JP2013095630A - Hydrogen generator and fuel cell - Google Patents

Hydrogen generator and fuel cell Download PDF

Info

Publication number
JP2013095630A
JP2013095630A JP2011239416A JP2011239416A JP2013095630A JP 2013095630 A JP2013095630 A JP 2013095630A JP 2011239416 A JP2011239416 A JP 2011239416A JP 2011239416 A JP2011239416 A JP 2011239416A JP 2013095630 A JP2013095630 A JP 2013095630A
Authority
JP
Japan
Prior art keywords
reaction
hydrogen
solution
channel
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011239416A
Other languages
Japanese (ja)
Other versions
JP5868121B2 (en
Inventor
Kazutaka Yuzurihara
一貴 譲原
Takamasa Yanase
考応 柳▲瀬▼
Noboru Ishizone
昇 石曽根
Masayuki Suda
正之 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2011239416A priority Critical patent/JP5868121B2/en
Publication of JP2013095630A publication Critical patent/JP2013095630A/en
Application granted granted Critical
Publication of JP5868121B2 publication Critical patent/JP5868121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen generator capable of controlling a hydrogen generation amount easily without requiring a large scale mechanism, and to provide a fuel cell.SOLUTION: This hydrogen generator for generating hydrogen by mixing metal hydride aqueous solution with reaction promotion aqueous solution includes a reaction part having a joining reaction channel where, when the metal hydride aqueous solution and the reaction promotion aqueous solution reach each specified amount respectively, both solutions make contact with each other to generate a reaction, and a mixing channel where the metal hydride aqueous solution and the reaction promotion aqueous solution pushed out by a force of volume expansion by hydrogen generation in the joining reaction channel are mixed together, to thereby generate hydrogen.

Description

本発明は水素発生装置及び燃料電池に関する。   The present invention relates to a hydrogen generator and a fuel cell.

燃料電池は、固体高分子電解質膜を挟んでアノードとカソードを有する発電部を有し、アノード側に例えば水素やメタノール等の燃料流体を供給し、カソード側に例えば酸素や空気等の酸化用流体を供給し、電気化学反応により電力を発生する。   The fuel cell has a power generation unit having an anode and a cathode with a solid polymer electrolyte membrane sandwiched between them, supplying a fuel fluid such as hydrogen or methanol to the anode side, and an oxidizing fluid such as oxygen or air to the cathode side And generates electric power by an electrochemical reaction.

燃料流体として水素を低エネルギーで得る方法として、ケミカルハイドライドと呼ばれる金属水素化物(例えば、水素化ホウ素リチウムや水素化ホウ素ナトリウム、水素化アルミニウムリチウム、水素化アルミニウムナトリウム)を加水分解する方法が知られている。   As a method of obtaining hydrogen with low energy as a fuel fluid, a method of hydrolyzing a metal hydride called chemical hydride (for example, lithium borohydride, sodium borohydride, lithium aluminum hydride, sodium aluminum hydride) is known. ing.

金属水素化物を加水分解して水素を得る場合、常温に近い低温で加水分解反応が進むため、効率よく水素を得ることができる。反面、水素発生量を制御することが難しいという問題があった。   When hydrolyzing a metal hydride to obtain hydrogen, the hydrolysis reaction proceeds at a low temperature close to room temperature, so that hydrogen can be obtained efficiently. On the other hand, there was a problem that it was difficult to control the hydrogen generation amount.

この問題に対し、金属水素化物を含む金属水素化物水溶液のpHを調節することで、加水分解の反応速度を制御する、水素発生技術が知られている(例えば、特許文献1参照)。この技術は、金属水素化物水溶液のpHが低い程反応速度が増加し、pHが高い程反応速度が低下することを利用している。反応槽内の金属水素化物と金属水素化物に付加する水の量を制御することにより、金属水素化物水溶液のpHを変化させる。これにより、加水分解の反応速度を変化させ、要求量に応じた水素を生成させることができる。   In order to solve this problem, a hydrogen generation technique is known in which the reaction rate of hydrolysis is controlled by adjusting the pH of a metal hydride aqueous solution containing a metal hydride (see, for example, Patent Document 1). This technique uses the fact that the reaction rate increases as the pH of the aqueous metal hydride solution decreases, and the reaction rate decreases as the pH increases. The pH of the metal hydride aqueous solution is changed by controlling the amount of metal hydride in the reaction vessel and the amount of water added to the metal hydride. Thereby, the reaction rate of hydrolysis can be changed, and hydrogen corresponding to the required amount can be generated.

特開2002−128502号公報JP 2002-128502 A

しかしながら、この特許文献1の技術によるとpHの制御を反応槽の金属水素化物への水の投入により行うので、例えば、水素を発生させている状態から水素の発生を停止させる場合など、pHを大幅に変化させるために大量の水の投入する必要がある。水を循環再利用する構成も提案されているが、循環のための流路やポンプなどの複雑な機構が必要となる。また、大量の水を導入するため、水素の発生を停止させるまでの時間がかかってしまい、余剰な水素が発生してしまうといった、水素の要求量への追従性が悪いという問題がある。このようなことから、特許文献1の技術によると、大型化が避けられず、小型化を必要とする機器に適用するには向かない技術である。水素の要求量の変化が大きく、頻繁に変化する機器に適用するには向かない技術である。   However, according to the technique of Patent Document 1, since the pH is controlled by adding water to the metal hydride in the reaction tank, the pH can be reduced, for example, when hydrogen generation is stopped from a state where hydrogen is generated. It is necessary to add a large amount of water to make a drastic change. A configuration in which water is circulated and reused has been proposed, but complicated mechanisms such as a circulation channel and a pump are required. In addition, since a large amount of water is introduced, it takes time until hydrogen generation is stopped, and there is a problem that followability to the required amount of hydrogen is poor. For this reason, according to the technique of Patent Document 1, an increase in size is inevitable, and this technique is not suitable for application to a device that requires a reduction in size. This is a technology that is not suitable for use in equipment that has a large change in demand for hydrogen and that changes frequently.

本発明は上記状況に鑑みてなされたものであり、水素の発生量を容易に制御することができる小型化が可能な水素発生装置及び燃料電池を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hydrogen generator and a fuel cell that can be easily reduced in size and that can easily control the amount of hydrogen generated.

上記課題を解決するための本発明の水素発生装置の第1の特徴は、水素発生溶液と、水素発生溶液との混合により水素を発生する水素発生促進溶液とを混合する反応部を有し、水素発生溶液を反応部に導入する水素発生溶液導入路と、反応促進溶液を反応部に導入する反応促進溶液導入路と、水素発生溶液と水素発生溶液とが規定の量に達したときに接触し反応する合流反応流路と、合流反応流路での水素発生による体積膨張の力により合流反応流路から押し出される水素発生溶液と水素発生溶液とを混合する混合流路とを備えることを要旨とする。   The first feature of the hydrogen generator of the present invention for solving the above-mentioned problems is that it has a reaction section that mixes a hydrogen generation solution and a hydrogen generation promoting solution that generates hydrogen by mixing the hydrogen generation solution, A hydrogen generation solution introduction path for introducing the hydrogen generation solution into the reaction part, a reaction promotion solution introduction path for introducing the reaction promotion solution into the reaction part, and contact when the hydrogen generation solution and the hydrogen generation solution reach a prescribed amount And a mixing channel for mixing the hydrogen generating solution and the hydrogen generating solution pushed out of the merging reaction channel by the force of volume expansion caused by hydrogen generation in the merging reaction channel. And

かかる特徴によれば、合流反応流路に導入された水素発生溶液と、反応促進溶液とが規定の量に達したときに接触し反応し、水素発生による体積膨張の力により合流反応流路から混合流路に水素発生溶液と、反応促進溶液が押し出され混合されるので、大掛かりな機構を要さずに、水素発生溶液と、反応促進溶液の反応比率を一定として、水素の発生量を容易に制御することが可能になる。   According to this feature, the hydrogen generating solution introduced into the merging reaction channel and the reaction promoting solution come into contact and react when reaching a specified amount, and the volume expansion force due to hydrogen generation causes a reaction from the merging reaction channel. Since the hydrogen generating solution and the reaction promoting solution are pushed out and mixed in the mixing channel, the amount of hydrogen generated can be easily set by keeping the reaction ratio between the hydrogen generating solution and the reaction promoting solution constant without requiring a large-scale mechanism. It becomes possible to control.

