JP2005224765A - Reaction process using microreactor, and microreactor - Google Patents

Reaction process using microreactor, and microreactor Download PDF

Info

Publication number
JP2005224765A
JP2005224765A JP2004038517A JP2004038517A JP2005224765A JP 2005224765 A JP2005224765 A JP 2005224765A JP 2004038517 A JP2004038517 A JP 2004038517A JP 2004038517 A JP2004038517 A JP 2004038517A JP 2005224765 A JP2005224765 A JP 2005224765A
Authority
JP
Japan
Prior art keywords
liquid
microreactor
gas
reaction
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004038517A
Other languages
Japanese (ja)
Inventor
Yasunori Ichikawa
靖典 市川
Fumiko Shiraishi
文子 白石
Tomohide Kamiyama
友秀 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004038517A priority Critical patent/JP2005224765A/en
Priority to US11/054,344 priority patent/US7470308B2/en
Publication of JP2005224765A publication Critical patent/JP2005224765A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microreactor capable of promoting a liquid-liquid reaction in which gas is produced as a by-product particularly in a minute micro flow passage, and to provide a reaction process using the microreactor. <P>SOLUTION: A plurality of liquids L1, L2 are subjected to the liquid-liquid reaction, in which the microreactor 10 is used and gas is produced as the by-product, by introducing the plurality of liquids L1, L2 through respective liquid supplying lines 28, 28, merging the liquids in the micro flow passage 26 while circulating each of the liquids L1, L2 as a laminar flow and diffusing the liquids L1, L2 toward the normal line of the contact interface between the liquids. In this case, a part or the whole of the wall of at least the micro flow passage 26 in the liquid supplying lines 28 and the micro flow passages 26 is formed from a gas-permeable member 18 through which a liquid does not pass but a gas passes and the gas being the by-product generated in the micro flow passage 26 is discharged to the outside of the micro flow passage 26 through the gas-permeable member 18. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はマイクロリアクターを用いた反応方法及びマイクロリアクターに係り、特に微細なマイクロ流路で副生ガスの発生を伴う液液反応を行うことが可能なマイクロリアクター、及びそれを用いた反応方法に関する。   The present invention relates to a reaction method and a microreactor using a microreactor, and more particularly to a microreactor capable of performing a liquid-liquid reaction accompanied by generation of by-product gas in a fine microchannel, and a reaction method using the same. .

複数の液体の液液反応の結果として副生ガスを発生する化学反応は多数知られている。例えば、磁気記録媒体を構成する磁性層に含有される金属微粒子の製造においては、金属微粒子を形成する液液反応で副生ガス(例えば水素ガス)の発生を伴う場合がある。   Many chemical reactions that generate by-product gas as a result of liquid-liquid reactions of a plurality of liquids are known. For example, in the production of metal fine particles contained in a magnetic layer constituting a magnetic recording medium, by-product gas (for example, hydrogen gas) may be generated in a liquid-liquid reaction that forms metal fine particles.

一方、特許文献1及び特許文献2に見られるように、反応生成物の生成物収率や純度を上げたり、危険性や爆発性の試薬を用いた反応を安全に実施したりするための反応装置として、流路幅が1mm以下の極めて微細なマイクロ流路を使用して複数の流体を反応させるマイクロリアクターが注目されている。このマイクロリアクターは、反応を行うマイクロ流路が上記の通りマイクロスケールのサイズであることに起因して、マイクロ流路を流れる流体は層流支配の流れとなり、これにより反応を行う液体同士は機械的な攪拌を行わなくてもマイクロ流路を層流状態となって流れながら分子の自発的挙動だけで拡散しながら反応を速やかに行うことができる。
特表2001−521913号公報 特表2001−521816号公報
On the other hand, as seen in Patent Document 1 and Patent Document 2, the reaction for increasing the product yield and purity of the reaction product, and for safely carrying out the reaction using dangerous or explosive reagents As a device, a microreactor that reacts a plurality of fluids using an extremely fine microchannel having a channel width of 1 mm or less has been attracting attention. In this microreactor, the fluid flowing through the microchannel becomes a laminar-dominated flow because the microchannel for performing the reaction has a micro-scale size as described above. Even without agitation, the reaction can be rapidly carried out while diffusing only by the spontaneous behavior of molecules while flowing in a laminar flow through the microchannel.
JP-T-2001-521913 JP-T-2001-521816

しかしながら、マイクロリアクターでは副生ガスの発生を伴う液液反応を行えないという問題がある。その理由は、1モルの副生ガスが生成されたとすると、その副生ガスの体積は22.4Lの大きな体積になる為、微細なマイクロ流路を塞いでしまい均一な反応を行えないからである。即ち、副生ガスをマイクロ流路から効率的に除去できないと、発生した副生ガスの気泡がマイクロ流路に溜まって塊となるために、マイクロ流路の流れが気液混合相流、例えば図7に示すスラグ流が発生する。このスラグ流は気泡の塊Bと反応させるべき液体Lとがマイクロ流路26の流れ方向に交互に存在する。この結果、液体Lの連続処理の流れを妨げたり、乱したりすることで連続処理の流れが不安定になって反応場が不均一になると共に、反応の平衡が反応促進側に進みにくくなる。また、反応のための液温制御を行う場合、副生ガスを連続処理の流れの中で効率的に除去できないと、気体は熱伝導率が小さいので、反応温度を精度良く制御できなくなる。   However, the microreactor has a problem that liquid-liquid reaction accompanied by generation of by-product gas cannot be performed. The reason is that if 1 mole of by-product gas is generated, the volume of the by-product gas becomes a large volume of 22.4 L, so that the micro-channel is blocked and a uniform reaction cannot be performed. is there. That is, if the by-product gas cannot be efficiently removed from the micro-channel, the generated by-product gas bubbles accumulate in the micro-channel and become lumps. The slag flow shown in FIG. 7 is generated. In this slag flow, the bubble mass B and the liquid L to be reacted are alternately present in the flow direction of the microchannel 26. As a result, the flow of continuous processing of the liquid L is disturbed or disturbed, the flow of continuous processing becomes unstable, the reaction field becomes non-uniform, and the reaction equilibrium does not easily proceed to the reaction promoting side. . In addition, when controlling the liquid temperature for the reaction, if the by-product gas cannot be efficiently removed in the flow of continuous processing, the gas has a low thermal conductivity, so the reaction temperature cannot be controlled with high accuracy.

非特許文献1(Wolfgang Ehrfeld他、「Microreactors 」、発行元:WILEY-VCH 、発行年月日:2000 年)の第8章(Gas/Liquid Microreactors) には、気液反応のマイクロリアクターとしてFalling-film ReactorやBubble-Column Reactor が開示されているが、このような装置は気液反応を行うための装置であり、液液反応で発生する副生ガスの除去に関しては何ら考慮されていない。従って、気液反応のマイクロリアクターを使用して副生ガスを伴う液液反応を適切に行うことはできない。   In Chapter 8 (Gas / Liquid Microreactors) of Non-Patent Document 1 (Wolfgang Ehrfeld et al., “Microreactors”, Publisher: WILEY-VCH, Date of Publication: 2000), Falling- Film Reactor and Bubble-Column Reactor are disclosed, but such an apparatus is an apparatus for performing a gas-liquid reaction, and no consideration is given to removal of by-product gas generated in the liquid-liquid reaction. Therefore, a liquid-liquid reaction involving by-product gas cannot be appropriately performed using a gas-liquid reaction microreactor.

このような事情から、マイクロリアクターで副生ガスを発生する化学反応を実施した例は聞いたことがなく、このことはマイクロリアクターを利用できる化学反応の種類を大幅に減少させることとなる。このことからマイクロリアクターでも副生ガスを発生する化学反応を実施できるようにすることが、大きな課題になっている。   Under such circumstances, there has never been an example in which a chemical reaction that generates a by-product gas in a microreactor has been carried out, and this greatly reduces the types of chemical reactions that can use the microreactor. For this reason, it has become a big issue to be able to carry out a chemical reaction that generates a by-product gas even in a microreactor.

本発明は係る事情に鑑みてなされたもので、等価直径が例えば1mm以下の微細なマイクロ流路内の液液反応によって発生する副生ガスをマイクロ流路から効率的に脱ガスすることができるので、マイクロリアクターを用いて副生ガスが発生する液液反応を行っても、マイクロ流路における液体の流れを不安定化させることなく液液反応を行うことができるマイクロリアクターを用いた反応方法及びマイクロリアクターを提供することを目的とする。   The present invention has been made in view of such circumstances, and by-product gas generated by a liquid-liquid reaction in a fine microchannel having an equivalent diameter of, for example, 1 mm or less can be efficiently degassed from the microchannel. Therefore, a reaction method using a microreactor that can perform a liquid-liquid reaction without destabilizing the flow of the liquid in the microchannel even when performing a liquid-liquid reaction in which a by-product gas is generated using the microreactor And to provide a microreactor.

本発明の請求項1は前記目的を達成するために、複数の液体をそれぞれの液体供給路を通してマイクロ流路に合流させて、これらの液体を薄片状の層流として流通させつつ、液体同士をその接触界面の法線方向へ拡散して液液反応を行わせる薄片状流型のマイクロリアクターを用いて、副生ガスの発生を伴う液液反応を行うマイクロリアクターの反応方法において、前記液液反応の進行に伴って発生する副生ガスを、液体を通さずに気体を通す気体透過部材を介して前記マイクロ流路外に随時透過しながら前記液液反応を行わせることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, a plurality of liquids are joined to the micro flow path through the respective liquid supply paths, and these liquids are circulated as a laminar laminar flow while In the reaction method of a microreactor in which a liquid-liquid reaction involving generation of by-product gas is performed using a flaky flow type microreactor that diffuses in the normal direction of the contact interface to perform a liquid-liquid reaction, The by-product gas generated with the progress of the reaction is allowed to perform the liquid-liquid reaction while being permeated through the gas passage member through the gas without passing through the liquid as needed.

本発明の請求項1は、薄片状流型のマイクロリアクターを用い、液液反応によりマイクロ流路に副生ガスの発生を伴う反応を行う方法である。   Claim 1 of the present invention is a method for performing a reaction involving generation of by-product gas in a microchannel by a liquid-liquid reaction using a flaky flow type microreactor.

マイクロリアクターの特徴として、マイクロ流路を流れる液体同士がその接触界面の法線方向へ拡散することで反応が進行するので、反応による副生ガスも反応の進行に伴って少しずつ発生する。従って、発生した副生ガスが集まってマイクロ流路を塞ぐような塊にならないうちに副生ガスを如何に速やかにマイクロ流路外に除去するかが重要になる。   As a feature of the microreactor, the reaction proceeds as liquids flowing through the microchannel diffuse in the normal direction of the contact interface, so that by-product gas due to the reaction is generated little by little as the reaction proceeds. Therefore, it is important how quickly the by-product gas is removed from the micro-channel before the generated by-product gas collects and forms a mass that blocks the micro-channel.

本発明の請求項1によれば、液液反応の進行に伴って発生する副生ガスを、液体を通さずに気体を通す気体透過部材を介してマイクロ流路外に随時透過しながら液液反応を行わせるようにしたので、等価直径が例えば1mm以下の微細なマイクロ流路を有するマイクロリアクターで副生ガスを発生する液液反応を行っても、マイクロ流路における液体の流れを不安定化させることなく液液反応を行うことができる。   According to the first aspect of the present invention, while the by-product gas generated with the progress of the liquid-liquid reaction passes through the gas passage member that allows the gas to pass through without passing through the liquid, the liquid liquid while passing through the microchannel as needed. Since the reaction is performed, the liquid flow in the microchannel is unstable even when a liquid-liquid reaction that generates by-product gas is performed in a microreactor having a microchannel with an equivalent diameter of 1 mm or less. Liquid-liquid reaction can be performed without making it.

本発明の請求項2は前記目的を達成するために、円環状なマイクロ流路に連通する複数の液体供給路を同心軸の多重筒構造にして、複数の液体を前記液体供給路を通して前記マイクロ流路に合流させることにより、これらの液体を同心軸状に積層させて該同心軸に直交する断面が円環状の層流として流通させつつ、液体同士をその接触界面の法線方向へ拡散して液液反応を行わせる円環状流型のマイクロリアクターを用いて、副生ガスの発生を伴う液液反応を行うマイクロリアクターの反応方法において、前記液液反応の進行に伴って発生する副生ガスを、液体を通さずに気体を通す気体透過部材を介して前記マイクロ流路外に随時透過しながら前記液液反応を行わせることを特徴とする。   According to a second aspect of the present invention, in order to achieve the above object, a plurality of liquid supply passages communicating with an annular microchannel are formed in a concentric multiple tube structure, and a plurality of liquids are passed through the liquid supply passage. By merging with the flow path, these liquids are stacked concentrically, and the liquids are diffused in the normal direction of the contact interface while the cross section orthogonal to the concentric axes is circulated as an annular laminar flow. In a reaction method of a microreactor that performs a liquid-liquid reaction accompanied by the generation of by-product gas using an annular flow type microreactor that performs a liquid-liquid reaction, a by-product generated as the liquid-liquid reaction proceeds The liquid-liquid reaction is performed while allowing gas to pass through the gas flow member through which gas passes without passing through the liquid as needed.

本発明の請求項2は、円環状流型のマイクロリアクターを用い、液液反応によりマイクロ流路に副生ガスの発生を伴う反応を行う方法である。この場合にも、液液反応の進行に伴って発生する副生ガスを、液体を通さずに気体を通す気体透過部材を介してマイクロ流路外に随時透過しながら液液反応を行わせることで、等価直径が例えば1mm以下の微細なマイクロ流路を有する環状型のマイクロリアクターで副生ガスが発生する液液反応を行っても、マイクロ流路における液体の流れを不安定化させることなく液液反応を行うことができる。   Claim 2 of the present invention is a method for performing a reaction accompanied by generation of by-product gas in a microchannel by a liquid-liquid reaction using an annular flow type microreactor. Also in this case, the liquid-liquid reaction is performed while the by-product gas generated with the progress of the liquid-liquid reaction is transmitted through the gas passage member through which the gas passes without passing through the liquid as needed. Thus, even when a liquid-liquid reaction in which by-product gas is generated is performed in an annular microreactor having a fine microchannel having an equivalent diameter of, for example, 1 mm or less, the liquid flow in the microchannel is not destabilized. A liquid-liquid reaction can be performed.

