副走査方向の相対的位置関係の測定は、平行光発光手段から照射された基準平行光を、全ての前記光センサを設置した前記走査光学系光学特性測定装置対して平行移動もしくは平行回転させることにより、前記基準平行光の副走査位置測定を行って前記各光センサの副走査方向相対的位置関係補正値を算出するものである。
請求項12に係る発明は、請求項10記載の走査光学系光学特性測定装置校正方法において、前記各光センサ間の副走査方向の相対的位置関係の測定は、固定された平行光発光手段から照射された基準平行光に対して、全ての前記光センサを設置した前記走査光学系光学特性測定装置を平行に移動することにより前記各光センサの副走査方向相対的位置関係補正値を算出することを特徴とする。
請求項13に係る発明は、請求項10記載の走査光学系光学特性測定装置校正方法において、前記各光センサ間の副走査方向の相対的位置関係の測定は、顕微鏡を全ての前記センサを設置した前記走査光学系光学特性測定装置に対して平行移動もしくは平行回転をさせることにより、実際の前記光センサの前記受光素子位置を測定して前記各光センサの副走査方向相対的位置関係補正値を算出することを特徴とする。
請求項14に係る発明は、請求項10記載の走査光学系光学特性測定装置校正方法において、前記各光センサ間の副走査方向の相対的位置関係の測定は、固定された顕微鏡に対して、全ての前記光センサを設置した前記走査光学系光学特性測定装置を平行移動することにより、実際の前記光センサの受光素子位置を測定して前記各光センサの副走査方向相対的位置関係補正値を算出することを特徴とする。
請求項15に係る発明は、請求項1記載の走査光学系光学特性測定装置において、前記光センサを載せる支持体は前記光センサと一体の一体ユニット構造で、全ての前記光センサを一体で取り外し可能としたものである。
請求項16に係る発明は、請求項15記載の走査光学系光学特性測定装置において、前記光センサを載せる支持体は熱膨張係数が5×10−6/℃以下の材質としたものである。
請求項17に係る発明は、請求項1〜10、15、16のいずれか1つに記載の走査光学系光学特性測定装置に対して、測定可能な状態に取付可能な手段を設けたものである。
請求項18に係る発明は、像担持体と、請求項17記載の走査光学系と、前記像担持体に書き込まれた静電潜像を現像する現像器と、前記像担持体上の現像画像を転写用紙に転写する転写器と、前記転写用紙に転写された転写画像を定着する定着器とを具備するものである。
本発明によれば、移動ステージの影響を受けず高精度に光ビームの副走査方向の走査位置の測定が可能となるという効果がある。
本発明によれば、光センサ毎の位置ばらつきがなく、高精度に光ビームの副走査方向の走査位置の測定が可能となるという効果がある。
本発明によれば、像高による光量差を補正でき、像高による光量差にかかわらず、高精度に光ビームの副走査方向の走査位置の測定が可能となるという効果がある。
本発明によれば、少ないハード構成で光ビームの副走査方向の走査位置の測定が可能となると共に光センサ数の増加にも対応しやすいという効果がある。
本発明によれば、短時間で全ての光センサによる測定を行うことが可能となり、温度変化などの外乱の影響を受けず、高精度に光ビームの副走査方向の走査位置の測定が可能となるという効果がある。
本発明によれば、光ビームを切り替える必要が無く、短時間で測定を行うことが可能となり、温度変化などの外乱の影響を受けず、高精度に光ビームの副走査方向の走査位置の測定が可能となるという効果がある。
本発明によれば、同じ条件で走査線の副走査方向の走査位置と主走査方向の走査位置の測定が可能となるという効果がある。
本発明によれば、光ビームの副走査方向の走査位置の絶対位置が測定可能となるという効果がある。
本発明によれば、位置調整した各光センサの位置関係を維持したまま、移動や交換が可能となるという効果がある。
本発明によれば、熱の影響を受けず高精度に光ビームの副走査方向の走査位置が測定可能となるという効果がある。
本発明によれば、精度良く光ビームの副走査方向の走査位置の調整が可能となるという効果がある。
本発明によれば、副走査方向の色ずれを低減した画像出力が可能となるという効果がある。
以下、本発明の第1実施形態を図面に基づいて説明する。
図1は、本第1実施形態である走査光学系光学特性測定装置及び走査光学系を示す。半導体レーザ2は、レーザ光源1に接続され、走査光学系のユニット6内に設置されている。半導体レーザ2から放出された光ビームとしてのレーザビームは、コリメータレンズ及びシリドリカルレンズ3によって、回転多面鏡であるポリゴンミラー4の鏡面に集光される。ポリゴンミラー4に集光されたレーザビームは、ポリゴンミラー4の鏡面で反射されてfθレンズ5を通過し、被走査面(像面)上に光スポットとして結像され、主走査方向であるy軸方向に走査される。