本発明の水素発生装置の第2の特徴は、第1の特徴の水素発生装置において、合流反応流路は、対向する2つの壁面を備えることを要旨とする。
かかる特徴によれば、合流反応流路の対向する2つの壁面の空間に水素発生溶液と、水素発生溶液とが導入されるので、表面張力により水素発生溶液と、水素発生溶液とを保持することができ、水素発生溶液と水素発生溶液の導入量及び比率が安定し、水素の発生量を確実に制御することが可能となる。
The second feature of the hydrogen generator of the present invention is summarized in that, in the hydrogen generator of the first feature, the merging reaction flow path includes two opposing wall surfaces.
According to this feature, the hydrogen generating solution and the hydrogen generating solution are introduced into the space between the two opposing wall surfaces of the merging reaction flow path, so that the hydrogen generating solution and the hydrogen generating solution are held by surface tension. Thus, the introduction amount and ratio of the hydrogen generation solution and the hydrogen generation solution are stabilized, and the hydrogen generation amount can be reliably controlled.

本発明の水素発生装置の第3の特徴は、第2の特徴の水素発生装置において、2つの壁面の距離は、水素発生溶液と反応促進溶液とがそれぞれ導入される導入部が備えられる部分を最小とし、導入部から離れるに従い増大することを要旨とする。
かかる特徴によれば、導入部の付近を狭く、導入部から離れるに従って空間が大きくなる様、テーパー形状としているので、導入部の向きの液体毛細管力を増大させることができ、合流反応流路に導入された水素発生溶液と反応促進溶液とが接触するまでの形状を安定させることができ、液体の接触までの導入量を確実に制御することが可能となる。
A third feature of the hydrogen generator of the present invention is that, in the hydrogen generator of the second feature, the distance between the two wall surfaces is a portion provided with an introduction part into which the hydrogen generating solution and the reaction promoting solution are respectively introduced. The gist is to minimize and increase as the distance from the introduction portion increases.
According to such a feature, the vicinity of the introduction part is narrow, and since the space is increased as the distance from the introduction part increases, the liquid capillary force in the direction of the introduction part can be increased. The shape until the introduced hydrogen generating solution and the reaction promoting solution come into contact with each other can be stabilized, and the amount of introduction until the liquid comes into contact can be reliably controlled.

本発明の水素発生装置の第4の特徴は、第1または2の特徴の水素発生装置において、合流反応流路は、撥水性を有することを要旨とする。
かかる特徴によれば、合流反応流路に導入された水素発生溶液と反応促進溶液とが接触するまでの形状を安定させることができる。また、接触後の水素発生溶液及び反応促進溶液の混合流路への移動が円滑に行われ、合流反応流路への滞留を抑制することができる。
The fourth feature of the hydrogen generator of the present invention is summarized in that, in the hydrogen generator of the first or second feature, the merging reaction flow path has water repellency.
According to this feature, it is possible to stabilize the shape until the hydrogen generating solution introduced into the merging reaction flow path and the reaction promoting solution come into contact with each other. In addition, the hydrogen generation solution and the reaction promoting solution after the contact are smoothly moved to the mixing channel, and the stay in the merging reaction channel can be suppressed.

本発明の水素発生装置の第5の特徴は、第1から4のいずれかの特徴の水素発生装置において、合流反応流路は、中心部分に向かい広くなることを特徴とする。
かかる特徴によれば、液体の接触までの導入量を確実に制御することが可能となる。
According to a fifth feature of the hydrogen generator of the present invention, in the hydrogen generator according to any one of the first to fourth features, the merging reaction flow path becomes wider toward the central portion.
According to this feature, it is possible to reliably control the amount of introduction until the liquid comes into contact.

本発明の水素発生装置の第6の特徴は、第1から5のいずれかの特徴の水素発生装置において、合流反応流路は、混合流路に向かい狭くなることを要旨とする。
かかる特徴によれば、流路断面積が変化するので、水素発生溶液と反応促進溶液とが合流反応流路から押し出され混合流路へ移動する際に流速が変化し、混合が促進される。これにより、水素発生溶液と反応促進溶液とが確実に混合され水素発生反応を完了させることができる。
The sixth feature of the hydrogen generator of the present invention is summarized in that, in the hydrogen generator of any one of the first to fifth features, the merging reaction channel narrows toward the mixing channel.
According to such a feature, since the cross-sectional area of the flow path changes, the flow rate changes when the hydrogen generating solution and the reaction promoting solution are pushed out of the combined reaction flow path and move to the mixing flow path, thereby promoting mixing. As a result, the hydrogen generating solution and the reaction promoting solution can be reliably mixed to complete the hydrogen generating reaction.

本発明の水素発生装置の第7の特徴は、請求項1に記載の水素発生装置において、混合流路は、蛇行することを特徴とする。
かかる特徴によれば、混合流路を流動する過程での水素発生溶液と反応促進溶液の混合をさらに促進することができる。
According to a seventh aspect of the hydrogen generator of the present invention, in the hydrogen generator according to claim 1, the mixing flow path meanders.
According to this feature, the mixing of the hydrogen generating solution and the reaction promoting solution in the process of flowing through the mixing channel can be further promoted.

本発明の水素発生装置の第8の特徴は、第1から7のいずれかの特徴の水素発生装置において、反応部は、複数あることを要旨とする。
かかる特徴によれば、複数の反応部を有することで、繊細な制御が可能である。また、水素発生能力を増大させることが可能となる。
The eighth feature of the hydrogen generator of the present invention is summarized in that in the hydrogen generator of any one of the first to seventh features, there are a plurality of reaction units.
According to this feature, delicate control is possible by having a plurality of reaction parts. In addition, the hydrogen generation capacity can be increased.

本発明の燃料電池の第1の特徴は、燃料電池は、第1から8のいずれかの水素発生装置の排出路が燃料電池の燃料極室に接続され、発生した水素が燃料極に供給されることを要旨とする。
かかる特徴によれば、大掛かりな機構を要さずに必要最小限の水で水素を発生させることができる水素発生装置を備えた燃料電池とすることが可能になる。
The first feature of the fuel cell of the present invention is that the discharge path of any one of the first to eighth hydrogen generators is connected to the fuel electrode chamber of the fuel cell, and the generated hydrogen is supplied to the fuel electrode. This is the gist.
According to such a feature, it is possible to provide a fuel cell including a hydrogen generator that can generate hydrogen with a minimum amount of water without requiring a large-scale mechanism.

本発明によれば、大掛かりな機構を要さずに必要量の水素を的確に発生させることができる水素発生装置及び燃料電池を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the hydrogen generator and fuel cell which can generate a required quantity of hydrogen exactly, without requiring a large-scale mechanism.

本発明の一実施例に係る水素発生装置の全体の概略構成図である。1 is an overall schematic configuration diagram of a hydrogen generator according to an embodiment of the present invention. 水素発生装置の反応部を表す構成図である。It is a block diagram showing the reaction part of a hydrogen generator. 水素発生装置の反応部(合流反応流路)を表す構成図である。It is a block diagram showing the reaction part (merging reaction flow path) of a hydrogen generator. 水素発生装置の反応部(合流反応流路)を表す構成図である。It is a block diagram showing the reaction part (merging reaction flow path) of a hydrogen generator. 水素発生装置の反応部を表す構成図である。It is a block diagram showing the reaction part of a hydrogen generator. 水素発生装置の反応部(混合流路)を表す構成図である。It is a block diagram showing the reaction part (mixing flow path) of a hydrogen generator. 水素発生装置の反応部(合流反応流路)を表す構成図である。It is a block diagram showing the reaction part (merging reaction flow path) of a hydrogen generator. 水素発生装置の反応部(合流反応流路)を表す構成図である。It is a block diagram showing the reaction part (merging reaction flow path) of a hydrogen generator. 本発明の一実施例に係る水素発生装置の全体の概略構成図である。1 is an overall schematic configuration diagram of a hydrogen generator according to an embodiment of the present invention. 本発明の一実施例に係る燃料電池の全体図である。1 is an overall view of a fuel cell according to an embodiment of the present invention.