請求項3は請求項1又は2において、前記マイクロ流路の等価直径は1mm以下であることを特徴とする。   A third aspect of the present invention is characterized in that, in the first or second aspect, the equivalent diameter of the microchannel is 1 mm or less.

ここで、等価直径とは流路断面を円形に換算した場合の直径を言い、以下同じである。   Here, the equivalent diameter means a diameter when the cross section of the flow path is converted into a circle, and the same applies hereinafter.

これは、マイクロ流路の等価直径が小さければ小さいほど副生ガスによりマイクロ流路の流れが不安定化し易く、それだけ本発明が有効だからであり、特に本発明の有効なマイクロ流路の等価直径は500μm以下である。   This is because the smaller the equivalent diameter of the micro-channel, the more easily the flow of the micro-channel is destabilized by by-product gas, and the present invention is more effective. In particular, the equivalent diameter of the effective micro-channel of the present invention. Is 500 μm or less.

請求項4は請求項1〜3の何れか1において、前記マイクロ流路側の第1の圧力が該マイクロ流路の外側の第2の圧力よりも大きくなるように、前記第1及び第2の圧力を相対的に制御することを特徴とする。   A fourth aspect of the present invention is the method according to any one of the first to third aspects, wherein the first pressure on the microchannel side is greater than the second pressure on the outside of the microchannel. The pressure is relatively controlled.

気体透過部材の気体透過性能や液液反応を行う液体の組成(例えば乳化剤を含む液体)によっては、液液反応によってマイクロ流路に発生した副生ガスが気体透過部材をスムーズに透過しにくい場合がある。請求項4では、マイクロ流路側の第1の圧力が該マイクロ流路の外側の第2の圧力よりも大きくなるように、第1及び第2の圧力を相対的に制御するようにしたので、気体透過部材の気体透過性能や液液反応を行う液体の組成に影響されずに副生ガスをスムーズに気体透過部材を透過させることができる。これにより、等価直径が例えば1mm以下の微細なマイクロ流路を有するマイクロリアクターで副生ガスを発生する液液反応を行っても、マイクロ流路における液体の流れを一層不安定化させることなく液液反応を行うことができる。   Depending on the gas permeation performance of the gas permeable member and the composition of the liquid that performs the liquid-liquid reaction (for example, a liquid containing an emulsifier), the by-product gas generated in the microchannel due to the liquid-liquid reaction is difficult to smoothly pass through the gas permeable member There is. In claim 4, since the first pressure and the second pressure are relatively controlled so that the first pressure on the microchannel side becomes larger than the second pressure outside the microchannel, By-product gas can be smoothly permeated through the gas permeable member without being affected by the gas permeable performance of the gas permeable member and the composition of the liquid that performs the liquid-liquid reaction. As a result, even if a liquid-liquid reaction that generates a by-product gas is performed in a microreactor having a micro-channel having an equivalent diameter of, for example, 1 mm or less, the liquid flow in the micro-channel is not further destabilized. A liquid reaction can be performed.

本発明の請求項5は前記目的を達成するために、複数の液体をそれぞれの液体供給路を通してマイクロ流路に合流させてこれらの液体を薄片状の層流として流通させつつ、液体同士をその接触界面の法線方向へ拡散して液液反応を行わせるマイクロリアクターにおいて、前記液体供給路及び前記マイクロ流路のうちの少なくともマイクロ流路の流路壁の一部又は全部が、液体は通さずに気体を通す気体透過部材で形成されていることを特徴とする。   According to a fifth aspect of the present invention, in order to achieve the above object, a plurality of liquids are joined to the micro flow path through the respective liquid supply paths, and these liquids are circulated as a laminar laminar flow while In the microreactor in which the liquid-liquid reaction is performed by diffusing in the normal direction of the contact interface, at least a part or all of the channel wall of the microchannel is not allowed to pass through the liquid supply channel and the microchannel. It is formed by the gas permeable member which lets gas pass through.

本発明の請求項5は、薄片状流型のマイクロリアクターの場合であり、液体供給路及びマイクロ流路のうちの少なくともマイクロ流路を形成する流路壁の一部又は全部が気体透過部材で形成されている。これにより、液液反応によりマイクロ流路に発生した副生ガスは気体透過部材を透過し、マイクロ流路外に排出される。薄片状流型のマイクロリアクターの場合、マイクロ流路で発生した副生ガスが液体中を浮上してマイクロ流路を形成する流路壁の上面に溜まることから、流路壁の上面部を気体透過部材で構成することが好ましい。流路壁の上面部のように流路壁の一部を気体透過部材で構成する場合には軟質材料でも問題なので、気体透過性を有する高分子膜、例えばゴアテックス膜(商標)を好適に使用することができる。   Claim 5 of the present invention is a case of a flaky flow type microreactor, and at least a part or all of the flow path wall forming the micro flow path among the liquid supply path and the micro flow path is a gas permeable member. Is formed. Thereby, the by-product gas generated in the microchannel by the liquid-liquid reaction permeates the gas permeable member and is discharged out of the microchannel. In the case of a flaky flow type microreactor, the by-product gas generated in the microchannel floats in the liquid and accumulates on the upper surface of the channel wall forming the microchannel. It is preferable to comprise a transmissive member. When a part of the flow path wall is made of a gas permeable member, such as the upper surface of the flow path wall, a soft material is also a problem. Therefore, a polymer film having gas permeability, such as Gore-Tex Membrane (trademark) is preferably used. Can be used.

本発明の請求項6は前記目的を達成するために、円環状のマイクロ流路に連通する複数の液体供給路を同心軸の多重円筒構造にして、複数の液体を前記液体供給路を通して前記マイクロ流路に合流させることにより、これらの液体を同心軸状に積層させて該同心軸に直交する断面が円環状の層流として流通させつつ、液体同士をその接触界面の法線方向へ拡散して副生ガスを伴う液液反応を行わせる円環状流型のマイクロリアクターにおいて、前記液体供給路及び前記マイクロ流路のうちの少なくとも円環状のマイクロ流路の流路壁の一部又は全部が、液体は通さずに気体を通す気体透過部材で形成されていることを特徴とする。   According to a sixth aspect of the present invention, in order to achieve the above object, a plurality of liquid supply paths communicating with an annular micro flow path are formed in a concentric multi-cylindrical structure, and a plurality of liquids are passed through the liquid supply path. By merging with the flow path, these liquids are stacked concentrically, and the liquids are diffused in the normal direction of the contact interface while the cross section orthogonal to the concentric axes is circulated as an annular laminar flow. In the annular flow type microreactor in which a liquid-liquid reaction involving by-product gas is performed, at least a part or all of the channel wall of the annular microchannel among the liquid supply channel and the microchannel The liquid permeable member allows gas to pass through without passing through the liquid.

本発明の請求項6は、円環状流型のマイクロリアクターの場合であり、液体供給路及びマイクロ流路のうちの少なくとも円環状のマイクロ流路を形成する流路壁の一部又は全部が気体透過部材で形成されている。これにより、液液反応によりマイクロ流路に発生した副生ガスは気体透過部材を透過し、マイクロ流路外に排出される。円環状流型のマイクロリアクターの場合、円環状のマイクロ流路で発生した副生ガスが近くの気体透過部材を直ちに透過する構造の方が好ましいので、流路壁の全体を気体透過部材で構成することが好ましい。このように、流路壁全体を気体透過部材とする場合には高分子膜のような軟質材は使用できないので、マイクロマシンニング技術により、液体は通さないが気体は通す極めて微細な穴を開けた金属材料やプラスチック樹脂材料等の硬質材料を気体透過部材として使用することが好ましい。硬質材料の気体透過部材の場合には、マイクロ流路の流路壁全体を気体透過部材で構成することが可能であるので、円環状流型のマイクロリアクターの場合に好適である。いずれにしても本発明はこのような技術の進歩如何にかかわらず、液液反応によりマイクロ流路に発生する副生ガスだけを透過させる気体透過部材であればどのようなものでもよい。   Claim 6 of the present invention is a case of an annular flow type microreactor, and at least a part or all of the flow path wall forming the circular micro flow path of the liquid supply path and the micro flow path is gas. It is formed of a transmissive member. Thereby, the by-product gas generated in the microchannel by the liquid-liquid reaction permeates the gas permeable member and is discharged out of the microchannel. In the case of an annular flow type microreactor, it is preferable that the by-product gas generated in the annular micro flow channel is immediately transmitted through a nearby gas permeable member, so the entire flow channel wall is constituted by a gas permeable member. It is preferable to do. In this way, when the entire flow path wall is used as a gas permeable member, a soft material such as a polymer film cannot be used. Therefore, by micromachining technology, a very fine hole that does not allow liquid but allows gas to pass is opened. It is preferable to use a hard material such as a metal material or a plastic resin material as the gas permeable member. In the case of a gas permeable member made of a hard material, the entire flow channel wall of the micro flow channel can be constituted by the gas permeable member, which is suitable for an annular flow type microreactor. In any case, the present invention may be any gas permeable member that allows only the by-product gas generated in the microchannel by the liquid-liquid reaction to permeate regardless of the progress of such technology.

請求項7は請求項5又は6において、前記マイクロ流路の等価直径は1mm以下であることを特徴とする。これは、マイクロ流路の等価直径が小さければ小さいほど副生ガスによりマイクロ流路の流れが不安定化し易く、それだけ本発明が有効だからであり、特に本発明の有効なマイクロ流路の等価直径は500μm以下である。   A seventh aspect is characterized in that, in the fifth or sixth aspect, the equivalent diameter of the microchannel is 1 mm or less. This is because the smaller the equivalent diameter of the micro-channel, the more easily the flow of the micro-channel is destabilized by by-product gas, and the present invention is more effective. In particular, the equivalent diameter of the effective micro-channel of the present invention. Is 500 μm or less.

請求項8は請求項5〜7の何れか1において、前記気体透過部材を挟んで前記マイクロ流路反対側に形成され、前記液体供給路及び前記マイクロ流路のうちの少なくともマイクロ流路の流れ方向に沿った空洞部と、前記マイクロ流路側の第1の圧力が前記空洞部側の第2の圧力よりも大きくなるように、前記第1及び第2の圧力を相対的に制御する圧力制御手段と、を備えたことを特徴とする。   An eighth aspect of the present invention is the method according to any one of the fifth to seventh aspects, wherein the flow path is formed on the opposite side of the microchannel with the gas permeable member interposed therebetween. Pressure control for relatively controlling the first and second pressures so that the cavity along the direction and the first pressure on the microchannel side are larger than the second pressure on the cavity side Means.

気体透過部材の気体透過性能や液液反応を行う液体の組成(例えば乳化剤を含む液体)によって、副生ガスが気体透過部材をスムーズに透過しにくい場合であっても、圧力制御手段でマイクロ流路側の第1の圧力が空洞部側の第2の圧力よりも大きくなるようにすることで、副生ガスのスムーズな透過を達成することができる。   Even if the by-product gas is difficult to smoothly pass through the gas permeable member due to the gas permeable performance of the gas permeable member or the composition of the liquid that performs liquid-liquid reaction (for example, a liquid containing an emulsifier), By allowing the first pressure on the road side to be greater than the second pressure on the cavity portion side, smooth permeation of by-product gas can be achieved.

請求項9は請求項8において、前記圧力制御手段は、前記空洞部を吸引して該空洞部を減圧する吸引方式であることを特徴とする。   A ninth aspect of the present invention according to the eighth aspect is characterized in that the pressure control means is a suction system that sucks the cavity and depressurizes the cavity.

請求項10は請求項8において、前記圧力制御手段は、前記空洞部に高速気流を発生させてピトー管現象を生じさせる気体流方式であることを特徴とする。   A tenth aspect of the present invention is characterized in that, in the eighth aspect, the pressure control means is a gas flow system that generates a pitot tube phenomenon by generating a high-speed air flow in the cavity.

請求項11は請求項8において、前記圧力制御手段は、前記副生ガスが前記気体透過部材を透過する際の圧力損失以上の圧力を前記マイクロ流路側に加える加圧方式であることを特徴とする。   An eleventh aspect of the present invention is characterized in that, in the eighth aspect, the pressure control means is a pressurization method in which a pressure equal to or higher than a pressure loss when the by-product gas permeates the gas permeable member is applied to the microchannel side. To do.

請求項8〜11は、マイクロ流路側の第1の圧力が空洞部側の第2の圧力よりも大きくなるようにする圧力制御手段の各種の態様を示したものである。   The eighth to eleventh aspects show various aspects of the pressure control means for making the first pressure on the microchannel side larger than the second pressure on the cavity side.

請求項12は請求項5において、前記マイクロリアクターの装置本体を本体部材と蓋部材とで構成し、前記液体供給路から前記マイクロ流路の終端に至る液体流路及び前記空洞部の両方を前記本体部材に形成し、前記液体流路と前記空洞部との間に前記気体透過部材を設けたことを特徴とする。   A twelfth aspect of the present invention is the method according to the fifth aspect, wherein the main body of the microreactor is composed of a main body member and a lid member, and both the liquid flow path extending from the liquid supply path to the end of the micro flow path and the hollow portion are provided in the microreactor. It is formed in a main body member, and the gas permeable member is provided between the liquid channel and the cavity.