ここに、被走査面は、画像形成装置の光導電性を有する感光体の感光面である。画像形成装置は、上記走査光学系ユニット6と、像担持体としての感光体と、この感光体を一様に帯電させる帯電器と、上記感光体に書き込まれた静電潜像を現像する現像器と、上記感光体上の現像画像を転写用紙に転写する転写器と、上記転写用紙に転写された転写画像を定着する定着器とを具備する。上記感光体は、駆動部により回転駆動されて上記被走査面としての感光面が移動し、上記走査光学系ユニット6によりfθレンズ5からのレーザビームで主走査方向に走査されるとともに感光体自体の移動で副走査方向に走査される。半導体レーザ2が駆動回路により画像信号により駆動され、上記感光体がfθレンズ5からのレーザビームで露光されて静電潜像が形成される。上記感光体上の静電潜像は現像器により現像されてトナー像となり、この感光体上のトナー像は転写器により転写用紙に転写された後に定着器により転写用紙に定着される。なお、被走査面は、画像形成装置において走査光学系のユニットにて光ビームにより走査して画像を読み取る被走査面(像面)であってもよい。
ポリゴンミラー4により走査されるレーザビームは、被走査面上で光スポットの軌道上に配置された3台以上の固定式光センサ、例えばCCDカメラ7(7(1)、7(2)、7(3)…7(7))のCCD受光部8(8(1)、8(2)、8(3)…8(7))を照射する。CCD受光部8には副走査方向(z軸方向)に配列された5000画素の光素子列からなる受光エレメントがある。この光素子列のピッチは7μmである。
また、CCDカメラ7は、レーザビームがポリゴンミラー4により主走査方向に走査される主走査領域に複数(本第1実施形態では7台)固定して配置される。全てのCCDカメラ7(7(1)、7(2)、7(3)…7(7))のCCD受光部8(8(1)、8(2)、8(3)…8(7))からの受光信号レベルとしての出力信号は、リレーなどの切換え手段である切換えボックス9、測定手段としての画像入力ボード10を経てパソコン11に取り込まれる。画像入力ボード10は、CCD受光部8からの受光信号レベル、特に各光素子の出力信号の分布(光強度の分布)を測定する。そして、パソコン11の演算装置は、出力断面形状の面積中心をカウントできるソフトを有しており、その各光素子の出力信号の分布(光強度の分布)からその出力断面形状の面積中心を演算し、これを副走査方向の走査位置情報として処理する。
パソコン11の演算装置は、上記走査位置の測定を、CCDカメラ7(7(1)、7(2)、7(3)…7(7))のCCD受光部8(8(1)、8(2)、8(3)…8(7))から切換えボックス9、画像入力ボード10を経て取り込んだ各受光信号により像高方向の複数ポイントで行って複数箇所の副走査方向の走査位置情報を求め、これらの走査位置情報を基に走査線の曲がり、傾き、ピッチムラ、ピッチ偏差などを求める。各CCD受光部8(8(1)、8(2)、8(3)…8(7))は正確に像面位置と一致していることが望ましいが、実際にはCCDカメラ7(7(1)、7(2)、7(3)…7(7))毎のばらつきや、CCD素子自体のばらつきにより微妙に個体差がある。このため、例えばCCDカメラ単体での前面からCCD素子までの距離を予め顕微鏡により測定しておき、各CCD受光部8(8(1)、8(2)、8(3)…8(7))が同一面上に配置されるように、図2に示すマイクロヘッドのような位置調整手段12(12(1)、12(2)、12(3)…12(7))により各CCD受光部8(8(1)、8(2)、8(3)…8(7))をそれぞれ正確に上記像面の位置と一致させる。
一般に被走査面でのレーザビーム光量は、中央像高付近が最も強く、周辺像高で弱くなる。例えば図3に示すように中央像高のCCDカメラ7(4)の最大出力値が200階調となるように半導体レーザ2の出力光量調整を行って走査位置の測定を行った場合、周辺のCCDカメラ7(1)、7(7)の最大出力値は80階調程度になってしまう。これでも走査位置の測定は行えるが、周辺部のCCDカメラ7(1)、7(7)の出力値による走査位置測定の分解能が低下する分、測定精度も低下してしまう。
そこで、本第1実施形態では、各光センサ毎に可変抵抗のような感度(ゲイン)調整が可能なゲイン調整手段を設け、このゲイン調整手段にて周辺のCCDカメラ7(1)、7(7)の最大出力値や中央のCCDカメラ7(4)の最大出力値、他のCCDカメラ7(2)、7(3)、7(5)、7(6)の最大出力値が同程度となるように各光センサの感度(ゲイン)を調整することで、全走査幅に渡って同程度の測定精度が得られるようにする。
CCDカメラ7(7(1)、7(2)、7(3)…7(7))がゲイン調整手段を持たない場合でも、図4に示すように各CCDカメラ7(7(1)、7(2)、7(3)…7(7))の入力光路にNDフィルタ13が挿入されるように各CCDカメラ7(7(1)、7(2)、7(3)…7(7))にNDフィルタ13を装着できるNDフィルタ装着部13aを設ければ、各CCDカメラ7(7(1)、7(2)、7(3)…7(7))のNDフィルタ装着部13aに各CCDカメラ7(7(1)、7(2)、7(3)…7(7))の最大出力値が同程度となるように透過率の異なるNDフィルタ13を装着することにより、同様に全走査幅に渡って同程度の測定精度が得られる。この場合、様々な透過率のNDフィルタを用意する必要があり、またNDフィルタの厚みに応じて像面位置の再調整が必要となる。CCDカメラは限界光量以上の光が入射した場合、ゲイン調整手段があっても出力は飽和してしまう。NDフィルタならCCDカメラの絶対入力光量を下げられるため、強い光の走査ビームにも対応できるという効果もある。