(実施の形態1)
図1から図3に基づいて水素発生装置の一実施例を説明する。
図1に基づいて水素発生装置1の概略を説明する。水素発生装置1はケース11と、ケース11の内部に格納される反応容器3と、水素発生溶液を貯蔵する水素発生溶液室2と、水素発生溶液との混合により水素発生反応を促進する反応促進溶液を貯蔵する反応促進溶液室4とを有する。また、反応容器3は、反応部5と、反応部5で生成された水素を反応容器3から排出する排出路12とを備える。
(Embodiment 1)
An embodiment of the hydrogen generator will be described with reference to FIGS.
The outline of the hydrogen generator 1 will be described with reference to FIG. The hydrogen generator 1 is a case 11, a reaction vessel 3 stored inside the case 11, a hydrogen generation solution chamber 2 that stores a hydrogen generation solution, and a reaction promotion that promotes a hydrogen generation reaction by mixing the hydrogen generation solution. And a reaction promoting solution chamber 4 for storing the solution. In addition, the reaction vessel 3 includes a reaction unit 5 and a discharge path 12 through which hydrogen generated in the reaction unit 5 is discharged from the reaction vessel 3.

水素発生溶液室2及び反応促進溶液室4と、反応容器3に格納される反応部5とは、水素発生溶液導入路7及び反応促進溶液導入路8によって接続される。水素発生溶液導入路7には、水素発生溶液室2内の水素発生溶液を反応部5に送る第一の送液手段9を備え、反応促進溶液導入路8も同様に、反応促進溶液室4内の反応促進溶液を反応部5に送る第二の送液手段10を備える。また、反応容器3の内圧を検出する圧力センサー15と、圧力センサー15の値を基に、第一の送液手段9と第二の送液手段10との動作を制御するコントローラ16を備える。   The hydrogen generating solution chamber 2 and the reaction promoting solution chamber 4 are connected to the reaction unit 5 stored in the reaction vessel 3 by a hydrogen generating solution introducing path 7 and a reaction promoting solution introducing path 8. The hydrogen generation solution introduction path 7 is provided with a first liquid feeding means 9 for sending the hydrogen generation solution in the hydrogen generation solution chamber 2 to the reaction section 5, and the reaction promotion solution introduction path 8 is similarly provided in the reaction promotion solution chamber 4. A second liquid feeding means 10 is provided for feeding the reaction promoting solution therein to the reaction section 5. Further, a pressure sensor 15 that detects the internal pressure of the reaction vessel 3 and a controller 16 that controls the operation of the first liquid feeding means 9 and the second liquid feeding means 10 based on the value of the pressure sensor 15 are provided.

第一の送液手段9及び第二の送液手段10は、液送ポンプであり、液送ポンプとしては、定量性があるダイヤフラム式、プランジャ式など、容積式ポンプが好ましく、液体の漏洩や薬品への耐性の高いダイヤフラム式が好ましい。   The first liquid feeding means 9 and the second liquid feeding means 10 are liquid pumps, and the liquid feed pump is preferably a positive displacement pump such as a diaphragm type or a plunger type having a quantitative property. A diaphragm type having high chemical resistance is preferred.

第一の送液手段9及び第二の送液手段10は、圧力センサー15の値を基に、コントローラ16により送液流量が制御され、水素発生溶液と反応促進溶液とを一定の比率で反応部5に送液する。反応容器3の内圧が低下した際に送液流量を増加させ、反応容器3の内圧が上昇した際に送液流量を減少させることにより、反応部5での水素発生量を増減させ、反応容器の内圧を安定して維持する。すなわち、水素発生装置1は安定した水素供給を行うことができる。   The first liquid feeding means 9 and the second liquid feeding means 10 are controlled by the controller 16 based on the value of the pressure sensor 15 to react the hydrogen generating solution and the reaction promoting solution at a constant ratio. Liquid is fed to part 5. When the internal pressure of the reaction vessel 3 is reduced, the flow rate of the liquid is increased, and when the internal pressure of the reaction vessel 3 is increased, the flow rate of the liquid is decreased, thereby increasing or decreasing the amount of hydrogen generated in the reaction unit 5. The internal pressure of is stably maintained. That is, the hydrogen generator 1 can stably supply hydrogen.

また、第一の送液手段9及び第二の送液手段10として、送液ポンプを用いずに、プランジャを介して加圧バネで水素発生溶液及び反応促進溶液を加圧し液体を反応部5に送液する構成としても良い。その際、水素発生溶液導入路7及び反応促進溶液導入路8に逆止弁を配置し、反応容器3の内部の圧力が加圧バネの圧力よりも低い場合に反応部5に水素発生溶液と反応促進溶液とが送られ、また、反応容器3の内部の圧力が加圧バネの圧力よりも低い場合に停止する動作を行う。送液流量は、加圧バネの加圧力と水素発生溶液導入路7及び反応促進溶液導入路8の流路抵抗により決定されるので、水素発生溶液導入路7及び反応促進溶液導入路8内にオリフィスを設けるなど流路抵抗を調整することで水素発生溶液と反応促進溶液の流量の比率を設定することができる。これにより、送液ポンプなどの送液機器や圧力センサーやコントローラを使用する機構を用いない機構によって水素発生量を制御することができる。また、反応容器3の内圧は、加圧バネのバネ力を変更することにより、任意に調整することができる。   Further, as the first liquid feeding means 9 and the second liquid feeding means 10, without using a liquid feeding pump, the hydrogen generating solution and the reaction promoting solution are pressurized with a pressure spring through a plunger, and the liquid is reacted with the reaction section 5. It is good also as a structure which sends liquid. At that time, a check valve is arranged in the hydrogen generation solution introduction path 7 and the reaction promoting solution introduction path 8, and when the pressure inside the reaction vessel 3 is lower than the pressure of the pressure spring, When the reaction promoting solution is sent and the pressure inside the reaction vessel 3 is lower than the pressure of the pressure spring, an operation of stopping is performed. The liquid feed flow rate is determined by the pressure of the pressure spring and the flow resistance of the hydrogen generation solution introduction path 7 and the reaction promotion solution introduction path 8. The flow rate ratio between the hydrogen generating solution and the reaction promoting solution can be set by adjusting the channel resistance such as by providing an orifice. Thereby, the amount of hydrogen generation can be controlled by a mechanism that does not use a mechanism that uses a liquid-feeding device such as a liquid-feed pump, a pressure sensor, or a controller. Further, the internal pressure of the reaction vessel 3 can be arbitrarily adjusted by changing the spring force of the pressure spring.

本実施例では、ケース11の内部に反応容器3と水素発生溶液室2と反応促進溶液室4を配置する構成を示したが、水素発生溶液導入路7及び反応促進溶液導入路8を着脱可能な構造とし、反応容器3と水素発生溶液室2及び反応促進溶液室4とを別体の構造とする構成も可能である。また、反応容器3の内部に水素発生溶液室2及び反応促進溶液室4を配置することも可能であり、さらに、水素発生溶液室2及び反応促進溶液室4を水素発生溶液及び反応促進溶液の消費と共に縮小する可撓性の材質で形成することにより、反応容器3の容積を有効に活用することができ、水素発生装置1の体積を縮小することができる。   In the present embodiment, the configuration in which the reaction vessel 3, the hydrogen generating solution chamber 2, and the reaction promoting solution chamber 4 are arranged inside the case 11 is shown, but the hydrogen generating solution introducing path 7 and the reaction promoting solution introducing path 8 can be attached and detached. The reaction vessel 3, the hydrogen generating solution chamber 2, and the reaction promoting solution chamber 4 may be configured as separate structures. It is also possible to dispose the hydrogen generating solution chamber 2 and the reaction promoting solution chamber 4 inside the reaction vessel 3, and the hydrogen generating solution chamber 2 and the reaction promoting solution chamber 4 are connected to the hydrogen generating solution and the reaction promoting solution. By forming with a flexible material that reduces with consumption, the volume of the reaction vessel 3 can be effectively utilized, and the volume of the hydrogen generator 1 can be reduced.