請求項12は、液体流路を気体透過部材で仕切って一部を空洞部として兼用するように装置本体を構成した場合である。   A twelfth aspect of the present invention is a case where the apparatus main body is configured so that the liquid flow path is partitioned by the gas permeable member and a part is also used as a hollow portion.

請求項13は請求項5において、前記マイクロリアクターの装置本体を本体部材と蓋部材とで構成し、前記液体供給路から前記マイクロ流路の終端に至る液体流路を前記本体部材に形成し、前記空洞部を前記蓋部材に形成し、本体部材と蓋部材とで前記気体透過部材を挟むことを特徴とする。   Claim 13 is the structure of claim 5, wherein the microreactor main body is composed of a main body member and a lid member, and a liquid flow path from the liquid supply path to the end of the micro flow path is formed in the main body member. The hollow portion is formed in the lid member, and the gas permeable member is sandwiched between the main body member and the lid member.

請求項13によれば、液体流路を本体部材に形成し、空洞部を蓋部材に形成し、本体部材と蓋部材とで気体透過部材を挟むようにしたので、マイクロ流路を形成する流路壁の上面部を簡単に気体透過部材で形成することができ、請求項11に比べて装置本体の製作が容易になる。   According to the thirteenth aspect, the liquid channel is formed in the main body member, the cavity is formed in the lid member, and the gas permeable member is sandwiched between the main body member and the lid member. The upper surface portion of the road wall can be easily formed of a gas permeable member, and the manufacture of the apparatus main body is facilitated as compared with the eleventh aspect.

請求項14は請求項5〜13の何れか1において、前記マイクロリアクターの装置本体を形成する材料は、金属、ガラス、セラミックス、プラスチック樹脂、シリコンの何れかであることを特徴とする。   A fourteenth aspect is characterized in that, in any one of the fifth to thirteenth aspects, the material forming the device body of the microreactor is any one of metal, glass, ceramics, plastic resin, and silicon.

請求項14に示す材料が微細なマイクロ流路を形成する微細加工に適しているからである。また、マイクロ流路の流れ状態を観察できるように、透明ガラスや透明プラスチック樹脂を使用するのが一層好ましい。   This is because the material shown in claim 14 is suitable for microfabrication that forms a fine microchannel. Further, it is more preferable to use transparent glass or transparent plastic resin so that the flow state of the microchannel can be observed.

以上説明したように、本発明のマイクロリアクターを用いた反応方法及びマイクロリアクターによれば、等価直径が例えば1mm以下の微細なマイクロ流路内の液液反応によって発生する副生ガスをマイクロ流路から効率的に脱ガスすることができるので、液液反応に伴って副生ガスが発生する化学反応をマイクロリアクターで行っても、マイクロ流路における液体の流れを不安定化させることなく液液反応を行うことができる。   As described above, according to the reaction method and microreactor using the microreactor of the present invention, the by-product gas generated by the liquid-liquid reaction in the microchannel having an equivalent diameter of, for example, 1 mm or less is microchannel. Therefore, even if a chemical reaction in which a by-product gas is generated in a liquid-liquid reaction is performed in a microreactor, the liquid flow in the microchannel is not destabilized. The reaction can be performed.

以下、添付図面に従って、本発明に係るマイクロリアクターを用いた反応方法及びマイクロリアクターの最良の実施の形態について説明する。   Hereinafter, a reaction method using a microreactor according to the present invention and a best embodiment of the microreactor will be described with reference to the accompanying drawings.

図1は本発明に係るマイクロリアクターの第1の実施の形態を概念的に示した斜視図であり、薄片状流型のマイクロリアクター10の場合である。図2(A)はマイクロリアクター本体(以下、装置本体12という)の上面図、図2(B)は断面図、図2(C)は下面図である。   FIG. 1 is a perspective view conceptually showing a first embodiment of a microreactor according to the present invention, which is a case of a flaky flow type microreactor 10. 2A is a top view of the microreactor body (hereinafter referred to as the apparatus body 12), FIG. 2B is a cross-sectional view, and FIG. 2C is a bottom view.

図1に示すように、薄片状流型のマイクロリアクター10は、主として、気体透過部材18を備えた装置本体12と、副生ガスの発生を伴う液液反応を行う液体L1、L2を液体供給管14、14を介して装置本体12に供給する液体供給手段16、16と、気体透過部材18の気体透過性能を向上させる圧力制御手段46とで構成される。尚、本実施の形態では2種類の液体L1、L2で液液反応を行う例で説明する。   As shown in FIG. 1, a flaky flow microreactor 10 mainly supplies a main body 12 having a gas permeable member 18 and liquids L1 and L2 for performing a liquid-liquid reaction accompanied by by-product gas generation. The liquid supply means 16 and 16 which supply to the apparatus main body 12 via the pipes 14 and 14 and the pressure control means 46 which improves the gas permeation performance of the gas permeation member 18 are comprised. In the present embodiment, an example in which a liquid-liquid reaction is performed with two types of liquids L1 and L2 will be described.

図2に示すように、装置本体12は、本体部材22と蓋部材24とで平板状の気体透過部材18をサンドイッチ状にした状態で互いに接着剤で接合し、その外側を上板20と下板21とで挟み込み、上板20と下板21の4角に形成されたボルト穴に通したボルト23とナット25とを締め付けることにより組み立てられる。本体部材22には2種類の液体L1、L2の液液反応を行うマイクロ流路26と該マイクロ流路26に液体L1、L2を合流させる2本の液体供給路28、28とから成るY字型液体流路30が形成される。一方、蓋部材24にはY字型液体流路30に対向してY字型空洞部36が形成され、Y字型液体流路30とY字型空洞部36とは気体透過部材18によって仕切られる。即ち、Y字型液体流路30を形成する流路壁の上面部が気体透過部材18によって構成され、気体透過部材18の上側にY字型空洞部36が形成されている。尚、本実施の形態では、気体透過部材18の上側にY字型空洞部36を形成して、後記するようにY字型空洞部36を減圧してマイクロ流路26で発生した副生ガスが気体透過部材18を透過し易いように構成したが、気体透過部材18の気体透過性能が優れており、減圧空洞部としてのY字型空洞部36を設ける必要がない場合には、気体透過部材18が大気に開放された構造の装置本体12でもよい。その場合には、マイクロ流路26で発生した副生ガスは気体透過部材18を透過して大気に直接放出される。また、本実施の形態では、液体供給路28とマイクロ流路26とからなるY字型液体流路30の上面部全体に気体透過部材18を設けることで説明したが、副生ガスが発生するマイクロ流路26の上面部のみに気体透過部材18を設けるようにしてもよい。   As shown in FIG. 2, the apparatus main body 12 is bonded to each other with an adhesive in a state where the plate-like gas permeable member 18 is sandwiched between the main body member 22 and the lid member 24, and the outside is joined to the upper plate 20 and the lower plate 20. It is assembled by clamping between the plate 21 and tightening a bolt 23 and a nut 25 that are passed through bolt holes formed at four corners of the upper plate 20 and the lower plate 21. The main body member 22 has a Y-shape comprising a microchannel 26 for performing a liquid-liquid reaction of two types of liquids L1 and L2 and two liquid supply channels 28 and 28 for joining the liquids L1 and L2 to the microchannel 26. A mold liquid channel 30 is formed. On the other hand, a Y-shaped cavity 36 is formed in the lid member 24 so as to face the Y-shaped liquid flow path 30, and the Y-shaped liquid flow path 30 and the Y-shaped cavity 36 are partitioned by the gas permeable member 18. It is done. That is, the upper surface portion of the flow channel wall forming the Y-shaped liquid flow channel 30 is configured by the gas permeable member 18, and the Y-shaped cavity portion 36 is formed above the gas permeable member 18. In the present embodiment, a Y-shaped cavity portion 36 is formed on the upper side of the gas permeable member 18, and the Y-shaped cavity portion 36 is decompressed as will be described later, and a by-product gas generated in the microchannel 26. However, if the Y-shaped cavity 36 as the decompression cavity is not required to be provided, the gas transmission member 18 can be used. The apparatus main body 12 having a structure in which the member 18 is open to the atmosphere may be used. In that case, the by-product gas generated in the micro flow channel 26 passes through the gas permeable member 18 and is directly released to the atmosphere. In the present embodiment, the gas permeable member 18 is provided on the entire upper surface of the Y-shaped liquid flow path 30 including the liquid supply path 28 and the micro flow path 26, but by-product gas is generated. The gas permeable member 18 may be provided only on the upper surface of the microchannel 26.

装置本体12を製作する上で、最も重要なポイントは如何に気体透過性能の良い気体透過部材18を使用するかであり、近年の高分子技術の進歩により例えばゴアテックス膜(商標)のような気体透過性能の良い膜が市販されており、このような膜を使用することができる。また、近年のマイクロマシンニング技術の進歩により、液体は通さないが気体は通す極めて微細な穴を金属やプラスチック樹脂等の硬質材料に開けることが可能になってきており、このような技術を使用して硬質材料を用いて気体透過部材18を製作することも可能である。いずれにしても本発明はこのような技術の進歩如何にかかわらず、液液反応によりマイクロ流路26に発生する副生ガスだけを透過させる気体透過部材18であればどのようなものでもよい。   In manufacturing the apparatus main body 12, the most important point is how to use the gas permeable member 18 having a good gas permeable performance. Membranes with good gas permeation performance are commercially available, and such membranes can be used. Also, due to recent advances in micromachining technology, it has become possible to open extremely fine holes that do not allow liquids to pass but allow gas to pass through hard materials such as metals and plastic resins. It is also possible to manufacture the gas permeable member 18 using a hard material. In any case, the present invention may be any gas permeable member 18 that allows only the by-product gas generated in the microchannel 26 by the liquid-liquid reaction to permeate regardless of the progress of such technology.

装置本体12の内部に形成されるマイクロ流路26は、等価直径が1mm(1000μm)以下、好ましくは500μm以下のマイクロチャンネル状の微細流路であることが好ましい。また、マイクロ流路26は、径方向断面の形状が四角形状のものが一般的であるが四角形状に限定するものではない。そして、液体供給路28、28を2本で構成する場合には、1本の液体供給路28の等価直径はマイクロ流路26の半分になるように設計することが好ましい。例えば、径方向断面が四角形状のマイクロ流路26の幅を500μm、深さを200μmとした場合には、1本の液体供給路28の幅を250μm、深さを200μmとする。また、マイクロ流路26の長さL(図2参照)は、液液反応が終了するに足る長さに設定され、液液反応の種類によって異なる。   The microchannel 26 formed inside the apparatus main body 12 is preferably a microchannel-shaped microchannel having an equivalent diameter of 1 mm (1000 μm) or less, preferably 500 μm or less. In addition, the micro flow path 26 is generally rectangular in cross-section in the radial direction, but is not limited to a quadrangular shape. When the two liquid supply paths 28 and 28 are configured, it is preferable to design the equivalent diameter of one liquid supply path 28 to be half that of the micro flow path 26. For example, when the width of the microchannel 26 having a quadrangular radial cross section is 500 μm and the depth is 200 μm, the width of one liquid supply path 28 is 250 μm and the depth is 200 μm. Further, the length L (see FIG. 2) of the micro flow channel 26 is set to a length sufficient to complete the liquid-liquid reaction, and varies depending on the type of the liquid-liquid reaction.

かかるマイクロオーダーの微細なY字型液体流路30やY字型空洞部36を有する装置本体12を製作するには微細加工技術が使用される。微細加工技術としては、例えば次のようなものがある。
(1) X線リソグラフィと電気メッキを組み合わせたLIGA技術
(2) EPON SU8を用いた高アスペクト比フォトリソグラフィ法
(3) 機械的マイクロ切削加工(ドリル径がマイクロオーダのドリルを高速回転するマイクロドリル加工等)
(4) Deep RIEによるシリコンの高アスペクト比加工法
(5) Hot Emboss加工法
(6) 光造形法
(7) レーザー加工法
(8) イオンビーム法
また、装置本体12を製作するのための材料としては、耐熱、耐圧及び耐溶剤性、加工容易性等の要求に応じて、金属、ガラス、セラミックス、プラスチック、シリコン、及びテフロン等を好適に使用できる。装置本体12の製作においては、Y字型液体流路30やY字型空洞部36の製作は勿論重要であるが、気体透過部材18を挟んで蓋部材24を本体部材22に接合する接合技術も重要である。蓋部材24の接合方法は、高温加熱による材料の変質や変形によるY字型液体流路30やY字型空洞部36の破壊を伴わず寸法精度を保った精密な方法が望ましく、製作材料との関係から固相接合(例えば、圧接接合や拡散接合等)や液相接合(例えば、溶接、共晶接合、はんだ付け、接着等)を選択することが好ましい。例えば、材料としてシリコンを使用する場合にシリコン同士を接合するシリコン直接接合や、ガラス同士を接合する融接、シリコンとガラスを接合する陽極接合、金属同士を接合する拡散接合等がある。セラミックスの接合については、金属のようにメカニカルなシール技術以外の接合技術が必要であり、アルミナに対してglass solderなる接合剤をスクリーン印刷で80μmに印刷し、圧力をかけずに440〜500°Cで処理する方法がある。また、研究段階ではあるが、新しい接合技術として、表面活性化接合、水素結合を用いた直接結合、HF(フッ化水素)水溶液を用いた接合等がある。
In order to manufacture the apparatus main body 12 having such micro-order fine Y-shaped liquid flow paths 30 and Y-shaped cavities 36, a fine processing technique is used. Examples of microfabrication techniques include the following.
(1) LIGA technology combining X-ray lithography and electroplating
(2) High aspect ratio photolithography using EPON SU8
(3) Mechanical micro-machining (micro-drilling that rotates a drill with a drill diameter of micro-order at high speed)
(4) High aspect ratio processing of silicon by deep RIE
(5) Hot Emboss processing method
(6) Stereolithography
(7) Laser processing method
(8) Ion beam method Further, as a material for manufacturing the apparatus main body 12, metal, glass, ceramics, plastic, silicon, and the like according to the requirements of heat resistance, pressure resistance and solvent resistance, ease of processing, etc. Teflon or the like can be suitably used. In manufacturing the apparatus main body 12, it is of course important to manufacture the Y-shaped liquid flow path 30 and the Y-shaped cavity 36, but a joining technique for joining the lid member 24 to the main body member 22 with the gas permeable member 18 interposed therebetween. It is also important. The lid member 24 is preferably joined by a precise method that maintains dimensional accuracy without breaking the Y-shaped liquid flow path 30 or the Y-shaped cavity 36 due to material alteration or deformation due to high-temperature heating. From this relationship, it is preferable to select solid phase bonding (for example, pressure bonding or diffusion bonding) or liquid phase bonding (for example, welding, eutectic bonding, soldering, adhesion, etc.). For example, when silicon is used as a material, there are silicon direct bonding for bonding silicon, fusion bonding for bonding glasses, anodic bonding for bonding silicon and glass, diffusion bonding for bonding metals, and the like. Joining ceramics requires joining techniques other than mechanical sealing techniques, such as metal, and a glass solder bonding agent is printed on alumina to 80 μm by screen printing, and 440 to 500 ° without applying pressure. There is a method of processing with C. Although it is in the research stage, new bonding techniques include surface activated bonding, direct bonding using hydrogen bonding, bonding using an HF (hydrogen fluoride) aqueous solution, and the like.