図1に示すように全ての光センサ7(7(1)、7(2)、7(3)…7(7))を、リレーなどのセンサ切換え手段である切換えボックス9を介して単一のデータ入力処理装置である画像入力ボード10に接続することで、パソコン11に各光センサ7(7(1)、7(2)、7(3)…7(7))の測定値を順番に取り込むことができる。パソコン11は、このようにして取りこんだ全データから、走査線の曲がり、傾き、ピッチムラ、ピッチ偏差などを求める。
第1実施形態によれば、光センサ7は像面に合わせて像高方向に少なくとも3台以上並べた固定式光センサとし、該光センサ7により、光ビームの像面上における副走査位置を複数個所で測定するので、ステージの影響を受けず高精度に光ビームの副走査位置の測定が可能となるという効果がある。
第1実施形態によれば、各光センサ7毎に像面方向への位置調整を行う調整手段を設けたので、センサ毎の位置ばらつきがなく、高精度に光ビームの副走査位置の測定が可能となるという効果がある。
第1実施形態によれば、各光センサ7毎に感度のゲイン調整を行う調整手段を設けたので、光ビームの像高による光量差を補正でき、像高による光量差にかかわらず、高精度に光ビームの副走査位置の測定が可能となるという効果がある。
第1実施形態によれば、各光センサ7毎に異なった透過率のNDフィルタ13を装着する装着手段13aを設けので、光ビームの像高による光量差を補正でき、光ビームの像高による光量差にかかわらず、高精度に光ビームの副走査位置の測定が可能となるという効果がある。
第1実施形態によれば、全ての前記光センサをセンサ切換え手段を介して単一のデータ入力処理装置に接続することで、前記各光センサの測定値を順番に取り込むようにしたので、少ないハード構成で光ビームの副走査位置の測定が可能となると共に光センサ数の増加にも対応しやすいという効果がある。
本発明の第2実施形態では、上記第1実施形態において、図5に示すように、複数の光センサ7(7(1)、7(2)、7(3)…7(7))を切換えボックスを介さず、複数の画像入力ボード10(10(1)、10(2)、10(3)…10(7))に接続することで、パソコン11に各光センサ7(7(1)、7(2)、7(3)…7(7))の測定値を同時に取り込む。この場合、パソコン11はデータの並列処理が可能となり、上記第1実施形態よりも測定速度がアップする。
走査光学系ユニット6が被走査面をシングルビーム(1本の光ビーム)で走査する走査位置を測定する場合には、光センサ7の出力信号は図6に示すようにピークが1ヵ所になる。しかし、図7に示すように走査光学系ユニット6が被走査面をマルチビーム(複数本の光ビーム)で走査する走査位置を測定する場合やタンデム光学系がそれぞれ被走査面を光ビームで走査する各走査位置を測定する場合には、光センサ7の出力信号はピークが複数となる。
複数の光ビームで走査する各走査位置を測定する場合、1本の光ビームで走査する各走査位置を順次に測定すれば良いが、同時に各走査位置を測定できれば効率も良く実機状態に近い測定となる。この場合、通常に測定を行うと、2本の光ビームの中間位置付近が副走査方向の走査位置(副走査位置)となる1本のビームとして認識されてしまう。そこで、パソコン11は、複数の光ビームの副走査位置を同時に測定する場合には、各々の光ビームを分離して認識するアルゴリズムを用い、例えば2本の光ビームを分離するには、図8に示すように各光センサ7からの測定値である生データを微分してその絶対値を求め、この絶対値を所定のスレッシュレベルで2値化することで各々の光ビーム(ビーム1、ビーム2)を分離して認識し、その各結果から、各光ビームによる走査線の曲がり、傾き、ピッチムラ、ピッチ偏差などを求める。
第2実施形態によれば、全ての光センサを個々に別々のデータ入力処理装置に接続することで、全ての光センサの測定値を同時に取り込むようにしたので、短時間で全ての光センサによる測定を行うことが可能となり、温度変化などの外乱の影響を受けず、高精度に光ビームの副走査位置の測定が可能となるという効果がある。
第2実施形態によれば、走査光学系が複数の光ビームを同時に走査する場合、各々の光ビームを分離して認識するアルゴリズムにより、同時に複数の光ビームによる走査位置測定を行うので、光ビームを切り替える必要が無く、短時間で測定を行うことが可能となり、温度変化などの外乱の影響を受けず、高精度にビームの副走査位置の測定が可能となるという効果がある。
第2実施形態によれば、光センサの生データの微分値を計算し、その結果から複数の光ビームより各々の光ビームを分離して認識するので、光ビームを切り替える必要が無く、短時間で測定を行うことが可能となり、温度変化などの外乱の影響を受けず、高精度に光ビームの副走査位置の測定が可能となるという効果がある。
本発明の第3実施形態では、上記第1実施形態(または上記第2実施形態)において、図9に示すようにfθレンズ5とCCDカメラ7との間の光路中にハーフミラーやプリズムなどのビーム分割手段14を配置し、fθレンズ5からの光ビームをビーム分割手段14で複数(例えば2つ)の走査方向に分離する。この分離した2本の光ビームの一方が上述のように走査線の副走査位置を検出可能な光センサ7を走査し、上記分離した2本の光ビームの他方が走査線の主方向走査位置(主走査位置)を検出可能なセンサ15を走査する。