反応部5には、水素発生溶液及び反応促進溶液をそれぞれ導入する水素発生溶液導入路7と反応促進溶液導入路8が接続されている。反応部5の機構の詳細は後述するが、水素発生溶液と反応促進溶液は、水素発生溶液導入路7と反応促進溶液導入路8から、反応部5に導入され、混合され反応することにより水素を発生する。発生した水素は、排出路12を通じて水素発生装置1から排出される。水素発生装置1の排出路12と水素を消費する燃料電池等の水素消費機器14は、接続部13を介して接続され、水素発生装置1で生成した水素が水素消費機器14に供給される。接続部13を着脱可能な構造とすることで、水素発生装置1を交換可能なカートリッジとして構成とすることができる。   Connected to the reaction section 5 are a hydrogen generation solution introduction path 7 and a reaction promotion solution introduction path 8 for introducing a hydrogen generation solution and a reaction promotion solution, respectively. Although the details of the mechanism of the reaction unit 5 will be described later, the hydrogen generating solution and the reaction promoting solution are introduced into the reaction unit 5 from the hydrogen generating solution introducing channel 7 and the reaction promoting solution introducing channel 8, mixed, and reacted to react with hydrogen. Is generated. The generated hydrogen is discharged from the hydrogen generator 1 through the discharge path 12. A hydrogen consuming device 14 such as a fuel cell that consumes hydrogen is connected to the discharge path 12 of the hydrogen generating device 1 through a connection unit 13, and hydrogen generated by the hydrogen generating device 1 is supplied to the hydrogen consuming device 14. By making the connecting portion 13 detachable, the hydrogen generator 1 can be configured as a replaceable cartridge.

水素発生溶液には、加水分解型の金属水素化物水溶液を用いる。金属水素化物は、例えば、水素化ホウ素塩、水素化アルミニウム塩、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化アルミニウムリチウム等が挙げられる。特に、水素化ホウ素ナトリウムが好ましい。金属水素化物水溶液の加水分解の反応速度は、pH依存性があり、pHが高い程、反応速度が低下する。金属水素化物水溶液として貯蔵するために、pHが高い強アルカリ水溶液とすることにより、加水分解反応による水素の発生を抑制し、安全に貯蔵保管することができる。   As the hydrogen generation solution, a hydrolyzable metal hydride aqueous solution is used. Examples of the metal hydride include a borohydride salt, an aluminum hydride salt, sodium borohydride, lithium borohydride, lithium aluminum hydride, and the like. In particular, sodium borohydride is preferable. The reaction rate of hydrolysis of the metal hydride aqueous solution is pH-dependent, and the reaction rate decreases as the pH increases. In order to store it as a metal hydride aqueous solution, by using a strong alkaline aqueous solution having a high pH, generation of hydrogen due to a hydrolysis reaction can be suppressed and storage can be performed safely.

本実施例では、12%水素化ホウ素ナトリウム、40%水酸化ナトリウムを用いた金属水素化物水溶液を用いた。この金属水素化物水溶液のpHは14であり、金属水素化物水溶液中での金属水素化物の加水分解が抑制されるpHが高い強アルカリ溶液である。また、この混合割合の溶液は、市販されており、長期保管可能な水素化ホウ素ナトリウム溶液として一般的な混合割合であると言える。   In this example, a metal hydride aqueous solution using 12% sodium borohydride and 40% sodium hydroxide was used. This metal hydride aqueous solution has a pH of 14, and is a strong alkaline solution having a high pH at which hydrolysis of the metal hydride in the metal hydride aqueous solution is suppressed. Moreover, it can be said that the solution of this mixing ratio is marketed and is a general mixing ratio as a sodium borohydride solution which can be stored for a long time.

反応促進溶液は、酸性水溶液を用いる。例えば、塩酸、硫酸、リン酸等の無機酸や、酢酸、琥珀酸、りんご酸等の有機酸の酸性水溶液を用いることにより、強アルカリの金属水素化物水溶液のpHを変化させ反応速度を制御することができる。また、酸性水溶液は、強酸とすることが望ましい。これにより、金属水素化物水溶液のpHを速やかに変化させることができ、水素発生の制御性を高めることができる。
本実施例では、貯蔵や送液など構成部材の選択及び取り扱いが比較的容易なリン酸を用いた。
An acidic aqueous solution is used as the reaction promoting solution. For example, by using an acidic aqueous solution of an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid, or an organic acid such as acetic acid, succinic acid or malic acid, the reaction rate is controlled by changing the pH of the strong alkali metal hydride aqueous solution. be able to. The acidic aqueous solution is preferably a strong acid. Thereby, pH of metal hydride aqueous solution can be changed rapidly and controllability of hydrogen generation can be improved.
In this example, phosphoric acid, which is relatively easy to select and handle components such as storage and liquid feeding, was used.

水素を消費する水素消費機器14の水素消費量に追従して、水素供給を行うためには、水素発生溶液と反応促進溶液の加水分解反応の反応性を高め、加水分解反応を短時間で完了させることが必要である。特に、水素消費機器14の水素消費量が急激に小さくなった際に、速やかに反応を停止することは、余剰な水素が発生を抑制し、反応容器3などを耐圧構造とすることなく水素発生装置1を軽量、小型にすることが出来ることから、重要である。   In order to supply hydrogen following the hydrogen consumption of the hydrogen consuming device 14 that consumes hydrogen, the reactivity of the hydrogen generation solution and the reaction promoting solution is increased and the hydrolysis reaction is completed in a short time. It is necessary to make it. In particular, when the hydrogen consumption of the hydrogen consuming device 14 suddenly decreases, stopping the reaction promptly suppresses the generation of excess hydrogen and generates hydrogen without making the reaction vessel 3 or the like into a pressure-resistant structure. This is important because the device 1 can be reduced in weight and size.

水素発生溶液と反応促進溶液の加水分解反応の反応性を高めて短時間で反応を完了させるために、反応部5で混合反応する水素発生溶液と反応促進溶液の混合比は、混合後(反応後)の溶液のpHが7以下となる混合比とする。さらに、pH6以下とすることが望ましい。水素発生溶液に12%水素化ホウ素ナトリウム、40%水酸化ナトリウムの金属水素化物水溶液を用い、反応促進溶液に85%リン酸水溶液を用い水素発生溶液と反応促進溶液の混合割合を、水素化ホウ素ナトリウムと水酸化ナトリウムのモル数の和とリン酸のモル数を等モルとしたとき、混合後(反応後)のpHはpH4程度であり、速やかに反応を完了することができる。このとき、水素発生溶液と反応促進溶液との体積比は、1:1.26、重量比は、1:1.52である。従って、反応部5での混合割合を上述の混合比とすることにより、短時間で反応を完了させることができ、余剰な水素が発生を抑制し、水素を消費する水素消費機器14の水素消費流量に追従して、水素供給を行うことができる。   In order to increase the reactivity of the hydrolysis reaction between the hydrogen generating solution and the reaction promoting solution and complete the reaction in a short time, the mixing ratio of the hydrogen generating solution and the reaction promoting solution mixed and reacted in the reaction unit 5 is determined after mixing (reaction The mixing ratio is such that the pH of the latter solution is 7 or less. Furthermore, it is desirable that the pH is 6 or less. A metal hydride aqueous solution of 12% sodium borohydride and 40% sodium hydroxide was used for the hydrogen generation solution, and an 85% phosphoric acid aqueous solution was used for the reaction promotion solution, and the mixing ratio of the hydrogen generation solution and the reaction promotion solution was determined. When the sum of the number of moles of sodium and sodium hydroxide and the number of moles of phosphoric acid are equimolar, the pH after mixing (after reaction) is about pH 4, and the reaction can be completed quickly. At this time, the volume ratio of the hydrogen generation solution and the reaction promoting solution is 1: 1.26, and the weight ratio is 1: 1.52. Therefore, by setting the mixing ratio in the reaction unit 5 to the above-described mixing ratio, the reaction can be completed in a short time, the generation of excess hydrogen is suppressed, and the hydrogen consumption of the hydrogen consuming device 14 that consumes hydrogen is consumed. Hydrogen can be supplied following the flow rate.