また、図2に示すように、本体部材22に形成された液体供給路28、28の端部位置にはそれぞれ液体L1、L2の液体導入口34、34が下板21を貫通して形成され、液体導入口34、34に液体供給管14、14が連結される。これにより、液体供給手段16、16から液体L1、L2が装置本体12に供給される。また、マイクロ流路26の端部位置には液液反応による反応生成液LMを排出させる液体排出口32が下板21を貫通して形成される。一方、蓋部材24に形成されたY字型空洞部36の3つの端部位置には、それぞれ開口38、39、41が上板20を貫通して形成され、この開口38、39、41にそれぞれ短管38A、39A、41Aが連結される。   Further, as shown in FIG. 2, liquid inlets 34 and 34 for the liquids L <b> 1 and L <b> 2 are formed through the lower plate 21 at the end positions of the liquid supply paths 28 and 28 formed in the main body member 22. The liquid supply pipes 14 and 14 are connected to the liquid inlets 34 and 34. As a result, the liquids L 1 and L 2 are supplied from the liquid supply means 16 and 16 to the apparatus main body 12. In addition, a liquid discharge port 32 through which the reaction product liquid LM generated by the liquid-liquid reaction is discharged is formed through the lower plate 21 at the end position of the microchannel 26. On the other hand, openings 38, 39, 41 are formed through the upper plate 20 at three end positions of the Y-shaped cavity 36 formed in the lid member 24. Short pipes 38A, 39A and 41A are connected to each other.

本発明のマイクロリアクター10で使用する液体供給手段16としては、液体L1、L2の供給圧力制御を兼ね備えた連続流動方式型のシリンジポンプを好適に使用することができ、以下シリンジポンプ16の例で説明する。マイクロリアクターの場合、液体L1、L2をマイクロ流路26に導入する流体制御技術が必要であり、特にマイクロオーダーの微細なマイクロ流路26での液体や気体の挙動は、マクロスケールとは異なる性質をもつため、マイクロスケールに適した流体制御方式を適用しなくてはならない。連続流動方式は、装置本体12の内部や装置本体12に至る流路内は全て液体L1、L2で満たされ、外部に用意したシリンジポンプ16によって、流体全体を駆動する方式であり、マイクロ流路26に供給する液体L1、L2の供給圧力、供給流量を任意に制御することができる。   As the liquid supply means 16 used in the microreactor 10 of the present invention, a continuous flow type syringe pump having the supply pressure control of the liquids L1 and L2 can be preferably used. explain. In the case of a microreactor, a fluid control technique for introducing the liquids L1 and L2 into the microchannel 26 is required. In particular, the behavior of the liquid and gas in the microchannel 26 that is micro order is different from the macro scale. Therefore, a fluid control system suitable for the micro scale must be applied. The continuous flow system is a system in which the inside of the apparatus main body 12 and the inside of the flow path reaching the apparatus main body 12 are filled with the liquids L1 and L2, and the entire fluid is driven by the syringe pump 16 prepared outside. The supply pressure and supply flow rate of the liquids L1 and L2 supplied to H.26 can be arbitrarily controlled.

図1に示すように、Y字型空洞部36の圧力を制御する圧力制御手段46は、主として、Y字型空洞部36を減圧する真空ポンプやアスピレータ等の吸引手段44と、Y字型空洞部36の圧力を測定する圧力計45と、圧力計45の測定値に基づいて吸引手段44の吸引力を調整するバルブ43の開度をコントロールするコントローラ47とで構成される。即ち、装置本体12の短管38A、39A、41Aのうち、短管38A、39Aは大気に開放された状態にされると共に、短管41Aには吸引管42を介して吸引手段44が連結される。そして、圧力計45で測定されたY字型空洞部36の圧力がコントローラ47に入力される。このように構成された圧力制御手段46によれば、吸引手段44を駆動すると、短管38A、39AからY字型空洞部36に吸い込まれたエアは短管41Aを通って排気されるので、Y字型空洞部36には図2の矢印33で示す高速の気流が発生し、ピトー管現象により気体透過部材18の微細な穴にY字型液体流路30側からY字型空洞部36側への気体透過力を発生させることができる。気流の速度はバルブ43の開度によって調整する。気体透過部材18の気体透過性能にもよるが、気流の速度は気体透過部材18による副生ガスのスムーズな透過を補助する程度でよく、Y字型空洞部36の穏やかな減圧が好ましい。従って、圧力制御手段46としてアスピレータを使用することも好ましい。圧力制御手段46で使用するバルブ43としては、10ミリ秒以下、より好ましくは5ミリ秒以下のレベルの応答速度で開閉動作を行ってバルブ開度を調整することのできるサーボバルブを使用することが好ましい。これにより、吸引手段44の吸引力を一定に維持することができるので、Y字型空洞部36に発生する気流速度を一定に維持することができる。   As shown in FIG. 1, the pressure control means 46 for controlling the pressure of the Y-shaped cavity 36 mainly includes a suction means 44 such as a vacuum pump or an aspirator for decompressing the Y-shaped cavity 36, and a Y-shaped cavity. A pressure gauge 45 that measures the pressure of the unit 36 and a controller 47 that controls the opening of the valve 43 that adjusts the suction force of the suction means 44 based on the measurement value of the pressure gauge 45. That is, of the short pipes 38A, 39A, 41A of the apparatus main body 12, the short pipes 38A, 39A are opened to the atmosphere, and the short pipe 41A is connected to the suction means 44 via the suction pipe 42. The Then, the pressure of the Y-shaped cavity 36 measured by the pressure gauge 45 is input to the controller 47. According to the pressure control means 46 configured as described above, when the suction means 44 is driven, the air sucked into the Y-shaped cavity 36 from the short pipes 38A and 39A is exhausted through the short pipe 41A. A high-speed air flow indicated by an arrow 33 in FIG. 2 is generated in the Y-shaped cavity 36, and the Y-shaped cavity 36 from the Y-shaped liquid flow path 30 side into the fine hole of the gas permeable member 18 due to the Pitot tube phenomenon. The gas permeability to the side can be generated. The speed of the airflow is adjusted by the opening degree of the valve 43. Although depending on the gas permeation performance of the gas permeable member 18, the velocity of the air flow may be sufficient to assist the smooth permeation of the by-product gas by the gas permeable member 18, and a gentle pressure reduction of the Y-shaped cavity 36 is preferable. Therefore, it is also preferable to use an aspirator as the pressure control means 46. As the valve 43 used in the pressure control means 46, a servo valve capable of adjusting the valve opening by performing an opening / closing operation at a response speed of 10 milliseconds or less, more preferably 5 milliseconds or less is used. Is preferred. As a result, the suction force of the suction means 44 can be kept constant, so that the air velocity generated in the Y-shaped cavity 36 can be kept constant.

圧力制御手段46は、上記したY字型空洞部36の一端側から他端側への気体流を発生させる気体流方式に限定されるものではなく、短管38A、39Aを閉塞させた状態で吸引手段44を駆動してY字型空洞部36の圧力を減圧する吸引方式、あるいは副生ガスが気体透過部材18を透過する際の圧力損失以上の圧力をY字型液体流路30側に加える加圧方式も採用することができる。Y字型液体流路30の加圧は後記する液体供給手段16によって制御することができる。この加圧方式の場合、短管38A、39A、41Aを大気に開放してY字型空洞部36を大気圧状態にしてもよく、あるいは気流方式や吸引方式を併用してY字型空洞部36を減圧してもよい。   The pressure control means 46 is not limited to the gas flow method for generating a gas flow from one end side to the other end side of the Y-shaped cavity 36 described above, and the short pipes 38A and 39A are closed. The suction means 44 is driven to reduce the pressure of the Y-shaped cavity 36, or a pressure higher than the pressure loss when the by-product gas permeates the gas permeable member 18 is applied to the Y-shaped liquid channel 30 side. An applied pressure method can also be employed. The pressurization of the Y-shaped liquid channel 30 can be controlled by the liquid supply means 16 described later. In the case of this pressurization method, the short pipes 38A, 39A, 41A may be opened to the atmosphere so that the Y-shaped cavity 36 is brought into an atmospheric pressure state, or the Y-shaped cavity is combined with an airflow method or a suction method. 36 may be depressurized.

本実施の形態では特に示さないが、マイクロリアクター10での液液反応の温度を制御する温度制御手段を設けることが好ましい。マイクロリアクター10において反応を行う際の温度制御方法には、古典的な方法として、温水、冷水をマイクロリアクター内に供給する方法がある。この他にも、従来から行われている温度制御方法には、金属抵抗線やPolysilicon などのヒータ構造をマイクロリアクターに作り込む方法などがあり、金属抵抗線やPolysilicon などのヒータ構造の場合には、加熱についてはこれを使用し、冷却については自然冷却でサーマルサイクルを行うことで温度を制御する。この場合の温度のセンシングについては、金属抵抗線の場合には同じ抵抗線をもう一つ作り込んでおき、その抵抗値の変化に基づいて温度検出を行い、Polysilicon の場合には、熱電対を用いて温度検出を行う方法が一般的に採用されている。また、近年においては、ペルチェ素子を用いた温度制御機能を装置本体12内に組み込むことで、反応の際の温度制御を精度良く行うことも試みられている。いずれにしても、温度制御そのものは、従来からの温度制御技術でもペルチェ素子に代表される新規な温度制御技術でも可能であり、用途や装置本体12の材料等に応じた加熱・冷却機構と温度センシング機構の選択、ならびに外部制御系の構成を組み合わせて最適な方法を選択することが重要である。   Although not particularly shown in the present embodiment, it is preferable to provide a temperature control means for controlling the temperature of the liquid-liquid reaction in the microreactor 10. As a temperature control method for carrying out the reaction in the microreactor 10, there is a classic method of supplying hot water and cold water into the microreactor. In addition to this, conventional temperature control methods include a method in which a heater structure such as a metal resistance wire or Polysilicon is built into a microreactor. In the case of a heater structure such as a metal resistance wire or Polysilicon, This is used for heating and the temperature is controlled by performing a thermal cycle with natural cooling for cooling. For temperature sensing in this case, in the case of a metal resistance wire, make another same resistance wire, detect the temperature based on the change in the resistance value, and in the case of Polysilicon, use a thermocouple. A method for detecting the temperature by using this method is generally employed. In recent years, an attempt has been made to accurately control the temperature during the reaction by incorporating a temperature control function using a Peltier element into the apparatus main body 12. In any case, the temperature control itself can be performed by a conventional temperature control technique or a new temperature control technique represented by a Peltier element. The heating / cooling mechanism and temperature according to the application and the material of the apparatus main body 12 can be used. It is important to select the optimum method by combining the selection of the sensing mechanism and the configuration of the external control system.

次に、上記の如く構成された薄片状流型のマイクロリアクター10を用いて副生ガスの発生を伴う液液反応を行う本発明の反応方法を説明する。   Next, the reaction method of the present invention in which a liquid-liquid reaction accompanied by generation of by-product gas is performed using the flaky flow type microreactor 10 configured as described above.

シリンジポンプ16、16から液体供給路28、28に供給された液体L1、L2は、合流部40で1本のマイクロ流路26に合流し、薄片状の層流として流通しつつ、液体L1、L2同士がその接触界面の法線方向へ拡散して液液反応を行う。かかる液液反応によって副生ガスが発生し、発生した副生ガスの気泡はマイクロ流路26に溜まって塊となるために、マイクロ流路26には気液混相流状態のスラグ流が発生する。これにより、反応させるべき液体L1、L2の連続処理の流れが妨げられたり、乱されたりすることで連続処理の流れが不安定になって反応場が不均一になると共に、反応の平衡が反応促進側に進みにくくなる。また、反応のための液温制御を行う場合、副生ガスを連続処理の流れの中で効率的に除去できないと、気体は熱伝導率が小さいので、反応温度を精度良く制御できなくなる。   The liquids L1 and L2 supplied from the syringe pumps 16 and 16 to the liquid supply paths 28 and 28 merge into the single microchannel 26 at the junction 40 and flow as a laminar laminar flow, while the liquids L1 and L2 are circulated. L2s diffuse in the normal direction of the contact interface to perform a liquid-liquid reaction. By-product gas is generated by the liquid-liquid reaction, and bubbles of the generated by-product gas are accumulated in the micro flow path 26 and become a lump, so that a slag flow in a gas-liquid mixed phase state is generated in the micro flow path 26. . As a result, the flow of the continuous processing of the liquids L1 and L2 to be reacted is hindered or disturbed, the flow of the continuous processing becomes unstable, the reaction field becomes non-uniform, and the reaction equilibrium is It becomes difficult to advance to the promotion side. In addition, when controlling the liquid temperature for the reaction, if the by-product gas cannot be efficiently removed in the flow of continuous processing, the gas has a low thermal conductivity, so the reaction temperature cannot be controlled with high accuracy.