主走査位置を検出可能なセンサ15は、図10に示すような構造となっており、ガラスなどの伸びの少ない透明基板16の片面にエッチングにより、正確に間隔が決められた複数のスリット17…が形成されている。この複数のスリット17…に対応した位置には複数の光センサ18…が設置されており、各光センサ18…は光を検知した時間を正確に測定できるタイムインターバルアナライザに接続されている。ビーム分割手段14からの光ビームがセンサ15を走査することで、全像高に渡っての主走査時間の変動が明らかになり、主走査位置ズレを算出できる。パソコン11は、タイムインターバルアナライザの測定値を切換えボックス9、画像入力ボード10を経て取り込み、タイムインターバルアナライザの測定値から主走査位置を測定して主走査位置ズレを算出する。これにより、走査線の副走査位置と主走査位置を同時に測定することが可能となる。
第3実施形態によれば、光ビームを複数の走査方向に分離するビーム分割手段を有し、該ビーム分割手段により分離した光ビームが走査線の主走査位置を検出可能なセンサを走査することにより、走査線の副走査位置と主走査位置を同時に測定するので、走査線の副走査位置と主走査位置を同時に測定するができ、同じ条件で走査線の副走査位置と主走査位置の測定が可能となるという効果がある。
各光センサ7(7(1)、7(2)、7(3)…7(7))は組み付け誤差や部品ばらつきによりCCD副走査方向の位置が完全には一致していない。図11に示すように、光センサ7(1)と光センサ7(2)で同じアドレスの画素に副走査方向に相対的にLだけズレがあった場合、初期の走査線の曲りや傾きの値にこの値Lが加算されてしまう。そこで、本発明の第4実施形態では、上記第3実施形態において、図12に示すように、平面の出た定盤上に本第4実施形態の走査光学系光学特性測定装置と、固定されたHE-NEなどの平行光発光手段19を、設置面と平行に光を出射するように設置し、平行光発光手段19を、全てのセンサ7を設置した走査光学系光学特性測定装置に対して平行に移動させ、もしくは図13に示すように走査光学系光学特性測定装置に対して平行に回転させる。そして、パソコン11は、センサ15の測定値を切換えボックス9、画像入力ボード10を経て取り込み、センサ15の受光信号より平行光発光手段19からの基準平行光の主走査位置を測定して各光センサ7(7(1)、7(2)、7(3)…7(7))の重心位置のズレ(各光センサ7(7(1)、7(2)、7(3)…7(7))を構成している複数の受光素子の、同一アドレス同士の副走査方向の相対的位置関係)を算出する。パソコン11は、これにより得られた各光センサ7(7(1)、7(2)、7(3)…7(7))の重心位置のズレを補正値とし、上述のように副走査方向の走査位置を算出し、これを上記補正値により補正して正確な副走査位置(光ビームの副走査方向の走査位置の絶対位置)を求める。なお、平行光発光手段19は固定し、図14に示すように本第4実施形態の走査光学系光学特性測定装置を移動させても良い。
第4実施形態によれば、各光センサを構成している複数の受光素子の、同一アドレス同士の副走査方向の相対的位置関係を測定して各光センサの副走査方向相対的位置関係補正値を求め、この補正値により光ビーム副走査位置測定結果を補正し、光ビーム副走査位置の絶対位置を算出するので、光ビーム副走査位置の絶対位置が測定可能となるという効果がある。
第4実施形態によれば、各光センサ間の副走査方向の相対的位置関係の測定は、平行光発光手段から照射された基準平行光を、全ての光センサを設置した走査光学系光学特性測定装置に対して平行移動もしくは平行回転させることにより、基準平行光の副走査位置測定を行って各光センサの副走査方向相対的位置関係補正値を算出するので、光ビーム副走査位置測定結果を補正し、光ビーム副走査位置の絶対位置測定が可能となるという効果がある。
第4実施形態によれば、各光センサ間の副走査方向の相対的位置関係の測定は、固定された平行光発光手段から照射された基準平行光に対して、全ての光センサを設置した走査光学系光学特性測定装置を平行に移動することにより各光センサの副走査方向相対的位置関係補正値を算出するので、光ビーム副走査位置測定結果を補正し、ビーム副走査位置の絶対位置測定可能となるという効果がある。
また、本発明の第5実施形態では、上記第4実施形態において、図15に示すように平行光発光手段19の代りに固定された顕微鏡20を用い、この顕微鏡20に対して各光センサ7(7(1)、7(2)、7(3)…7(7))を平行に移動させながら顕微鏡20で直接に各光センサ7(7(1)、7(2)、7(3)…7(7))の画素位置を読み取る。但し、この場合は、各光センサ7(7(1)、7(2)、7(3)…7(7))の中央アドレス付近の画素では何画素目か解り難いので、両端に近い位置の画素を読み取る必要がある。
図16に示すように、光センサ7(7(1)、7(2)、7(3)…7(7))を載せる支持体21は、全ての光センサ7を一体に固定したユニット構造であり、全ての光センサ7(7(1)、7(2)、7(3)…7(7))を一体で取り外し可能とするものである。このように各光センサ7(7(1)、7(2)、7(3)…7(7))をユニット化することで、別の走査光学系の走査位置測定でも、調整した位置関係や補正係数を再設定することなく測定が可能となる。また、支持体21の材質を、スーパーインバーのような熱膨張係数5×10−6/℃以下の材質とすることで、温度変化による測定誤差を低く押えられる。例えば支持体21の厚みを30mmとした時、支持体21は1℃の変化で0.15μmの伸びとなるので、恒温槽内で測定を行えば測定誤差は充分に小さく押えられる。
第5実施形態によれば、各光センサ間の副走査方向の相対的位置関係の測定は、顕微鏡を全てのセンサを設置した走査光学系光学特性測定装置に対して平行移動もしくは平行回転をさせることにより、実際の光センサの受光素子位置を測定して各光センサの副走査方向相対的位置関係補正値を算出するので、光ビーム副走査位置測定結果を補正し、ビーム副走査位置の絶対位置測定が可能となるという効果がある。
第5実施形態によれば、各光センサ間の副走査方向の相対的位置関係の測定は、固定された顕微鏡に対して、全ての光センサを設置した走査光学系光学特性測定装置を平行移動することにより、実際の光センサの受光素子位置を測定して各光センサの副走査方向相対的位置関係補正値を算出するので、光ビーム副走査位置測定結果を補正し、ビーム副走査位置の絶対位置測定が可能となるという効果がある。
第5実施形態によれば、光センサを載せる支持体は一体ユニット構造で、全ての光センサを一体で取り外し可能としたので、位置調整した各光センサの位置関係を維持したまま、移動や交換が可能となるという効果がある。
第5実施形態によれば、光センサを載せる支持体は熱膨張係数が5×10−6/℃以下の材質としたので、熱の影響を受けず高精度に光ビームの副走査位置測定が可能となるという効果がある。
本発明の第6実施形態である走査光学系光学特性測定装置23は、上記第2実施形態において、図17に示すように、4連タンデム用走査光学系22が固定部材24にて着脱可能に固定される。走査光学系光学特性測定装置23は、このように4連タンデム用走査光学系22を固定可能とすることで、実機の走査光学系の走査位置を直接に測定し調整することが可能になる。なお、この第6実施形態のように光ビームの間隔が広い場合、長尺の光センサ7を用いるか、複数の光センサを組合せて使用しても良い。
また、光センサとしては、今まで述べてきたCCDのような、副走査方向に配列された複数の受光素子よりなるタイプでなく、図18に示すような非平行に配置された2本の受光素子26、27よりなるもの25でも良い。この光センサ25は、主走査方向に対して直角に配置された受光素子26と、該受光素子26に対して非平行に配置された受光素子27より成る。各受光素子26、27は光を検知した時間を正確に測定できるタイムインターバルアナライザに接続されている。図示しない測定手段は、タイムインターバルアナライザの測定値から、ビーム1が受光素子26、27で検知された時間間隔t1と、ビーム1が副走査方向に移動したビーム2が受光素子26、27で検知された時間間隔t2を比較することで、副走査方向の移動量を求める。
ここに、4連タンデム用走査光学系22はカラー画像形成装置に用いられる。このカラー画像形成装置では、複数の画像形成部を有し、この複数の画像形成部では、それぞれ、感光体は、駆動部により回転駆動されて被走査面としての感光面が移動し、複数の走査光学系ユニット6によりfθレンズ5からのレーザビームで主走査方向に走査されるとともに感光体自体の移動で副走査方向に走査される。半導体レーザ2が駆動回路により各色の画像信号により駆動されることによって、上記感光体がfθレンズ5からのレーザビームで露光されて静電潜像が形成される。上記各感光体上の静電潜像は各色の現像器により現像されて各色のトナー像となり、これらの感光体上の各色のトナー像はそれぞれ転写ベルトで搬送される転写用紙に重ね合わせて転写された後に定着器により転写用紙に定着される。
第6実施形態によれば、走査光学系光学特性測定装置に対して、測定可能な状態に取付可能な手段を設けたので、走査光学系は精度良く光ビーム副走査位置の調整が可能となるという効果がある。
第6実施形態に関する画像形成装置によれば、像担持体と、走査光学系と、像担持体に書き込まれた静電潜像を現像する現像器と、像担持体上の現像画像を転写用紙に転写する転写器と、転写用紙に転写された転写画像を定着する定着器とを具備するので、副走査方向の色ずれを低減した画像出力が可能となるという効果がある。
本発明の第1実施形態である走査光学系光学特性測定装置及び走査光学系を示す断面略図である。 同第1実施形態の一部を拡大して示す断面略図である。 同第1実施形態におけるCCDカメラのゲイン調整を説明するための図である。 同第1実施形態の一部を拡大して示す斜視図である。 本発明の第2実施形態である走査光学系光学特性測定装置及び走査光学系を示す断面略図である。 同第2実施形態において走査光学系ユニットの光ビームがシングルビームである場合の構成及びCCD出力を示す図である。 同第2実施形態において走査光学系ユニットの光ビームがマルチビームである場合の構成及びCCD出力を示す図である。 同第2実施形態のCCDカメラからの生データの処理波形を示す波形図である。 本発明の第3実施形態である走査光学系光学特性測定装置を示す断面略図である。 同第3実施形態の主走査位置を検出可能なセンサを示す平面図である。 2つの光センサ7における同じアドレスの画素の副走査方向ズレを示す図である。 本発明の第4実施形態の1態様を示す概略図である。 同第4実施形態の他の態様を示す概略図である。 同第4実施形態の別の態様を示す概略図である。 本発明の第5実施形態を示す概略図である。 同第5実施形態を示す一部を示す斜視図である。 本発明の第6実施形態を示す概略図である。 光センサの例を示す図である。 従来の光センサ移動式測定機を示す断面略図である。
符号の説明
2 半導体レーザ
3 コリメータレンズ及びシリドリカルレンズ
4 ポリゴンミラー
5 fθレンズ
6 走査光学系ユニット
7、7(1)、7(2)、7(3)…7(7) CCDカメラ7
8、8(1)、8(2)、8(3)…8(7) CCD受光部
9 切換えボックス
10、10(1)、10(2)、10(3)…10(7) 画像入力ボード
11 パソコン
12(12(1)、12(2)、12(3)…12(7)) 位置調整手段
13 NDフィルタ
14 ビーム分割手段
15 センサ
19 平行光発光手段
20 顕微鏡
21 支持体
22 4連タンデム用走査光学系
23 走査光学系光学特性測定装置
24 固定部材
25 光センサ

Claims (18)

  1. 光ビームにより像面上を走査して書込及び読取の少なくとも一方を行う走査光学系により、前記光ビームが前記像面上を主走査方向に走査する走査線の位置を、副走査方向に配列された複数の受光素子を有する光センサ、または前記走査線の位置を検出可能な光センサにより測定する走査光学系光学特性測定装置において、前記光センサは前記像面に合わせて像高方向に少なくとも3台以上並べた固定式光センサとし、該光センサにより、前記光ビームの前記像面上における副走査位置を複数個所で測定することを特徴とする走査光学系光学特性測定装置。
  2. 請求項1記載の走査光学系光学特性測定装置において、前記各光センサ毎に像面方向への位置調整を行う調整手段を設けたことを特徴とする走査光学系光学特性測定装置。
  3. 請求項1記載の走査光学系光学特性測定装置において、前記各光センサ毎に感度のゲイン調整を行う調整手段を設けたことを特徴とする走査光学系光学特性測定装置。
  4. 請求項1記載の走査光学系光学特性測定装置において、前記各光センサ毎に異なった透過率のNDフィルタを装着する装着手段を設けたことを特徴とする走査光学系光学特性測定装置。
  5. 請求項1記載の走査光学系光学特性測定装置において、全ての前記光センサを光センサ切換え手段を介して単一のデータ入力処理装置に接続することで、前記各光センサの測定値を順番に取り込むようにしたことを特徴とする走査光学系光学特性測定装置。
  6. 請求項1記載の走査光学系光学特性測定装置において、全ての前記光センサを個々に別々のデータ入力処理装置に接続することで、全ての前記光センサの測定値を同時に取り込むようにしたことを特徴とする走査光学系光学特性測定装置。
  7. 請求項1記載の走査光学系光学特性測定装置において、前記走査光学系が複数の光ビームを同時に走査する場合、各々の前記光ビームを分離して認識するアルゴリズムにより、同時に複数の前記光ビームによる前記走査位置の測定を行うことを特徴とする走査光学系光学特性測定装置。
  8. 請求項7記載の走査光学系光学特性測定装置において、前記光センサの生データの微分値を計算し、その結果から複数の前記光ビームより各々の光ビームを分離して認識することを特徴とする走査光学系光学特性測定装置。
  9. 請求項1記載の走査光学系光学特性測定装置において、前記光ビームを複数の走査方向に分離するビーム分割手段を有し、該ビーム分割手段により分離した光ビームが走査線の主走査位置を検出可能なセンサを走査することにより、走査線の副走査位置と主走査位置を同時に測定することを特徴とする走査光学系光学特性測定装置。
  10. 請求項1記載の走査光学系光学特性測定装置の校正を行う走査光学系光学特性測定装置校正方法であって、前記各光センサを構成している複数の受光素子の、同一アドレス同士の副走査方向の相対的位置関係を測定して前記各光センサの副走査方向相対的位置関係補正値を求め、この補正値により光ビーム副走査位置測定結果を補正し、光ビーム副走査位置の絶対位置を算出することを特徴とする走査光学系光学特性測定装置校正方法。
  11. 請求項10記載の走査光学系光学特性測定装置校正方法において、前記各光センサ間の副走査方向の相対的位置関係の測定は、平行光発光手段から照射された基準平行光を、全ての前記光センサを設置した前記走査光学系光学特性測定装置に対して平行移動もしくは平行回転させることにより、前記基準平行光の副走査位置測定を行って前記各光センサの副走査方向相対的位置関係補正値を算出することを特徴とする走査光学系光学特性測定装置校正方法。
  12. 請求項10記載の走査光学系光学特性測定装置校正方法において、前記各光センサ間の副走査方向の相対的位置関係の測定は、固定された平行光発光手段から照射された基準平行光に対して、全ての前記光センサを設置した前記走査光学系光学特性測定装置を平行に移動することにより前記各光センサの副走査方向相対的位置関係補正値を算出することを特徴とする走査光学系光学特性測定装置校正方法。
  13. 請求項10記載の走査光学系光学特性測定装置校正方法において、前記各光センサ間の副走査方向の相対的位置関係の測定は、顕微鏡を全ての前記センサを設置した前記走査光学系光学特性測定装置に対して平行移動もしくは平行回転をさせることにより、実際の前記光センサの前記受光素子位置を測定して前記各光センサの副走査方向相対的位置関係補正値を算出することを特徴とする走査光学系光学特性測定装置校正方法。
  14. 請求項10記載の走査光学系光学特性測定装置校正方法において、前記各光センサ間の副走査方向の相対的位置関係の測定は、固定された顕微鏡に対して、全ての前記光センサを設置した前記走査光学系光学特性測定装置を平行移動することにより、実際の前記光センサの受光素子位置を測定して前記各光センサの副走査方向相対的位置関係補正値を算出することを特徴とする走査光学系光学特性測定装置校正方法。
  15. 請求項1記載の走査光学系光学特性測定装置において、前記光センサを載せる支持体は前記光センサと一体の一体ユニット構造で、全ての前記光センサを一体で取り外し可能としたことを特徴とする走査光学系光学特性測定装置。
  16. 請求項15記載の走査光学系光学特性測定装置において、前記光センサを載せる支持体は熱膨張係数が5×10−6/℃以下の材質としたことを特徴とする走査光学系光学特性測定装置。
  17. 請求項1〜10、15、16のいずれか1つに記載の走査光学系光学特性測定装置に対して、測定可能な状態に取付可能な手段を設けたことを特徴とする走査光学系。
  18. 像担持体と、請求項17記載の走査光学系と、前記像担持体に書き込まれた静電潜像を現像する現像器と、前記像担持体上の現像画像を転写用紙に転写する転写器と、前記転写用紙に転写された転写画像を定着する定着器とを具備することを特徴とする画像形成装置。
JP2004045023A 2004-02-20 2004-02-20 走査光学系光学特性測定装置、走査光学系光学特性測定装置校正方法、走査光学系及び画像形成装置 Pending JP2005234359A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045023A JP2005234359A (ja) 2004-02-20 2004-02-20 走査光学系光学特性測定装置、走査光学系光学特性測定装置校正方法、走査光学系及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045023A JP2005234359A (ja) 2004-02-20 2004-02-20 走査光学系光学特性測定装置、走査光学系光学特性測定装置校正方法、走査光学系及び画像形成装置

Publications (1)

Publication Number Publication Date
JP2005234359A true JP2005234359A (ja) 2005-09-02

Family

ID=35017361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045023A Pending JP2005234359A (ja) 2004-02-20 2004-02-20 走査光学系光学特性測定装置、走査光学系光学特性測定装置校正方法、走査光学系及び画像形成装置

Country Status (1)

Country Link
JP (1) JP2005234359A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011356A1 (ja) * 2007-07-18 2009-01-22 Nikon Corporation 計測方法、ステージ装置、及び露光装置
JP2009216628A (ja) * 2008-03-12 2009-09-24 Asahi Glass Co Ltd 欠陥検出装置および欠陥検出方法
JP2012237720A (ja) * 2011-05-13 2012-12-06 Sokkia Topcon Co Ltd 光波距離計
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
CN104330238A (zh) * 2014-11-12 2015-02-04 天津光电通信技术有限公司 一种激光扫描器测试装置及测试电路
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
WO2016163355A1 (ja) * 2015-04-09 2016-10-13 三菱電機株式会社 変位測定装置
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2019239845A1 (ja) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 物体検出装置および光検出器
CN113218417A (zh) * 2021-04-20 2021-08-06 杭州思锐迪科技有限公司 数据处理方法、装置、扫描仪标定***和扫描仪标定方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9316917B2 (en) 2007-07-18 2016-04-19 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US9372410B2 (en) 2007-07-18 2016-06-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
WO2009011356A1 (ja) * 2007-07-18 2009-01-22 Nikon Corporation 計測方法、ステージ装置、及び露光装置
US9804506B2 (en) 2007-07-18 2017-10-31 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
JP2012181196A (ja) * 2007-07-18 2012-09-20 Nikon Corp 計測方法、ステージ装置、及び露光装置
JPWO2009011356A1 (ja) * 2007-07-18 2010-09-24 株式会社ニコン 計測方法、ステージ装置、及び露光装置
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009216628A (ja) * 2008-03-12 2009-09-24 Asahi Glass Co Ltd 欠陥検出装置および欠陥検出方法
JP2012237720A (ja) * 2011-05-13 2012-12-06 Sokkia Topcon Co Ltd 光波距離計
CN104330238A (zh) * 2014-11-12 2015-02-04 天津光电通信技术有限公司 一种激光扫描器测试装置及测试电路
JPWO2016163355A1 (ja) * 2015-04-09 2017-04-27 三菱電機株式会社 変位測定装置
WO2016163355A1 (ja) * 2015-04-09 2016-10-13 三菱電機株式会社 変位測定装置
WO2019239845A1 (ja) * 2018-06-14 2019-12-19 パナソニックIpマネジメント株式会社 物体検出装置および光検出器
JPWO2019239845A1 (ja) * 2018-06-14 2021-07-26 パナソニックIpマネジメント株式会社 物体検出装置および光検出器
JP7190667B2 (ja) 2018-06-14 2022-12-16 パナソニックIpマネジメント株式会社 物体検出装置
CN113218417A (zh) * 2021-04-20 2021-08-06 杭州思锐迪科技有限公司 数据处理方法、装置、扫描仪标定***和扫描仪标定方法
CN113218417B (zh) * 2021-04-20 2022-12-09 杭州思锐迪科技有限公司 数据处理方法、装置、扫描仪标定***和扫描仪标定方法

Similar Documents

Publication Publication Date Title
US8014041B2 (en) Optical scanning apparatus and image forming apparatus
US7045773B2 (en) Optical scanning apparatus for accurately detecting and correcting position of optical beam in subscanning direction, and the method
JP4987115B2 (ja) 画像形成装置
JP2005234359A (ja) 走査光学系光学特性測定装置、走査光学系光学特性測定装置校正方法、走査光学系及び画像形成装置
JP2009244843A (ja) 光走査装置およびカラー画像形成装置
JP2005140922A (ja) 光走査装置、画像形成装置及び位置ずれ補正方法
CN103376550A (zh) 图像形成装置
JP5968040B2 (ja) 光走査装置および画像形成装置並びに光走査装置の制御方法
JP2004109658A (ja) 光走査装置及び光路調整方法並びに画像形成装置
CN101988989A (zh) 光扫描单元和包括该光扫描单元的电子照相成像装置
JP4323939B2 (ja) 画像形成装置及び画像形成方法
US9955040B2 (en) Image forming apparatus
JP2007114518A (ja) 光走査装置、画像形成装置及び副走査位置補正方法
US9025197B2 (en) Optical scanning device in image forming apparatus, and control method thereof
JP4643159B2 (ja) 光路調整方法
JP2002122799A (ja) マルチビーム走査装置及びそれを備えた画像形成装置
JP2002162586A (ja) マルチビーム画像形成装置
JP4373800B2 (ja) 光走査装置、カラー画像形成装置及びレーザビームの検出方法
JP3859415B2 (ja) 光走査装置
JP2007178373A (ja) 光学特性測定装置、画像形成装置及び光学特性測定方法
JP4634831B2 (ja) 光走査装置・画像形成装置・走査線傾きの検出方法
JP2000121315A (ja) 走査光学系の測定装置及び測定方法
JP2007045075A (ja) 画像形成装置
JP2005308971A (ja) 画像形成装置
JP6525780B2 (ja) 画像形成装置および走査線の曲がり検出方法