また、上記の水素発生溶液に含まれる水は、水素化ホウ素ナトリウムに対して、モル比で、8.4倍であり、水素化ホウ素ナトリウムの加水分解に充分な量である。また、反応促進溶液にも水は含まれるため、水素化ホウ素ナトリウムに対する水の量は充分であり、さらに、水溶液中での金属水素化物の加水分解を抑制できるpHが高い強アルカリ溶液としながら、水素発生溶液の水素化ホウ素ナトリウムの濃度を増加させることが可能である。   Moreover, the water contained in said hydrogen generating solution is 8.4 times in molar ratio with respect to sodium borohydride, and is sufficient quantity for a hydrolysis of sodium borohydride. Moreover, since water is also contained in the reaction promoting solution, the amount of water relative to sodium borohydride is sufficient, and while making a strong alkaline solution having a high pH that can suppress hydrolysis of metal hydride in an aqueous solution, It is possible to increase the concentration of sodium borohydride in the hydrogen generating solution.

図2と図3に基づいて反応部5を詳細に説明する。
図2(a)は反応部5の斜視図、図2(b)は反応部5を上方から見た平面図を示す。反応部5は、合流反応流路21と混合流路22で構成され、混合流路22は排出口23で開放されている。合流反応流路21には、水素発生溶液及び反応促進溶液をそれぞれ導入する水素発生溶液導入路7と反応促進溶液導入路8が接続されている。
The reaction unit 5 will be described in detail with reference to FIGS.
2A is a perspective view of the reaction unit 5, and FIG. 2B is a plan view of the reaction unit 5 as viewed from above. The reaction unit 5 includes a merging reaction channel 21 and a mixing channel 22, and the mixing channel 22 is opened at an outlet 23. Connected to the merging reaction flow path 21 are a hydrogen generation solution introduction path 7 and a reaction promotion solution introduction path 8 for introducing a hydrogen generation solution and a reaction promotion solution, respectively.

水素発生溶液及び反応促進溶液は、水素発生溶液導入路7と反応促進溶液導入路8から、それぞれ合流反応流路21に一定の流量比で導入される。合流反応流路21に導入された水素発生溶液と反応促進溶液は、それぞれ合流反応流路21の体積から導かれる規定の体積に達した時点で接触する。このとき、水素発生溶液と反応促進溶液の体積比は、導入流量の比と等しい比率となる。加水分解反応による水素の発生は、水素発生溶液と反応促進溶液が接触した部分で開始される。   The hydrogen generating solution and the reaction promoting solution are respectively introduced from the hydrogen generating solution introduction path 7 and the reaction promoting solution introduction path 8 into the merging reaction channel 21 at a constant flow rate ratio. The hydrogen generating solution and the reaction promoting solution introduced into the merging reaction channel 21 come into contact with each other when they reach a specified volume derived from the volume of the merging reaction channel 21. At this time, the volume ratio between the hydrogen generation solution and the reaction promoting solution is equal to the ratio of the introduction flow rate. Generation of hydrogen by the hydrolysis reaction is started at a portion where the hydrogen generation solution and the reaction promoting solution are in contact with each other.

ここで、水素の発生による水素発生溶液と反応促進溶液の合計された導入体積の体積膨張は、水素発生溶液中の金属水素化物の濃度と反応促進溶液中の酸の濃度によって差異はあるが、水素発生溶液を12%水素化ホウ素ナトリウム溶液とした場合、100倍〜200倍となる。この体積膨張により、水素発生溶液と反応促進溶液が接触した部分の微量な反応においても、合流反応流路21に導入された水素発生溶液と反応促進溶液は、合流反応流路21から混合流路22に押し出される。また、その水素発生反応は急峻であるため、混合流路22内での流速が高められ、水素発生溶液と反応促進溶液の混合が促進される。結果、水素発生溶液と反応促進溶液を一定の割合で確実に混合し水素を発生させることが可能となる。さらに、一連の動作を繰り返すことにより、連続して安定した水素発生が可能である。   Here, the volume expansion of the combined introduction volume of the hydrogen generating solution and the reaction promoting solution due to the generation of hydrogen is different depending on the concentration of the metal hydride in the hydrogen generating solution and the concentration of the acid in the reaction promoting solution, When the hydrogen generation solution is a 12% sodium borohydride solution, the hydrogen generation solution is 100 to 200 times. Due to this volume expansion, the hydrogen generating solution and the reaction promoting solution introduced into the merging reaction channel 21 are mixed from the merging reaction channel 21 to the mixing channel even in a small amount of reaction at the portion where the hydrogen generating solution and the reaction accelerating solution are in contact. 22 is pushed out. Further, since the hydrogen generation reaction is steep, the flow rate in the mixing flow path 22 is increased, and the mixing of the hydrogen generation solution and the reaction promoting solution is promoted. As a result, it becomes possible to generate hydrogen by reliably mixing the hydrogen generating solution and the reaction promoting solution at a certain ratio. Furthermore, hydrogen can be generated continuously and stably by repeating a series of operations.

合流反応流路21は、図3に示すように、それぞれの溶液の導入部24と導入部24に対面する内壁の距離を小さくし、内壁同士の隙間に水素発生溶液及び反応促進溶液が充填される様にそれぞれの溶液を導入する構造である。これにより、導入部24を中心とした安定した液の広がり形状を得ることができる。図3(a)は、導入部24から溶液を導入する過程を示す。導入部24から導入された溶液は、それぞれ合流反応流路21の内壁同士の隙間に充填されるので、導入部24を中心とした円形に安定して広がり、図3(b)に示すように、水素発生溶液と反応促進溶液が接触する状態まで広がる。また、それぞれの溶液の合流反応流路21に投入される体積は、送液流量を一定の比率としたとき、合流反応流路21の内壁同士の隙間である断面積と、それぞれの導入部24から導入された水素発生溶液と反応促進溶液が接触する場所までの距離で規定される。また、単位時間当りの水素発生量は、それぞれ溶液の時間当たりの送液流量により制御することができる。   As shown in FIG. 3, the merging reaction channel 21 reduces the distance between each solution introduction part 24 and the inner wall facing the introduction part 24, and the gap between the inner walls is filled with the hydrogen generating solution and the reaction promoting solution. In this way, each solution is introduced. Thereby, a stable liquid spreading shape with the introduction portion 24 as the center can be obtained. FIG. 3A shows the process of introducing the solution from the introduction unit 24. Since the solutions introduced from the introduction part 24 are filled in the gaps between the inner walls of the merging reaction flow path 21, respectively, the solution spreads stably in a circle centering on the introduction part 24, as shown in FIG. The hydrogen generation solution and the reaction promoting solution are in contact with each other. Further, the volume of each solution introduced into the merging reaction channel 21 is a cross-sectional area that is a gap between the inner walls of the merging reaction channel 21 and the respective introduction portions 24 when the liquid feeding flow rate is a constant ratio. It is defined by the distance to the place where the hydrogen generating solution introduced from and the reaction promoting solution come into contact with each other. Further, the amount of hydrogen generated per unit time can be controlled by the flow rate of the solution per unit time.