そこで、本発明の薄片状流型のマイクロリアクター10によれば、Y字型液体流路30を形成する流路壁の上面部を、液体は通さないが気体は通す気体透過部材18で構成し、液液反応に伴ってマイクロ流路26に発生する副生ガスだけを気体透過部材18を介してY字型空洞部36に透過させながら液液反応を行わせるようにした。これにより、図3に示すように、液体L1、L2による液液反応で発生した副生ガスの気泡48は液体中を浮上して気体透過部材18を透過し、Y字型空洞部36に排出される。Y字型空洞部36に排出された副生ガスはY字型空洞部36を流れる気流に伴われて短管41Aから装置本体12外に排出される。   Therefore, according to the flaky flow type microreactor 10 of the present invention, the upper surface portion of the flow channel wall forming the Y-shaped liquid flow channel 30 is constituted by the gas permeable member 18 that does not allow liquid to pass but allows gas to pass. The liquid-liquid reaction is performed while only the by-product gas generated in the microchannel 26 accompanying the liquid-liquid reaction is transmitted through the gas-permeable member 18 to the Y-shaped cavity 36. As a result, as shown in FIG. 3, the by-product gas bubbles 48 generated by the liquid-liquid reaction with the liquids L <b> 1 and L <b> 2 float up in the liquid, pass through the gas permeable member 18, and are discharged into the Y-shaped cavity 36. Is done. The by-product gas discharged to the Y-shaped cavity 36 is discharged from the short tube 41 </ b> A to the outside of the apparatus main body 12 along with the airflow flowing through the Y-shaped cavity 36.

このように本発明によれば、等価直径が例えば1mm以下の微細なマイクロ流路26内の液液反応によって発生する副生ガスをマイクロ流路26から効率的に脱ガスすることができるので、液液反応に伴って副生ガスが発生する化学反応をマイクロリアクターで行っても、マイクロ流路26における液体L1、L2の流れを不安定化させることなく液液反応を行うことができる。従って、反応の平衡が反応促進側に進み易くなると共に、反応温度を精度良く制御し易くなる。   As described above, according to the present invention, the by-product gas generated by the liquid-liquid reaction in the fine microchannel 26 having an equivalent diameter of, for example, 1 mm or less can be efficiently degassed from the microchannel 26. Even if a chemical reaction in which a by-product gas is generated with the liquid-liquid reaction is performed in the microreactor, the liquid-liquid reaction can be performed without destabilizing the flow of the liquids L1 and L2 in the microchannel 26. Accordingly, the equilibrium of the reaction can easily proceed to the reaction promoting side, and the reaction temperature can be easily controlled with high accuracy.

また、図2における装置本体12では、Y字型液体流路30を本体部材22に形成し、Y字型空洞部36を蓋部材24に形成したが、図4のようにY字型液体流路30とY字型空洞部36の両方を本体部材22に形成してもよい。即ち、図4に示すように、本体部材22にY字型の一体空間を形成し、この一体空間を気体透過部材18で上空間と下空間とに仕切ることによりY字型液体流路30とY字型空洞部36とを形成する方法である。この場合には、Y字型空洞部36の幅(W1)をY字型液体流路30の幅(W2)よりも一回り大きくすることでY字型液体流路30とY字型空洞部36との境界に段差49を形成し、この段差49に気体透過部材18を嵌め込んで接着剤等により接合するとよい。   2, the Y-shaped liquid flow path 30 is formed in the main body member 22, and the Y-shaped cavity 36 is formed in the lid member 24. However, as shown in FIG. Both the passage 30 and the Y-shaped cavity 36 may be formed in the main body member 22. That is, as shown in FIG. 4, a Y-shaped integrated space is formed in the main body member 22, and the integrated space is partitioned into an upper space and a lower space by the gas permeable member 18, thereby This is a method of forming the Y-shaped cavity 36. In this case, the Y-shaped liquid channel 30 and the Y-shaped cavity are made larger by making the width (W1) of the Y-shaped cavity 36 larger than the width (W2) of the Y-shaped liquid channel 30. A step 49 may be formed at the boundary with 36, and the gas permeable member 18 may be fitted into the step 49 and bonded by an adhesive or the like.

次に、図5に従って本発明のマイクロリアクターの第2の実施の形態である、円環状流型のマイクロリアクター60の場合について説明する。第2の実施の形態の場合も液液反応を行う液体を2種類の液体L1、L2を使用した場合で説明する。   Next, the case of an annular flow type microreactor 60, which is a second embodiment of the microreactor of the present invention, will be described with reference to FIG. In the case of the second embodiment as well, the liquid in which the liquid-liquid reaction is performed will be described using two types of liquids L1 and L2.

図5に示すように、薄片状流型のマイクロリアクター60は、主として、気体透過部材72を備えた装置本体61と、副生ガスの発生を伴う液液反応を行う液体L1、L2を液体供給管104、106を介して装置本体61に供給する液体供給手段16、16(図5では省略しており図1参照)と、気体透過部材72の気体透過性能を向上させる圧力制御手段118とで構成される。尚、第2の実施の形態の場合も、2種類の液体L1、L2で液液反応を行う例で説明する。   As shown in FIG. 5, a laminar flow type microreactor 60 mainly supplies an apparatus main body 61 having a gas permeable member 72 and liquids L1 and L2 for performing a liquid-liquid reaction accompanied by by-product gas generation. Liquid supply means 16 and 16 (not shown in FIG. 5; see FIG. 1) for supplying to the apparatus main body 61 via the pipes 104 and 106, and pressure control means 118 for improving the gas permeation performance of the gas permeation member 72 Composed. In the second embodiment, an example in which a liquid-liquid reaction is performed with two types of liquids L1 and L2 will be described.

図5に示されるように、円環状型のマイクロリアクター60は、全体として略円柱状に形成されており、装置の外殻部を構成する円筒状の円管部材62を備えている。ここで、図中における直線Sは装置の軸心を示しており、この軸心Sに沿った方向を装置の軸方向として以下の説明を行う。この円管部材62の先端面には液体L1、L2が反応した後の反応生成液LMの吐出口64が開口し、また円管部材62の先端部には吐出口64の外周側に延出するようにリング状のフランジ部66が設けられる。このフランジ部66は反応生成液LMに対して次の処理を行う配管等に接続される。   As shown in FIG. 5, the annular microreactor 60 is formed in a substantially cylindrical shape as a whole, and includes a cylindrical circular tube member 62 that constitutes an outer shell portion of the apparatus. Here, the straight line S in the figure indicates the axial center of the apparatus, and the following description will be made with the direction along the axial center S as the axial direction of the apparatus. A discharge port 64 for the reaction product liquid LM after the reaction of the liquids L1 and L2 is opened at the front end surface of the circular tube member 62, and the front end portion of the circular tube member 62 extends to the outer peripheral side of the discharge port 64. Thus, a ring-shaped flange portion 66 is provided. The flange portion 66 is connected to a pipe or the like that performs the next process on the reaction product liquid LM.

円管部材62は、その基端部側に胴体部63よりも大径な大径部68を有すると共に、胴体部63の基端位置には、中心部が丸穴状に開口した第1仕切板70が円管部材62の内側に張り出すように設けられる。胴体部63内には、該胴体部63内の空間を軸方向に沿って仕切る円筒状の気体透過部材72が設けられ、気体透過部材72の両端が第1仕切板70の開口周縁とフランジ部66の開口周縁とに固着支持される。これにより、胴体部63内が気体透過部材72によって内側空間と外側空間の2つの空間に仕切られる。ここで、内側空間は液体L1、L2が流れる断面円環状の円環状液体流路74を形成すると共に、外側空間は円環状液体流路74で発生した副生ガスが気体透過部材72を介して透過する断面円環状の円環状空洞部76を形成する。即ち、円環状液体流路74を形成する流路壁全体が気体透過部材72で構成され、気体透過部材72の外側に円環状空洞部76が形成されている。胴体部63と気体透過部材72との間には、複数個のスペーサ78(本実施の形態では4個)が介装され、円環状空洞部76の幅W1(図5(A)参照)が設定される。円環状型のマイクロリアクター60のように、円環状液体流路74の流路壁全体を気体透過部材72で構成する場合には、マイクロマシンニング技術により、金属材料やプラスチック樹脂材料等の硬質材料に、液体は通さないが気体は通す極めて微細な穴を開けることにより気体透過部材72を製作するとよい。   The circular pipe member 62 has a large-diameter portion 68 having a diameter larger than that of the body portion 63 on the base end side, and a first partition having a central portion opened in a round hole shape at the base end position of the body portion 63. The plate 70 is provided so as to protrude inside the circular tube member 62. A cylindrical gas permeable member 72 for partitioning the space in the body portion 63 along the axial direction is provided in the body portion 63, and both ends of the gas permeable member 72 are connected to the opening peripheral edge of the first partition plate 70 and the flange portion. 66 is firmly fixed to the peripheral edge of the opening. As a result, the body portion 63 is partitioned into two spaces, an inner space and an outer space, by the gas permeable member 72. Here, the inner space forms an annular liquid channel 74 having an annular cross section through which the liquids L1 and L2 flow, and the outer space is formed by the by-product gas generated in the annular liquid channel 74 via the gas permeable member 72. An annular cavity 76 having an annular cross section is formed. That is, the entire flow path wall forming the annular liquid flow path 74 is constituted by the gas permeable member 72, and the annular cavity 76 is formed outside the gas permeable member 72. A plurality of spacers 78 (four in the present embodiment) are interposed between the body 63 and the gas permeable member 72, and the width W1 of the annular cavity 76 (see FIG. 5A). Is set. When the entire flow path wall of the annular liquid flow path 74 is configured by the gas permeable member 72 as in the annular microreactor 60, it is made of a hard material such as a metal material or a plastic resin material by a micromachining technique. The gas permeable member 72 may be manufactured by making a very fine hole that does not allow liquid to pass but allows gas to pass.

円管部材62の基端面は円板状の蓋板80により閉塞されており、この蓋板80の中心部には円形の嵌挿穴82が穿設されている。円管部材62内には、その基端部側から円管部材62内へ挿入されるように円柱状の整流部材84が同軸的に設けられており、整流部材84の基端部は蓋板80の嵌挿穴82に嵌挿支持される。   The base end surface of the circular tube member 62 is closed by a disc-shaped lid plate 80, and a circular fitting hole 82 is formed in the center of the lid plate 80. In the circular pipe member 62, a columnar rectifying member 84 is provided coaxially so as to be inserted into the circular pipe member 62 from the base end side thereof, and the base end of the rectifying member 84 is a lid plate. It is inserted into and supported by the 80 insertion holes 82.

円管部材62の大径部68部分は、中心部が丸穴状に開口した第2仕切板86によって大径部68内の空間が2等分されるように区画されており、液体L1が導入される第1ヘッダー部88、液体L2が導入される第2ヘッダー部90とされる。第2仕切板86の開口周縁から円管部材62の軸方向に突出するように円筒状の隔壁部材92が第2仕切板86に一体的に設けられる。この隔壁部材92により、円環状液体流路74の途中までが2分割され、気体透過部材72と隔壁部材92との間に第1ヘッダー部88に導入された液体L1の供給路である第1の液体供給路94が形成され、隔壁部材92と整流部材84との間に第2ヘッダー部90に導入された液体L2の供給路である第2の液体供給路96が形成される。そして、気体透過部材72の内周面と隔壁部材92の外周面との間に複数個(本実施の形態では4個)のスペーサ98が介装されると共に、隔壁部材92と整流部材84との間に複数個(本実施の形態では4個)のスペーサ100が介装される。これら複数個のスペーサ98、100はそれぞれ矩形プレート状に形成され、その表裏面部が円環状液体流路74における流通方向(矢印F方向)と平行になるように支持される。これにより、第1の液体供給路94の流路幅W2及び第2の液体供給路96の流路幅W3が設定される。   The large-diameter portion 68 of the circular tube member 62 is partitioned so that the space in the large-diameter portion 68 is divided into two equal parts by a second partition plate 86 whose center is opened in a round hole shape. The first header part 88 to be introduced and the second header part 90 to which the liquid L2 is introduced are used. A cylindrical partition member 92 is provided integrally with the second partition plate 86 so as to protrude from the opening periphery of the second partition plate 86 in the axial direction of the circular tube member 62. The partition member 92 divides the annular liquid channel 74 halfway into two parts, and is a first supply path for the liquid L1 introduced into the first header portion 88 between the gas permeable member 72 and the partition member 92. The liquid supply path 94 is formed, and a second liquid supply path 96 that is a supply path of the liquid L2 introduced into the second header portion 90 is formed between the partition wall member 92 and the rectifying member 84. A plurality (four in this embodiment) of spacers 98 are interposed between the inner peripheral surface of the gas permeable member 72 and the outer peripheral surface of the partition member 92, and the partition member 92, the rectifying member 84, A plurality (four in this embodiment) of spacers 100 are interposed between the two. The plurality of spacers 98 and 100 are each formed in a rectangular plate shape, and are supported so that the front and back surface portions thereof are parallel to the flow direction (arrow F direction) in the annular liquid channel 74. Thereby, the flow path width W2 of the first liquid supply path 94 and the flow path width W3 of the second liquid supply path 96 are set.

また、円管部材62内には、隔壁部材92よりも先端側であって整流部材84の円錐部84Aよりも基端部側に第1及び第2の液体供給路94、96に連通する断面円環状の空間が形成され、この断面円環状の空間は、液体L1、L2とが合流して副生ガスの発生を伴う液液反応を行う円環状マイクロ流路102とされる。この場合、円環状マイクロ流路102内の出口部で液体L1、L2の液液反応が完了している必要があるので、円環状マイクロ流路102の流通方向に沿った路長PL(図5(A)参照)は、液体L1、L2の液液反応が完了する長さに設定する必要がある。尚、上記したように円環状液体流路74の流路壁全体を気体透過部材72で構成するようにしたが、液体L1、L2が反応して副生ガスを発生する円環状マイクロ流路102の流路壁部分のみを気体透過部材72で構成してもよい。   In the circular tube member 62, a cross section that communicates with the first and second liquid supply paths 94 and 96 on the distal end side of the partition wall member 92 and on the proximal end side of the conical portion 84 </ b> A of the rectifying member 84. An annular space is formed, and the annular space with the cross-section is formed into an annular microchannel 102 in which the liquids L1 and L2 merge to perform a liquid-liquid reaction accompanied by the generation of by-product gas. In this case, since the liquid-liquid reaction of the liquids L1 and L2 needs to be completed at the outlet in the annular microchannel 102, the path length PL along the circulation direction of the annular microchannel 102 (FIG. 5). (Refer to (A)) needs to be set to a length at which the liquid-liquid reaction of the liquids L1 and L2 is completed. As described above, the entire flow path wall of the annular liquid flow path 74 is configured by the gas permeable member 72. However, the annular micro flow path 102 in which the liquids L1 and L2 react to generate a by-product gas. Only the flow path wall portion may be configured by the gas permeable member 72.

また、円管部材62の基端面に設けられた蓋板80には、第1及び第2の液体供給路94、96に連通する嵌挿穴が穿設されており、これらの嵌挿穴に、それぞれ第1及び第2の液体供給管104、106が接続される。そして、2本の液体供給管104、106に、図1に示した液体L1、L2を供給するシリンジポンプ16、16がそれぞれ接続され、液体供給管104、106を通して第1及び第2のヘッダー部88、90には液液反応を行う液体L1、L2が加圧状態で供給される。図5(B)に示されるように、第1及び第2の液体供給路94、96の先端部には、それぞれ円環状マイクロ流路102内へ開口する第1及び第2の液体供給口108、110が形成される。これらの供給口108、110は、それぞれ軸心Sを中心とする円軌跡に沿って断面円環状に開口し、互いに同心円状となるように配設されている。ここで、前記した開口幅W2、W3は、それぞれの供給口108、110の開口面積を規定し、この供給口108、110の開口面積と液体L1、L2の供給量に応じて、供給口108、110を通して円環状マイクロ流路102へ導入される液体L1、L2の初期流速が定まる。   The lid plate 80 provided on the base end surface of the circular pipe member 62 is provided with fitting insertion holes communicating with the first and second liquid supply paths 94 and 96. The first and second liquid supply pipes 104 and 106 are connected, respectively. The syringe pumps 16 and 16 for supplying the liquids L1 and L2 shown in FIG. 1 are connected to the two liquid supply pipes 104 and 106, respectively, and the first and second header sections are connected through the liquid supply pipes 104 and 106, respectively. The liquids L1 and L2 that perform liquid-liquid reaction are supplied to 88 and 90 in a pressurized state. As shown in FIG. 5B, the first and second liquid supply ports 108 that open into the annular microchannel 102 are respectively provided at the distal ends of the first and second liquid supply paths 94 and 96. 110 are formed. These supply ports 108 and 110 each have an annular cross section along a circular locus centered on the axis S, and are arranged so as to be concentric with each other. Here, the opening widths W2 and W3 described above define the opening areas of the supply ports 108 and 110, respectively, and the supply ports 108 according to the opening areas of the supply ports 108 and 110 and the supply amounts of the liquids L1 and L2. , 110, the initial flow rates of the liquids L1 and L2 introduced into the annular microchannel 102 are determined.

円管部材62内における円環状マイクロ流路102よりも先端側の空間は、円環状マイクロ流路102内で液体L1、L2の反応が行われた反応生成液LMが吐出口64に向かって流れる出液路112とされる。また、円管部材62周面の基端面側(蓋板側)には短管114が連結されると共に、円管部材62周面の先端面側(フランジ側)には短管116が連結される。   The reaction product liquid LM in which the reactions of the liquids L1 and L2 are performed in the annular microchannel 102 flows toward the discharge port 64 in the space on the tip side of the annular microchannel 102 in the circular tube member 62. A liquid discharge path 112 is provided. Further, the short tube 114 is connected to the base end surface side (the cover plate side) of the circumferential surface of the circular tube member 62, and the short tube 116 is connected to the distal surface side (flange side) of the circumferential surface of the circular tube member 62. The

円環状空洞部76の圧力を制御する圧力制御手段118は、主として、円環状空洞部76を減圧する真空ポンプやアスピレータ等の吸引手段120と、円環状空洞部76の圧力を測定する圧力計122と、圧力計122の測定値に基づいて吸引手段120の吸引力を調整するバルブ124の開度をコントロールするコントローラ126とで構成される。即ち、装置本体61の短管114、116のうち、短管114は大気に開放された状態にされると共に、短管116には吸引管128を介して吸引手段120が連結される。そして、圧力計122で測定された円環状空洞部76の圧力がコントローラ126に入力される。このように構成された圧力制御手段118によれば、吸引手段120を駆動すると、短管114から円環状空洞部76に吸い込まれたエアは短管116を通って排気されるので、円環状空洞部76には図5の矢印130で示す高速の気流が発生し、ピトー管現象により気体透過部材72の微細な穴に円環状液体流路74側から円環状空洞部76側への気体透過力を発生させることができる。気流の速度はバルブ124の開度によって調整する。気体透過部材72の気体透過性能にもよるが、気流の速度は気体透過部材72による副生ガスのスムーズな透過を補助する程度でよく、円環状空洞部76の穏やかな減圧が好ましい。従って、圧力制御手段118としてアスピレータを使用することも好ましい。圧力制御手段118で使用するバルブ124としては、10ミリ秒以下、より好ましくは5ミリ秒以下のレベルの応答速度で開閉動作を行ってバルブ開度を調整することのできるサーボバルブを使用することが好ましい。これにより、吸引手段120の吸引力を一定に維持することができるので、円環状空洞部76に発生する気流速度を一定に維持することができる。   The pressure control means 118 for controlling the pressure of the annular cavity 76 mainly includes a suction means 120 such as a vacuum pump or an aspirator for reducing the pressure of the annular cavity 76, and a pressure gauge 122 for measuring the pressure of the annular cavity 76. And a controller 126 that controls the opening degree of the valve 124 that adjusts the suction force of the suction means 120 based on the measured value of the pressure gauge 122. That is, of the short tubes 114 and 116 of the apparatus main body 61, the short tube 114 is opened to the atmosphere, and the suction unit 120 is connected to the short tube 116 via the suction tube 128. Then, the pressure of the annular cavity 76 measured by the pressure gauge 122 is input to the controller 126. According to the pressure control means 118 configured in this way, when the suction means 120 is driven, the air sucked into the annular cavity 76 from the short pipe 114 is exhausted through the short pipe 116, so that the annular cavity A high-speed air flow indicated by an arrow 130 in FIG. 5 is generated in the portion 76, and the gas permeation force from the annular liquid channel 74 side to the annular cavity 76 side in the minute hole of the gas permeable member 72 due to the Pitot tube phenomenon. Can be generated. The speed of the airflow is adjusted by the opening degree of the valve 124. Although depending on the gas permeation performance of the gas permeable member 72, the velocity of the air flow may be sufficient to assist the smooth permeation of the by-product gas by the gas permeable member 72, and gentle pressure reduction of the annular cavity 76 is preferable. Therefore, it is also preferable to use an aspirator as the pressure control means 118. As the valve 124 used in the pressure control means 118, a servo valve capable of adjusting the valve opening by performing an opening / closing operation at a response speed of 10 milliseconds or less, more preferably 5 milliseconds or less is used. Is preferred. As a result, the suction force of the suction means 120 can be kept constant, so that the air velocity generated in the annular cavity 76 can be kept constant.

圧力制御手段118は、上記した円環状空洞部76の一端側から他端側への気体流を発生させる気体流方式に限定されるものではなく、短管114を閉塞させた状態で吸引手段120を駆動して円環状空洞部76の圧力を減圧する吸引方式、あるいは副生ガスが気体透過部材72を透過する際の圧力損失以上の圧力を円環状液体流路74側に加える加圧方式も採用することができる。円環状液体流路74の加圧は後記する液体供給手段16によって制御することができる。この加圧方式の場合、短管114、116を大気に開放して円環状空洞部76を大気圧状態にしてもよく、あるいは気流方式や吸引方式を併用して円環状空洞部76を減圧してもよい。   The pressure control means 118 is not limited to a gas flow system that generates a gas flow from one end side to the other end side of the annular cavity 76 described above, and the suction means 120 is in a state where the short pipe 114 is closed. A suction method for reducing the pressure of the annular cavity 76 by driving the pressure, or a pressurization method for applying a pressure higher than the pressure loss when the by-product gas permeates the gas permeable member 72 to the annular liquid channel 74 side. Can be adopted. The pressurization of the annular liquid channel 74 can be controlled by the liquid supply means 16 described later. In the case of this pressurization method, the short tubes 114 and 116 may be opened to the atmosphere so that the annular cavity 76 is brought into an atmospheric pressure state, or the annular cavity 76 is decompressed by using an airflow method or a suction method. May be.

次に、上記の如く構成された円環状流型のマイクロリアクター60を用いて副生ガスを伴う液液反応を行う本発明の反応方法を説明する。   Next, the reaction method of the present invention in which a liquid-liquid reaction with by-product gas is performed using the annular flow type microreactor 60 configured as described above will be described.

シリンジポンプ16,16から第1及び第2の液体供給路94、96に供給された液体L1、L2は、円環状マイクロ流路102で合流して同心円状に積層された断面円環状の層流となって流通する。そして、円環状マイクロ流路102内を流通する2つの液体L1、L2は、互いに隣接する層流間の接触界面の法線方向へ拡散して液液反応を行う。かかる液液反応によって発生した副生ガスの気泡は円環状マイクロ流路96に溜まって塊となるために、円環状マイクロ流路102にはスラグ流が発生する。これにより、反応させるべき液体L1、L2の連続処理の流れを妨げたり、乱したりすることで連続処理の流れが不安定になって反応場が不均一になると共に、反応の平衡が反応促進側に進みにくくなる。また、反応のための液温制御を行う場合、副生ガスを連続処理の流れの中で効率的に除去できないと、気体は熱伝導率が小さいので、反応温度を精度良く制御できなくなる。   The liquids L1 and L2 supplied from the syringe pumps 16 and 16 to the first and second liquid supply passages 94 and 96 merge in the annular microchannel 102 and are stacked concentrically in a circular cross section. It becomes and circulates. Then, the two liquids L1 and L2 flowing through the annular microchannel 102 are diffused in the normal direction of the contact interface between the adjacent laminar flows to perform a liquid-liquid reaction. By-product gas bubbles generated by the liquid-liquid reaction accumulate in the annular micro-channel 96 and become a lump, so that a slag flow is generated in the annular micro-channel 102. This obstructs or disturbs the continuous processing flow of the liquids L1 and L2 to be reacted, thereby making the continuous processing flow unstable and making the reaction field non-uniform, and the reaction equilibrium promotes the reaction. It becomes difficult to go to the side. In addition, when controlling the liquid temperature for the reaction, if the by-product gas cannot be efficiently removed in the flow of continuous processing, the gas has a low thermal conductivity, so the reaction temperature cannot be controlled with high accuracy.

そこで、本発明の円環状流型のマイクロリアクター60によれば、円環状液体流路74を形成する円筒状の流路壁の全体を、液体は通さないが気体は通す気体透過部材72で構成し、液液反応に伴って円環状マイクロ流路102に発生する副生ガスだけを気体透過部材72を介して円環状空洞部76に透過させながら液液反応を行わせるようにした。これにより、図6に示すように、液体L1、L2による液液反応で発生した副生ガスの気泡48は気体透過部材72を透過し、円環状空洞部76に排出される。円環状空洞部76に排出された副生ガスは円環状空洞部76を流れる気流に伴われて短管116から装置本体61外に排出される。   Therefore, according to the annular flow type microreactor 60 of the present invention, the entire cylindrical flow path wall forming the circular liquid flow path 74 is constituted by the gas permeable member 72 that does not allow liquid to pass but allows gas to pass. Then, the liquid-liquid reaction is performed while only the by-product gas generated in the annular micro-channel 102 due to the liquid-liquid reaction is transmitted through the gas-permeable member 72 to the annular cavity 76. As a result, as shown in FIG. 6, the by-product gas bubbles 48 generated by the liquid-liquid reaction with the liquids L <b> 1 and L <b> 2 pass through the gas permeable member 72 and are discharged to the annular cavity 76. The by-product gas discharged to the annular cavity 76 is discharged from the short tube 116 to the outside of the apparatus main body 61 along with the airflow flowing through the annular cavity 76.

これにより、本発明の第2の実施の形態の場合にも、円環状液体流路74を流れる液体L1、L2の液液反応により、等価直径が例えば1mm以下の微細な円環状マイクロ流路102で副生ガスが発生しても、発生する副生ガスを円環状マイクロ流路102から効率的に脱ガスすることができる。従って、液液反応に伴って副生ガスが発生する化学反応をマイクロリアクターで行っても、円環状マイクロ流路102における液体L1、L2の流れを不安定化させることなく液液反応を行うことができる。従って、反応の平衡が反応促進側に進み易くなると共に、反応温度を精度良く制御し易くなる。   Thereby, also in the case of the second embodiment of the present invention, due to the liquid-liquid reaction of the liquids L1 and L2 flowing through the annular liquid channel 74, a fine annular microchannel 102 having an equivalent diameter of 1 mm or less, for example. Even if the by-product gas is generated, the generated by-product gas can be efficiently degassed from the annular microchannel 102. Therefore, even if a chemical reaction in which a by-product gas is generated with the liquid-liquid reaction is performed in the microreactor, the liquid-liquid reaction is performed without destabilizing the flow of the liquids L1 and L2 in the annular microchannel 102. Can do. Accordingly, the equilibrium of the reaction can easily proceed to the reaction promoting side, and the reaction temperature can be easily controlled with high accuracy.

本発明の薄片状流型のマイクロリアクター10を用いて2つの液体L1、L2で副生ガスの発生を伴う液液反応を実施した実施例を以下に説明する。装置本体12は図2のように蓋部材20にY字型空洞部36を形成し、本体部材21にY字型液体流路30を形成するタイプのもので実施した。   An embodiment in which a liquid-liquid reaction involving generation of by-product gas is performed in two liquids L1 and L2 using the flaky flow type microreactor 10 of the present invention will be described below. As shown in FIG. 2, the apparatus main body 12 is a type in which a Y-shaped cavity 36 is formed in the lid member 20 and a Y-shaped liquid flow path 30 is formed in the main body member 21.

[マイクロリアクターの製作]
マイクロリアクター10の装置本体12は、透明ガラス板を機械加工により切削加工することで製作した。先ず、本体部材22を製作するためのガラスプレートを準備し、PMT社製のマシニングセンター(MC機)にダイヤモンド焼結型のマイクロドリルを用いて2本の液体供給路28と1本のマイクロ流路26とでなるY字型液体流路30を切削加工した。液体供給路28は幅250μm、深さ200μmとし、マイクロ流路26は幅500μm、深さ200μmとした。また、マイクロ流路26の流路長を30cmとした。
[Production of microreactors]
The device body 12 of the microreactor 10 was manufactured by cutting a transparent glass plate by machining. First, a glass plate for preparing the main body member 22 is prepared, and two liquid supply paths 28 and one micro flow path are used in a machining center (MC machine) manufactured by PMT using a diamond sintered micro drill. The Y-shaped liquid flow path 30 consisting of 26 was cut. The liquid supply path 28 has a width of 250 μm and a depth of 200 μm, and the microchannel 26 has a width of 500 μm and a depth of 200 μm. The channel length of the microchannel 26 was 30 cm.

一方、蓋部材24を製作するためのガラスプレートには、本体部材22と同じ機械加工によって、上記したY字型液体流路30に対向するようにY字型空洞部36を切削加工した。このY字型空洞部36の流路幅はY字型液体流路30の流路幅よりも大きめに形成した。そして、本体部材22と蓋部材24とでゴアテックス膜(気体透過部材18)をサンドイッチ状にした状態で、Y字型空洞部36やY字型液体流路30を塞がないように、接着剤で互いに接合した。更に、その外側を上板20と下板21とで挟み込み、上板20と下板21の4角に形成されたボルト穴に通したボルト23とナット25とを締め付け、装置本体12を組み立てた。   On the other hand, the Y-shaped cavity 36 was cut into the glass plate for manufacturing the lid member 24 so as to face the Y-shaped liquid flow path 30 by the same machining as the main body member 22. The channel width of the Y-shaped cavity 36 was formed larger than the channel width of the Y-shaped liquid channel 30. Then, in a state where the Gore-Tex membrane (gas permeable member 18) is sandwiched between the main body member 22 and the lid member 24, bonding is performed so as not to block the Y-shaped cavity 36 and the Y-shaped liquid flow path 30. Bonded to each other with an agent. Further, the outer body is sandwiched between the upper plate 20 and the lower plate 21, and bolts 23 and nuts 25 passed through bolt holes formed at four corners of the upper plate 20 and the lower plate 21 are tightened to assemble the apparatus main body 12. .

また、本体部材22及び下板21には、液体供給路28に連通する1000μmの液体導入口34、34を予め穿孔しておき、このそれぞれの液体導入口34、34に外径950μm、内径250μmのテフロンチューブ(液体供給管14)をそれぞれ差し込み接着剤で固定した。液体導入口34に接続されていないテフロンチューブの一端は、液体用のシリンジポンプ16に接続した。また、マイクロ流路26の終端部にガラスプレートを貫通するかたちで1000μmの液体排出口32を開け、この液体排出口32に外径950μm、内径250μmのテフロンチューブをそれぞれ差し込み接着剤で固定した。   The main body member 22 and the lower plate 21 are previously perforated with 1000 μm liquid inlets 34, 34 communicating with the liquid supply path 28, and the liquid inlets 34, 34 have an outer diameter of 950 μm and an inner diameter of 250 μm. Each Teflon tube (liquid supply tube 14) was inserted and fixed with an adhesive. One end of the Teflon tube not connected to the liquid inlet 34 was connected to the liquid syringe pump 16. In addition, a 1000 μm liquid discharge port 32 was opened at the end of the microchannel 26 so as to penetrate the glass plate, and a Teflon tube having an outer diameter of 950 μm and an inner diameter of 250 μm was inserted into the liquid discharge port 32 and fixed with an adhesive.

一方、蓋部材24及び上板20には、Y字型空洞部36の3つの端部位置にそれぞれ開口38、39、41を予め穿孔しておき、それぞれの開口38、39、41にそれぞれ短管38A、39A、41Aを連結した。そして、この短管38A、39Aを大気に開放し、短管41Aには吸引管42を介してアスピレータ(吸引手段44)を連結した。アスピレータでY字型空洞部36を300Torrに減圧した。これにより、本発明の実施例を行う薄片状流型のマイクロリアクター10を作製した。   On the other hand, the lid member 24 and the upper plate 20 are previously drilled with openings 38, 39, and 41 at three end positions of the Y-shaped cavity 36, respectively, and the openings 38, 39, and 41 are respectively short. Tubes 38A, 39A, 41A were connected. The short pipes 38A and 39A were opened to the atmosphere, and an aspirator (suction means 44) was connected to the short pipe 41A via a suction pipe 42. The Y-shaped cavity 36 was decompressed to 300 Torr with an aspirator. Thus, a flaky flow type microreactor 10 according to an embodiment of the present invention was produced.

比較する従来のマイクロリアクターとしては、Y字型液体流路30を切削加工した本体部材22の開放された上面を、平板状の蓋部材24(Y字型空洞部36のない板状のもの)で蓋をして装置本体を組み立てた以外は本発明のマイクロリアクターと同様に製作した。   As a conventional microreactor to be compared, the open upper surface of the main body member 22 obtained by cutting the Y-shaped liquid flow path 30 is formed as a flat lid member 24 (a plate-shaped member without the Y-shaped cavity 36). The microreactor was manufactured in the same manner as the microreactor of the present invention except that the device body was assembled with the lid.

上記の如く製作した本発明のマイクロリアクター10と従来のマイクロリアクターとを使用して、液液反応によって副生ガスを発生させる2つの液体L1、L2を液体供給路28からマイクロ流路26に合流させて液液反応を行わせ、液液反応により発生する酸素ガスによってマイクロ流路26の流れがどのようになるかを観察した。   Using the microreactor 10 of the present invention manufactured as described above and a conventional microreactor, two liquids L1 and L2 that generate by-product gas by liquid-liquid reaction are joined from the liquid supply path 28 to the microflow path 26. The liquid-liquid reaction was performed, and the flow of the microchannel 26 was observed by the oxygen gas generated by the liquid-liquid reaction.

副生ガスの発生を伴う液液反応としては、二酸化マンガンの粉末1gを水100mlに分散した二酸化マンガン水溶液L1と過酸化水素水L2を反応させて、副生ガスとして酸素ガスを発生させる反応実験を行った。液体L1、L2の流量としては、二酸化マンガン水溶液L1及び過酸化水素水L2ともに100μl/分に設定した。   A liquid-liquid reaction involving the generation of by-product gas is a reaction experiment in which an aqueous solution of manganese dioxide L1 in which 1 g of manganese dioxide powder is dispersed in 100 ml of water and hydrogen peroxide solution L2 are reacted to generate oxygen gas as a by-product gas. Went. The flow rates of the liquids L1 and L2 were set to 100 μl / min for both the manganese dioxide aqueous solution L1 and the hydrogen peroxide solution L2.

その結果、従来のマイクロリアクターは、液液反応により発生した酸素ガスの気泡48はマイクロ流路26内に溜まって大きな塊となり、その影響でマイクロ流路26の流れは非常に不安定なスラグ流状態となった。   As a result, in the conventional microreactor, the oxygen gas bubbles 48 generated by the liquid-liquid reaction accumulate in the microchannel 26 to form a large lump, and the flow of the microchannel 26 is very unstable due to the influence. It became a state.

これに対し、本発明のマイクロリアクターは、液液反応により発生した酸素ガスの気泡48は液体内を上昇してゴアテックス膜18からスムーズにY字型空洞部36に透過し、マイクロ流路26から脱ガスされた。これにより、マイクロ流路26の流れを安定させることができ、安定した液液反応を行うことができた。   On the other hand, in the microreactor of the present invention, the oxygen gas bubbles 48 generated by the liquid-liquid reaction ascend in the liquid and smoothly permeate from the Gore-Tex film 18 to the Y-shaped cavity 36, and the microchannel 26. Was degassed from. Thereby, the flow of the microchannel 26 could be stabilized, and a stable liquid-liquid reaction could be performed.

本発明の第1の実施の形態である薄片状流型のマイクロリアクターを概念的に説明する斜視図1 is a perspective view conceptually explaining a flaky flow type microreactor according to a first embodiment of the present invention. マイクロリアクターの装置本体の上面図、断面図及び下面図Top view, sectional view and bottom view of the microreactor main unit 本発明の薄片状流型のマイクロリアクターを用いて副生ガスの発生を伴う液液反応を行った場合の円環状マイクロ流路の流れを説明する説明図Explanatory drawing explaining the flow of the annular | circular shaped microchannel at the time of performing liquid-liquid reaction with generation | occurrence | production of by-product gas using the flaky flow type microreactor of this invention 本発明に係る薄片状流型のマイクロリアクターの装置本体の変形例を説明する上面図、断面図及び下面図The top view, sectional drawing, and bottom view explaining the modification of the apparatus main body of the flaky flow type microreactor concerning the present invention 本発明の第2の実施の形態である円環状流型のマイクロリアクターを説明する断面図Sectional drawing explaining the annular flow type microreactor which is the 2nd Embodiment of this invention 本発明の円環状流型のマイクロリアクターを用いて副生ガスの発生を伴う液液反応を行った場合の円環状マイクロ流路の流れを説明する説明図Explanatory drawing explaining the flow of the annular | circular shaped microchannel at the time of performing the liquid-liquid reaction accompanying generation | occurrence | production of by-product gas using the annular flow type microreactor of this invention. 従来のマイクロリアクターで副生ガスを伴う反応を行ったときの円環状マイクロ流路の流れを説明する説明図Explanatory drawing explaining the flow of an annular micro channel when reaction with byproduct gas was performed in the conventional micro reactor

符号の説明Explanation of symbols

10…薄片状流型のマイクロリアクター、12…装置本体、14…液体供給管、16…液体供給手段、18…気体透過部材、20…上板、21…下板、22…本体部材、23…ボルト、24…蓋部材、25…ナット、26…マイクロ流路、28…液体供給路、30…Y字型液体流路、32…液体排出口、34…液体導入口、36…Y字型空洞部、38、39、41…開口、38A、39A、41A…短管、42…吸引管、43…バルブ、44…吸引手段、45…圧力計、46…圧力制御手段、47…コントローラ、48…気泡、60…円環状流型のマイクロリアクター、61…装置本体、62…円管部材、63…胴体部、64…吐出口、66…フランジ部、68…大径部、70…第1仕切板、72…気体透過部材、74…円環状液体流路、76…円環状空洞部、78、98、100…スペーサ、80…蓋板、82…嵌挿穴、84…整流部材、86…第2仕切板、88…第1ヘッダー部、90…第2ヘッダー部、92…隔壁部材、94…第1の液体供給路、96…第2の液体供給路、102…円環状マイクロ流路、104…第1の液体供給管、106…第2の液体供給管、108…第1の液体供給口、110…第2の液体供給口、112…出液路、114、116…短管、118…圧力制御手段、120…吸引手段、122…圧力計、124…バルブ、126…コントローラ、128…吸引管   DESCRIPTION OF SYMBOLS 10 ... Flaky flow type micro reactor, 12 ... Apparatus main body, 14 ... Liquid supply pipe | tube, 16 ... Liquid supply means, 18 ... Gas permeation | transmission member, 20 ... Upper plate, 21 ... Lower plate, 22 ... Main body member, 23 ... Bolt, 24 ... lid member, 25 ... nut, 26 ... micro flow path, 28 ... liquid supply path, 30 ... Y-shaped liquid flow path, 32 ... liquid outlet, 34 ... liquid inlet, 36 ... Y-shaped cavity 38, 39, 41 ... opening, 38A, 39A, 41A ... short pipe, 42 ... suction pipe, 43 ... valve, 44 ... suction means, 45 ... pressure gauge, 46 ... pressure control means, 47 ... controller, 48 ... Air bubbles, 60 ... annular flow type microreactor, 61 ... device main body, 62 ... circular pipe member, 63 ... body part, 64 ... discharge port, 66 ... flange part, 68 ... large diameter part, 70 ... first partition plate 72 ... gas permeable member, 74 ... annular liquid flow path, 7 ... annular cavity, 78, 98, 100 ... spacer, 80 ... lid plate, 82 ... insertion hole, 84 ... rectifying member, 86 ... second partition plate, 88 ... first header part, 90 ... second header part , 92 ... partition member, 94 ... first liquid supply path, 96 ... second liquid supply path, 102 ... annular microchannel, 104 ... first liquid supply pipe, 106 ... second liquid supply pipe, DESCRIPTION OF SYMBOLS 108 ... 1st liquid supply port, 110 ... 2nd liquid supply port, 112 ... Outflow path, 114, 116 ... Short tube, 118 ... Pressure control means, 120 ... Suction means, 122 ... Pressure gauge, 124 ... Valve 126 ... Controller, 128 ... Suction tube

Claims (14)

複数の液体をそれぞれの液体供給路を通してマイクロ流路に合流させて、これらの液体を薄片状の層流として流通させつつ、液体同士をその接触界面の法線方向へ拡散して液液反応を行わせる薄片状流型のマイクロリアクターを用いて、副生ガスの発生を伴う液液反応を行うマイクロリアクターの反応方法において、
前記液液反応の進行に伴って発生する副生ガスを、液体を通さずに気体を通す気体透過部材を介して前記マイクロ流路外に随時透過しながら前記液液反応を行わせることを特徴とするマイクロリアクターを用いた反応方法。
A plurality of liquids are joined to the micro flow path through each liquid supply path, and these liquids are circulated as a laminar laminar flow, while the liquids are diffused in the normal direction of the contact interface to perform a liquid-liquid reaction. In a reaction method of a microreactor that performs a liquid-liquid reaction with generation of by-product gas using a flaky flow type microreactor to be performed,
The by-product gas generated with the progress of the liquid-liquid reaction is allowed to perform the liquid-liquid reaction while passing through the gas flow member through the gas without passing through the liquid as needed. A reaction method using a microreactor.
円環状なマイクロ流路に連通する複数の液体供給路を同心軸の多重筒構造にして、複数の液体を前記液体供給路を通して前記マイクロ流路に合流させることにより、これらの液体を同心軸状に積層させて該同心軸に直交する断面が円環状の層流として流通させつつ、液体同士をその接触界面の法線方向へ拡散して液液反応を行わせる円環状流型のマイクロリアクターを用いて、副生ガスの発生を伴う液液反応を行うマイクロリアクターの反応方法において、
前記液液反応の進行に伴って発生する副生ガスを、液体を通さずに気体を通す気体透過部材を介して前記マイクロ流路外に随時透過しながら前記液液反応を行わせることを特徴とするマイクロリアクターを用いた反応方法。
A plurality of liquid supply passages communicating with the annular microchannel are formed into a concentric multiple tube structure, and a plurality of liquids are merged into the microchannel through the liquid supply passage, thereby concentrating the liquids in a concentric shape. An annular flow type microreactor that allows liquid-liquid reaction to be performed by diffusing liquids in the normal direction of the contact interface while allowing the cross section perpendicular to the concentric axis to circulate as an annular laminar flow. In a reaction method of a microreactor that uses a liquid-liquid reaction accompanied by generation of by-product gas,
The by-product gas generated with the progress of the liquid-liquid reaction is allowed to perform the liquid-liquid reaction while passing through the gas flow member through the gas without passing through the liquid as needed. A reaction method using a microreactor.
前記マイクロ流路の等価直径は1mm以下であることを特徴とする請求項1又は2のマイクロリアクターを用いた反応方法。   The reaction method using a microreactor according to claim 1 or 2, wherein the equivalent diameter of the microchannel is 1 mm or less. 前記マイクロ流路側の第1の圧力が該マイクロ流路の外側の第2の圧力よりも大きくなるように、前記第1及び第2の圧力を相対的に制御することを特徴とする請求項1〜3の何れか1のマイクロリアクターを用いた反応方法。   2. The first and second pressures are controlled relative to each other so that the first pressure on the micro-channel side is larger than the second pressure outside the micro-channel. A reaction method using the microreactor of any one of -3. 複数の液体をそれぞれの液体供給路を通してマイクロ流路に合流させてこれらの液体を薄片状の層流として流通させつつ、液体同士をその接触界面の法線方向へ拡散して液液反応を行わせるマイクロリアクターにおいて、
前記液体供給路及び前記マイクロ流路のうちの少なくともマイクロ流路の流路壁の一部又は全部が、液体は通さずに気体を通す気体透過部材で形成されていることを特徴とするマイクロリアクター。
A plurality of liquids are joined to the micro flow path through the respective liquid supply paths, and these liquids are circulated as a laminar laminar flow, while the liquids are diffused in the normal direction of the contact interface to perform a liquid-liquid reaction. In a microreactor
A microreactor characterized in that at least a part or all of a channel wall of the microchannel among the liquid supply channel and the microchannel is formed of a gas permeable member that allows a gas to pass through without passing a liquid. .
円環状のマイクロ流路に連通する複数の液体供給路を同心軸の多重円筒構造にして、複数の液体を前記液体供給路を通して前記マイクロ流路に合流させることにより、これらの液体を同心軸状に積層させて該同心軸に直交する断面が円環状の層流として流通させつつ、液体同士をその接触界面の法線方向へ拡散して副生ガスを伴う液液反応を行わせる円環状流型のマイクロリアクターにおいて、
前記液体供給路及び前記マイクロ流路のうちの少なくとも円環状のマイクロ流路の流路壁の一部又は全部が、液体は通さずに気体を通す気体透過部材で形成されていることを特徴とするマイクロリアクター。
A plurality of liquid supply passages communicating with the annular micro-channel are formed into a concentric multi-cylindrical structure, and a plurality of liquids are merged into the micro-channel through the liquid supply channels, so that these liquids are concentric. An annular flow in which a cross-section perpendicular to the concentric axis is circulated as an annular laminar flow and a liquid-liquid reaction involving a by-product gas is performed by diffusing liquids in the normal direction of the contact interface. In type microreactor,
A part or all of the channel wall of at least the annular microchannel of the liquid supply channel and the microchannel is formed of a gas permeable member that allows gas to pass without passing liquid. Microreactor to do.
前記マイクロ流路の等価直径は1mm以下であることを特徴とする請求項5又は6のマイクロリアクター。   The microreactor according to claim 5 or 6, wherein an equivalent diameter of the microchannel is 1 mm or less. 前記気体透過部材を挟んで前記マイクロ流路反対側に形成され、前記液体供給路及び前記マイクロ流路のうちの少なくともマイクロ流路の流れ方向に沿った空洞部と、
前記マイクロ流路側の第1の圧力が前記空洞部側の第2の圧力よりも大きくなるように、前記第1及び第2の圧力を相対的に制御する圧力制御手段と、を備えたことを特徴とする請求項5〜7の何れか1のマイクロリアクター。
A cavity formed along the flow direction of at least the microchannel among the liquid supply channel and the microchannel, and formed on the opposite side of the microchannel with the gas permeable member interposed therebetween;
Pressure control means for relatively controlling the first and second pressures so that the first pressure on the microchannel side is larger than the second pressure on the cavity side. The microreactor according to any one of claims 5 to 7, characterized in that
前記圧力制御手段は、前記空洞部を吸引して該空洞部を減圧する吸引方式であることを特徴とする請求項8のマイクロリアクター。   9. The microreactor according to claim 8, wherein the pressure control means is a suction system that sucks the cavity and depressurizes the cavity. 前記圧力制御手段は、前記空洞部に高速気流を発生させてピトー管現象を生じさせる気体流方式であることを特徴とする請求項8のマイクロリアクター。   9. The microreactor according to claim 8, wherein the pressure control means is a gas flow system that generates a pitot tube phenomenon by generating a high-speed air flow in the cavity. 前記圧力制御手段は、前記副生ガスが前記気体透過部材を透過する際の圧力損失以上の圧力を前記マイクロ流路側に加える加圧方式であることを特徴とする請求項8のマイクロリアクター。   9. The microreactor according to claim 8, wherein the pressure control means is a pressurizing system that applies a pressure higher than a pressure loss when the by-product gas permeates the gas permeable member to the micro flow path side. 前記マイクロリアクターの装置本体を本体部材と蓋部材とで構成し、前記液体供給路から前記マイクロ流路の終端に至る液体流路及び前記空洞部の両方を前記本体部材に形成し、前記液体流路と前記空洞部との間に前記気体透過部材を設けたことを特徴とする請求項5のマイクロリアクター。   The main body of the microreactor is composed of a main body member and a lid member, and both the liquid flow path from the liquid supply path to the end of the micro flow path and the cavity are formed in the main body member, and the liquid flow 6. The microreactor according to claim 5, wherein the gas permeable member is provided between a path and the cavity. 前記マイクロリアクターの装置本体を本体部材と蓋部材とで構成し、前記液体供給路から前記マイクロ流路の終端に至る液体流路を前記本体部材に形成し、前記空洞部を前記蓋部材に形成し、本体部材と蓋部材とで前記気体透過部材を挟むことを特徴とする請求項5のマイクロリアクター。   The main body of the microreactor is composed of a main body member and a lid member, a liquid flow path from the liquid supply path to the end of the micro flow path is formed in the main body member, and the cavity is formed in the lid member The microreactor according to claim 5, wherein the gas permeable member is sandwiched between the main body member and the lid member. 前記マイクロリアクターの装置本体を形成する材料は、金属、ガラス、セラミックス、プラスチック樹脂、シリコンの何れかであることを特徴とする請求項5〜13の何れか1のマイクロリアクター。   The microreactor according to any one of claims 5 to 13, wherein a material forming the device body of the microreactor is any one of metal, glass, ceramics, plastic resin, and silicon.
JP2004038517A 2004-02-10 2004-02-16 Reaction process using microreactor, and microreactor Pending JP2005224765A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004038517A JP2005224765A (en) 2004-02-16 2004-02-16 Reaction process using microreactor, and microreactor
US11/054,344 US7470308B2 (en) 2004-02-10 2005-02-10 Method of producing magnetic particles and reaction method using microreactor and microreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038517A JP2005224765A (en) 2004-02-16 2004-02-16 Reaction process using microreactor, and microreactor

Publications (1)

Publication Number Publication Date
JP2005224765A true JP2005224765A (en) 2005-08-25

Family

ID=34999892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038517A Pending JP2005224765A (en) 2004-02-10 2004-02-16 Reaction process using microreactor, and microreactor

Country Status (1)

Country Link
JP (1) JP2005224765A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103541A (en) * 2003-09-30 2005-04-21 Boehringer Ingelheim Microparts Gmbh Method and apparatus for separating and leading out air bubbles from liquid
JP2007090135A (en) * 2005-09-27 2007-04-12 Yamaha Corp Microchip
JP2007090160A (en) * 2005-09-27 2007-04-12 Fujifilm Corp Fluid device
JP2007268503A (en) * 2006-03-31 2007-10-18 National Institute Of Advanced Industrial & Technology Supercritical micro mixing device
JP2011183311A (en) * 2010-03-09 2011-09-22 Fujifilm Corp Method and apparatus for producing chemical reaction product
JP2013095630A (en) * 2011-10-31 2013-05-20 Seiko Instruments Inc Hydrogen generator and fuel cell
JP2014226623A (en) * 2013-05-24 2014-12-08 株式会社島津製作所 Microchip reactor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005103541A (en) * 2003-09-30 2005-04-21 Boehringer Ingelheim Microparts Gmbh Method and apparatus for separating and leading out air bubbles from liquid
JP2007090135A (en) * 2005-09-27 2007-04-12 Yamaha Corp Microchip
JP2007090160A (en) * 2005-09-27 2007-04-12 Fujifilm Corp Fluid device
JP4646125B2 (en) * 2005-09-27 2011-03-09 ヤマハ株式会社 Microchip and bubble separation method using the same
JP2007268503A (en) * 2006-03-31 2007-10-18 National Institute Of Advanced Industrial & Technology Supercritical micro mixing device
JP2011183311A (en) * 2010-03-09 2011-09-22 Fujifilm Corp Method and apparatus for producing chemical reaction product
JP2013095630A (en) * 2011-10-31 2013-05-20 Seiko Instruments Inc Hydrogen generator and fuel cell
JP2014226623A (en) * 2013-05-24 2014-12-08 株式会社島津製作所 Microchip reactor

Similar Documents

Publication Publication Date Title
Narayanamurthy et al. Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis
US6481453B1 (en) Microfluidic branch metering systems and methods
Zheng et al. Formation of arrayed droplets by soft lithography and two‐phase fluid flow, and application in protein crystallization
JP4901260B2 (en) Fluid mixing apparatus and fluid mixing method
US7077152B2 (en) Microfluidic metering systems and methods
JP2020114585A (en) Process intensified microfluidic device
Jiu-Sheng et al. Droplet microfluidic technology: Mirodroplets formation and manipulation
JP2003001077A (en) Mixing method, mixing structure, micromixer and microchip provided with mixing structure
JP5030520B2 (en) Fluid mixing method and microdevice
WO2006043642A1 (en) Fluid reactor
US20090268548A1 (en) Microfluidic systems, devices and methods for reducing diffusion and compliance effects at a fluid mixing region
WO2007024410A2 (en) Fluidic mixing structure, method for fabricating same, and mixing method
EP2089144A1 (en) Micromixing chamber, micromixer comprising a plurality of such micromixing chambers, methods for manufacturing thereof, and methods for mixing
CN108393103A (en) A kind of achievable drop size does not depend on the micro-fluidic chip of flow
Femmer et al. Efficient gas–liquid contact using microfluidic membrane devices with staggered herringbone mixers
US20210370303A1 (en) Pressure insensitive microfluidic circuit for droplet generation and uses thereof
JP2008238168A (en) Liquid mixing mechanism
JP2005224765A (en) Reaction process using microreactor, and microreactor
JP4415944B2 (en) Liquid mixing mechanism
KR20070113241A (en) Method for producing chemicals
JP2008086888A (en) Passage structure, micro-device equipped with this structure and bubble removing method using this micro-device
JP2005224764A (en) Reaction process using microreactor, and microreactor
JP5345750B2 (en) Fluid device
WO2004018350A1 (en) Method and apparatus for controlling minute amount of fluid
Tripathi et al. Fabrication of spiral micromixer using mold machined by CO2 assisted laser machine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061214