これにより、合流反応流路21における水素発生溶液と反応促進溶液の接触点が安定した位置となり、反応開始までの合流反応流路21への水素発生溶液と反応促進溶液の導入量及び比率が安定し、反応量を確実に制御することが可能となる。   Thereby, the contact point of the hydrogen generating solution and the reaction promoting solution in the merging reaction channel 21 becomes a stable position, and the introduction amount and ratio of the hydrogen generating solution and the reaction accelerating solution into the merging reaction channel 21 until the start of the reaction are stable. Thus, the reaction amount can be reliably controlled.

さらに、合流反応流路21の内壁を撥水性の部材で作成するかまたは表面処理することにより、導入部24から導入された水素発生溶液と反応促進溶液とが接触するまでの形状を安定させることができる。また、接触後の水素発生反応による体積膨張による水素発生溶液及び反応促進溶液の混合流路22への移動が円滑に行われ、合流反応流路21への滞留を抑制することができる。   Further, by forming the inner wall of the merging reaction channel 21 with a water-repellent member or performing a surface treatment, the shape until the hydrogen generating solution introduced from the introducing portion 24 comes into contact with the reaction promoting solution is stabilized. Can do. Further, the hydrogen generating solution and the reaction promoting solution due to the volume expansion due to the hydrogen generating reaction after the contact are smoothly moved to the mixing channel 22, and the residence in the merging reaction channel 21 can be suppressed.

混合流路22は、図2(b)に示すように、合流反応流路21から混合流路22の方向に断面積が縮小する流路形状としている。断面積を縮小することで、水素発生反応による体積膨張で水素発生溶液と反応促進溶液とが合流反応流路21から押し出され混合流路22へ移動する際に流速が変化し、水素発生溶液と反応促進溶液との混合が促進される。これにより、混合流路22で確実に混合され水素発生反応を完了させることができる。
このような構成において、上述した水素発生装置1では、大掛かりな機構を要さずに必要量の水素を確実に発生させることが可能になる。
As shown in FIG. 2B, the mixing channel 22 has a channel shape whose cross-sectional area decreases in the direction from the merging reaction channel 21 to the mixing channel 22. By reducing the cross-sectional area, the flow rate is changed when the hydrogen generating solution and the reaction promoting solution are pushed out of the merging reaction channel 21 and moved to the mixing channel 22 by volume expansion due to the hydrogen generating reaction, and the hydrogen generating solution and Mixing with the reaction promoting solution is facilitated. Thereby, it can mix reliably by the mixing flow path 22, and can complete hydrogen generating reaction.
In such a configuration, the above-described hydrogen generator 1 can reliably generate a necessary amount of hydrogen without requiring a large-scale mechanism.

また、反応部5から排出される水素は反応容器3の排出路12を通じて水素発生装置1から排出されるが、反応部5からは、水素と同時に、金属水素化物の加水分解反応や水素発生溶液と反応促進溶液との中和反応で生じる副生成物や、その水溶液が残渣として排出される。これらの水素発生装置からの流出を防止する為に、反応容器の排出路に通じる反応室内に気液分離膜6を設けることが好ましい。また、反応室内に、ポリビニルアルコール(PVA)などの吸水性物質を配置し、残渣を吸着させることで残渣の水素発生装置からの流出を防止することができる。   In addition, hydrogen discharged from the reaction unit 5 is discharged from the hydrogen generator 1 through the discharge path 12 of the reaction vessel 3, and from the reaction unit 5, a metal hydride hydrolysis reaction and a hydrogen generation solution simultaneously with hydrogen. A by-product produced by the neutralization reaction between the reaction-promoting solution and the aqueous solution thereof is discharged as a residue. In order to prevent outflow from these hydrogen generators, it is preferable to provide a gas-liquid separation membrane 6 in the reaction chamber leading to the discharge path of the reaction vessel. Further, by disposing a water-absorbing substance such as polyvinyl alcohol (PVA) in the reaction chamber and adsorbing the residue, the residue can be prevented from flowing out of the hydrogen generator.

(実施の形態1の第1変更例)
図4は、実施の形態1の反応部の変更例を示す。
反応部50の構造は、実施の形態1の反応部5と同様に、合流流路21に設けられたそれぞれの溶液の導入部24と導入部24に対面する内壁の距離を小さくし、内壁同士の隙間に充填される様にそれぞれの溶液を導入する構造とし、さらに、導入部24の付近を狭く、導入部24から離れるに従って隙間が大きくなる様、テーパー形状とした。これにより、導入部24から離れる向きに液体毛細管力を増大させることができ、導入部24から導入された液体は、導入部24から離れる向きに力を受けながら、安定した形状を保って広がる。これにより、液体の接触までの導入量を確実に制御することが可能となる。
(First modification of the first embodiment)
FIG. 4 shows a modification of the reaction unit of the first embodiment.
Similar to the reaction section 5 of the first embodiment, the structure of the reaction section 50 is such that the distance between the introduction section 24 of each solution provided in the confluence channel 21 and the inner wall facing the introduction section 24 is reduced. Each solution is introduced so as to be filled in the gap, and the vicinity of the introduction part 24 is narrow, and the gap is increased as the distance from the introduction part 24 increases. Thereby, the liquid capillary force can be increased in the direction away from the introduction part 24, and the liquid introduced from the introduction part 24 spreads while maintaining a stable shape while receiving the force in the direction away from the introduction part 24. This makes it possible to reliably control the amount of introduction until the liquid contacts.

また、反応部50のテーパー形状は同心円に限らず、中心から外周への隙間の広がり(傾斜)を変化させることにより、液体が広がる形状を図5に示すように楕円などにすることができる。これにより、導入部24から導入された水素発生溶液と反応促進溶液が接触する(水素発生反応を開始する)位置を制御することができ、例えば、図5に示す様に、楕円の形状とし、水素発生溶液と反応促進溶液の接触する点を混合流路22からの距離を大きくすることができる。これにより、水素発生が、合流反応流路21の混合流路22から遠い部分で開始されるので、水素発生による体積膨張を有効に利用し、合流反応流路21の水素発生溶液と反応促進溶液をより確実に混合流路22に押し出すことができ、溶液の合流反応流路21への残留を抑制し、反応を確実に行うことができる。   Further, the taper shape of the reaction part 50 is not limited to a concentric circle, and the shape in which the liquid spreads can be made into an ellipse as shown in FIG. 5 by changing the spread (inclination) of the gap from the center to the outer periphery. Thereby, it is possible to control the position at which the hydrogen generation solution introduced from the introduction unit 24 and the reaction promoting solution are in contact with each other (start the hydrogen generation reaction). For example, as shown in FIG. The distance from the mixing channel 22 can be increased at the point where the hydrogen generating solution and the reaction promoting solution are in contact with each other. Thereby, since hydrogen generation is started at a portion far from the mixing channel 22 of the merging reaction channel 21, the hydrogen expansion solution and the reaction promoting solution in the merging reaction channel 21 are effectively utilized by utilizing the volume expansion due to hydrogen generation. Can be pushed out to the mixing channel 22 more reliably, and the remaining of the solution in the merging reaction channel 21 can be suppressed and the reaction can be performed reliably.

(実施の形態1の第2変更例)
図6は、実施の形態1の反応部の変更例を示す。
反応部52は、混合流路22を蛇行させている。これにより、混合流路22を水素発生溶液と反応促進溶液とが混合流路22を流動する過程での混合をさらに促進することができる。また、内壁に凹凸を配置しても、水素発生溶液と反応促進溶液との混合をさらに促進する効果が得られる。
(Second modification of the first embodiment)
FIG. 6 shows a modification of the reaction unit of the first embodiment.
The reaction unit 52 meanders the mixing channel 22. Thereby, mixing in the process in which the hydrogen generation solution and the reaction promoting solution flow through the mixing channel 22 in the mixing channel 22 can be further promoted. Further, even if the unevenness is arranged on the inner wall, an effect of further promoting the mixing of the hydrogen generating solution and the reaction promoting solution can be obtained.

(実施の形態1の第3変更例)
図7Aと図7Bは、実施の形態1の反応部の変更例を示す。
図7A(a)に示すように、反応部53は導入部24を合流反応流路21の側面に配置している。図7A(b)は反応部53を上方から見た平面図を示し、図7Bは、図7A(b)(i)のZ1−Z2で示した反応部53の断面図である。
(Third modification of the first embodiment)
7A and 7B show a modification of the reaction unit of the first embodiment.
As shown in FIG. 7A (a), the reaction section 53 has the introduction section 24 arranged on the side surface of the merging reaction flow path 21. FIG. 7A (b) is a plan view of the reaction part 53 as viewed from above, and FIG. 7B is a cross-sectional view of the reaction part 53 indicated by Z1-Z2 in FIGS. 7A (b) (i).

合流反応流路21は、上面壁,下面壁の隙間で構成される空間で構成され、図7Bに示すように、中央部から導入部24が配置された側面に向かって小さくなるテーパー形状となっている。図7A(b)は、導入部24から溶液を導入する過程を図(i)から(iii)に時系列で示す。合流反応流路21の側面に導入部24を設け、合流反応流路21の断面は導入部24に向かいの隙間が小さくなっているので、導入部24から導入されたそれぞれの溶液は、毛細管力により、それぞれの側面に沿って合流反応流路21の内部に広がる(i)。側面に沿った状態を維持しながら水素発生溶液と反応促進溶液が接触する状態まで広がる(ii)。これにより、水素発生溶液と反応促進溶液の接触点が安定した位置となり、反応開始までの合流反応流路21へのそれぞれの溶液の導入量が安定し、反応量を確実に制御することが可能となる。また、合流反応流路21の側面に沿って、安定した形状を持って広がるので、接触させる場所を制御することが容易で、それぞれの溶液の反応量を確実に制御することが可能となる。さらに、水素発生溶液と反応促進溶液の接触する点の混合流路22からの距離を大きくすることができる。これにより、合流反応流路21の混合流路22から遠い部分で水素発生が開始されるので、水素発生による体積膨張を有効に利用し、合流反応流路21の水素発生溶液と反応促進溶液を確実に混合流路22に押し出すことができ、溶液の合流反応流路21への残留を抑制し、反応を確実に行うことができる。   The merging reaction channel 21 is configured by a space formed by a gap between the upper surface wall and the lower surface wall, and has a tapered shape that decreases from the central portion toward the side surface on which the introduction portion 24 is disposed, as shown in FIG. 7B. ing. FIG. 7A (b) shows the process of introducing the solution from the introduction unit 24 in time series from FIGS. (I) to (iii). Since the introduction part 24 is provided on the side surface of the merging reaction channel 21, and the cross section of the merging reaction channel 21 has a small gap facing the introduction part 24, each solution introduced from the introduction part 24 has a capillary force. (I) spreads into the inside of the merging reaction channel 21 along the respective side surfaces. While maintaining the state along the side, the hydrogen generating solution and the reaction promoting solution come into contact with each other (ii). As a result, the contact point between the hydrogen generating solution and the reaction promoting solution becomes a stable position, the amount of each solution introduced into the merging reaction flow path 21 until the start of the reaction is stabilized, and the reaction amount can be reliably controlled. It becomes. Moreover, since it spreads with the stable shape along the side surface of the merging reaction flow path 21, it is easy to control the place to contact, and it becomes possible to control the reaction amount of each solution reliably. Furthermore, the distance from the mixing channel 22 at the point where the hydrogen generating solution and the reaction promoting solution come into contact with each other can be increased. Thereby, since hydrogen generation is started at a portion of the merging reaction channel 21 far from the mixing channel 22, the volume expansion due to the hydrogen generation is effectively used, and the hydrogen generating solution and the reaction promoting solution in the merging reaction channel 21 are changed. The mixture can be reliably pushed out to the mixing channel 22, the remaining of the solution in the merging reaction channel 21 can be suppressed, and the reaction can be performed reliably.

(実施の形態1の第4変更例)(複数の反応部5)
図8は、反応部54を反応容器内に複数配置した例を示す。反応部54での水素発生流量は、それぞれ第一の送液手段9及び第二の送液手段10送液手段及びコントローラ16により制御される。複数の反応部54のそれぞれの発生量を制御できるので、水素消費流量の変動への追従が容易である。また、反応部54、1つあたりの反応量を少なくできるので、より繊細な制御が可能であり、水素を消費する水素消費機器14の水素消費流量に合わせて水素を発生することができる。
また、複数の反応部54を複数備えることにより、水素発生能力を増大させることができるので、水素消費流量の大きな機器への適用が可能となる。
(Fourth modification of Embodiment 1) (Multiple reaction units 5)
FIG. 8 shows an example in which a plurality of reaction units 54 are arranged in the reaction vessel. The hydrogen generation flow rate in the reaction unit 54 is controlled by the first liquid feeding unit 9, the second liquid feeding unit 10, the liquid feeding unit, and the controller 16, respectively. Since the generation amount of each of the plurality of reaction units 54 can be controlled, it is easy to follow the fluctuation of the hydrogen consumption flow rate. Moreover, since the reaction amount per reaction part 54 can be reduced, more delicate control is possible and hydrogen can be generated in accordance with the hydrogen consumption flow rate of the hydrogen consuming device 14 that consumes hydrogen.
In addition, by providing a plurality of reaction units 54, it is possible to increase the hydrogen generation capacity, and thus it is possible to apply to a device with a large hydrogen consumption flow rate.

(実施の形態2)
図9に基づいて本発明の燃料電池を説明する。図9には本発明の一実施例に係る燃料電池の全体の状況を示す。
図示の燃料電池は、図1に示した水素発生装置1を燃料電池30に接続したシステムである。即ち、燃料電池30には燃料極室32が備えられ、燃料極室32は燃料電池セル31の燃料極35に接する空間を構成している。燃料極室32には水素発生装置1の排出路12が接続されている。水素発生装置1で発生した水素は排出路12から燃料極室32に送られ、燃料極35での燃料電池反応で消費される。
上述した燃料電池は、大掛かりな機構を要さずに水素発生装置1を備えた燃料電池となる。
(Embodiment 2)
The fuel cell of the present invention will be described based on FIG. FIG. 9 shows the overall situation of a fuel cell according to an embodiment of the present invention.
The illustrated fuel cell is a system in which the hydrogen generator 1 shown in FIG. 1 is connected to a fuel cell 30. That is, the fuel cell 30 is provided with a fuel electrode chamber 32, and the fuel electrode chamber 32 constitutes a space in contact with the fuel electrode 35 of the fuel cell 31. A discharge passage 12 of the hydrogen generator 1 is connected to the fuel electrode chamber 32. Hydrogen generated in the hydrogen generator 1 is sent from the discharge path 12 to the fuel electrode chamber 32 and consumed by the fuel cell reaction at the fuel electrode 35.
The fuel cell described above is a fuel cell including the hydrogen generator 1 without requiring a large-scale mechanism.

本発明は、水素発生装置の産業分野で利用することができる。
また、本発明は、水素発生装置を備えた燃料電池の産業分野で利用することができる。
The present invention can be used in the industrial field of hydrogen generators.
The present invention can also be used in the industrial field of fuel cells equipped with a hydrogen generator.

1、100 水素発生装置
2 水素発生溶液室
3 反応容器
4 反応促進溶液室
5、50、51、52、53 反応部
6 気液分離膜
7 水素発生溶液導入路
8 反応促進溶液導入路
9 第一の送液手段
10 第二の送液手段
11 ケース
12 排出路
13 接続部
14 水素消費機器
15 圧力センサー
16 コントローラ
21 合流反応流路
22 混合流路
23 排出口
24 導入部
30 燃料電池
31 電池セル
32 燃料極室
33 酸化剤極
34 固体高分子電解質膜
35 燃料極
DESCRIPTION OF SYMBOLS 1,100 Hydrogen generator 2 Hydrogen generating solution chamber 3 Reaction container 4 Reaction acceleration | stimulation solution chamber 5, 50, 51, 52, 53 Reaction part 6 Gas-liquid separation membrane 7 Hydrogen generating solution introduction path 8 Reaction promotion solution introduction path 9 1st Liquid supply means 10 second liquid supply means 11 case 12 discharge path 13 connection part 14 hydrogen consuming equipment 15 pressure sensor 16 controller 21 merging reaction flow path 22 mixing flow path 23 discharge port 24 introduction part 30 fuel cell 31 battery cell 32 Fuel electrode chamber 33 Oxidant electrode 34 Solid polymer electrolyte membrane 35 Fuel electrode

Claims (9)

水素発生溶液と、前記水素発生溶液との混合により水素を発生する水素発生促進溶液とを混合する反応部を有し、
前記水素発生溶液を前記反応部に導入する水素発生溶液導入路と、
前記反応促進溶液を前記反応部に導入する反応促進溶液導入路と、
前記水素発生溶液と前記水素発生溶液とが規定の量に達したときに接触し反応する合流反応流路と、
前記合流反応流路での水素発生による体積膨張の力により前記合流反応流路から押し出される前記水素発生溶液と前記水素発生溶液とを混合する混合流路とを備えることを特徴とする水素発生器。
A reaction part for mixing a hydrogen generation solution and a hydrogen generation promoting solution that generates hydrogen by mixing the hydrogen generation solution;
A hydrogen generating solution introduction path for introducing the hydrogen generating solution into the reaction section;
A reaction promoting solution introduction path for introducing the reaction promoting solution into the reaction part;
A combined reaction flow path that contacts and reacts when the hydrogen generating solution and the hydrogen generating solution reach a predetermined amount;
A hydrogen generator comprising: a mixing flow channel for mixing the hydrogen generating solution and the hydrogen generating solution pushed out from the combined reaction flow channel by a force of volume expansion caused by hydrogen generation in the combined reaction flow channel .
前記合流反応流路は、対向する2つの壁面を備えることを特徴とする請求項1に記載の水素発生装置。   The hydrogen generating apparatus according to claim 1, wherein the merging reaction flow path includes two opposing wall surfaces. 前記2つの壁面の距離は、前記水素発生溶液と前記反応促進溶液とがそれぞれ導入される前記導入部が備えられる部分を最小とし、前記導入部から離れるに従い増大することを特徴とする請求項2に記載の水素発生装置。   3. The distance between the two wall surfaces minimizes a portion provided with the introduction portion into which the hydrogen generating solution and the reaction promoting solution are respectively introduced, and increases as the distance from the introduction portion increases. The hydrogen generator described in 1. 前記合流反応流路は、撥水性を有することを特徴とする請求項1または2に記載の水素発生装置。   The hydrogen generating apparatus according to claim 1, wherein the merging reaction channel has water repellency. 前記合流反応流路は、中心部分に向かい広くなることを特徴とする請求項1から4のいずれか一項に記載の水素発生装置。   The hydrogen generating apparatus according to any one of claims 1 to 4, wherein the converging reaction channel is widened toward a central portion. 前記合流反応流路は、前記混合流路に向かい狭くなることを特徴とする請求項1から5のいずれか一項に記載の水素発生装置。   The hydrogen generating apparatus according to any one of claims 1 to 5, wherein the merging reaction channel narrows toward the mixing channel. 前記混合流路は、蛇行することを特徴とする請求項1から6のいずれか一項に記載の水素発生装置。   The hydrogen generation apparatus according to claim 1, wherein the mixing flow path meanders. 前記反応部は、複数あることを特徴とする請求項1から7のいずれか一項記載の水素発生装置。   The hydrogen generator according to claim 1, wherein there are a plurality of the reaction units. 請求項1から請求項8のいずれか一項に記載の水素発生装置の前記水素が排出される排出路に燃料電池の燃料極を有する室が接続され、発生した前記水素が前記燃料極に供給されることを特徴とする燃料電池。   A chamber having a fuel electrode of a fuel cell is connected to a discharge path from which the hydrogen is discharged of the hydrogen generator according to any one of claims 1 to 8, and the generated hydrogen is supplied to the fuel electrode. A fuel cell.
JP2011239416A 2011-10-31 2011-10-31 Hydrogen generator and fuel cell Expired - Fee Related JP5868121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239416A JP5868121B2 (en) 2011-10-31 2011-10-31 Hydrogen generator and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239416A JP5868121B2 (en) 2011-10-31 2011-10-31 Hydrogen generator and fuel cell

Publications (2)

Publication Number Publication Date
JP2013095630A true JP2013095630A (en) 2013-05-20
JP5868121B2 JP5868121B2 (en) 2016-02-24

Family

ID=48617969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239416A Expired - Fee Related JP5868121B2 (en) 2011-10-31 2011-10-31 Hydrogen generator and fuel cell

Country Status (1)

Country Link
JP (1) JP5868121B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224765A (en) * 2004-02-16 2005-08-25 Fuji Photo Film Co Ltd Reaction process using microreactor, and microreactor
JP2007225438A (en) * 2006-02-23 2007-09-06 Konica Minolta Medical & Graphic Inc Microfluid chip
US20090020174A1 (en) * 2007-03-06 2009-01-22 Fennimore Keith A Systems and methods for generating hydrogen gas
JP2009213983A (en) * 2008-03-07 2009-09-24 Shibaura Institute Of Technology Micro-mixer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005224765A (en) * 2004-02-16 2005-08-25 Fuji Photo Film Co Ltd Reaction process using microreactor, and microreactor
JP2007225438A (en) * 2006-02-23 2007-09-06 Konica Minolta Medical & Graphic Inc Microfluid chip
US20090020174A1 (en) * 2007-03-06 2009-01-22 Fennimore Keith A Systems and methods for generating hydrogen gas
JP2009213983A (en) * 2008-03-07 2009-09-24 Shibaura Institute Of Technology Micro-mixer

Also Published As

Publication number Publication date
JP5868121B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
TWI253778B (en) Apparatus and method for in situ production of fuel for a fuel cell
US6387228B1 (en) Electrochemical generation of carbon dioxide and hydrogen from organic acids
US7622209B2 (en) Fuel cell system and fuel cell starting method
US10014540B2 (en) Hydrogen generator having reactant pellet with concentration gradient
US9174843B2 (en) Valve having concentric fluid paths
US20130344407A1 (en) Hydrogen Generator and Method of Controlling Reaction
US20090110974A1 (en) Flow channel and fuel cell system
JP5868121B2 (en) Hydrogen generator and fuel cell
US8900762B2 (en) Fuel cell with recovering unit and method for driving the same
KR101899626B1 (en) Gas generator with combined gas flow valve and pressure relief vent
US9517932B2 (en) Hydrogen generator having liquid delivery member
JP2008037699A (en) Hydrogen generating apparatus, fuel cell equipment, and hydrogen generating method
CN105390720B (en) A kind of passive direct methanol fuel cell fed using dense methanol and its material reaction method
JP5909337B2 (en) Hydrogen generator and fuel cell
JP5827101B2 (en) Hydrogen generator and fuel cell
US20150207161A1 (en) Hydrogen Generator System With Liquid Interface
JP2013193937A (en) Hydrogen generator and fuel cell
US20090263690A1 (en) Apparatus for generating hydrogen and fuel cell power generation system having the same
JP5189344B2 (en) Fuel gas generator and fuel cell system
KR100785820B1 (en) Fuel supplying equipment for direct methanol fuel cell
KR101450193B1 (en) Fuel-water mixing apparatus for humidifier of mcfc
KR101817071B1 (en) Direct Carbon Fuel Cell
WO2012144014A1 (en) Mixed gas production device
JP2009099464A (en) Tube type fuel cell
JP2009143791A (en) Apparatus for generating hydrogen and fuel battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160105

R150 Certificate of patent or registration of utility model

Ref document number: 5868121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees