JP2005172276A - High temperature treating method and high temperature treating device - Google Patents

High temperature treating method and high temperature treating device Download PDF

Info

Publication number
JP2005172276A
JP2005172276A JP2003409606A JP2003409606A JP2005172276A JP 2005172276 A JP2005172276 A JP 2005172276A JP 2003409606 A JP2003409606 A JP 2003409606A JP 2003409606 A JP2003409606 A JP 2003409606A JP 2005172276 A JP2005172276 A JP 2005172276A
Authority
JP
Japan
Prior art keywords
furnace chamber
heating
furnace
high temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003409606A
Other languages
Japanese (ja)
Inventor
Kenzaburo Hayashi
健三郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003409606A priority Critical patent/JP2005172276A/en
Publication of JP2005172276A publication Critical patent/JP2005172276A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high temperature treating technique which consumes relatively small energy and can make harmless waste products which are difficult to treat such as PCB. <P>SOLUTION: This is a high temperature treating device comprising a furnace chamber 4 surrounded by a furnace wall 8 made of a heat-resistant wall material, heating burners 5a, 5b for rising the temperature inside the furnace chamber 4, a powder pool tank 9 and a powder introducing path 19 for introducing inorganic powders into the furnace chamber 4, an air supply port 2 and an air supply path 16 for supplying air into the furnace chamber 4, heating and supplying paths 3, 20 and a supplying path 24 for feeding an object to be treated in the pool tank 1 into the furnace chamber 4, an air discharge port 11 through which the gas generated in the furnace chamber 4 is discharged out of the furnace chamber 4, and a cooling device 21 and a filtering device 22 which cool and purify the gas discharged through the discharge port 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、PCB(ポリ塩化ビフェニール)などの難処理廃棄物を熱分解処理して無害化するために使用される高温処理装置に関する。   The present invention relates to a high-temperature treatment apparatus used for detoxifying difficult-to-treat waste such as PCB (polychlorinated biphenyl) by thermal decomposition treatment.

PCBやダイオキシン等の難処理廃棄物を無害化するには高温で熱分解させるのが効果的であることが知られているが、このような難処理廃棄物の処理技術として、例えば、特許文献1,2に記載されているようなものがある。   It is known that thermal decomposition at high temperatures is effective for detoxifying difficult-to-treat waste such as PCB and dioxin. As a processing technology for such difficult-to-treat waste, for example, patent literature 1 and 2 are described.

特許文献1に記載された竪型溶融還元法は、直列につながれた複数の竪型溶融還元炉を利用して廃棄物をガス化溶融処理するものである。特許文献2に記載されている廃棄物処理技術は、鉄鋼が溶融状態にある電気炉内に廃棄物を投入することによって当該廃棄物を熱分解するものである。   The vertical smelting reduction method described in Patent Document 1 gasifies and melts waste using a plurality of vertical smelting reduction furnaces connected in series. The waste treatment technique described in Patent Document 2 is to thermally decompose the waste by putting the waste into an electric furnace in which steel is in a molten state.

特開2001−220609号公報(第2―5頁)Japanese Patent Laid-Open No. 2001-220609 (page 2-5) 特開2001−248813号公報(第3―7頁)JP 2001-248813 A (pages 3-7)

特許文献1に記載されている竪型溶融還元法は、竪型シャフト炉、高炉、還元炉など複数の炉体を用いるものであるため、大規模な設備を必要とする。このため、広い設置スペースがある場所でなければ採用することができない。   The vertical smelting reduction method described in Patent Document 1 uses a plurality of furnace bodies such as a vertical shaft furnace, a blast furnace, and a reduction furnace, and thus requires a large-scale facility. For this reason, it cannot be adopted unless there is a large installation space.

特許文献2に記載されている廃棄物処理技術は電気炉を用いるものであり、稼動させるにあたっては多大な電力が使用されるため、消費エネルギが大である。   The waste disposal technique described in Patent Document 2 uses an electric furnace, and a large amount of electric power is used to operate the apparatus.

本発明が解決しようとする課題は、消費エネルギが比較的少なく、PCBなどの難処理廃棄物を無害化することのできる高温処理技術を提供することにある。   The problem to be solved by the present invention is to provide a high-temperature treatment technique that consumes relatively little energy and can render difficult-to-treat waste such as PCBs harmless.

本発明の高温処理方法は、耐熱性炉材で包囲された炉室内を加熱バーナの燃焼熱および炉室内へ投入された無機物粉体の反応熱で昇温させる昇温工程と、被処理物を加熱して気化する予備加熱工程と、気化した前記被処理物を昇温した炉室内へ被処理物を送り込んで熱分解する熱分解工程と、炉室内で生成した気体を冷却および濾過して炉室の外部へ排出する排気処理工程と、炉室内で生成した溶融物を回収する回収工程と、を含むことを特徴とする。   The high-temperature treatment method of the present invention comprises a temperature raising step of raising the temperature of a furnace chamber surrounded by a heat-resistant furnace material with the combustion heat of a heating burner and the reaction heat of inorganic powder charged into the furnace chamber, A preheating step for heating and vaporizing, a thermal decomposition step for thermally decomposing the processed object by feeding it into the furnace chamber where the temperature of the vaporized processed object is raised, and a furnace for cooling and filtering the gas generated in the furnace chamber It includes an exhaust treatment process for discharging to the outside of the chamber and a recovery process for recovering the melt produced in the furnace chamber.

このような構成とすれば、加熱バーナの燃焼熱および無機物粉体の反応熱によって高温に保たれた炉室内へ送り込まれた気体状の被処理物は、その高温によってほぼ完全に熱分解された後、炉室外で冷却され、さらに清浄化された状態で大気中へ放出されることとなる。このため、被処理物がPCBなどの難処理廃棄物であっても、炉室内の熱分解工程によって無害化することが可能となる。また、熱分解工程は加熱バーナの燃焼熱および無機物粉体の反応熱を利用するため、消費エネルギも比較的少なくてすむ。   With such a configuration, the gaseous object to be processed fed into the furnace chamber kept at a high temperature by the combustion heat of the heating burner and the reaction heat of the inorganic powder was almost completely pyrolyzed by the high temperature. After that, it is cooled outside the furnace chamber and released into the atmosphere in a further purified state. For this reason, even if the object to be processed is difficult-to-process waste such as PCB, it can be rendered harmless by the thermal decomposition process in the furnace chamber. Moreover, since the thermal decomposition process uses the combustion heat of the heating burner and the reaction heat of the inorganic powder, the energy consumption can be relatively small.

前記加熱バーナの燃料として、エマルジョン化した油水混合物を用いれば、水蒸気プラズマ現象が発生し、窒素酸化物および硫黄酸化物の発生をなくすことができる。また、水性ガス反応によりダイオキシン類の発生も抑制することができる。なお、油分としては廃油を使用することができ、この場合の混合比は、水:廃油=45:55程度とすることが望ましい。このような混合比の油水混合物を用いた場合、炉室内を1700℃〜1850℃程度まで昇温させることができる。   If an emulsified oil / water mixture is used as the fuel for the heating burner, a water vapor plasma phenomenon occurs, and generation of nitrogen oxides and sulfur oxides can be eliminated. Moreover, generation | occurrence | production of dioxins can also be suppressed by water gas reaction. In addition, waste oil can be used as the oil component, and the mixing ratio in this case is desirably about water: waste oil = 45: 55. When an oil / water mixture having such a mixing ratio is used, the temperature in the furnace chamber can be raised to about 1700 ° C. to 1850 ° C.

一方、前記無機物粉体として、酸化鉄粉体及びアルミニウム粉体を用いれば、その反応熱により炉室内を2500℃〜2700℃程度まで昇温させることができるため、PCBなどの難処理廃棄物の熱分解反応を促進させることができる。なお、前記無機物粉体として、酸化鉄粉体及びアルミニウム粉体に海砂を加えたものを用いれば、錯イオンが生成されることによってPCBの熱分解反応がさらに促進する。   On the other hand, if iron oxide powder and aluminum powder are used as the inorganic powder, the temperature inside the furnace chamber can be raised to about 2500 ° C. to 2700 ° C. by the reaction heat. The thermal decomposition reaction can be promoted. If the inorganic powder is obtained by adding sea sand to iron oxide powder and aluminum powder, the thermal decomposition reaction of PCB is further promoted by generating complex ions.

次に、本発明の高温処理装置は、耐熱性炉材で包囲された炉室と、炉室内を昇温させるための加熱バーナと、炉室内へ無機物粉体を投入するための粉体投入経路と、炉室内へ空気を供給するための送気経路と、被処理物を加熱気化して炉室内へ送り込むための加熱送給経路と、炉室内で発生した気体を冷却および濾過して炉室の外部へ排出する排気処理手段と、炉室内で生成した溶融物を回収する回収手段と、を備えたことを特徴とする。   Next, the high-temperature treatment apparatus of the present invention includes a furnace chamber surrounded by a heat-resistant furnace material, a heating burner for raising the temperature in the furnace chamber, and a powder charging path for charging inorganic powder into the furnace chamber An air supply path for supplying air into the furnace chamber, a heating and supply path for heating and vaporizing the object to be processed and feeding it into the furnace chamber, and cooling and filtering the gas generated in the furnace chamber The exhaust gas processing means for discharging to the outside of the furnace and the recovery means for recovering the melt produced in the furnace chamber are provided.

このような構成とすることにより、前述した高温処理方法を効率的に実施することが可能となり、比較的少ない消費エネルギで、PCBなどの難処理廃棄物を無害化することができるようになる。また、炉室、加熱バーナ、粉体投入経路、送気経路、加熱送給経路、排気処理手段および回収手段で構成された比較的簡素な構造であるため、従来の処理設備のような広大な設置スペースを必要としない。   With such a configuration, the above-described high-temperature treatment method can be efficiently carried out, and difficult-to-process waste such as PCB can be rendered harmless with relatively little energy consumption. In addition, since it has a relatively simple structure composed of a furnace chamber, a heating burner, a powder charging path, an air supply path, a heating / feeding path, an exhaust processing means, and a recovery means, it is as vast as conventional processing equipment. Does not require installation space.

ここで、前記耐熱性炉材が石英を含有するものであることが望ましい。このような炉材で炉室を形成すれば、炉材内面が1800℃程度に達した時点で石英の主成分である酸化珪素により当該炉材内面が琺瑯状態となる。このため、炉室内に送り込まれた被処理物の溶融体が炉材に付着せず、滑落性も高まる結果、炉室の耐蝕性、耐久性が向上し、熱分解反応の促進にも有効である。   Here, it is desirable that the heat-resistant furnace material contains quartz. If the furnace chamber is formed with such a furnace material, when the furnace material inner surface reaches about 1800 ° C., the furnace material inner surface becomes a soot state by silicon oxide which is a main component of quartz. For this reason, the melt of the workpiece sent into the furnace chamber does not adhere to the furnace material, and the sliding property is improved. As a result, the corrosion resistance and durability of the furnace chamber are improved, and it is effective in promoting the thermal decomposition reaction. is there.

一方、前記加熱送給経路の少なくとも一部を、耐熱性炉材の内部、または耐熱性炉材内面から炉室内へ突設された補助壁体の内部に配置することが望ましい。このような構成とすれば、被処理物が加熱送給経路を通過する間に炉室内の高熱で加熱、気化された状態で炉室内へ送り込まれることとなるため、熱分解反応の促進に有効である。   On the other hand, it is desirable to arrange at least a part of the heating / feeding path inside the heat resistant furnace material or inside the auxiliary wall projecting from the inner surface of the heat resistant furnace material into the furnace chamber. With such a configuration, while the object to be processed passes through the heating and feeding path, it is heated and vaporized by the high heat in the furnace chamber, which is effective for promoting the thermal decomposition reaction. It is.

また、前記排気処理手段として、炉室外へ排出された気体を冷却する冷却手段と、冷却手段で冷却された気体を濾過する濾過手段とを設ければ、炉室内の熱分解反応によって生成した気体を大気温度に近づけ、清浄化した状態で排出することが可能となる。このため、大気汚染を防止するとともに、環境保全を図ることができる。   Further, if the cooling means for cooling the gas discharged to the outside of the furnace chamber and the filtering means for filtering the gas cooled by the cooling means are provided as the exhaust treatment means, the gas generated by the pyrolysis reaction in the furnace chamber It can be discharged in a clean state by bringing it close to the atmospheric temperature. For this reason, while preventing air pollution, environmental conservation can be aimed at.

ここで、前記炉室内の気体の一部を送気経路へ供給する帰還経路を設ければ、高温の空気を炉室内へ供給することができるため、炉室内の温度低下が防止され、熱分解反応の促進に効果的である。   Here, if a return path for supplying a part of the gas in the furnace chamber to the air supply path is provided, high-temperature air can be supplied to the furnace chamber, so that a temperature drop in the furnace chamber is prevented and thermal decomposition is performed. It is effective in promoting the reaction.

本発明により、以下の効果を奏することができる。   According to the present invention, the following effects can be obtained.

(1)耐熱性炉材で包囲された炉室内を加熱バーナの燃焼熱および炉室内へ投入された無機物粉体の反応熱で昇温させる昇温工程と、被処理物を加熱気化する予備加熱工程と、気化した被処理物を昇温した炉室内へ送り込んで熱分解する熱分解工程と、炉室内で発生した気体を冷却および濾過して炉室外へ排出する排出処理工程と、炉室内で生成した溶融物を回収する回収工程とを含むことにより、PCBなどの難処理廃棄物を比較的少ない消費エネルギで無害化することが可能となる。 (1) A temperature raising step for raising the temperature of the furnace chamber surrounded by the heat-resistant furnace material by the combustion heat of the heating burner and the reaction heat of the inorganic powder charged into the furnace chamber, and preheating for heating and vaporizing the workpiece A pyrolysis process in which the vaporized workpiece is sent into a heated furnace chamber and thermally decomposed; a gas treatment process in which the gas generated in the furnace chamber is cooled and filtered and discharged outside the furnace chamber; and By including a recovery step of recovering the generated melt, it becomes possible to render harmless waste such as PCBs harmless with relatively little energy consumption.

(2)前記加熱バーナの燃料として、エマルジョン化した油水混合物を用いれば、窒素酸化物及び硫黄酸化物の発生をなくすことができ、ダイオキシン類の発生も抑制することができる。 (2) If an emulsified oil / water mixture is used as the fuel for the heating burner, generation of nitrogen oxides and sulfur oxides can be eliminated, and generation of dioxins can also be suppressed.

(3)前記無機物粉体として、酸化鉄粉体及びアルミニウム粉体を用いれば、PCBなどの難処理廃棄物の熱分解反応を促進させることができる。 (3) If iron oxide powder and aluminum powder are used as the inorganic powder, the thermal decomposition reaction of difficult-to-process waste such as PCB can be promoted.

(4)耐熱性壁材で包囲された炉室と、炉室内を昇温させるための加熱バーナと、炉室内へ無機物粉体を投入するための粉体投入経路と、炉室内へ空気を供給するための送気経路と、被処理物を加熱気化して炉室内へ送り込むための加熱送給経路と、炉室内で発生した気体を冷却および濾過して炉室外へ排出する排気処理手段と、炉室内で生成した溶融物を回収する回収手段と、を備えたことにより、前述した高温処理方法を効率的に実施することが可能となり、PCBなどの難処理廃棄物を比較的少ないエネルギで無害化することができるようになり、従来の処理設備より設置スペースを削減することができる。 (4) A furnace chamber surrounded by a heat-resistant wall material, a heating burner for raising the temperature in the furnace chamber, a powder charging path for loading inorganic powder into the furnace chamber, and supplying air to the furnace chamber An air supply path for heating, a heating / feeding path for heating and vaporizing the object to be processed, and an exhaust processing means for cooling and filtering the gas generated in the furnace chamber and discharging it outside the furnace chamber; The recovery means for recovering the melt generated in the furnace chamber enables the high-temperature processing method described above to be carried out efficiently and harms difficult-to-process waste such as PCBs with relatively little energy. The installation space can be reduced as compared with the conventional processing equipment.

(5)前記耐熱性炉材が石英を含有するものであることにより、炉室の耐蝕性、耐久性が向上し、熱分解反応の促進にも有効である。 (5) Since the heat-resistant furnace material contains quartz, the corrosion resistance and durability of the furnace chamber are improved, and the thermal decomposition reaction is effective.

(6)前記加熱送給経路の少なくとも一部を、耐熱性炉材の内部、または耐熱性炉材内面から炉室内へ突設された補助壁体の内部に配置することにより、被処理物の熱分解反応を促進させることができる。 (6) By disposing at least a part of the heating / feeding path inside the heat resistant furnace material or inside the auxiliary wall projecting from the inner surface of the heat resistant furnace material into the furnace chamber, The thermal decomposition reaction can be promoted.

(7)前記排気手段として、炉室外へ排出された気体を冷却する冷却手段と、冷却手段で冷却された気体を濾過する濾過手段とを設ければ、大気汚染を防止し、環境保全を図ることができる。 (7) If the cooling means for cooling the gas discharged to the outside of the furnace chamber and the filtering means for filtering the gas cooled by the cooling means are provided as the exhaust means, air pollution is prevented and environmental conservation is achieved. be able to.

(8)前記炉室内の気体の一部を送気経路へ供給する帰還経路を設ければ、高温の空気を炉室内へ供給することができるため、炉室内の温度低下が防止され、熱分解反応の促進に効果的である。 (8) Since a high temperature air can be supplied to the furnace chamber by providing a return path for supplying a part of the gas in the furnace chamber to the air supply path, a temperature drop in the furnace chamber is prevented, and thermal decomposition is performed. It is effective in promoting the reaction.

以下、本発明の実施の形態を図面に基づいて説明する。図1は本発明の実施の形態である高温処理装置を示す垂直断面図であり、図2は図1におけるA−A線断面図であり、図3は図1におけるB−B線断面図であり、図4は図1におけるC−C線断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a vertical sectional view showing a high temperature processing apparatus according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a sectional view taken along line BB in FIG. 4 is a cross-sectional view taken along the line CC in FIG.

図1〜図4に示すように、本実施形態の高温処理装置は、耐熱性壁材である炉壁8で包囲された炉室4と、炉室4内を昇温させるための加熱バーナ5a,5bと、炉室4内へ無機物粉体を投入するための粉体貯留槽9および粉体投入経路19と、炉室4内へ空気を供給するための送気口2および送気経路16と、貯留タンク1内の被処理物を炉室4内へ送り込むための加熱送給経路3,20および送給経路24と、炉室4内で発生した気体を炉室4の外部へ排出する排気口11と、を備えている。   As shown in FIGS. 1 to 4, the high-temperature treatment apparatus of the present embodiment includes a furnace chamber 4 surrounded by a furnace wall 8 that is a heat-resistant wall material, and a heating burner 5 a for raising the temperature in the furnace chamber 4. 5b, a powder storage tank 9 and a powder charging path 19 for charging inorganic powder into the furnace chamber 4, and an air supply port 2 and an air supply path 16 for supplying air into the furnace chamber 4. And the heating and feeding paths 3 and 20 and the feeding path 24 for feeding the object to be processed in the storage tank 1 into the furnace chamber 4, and the gas generated in the furnace chamber 4 is discharged to the outside of the furnace chamber 4. And an exhaust port 11.

炉室4の天井部分はドーム形状であり、炉室4の下方部分には傾斜部14が設けられ、全体的に漏斗形状に狭まった構造となっている。また、傾斜部14と対向する側の炉壁8の内面から炉室4内へ向かって下り勾配に傾斜した補助壁体12が突設され、補助壁体12の内部に加熱送給経路3が配置され、この加熱送給経路3は、傾斜部14の内部に配置された加熱送給経路20に接続され、加熱送給経路20は冷却器6に接続されている。   The ceiling portion of the furnace chamber 4 has a dome shape, and an inclined portion 14 is provided in a lower portion of the furnace chamber 4 so that the whole is narrowed in a funnel shape. Further, an auxiliary wall body 12 inclined downward from the inner surface of the furnace wall 8 on the side facing the inclined portion 14 toward the inside of the furnace chamber 4 is projected, and the heating / feeding path 3 is provided inside the auxiliary wall body 12. The heating / feeding path 3 is connected to a heating / feeding path 20 disposed inside the inclined portion 14, and the heating / feeding path 20 is connected to the cooler 6.

図3に示すように、加熱送給経路3は補助壁体12の内部に九十九折形状に形成され、傾斜部14内の加熱送給経路20に接続されている。貯留タンク1と加熱送給経路3とは外部配管3aによって接続され、冷却器6から炉室4の天井部に開設された投入口7に至る送給経路24が設けられている。   As shown in FIG. 3, the heating / feeding path 3 is formed in a ninety-nine fold shape inside the auxiliary wall body 12 and is connected to the heating / feeding path 20 in the inclined portion 14. The storage tank 1 and the heating / feeding path 3 are connected by an external pipe 3 a, and a feeding path 24 is provided from the cooler 6 to the charging port 7 established in the ceiling of the furnace chamber 4.

補助壁体12の下方延長上に位置する傾斜部14は、排気口11に向かって下り勾配をなすように配置され、補助壁体12の下縁部分と傾斜部14との間には上下方向に貫通した通気路17が設けられている。加熱バーナ5a,5bは、互いに対向する炉壁8の垂直部分に段違いに配置され、それぞれの火炎噴出口18a,18bから炉室4内へ向かって火炎Fを噴出する。加熱バーナ5aは補助壁体12の上面に向かって火炎Fを噴出し、加熱バーナ5bは炉壁部8の傾斜部14に向かって火炎Fを噴出する。   The inclined portion 14 located on the lower extension of the auxiliary wall body 12 is arranged to form a downward gradient toward the exhaust port 11, and the vertical direction is between the lower edge portion of the auxiliary wall body 12 and the inclined portion 14. An air passage 17 penetrating through is provided. The heating burners 5a and 5b are arranged in steps in the vertical portions of the furnace wall 8 facing each other, and eject the flame F into the furnace chamber 4 from the respective flame ejection ports 18a and 18b. The heating burner 5 a ejects the flame F toward the upper surface of the auxiliary wall body 12, and the heating burner 5 b ejects the flame F toward the inclined portion 14 of the furnace wall portion 8.

また、傾斜部14の内部には、送気口2から供給される空気を炉室4内へ送給するための複数の送気経路16が配置され、傾斜部14の表面には送気経路16を経由して送給される空気を炉室4内へ向かって噴出する開口部15が設けられている。また、送気口2から供給された空気は、別の送気経路(図示せず)を経由して、補助壁体12表面に設けられた開口部13から炉室4内へ噴出するようになっている。   Further, a plurality of air supply paths 16 for supplying air supplied from the air supply port 2 into the furnace chamber 4 are arranged inside the inclined portion 14, and the air supply paths are provided on the surface of the inclined portion 14. An opening 15 is provided through which air fed through 16 is ejected into the furnace chamber 4. In addition, the air supplied from the air supply port 2 is jetted into the furnace chamber 4 from the opening 13 provided on the surface of the auxiliary wall body 12 via another air supply path (not shown). It has become.

前述したように、炉室4は下方に向かって漏斗形状に狭まっており、その最下部には、炉室4内で生成した溶融スラグを回収するための、開閉具10付きの取出し口が設けられている。炉室4内に溜まった溶融スラグは、開閉具10を開くと取出し口から落下し、水が入れられた回収容器25内へ回収される。   As described above, the furnace chamber 4 is narrowed in a funnel shape downward, and at the lowermost portion thereof, an outlet with an opening / closing tool 10 for collecting the molten slag generated in the furnace chamber 4 is provided. It has been. When the opening / closing tool 10 is opened, the molten slag accumulated in the furnace chamber 4 falls from the outlet, and is recovered into the recovery container 25 in which water is put.

加熱バーナ5a,5bから炉室4内へ向かって火炎Fを噴出させるとともに、送気口2から送給した空気を開口部13,15から噴出させることにより、炉室4内を1700℃〜1850℃程度まで昇温させる。この状態で、粉体貯留槽9から粉体投入経路19を介して無機物粉体を炉室4内へ投入すると、この無機物粉体の反応熱によって炉室4内は約2500℃程度まで昇温する。このような状態において、貯留タンク1から外部配管3aを経由して被処理物を送り出すと、加熱送給経路3,20、真空ポンプ内蔵の冷却器6および送給経路24を経由して、投入口7から炉室4内へ送り込まれる。   While the flame F is ejected from the heating burners 5a and 5b into the furnace chamber 4 and the air supplied from the air supply port 2 is ejected from the openings 13 and 15, the interior of the furnace chamber 4 is 1700 ° C to 1850 ° C. Raise the temperature to about ℃. In this state, when an inorganic powder is introduced into the furnace chamber 4 from the powder storage tank 9 via the powder introduction path 19, the temperature in the furnace chamber 4 is raised to about 2500 ° C. by the reaction heat of the inorganic powder. To do. In such a state, when the object to be processed is sent out from the storage tank 1 via the external pipe 3a, it is charged via the heating and feeding paths 3 and 20, the cooler 6 with a built-in vacuum pump, and the feeding path 24. It is fed into the furnace chamber 4 through the mouth 7.

この場合、炉室4内の昇温により補助壁体12および傾斜部14は高温状態となっているため、これらの内部に配置されている加熱送給経路3,20内を通過する被処理物は加熱気化され、冷却器6で約800℃程度まで冷却された後、投入口7から炉室4内へ送り込まれる。したがって、加熱気化された被処理物は炉室4内において比較的容易に熱分解される。   In this case, since the auxiliary wall 12 and the inclined portion 14 are in a high temperature state due to the temperature rise in the furnace chamber 4, the object to be processed that passes through the heating / feeding paths 3 and 20 disposed inside them. Is heated and vaporized, cooled to about 800 ° C. by the cooler 6, and then fed into the furnace chamber 4 from the charging port 7. Therefore, the object to be processed which has been heated and vaporized is decomposed relatively easily in the furnace chamber 4.

このように、加熱バーナ5a,5bの燃焼熱および無機物粉体の反応熱によって高温に保たれた炉室4内へ、加熱気化されて送り込まれた被処理物は、その高温によって熱分解された後、排気口11から炉室4外へ排出され、−30℃程度の冷却機能を有する冷却装置21で急速冷却され、さらに濾過装置22で清浄化された状態で大気中へ放出される。したがって、炉室4内の熱分解反応によって生成した気体を大気温度に近づけ、清浄化した状態で排出することが可能であり、これによって、大気汚染を防止するとともに、環境保全を図ることができる。   In this way, the object to be processed which was heated and vaporized into the furnace chamber 4 maintained at a high temperature by the combustion heat of the heating burners 5a and 5b and the reaction heat of the inorganic powder was thermally decomposed by the high temperature. Then, it is discharged out of the furnace chamber 4 from the exhaust port 11, rapidly cooled by the cooling device 21 having a cooling function of about −30 ° C., and further released into the atmosphere after being purified by the filtering device 22. Therefore, the gas generated by the thermal decomposition reaction in the furnace chamber 4 can be brought close to the atmospheric temperature and discharged in a cleaned state, thereby preventing air pollution and environmental conservation. .

このように、被処理物がPCBなどの難処理廃棄物であっても、炉室4内の熱分解工程によって無害化することができる。また、熱分解工程は加熱バーナ5a,5bの燃焼熱および無機物粉体の反応熱を利用するため、消費エネルギも比較的少なくてすむ。   Thus, even if the object to be processed is difficult-to-process waste such as PCB, it can be rendered harmless by the pyrolysis process in the furnace chamber 4. Moreover, since the thermal decomposition process uses the combustion heat of the heating burners 5a and 5b and the reaction heat of the inorganic powder, the energy consumption can be relatively small.

また、排気口11から排出される気体の一部は帰還経路23を経由して送気口2から炉室4内へ送り込むようになっているため、炉室4内の温度低下を防止することができるとともに、熱分解反応を促進することができる。   Further, since a part of the gas discharged from the exhaust port 11 is sent into the furnace chamber 4 from the air supply port 2 via the return path 23, the temperature in the furnace chamber 4 is prevented from lowering. In addition, the thermal decomposition reaction can be promoted.

また、炉室4内における被処理物の熱分解によって生成した溶融スラグなどの各種溶融物は、前述したように、漏斗形状をした炉壁8の内面に添って滑落し、炉室4の底部の開閉具10付きの取出し口から回収容器25内へ回収することができる。   Further, as described above, various melts such as molten slag generated by thermal decomposition of the object to be processed in the furnace chamber 4 slide down along the inner surface of the funnel-shaped furnace wall 8, and the bottom of the furnace chamber 4. It can collect | recover in the collection container 25 from the taking-out port with the opening / closing tool 10 of.

本実施形態では、加熱バーナ5a,5bの燃料として、水と廃油とを45:55程度の混合比で混合し、エマルジョン化した油水混合物を使用することにより、炉室4内を1700℃〜1850℃程度まで昇温させることが可能となり、油分の使用量を低減することができた。また、エマルジョン化した油水混合物を使用することによって窒素酸化物及び硫黄酸化物の発生がなくなり、ダイオキシン類の発生も抑制することができた。   In the present embodiment, water and waste oil are mixed at a mixing ratio of about 45:55 as fuel for the heating burners 5a and 5b, and an emulsified oil / water mixture is used, so that the interior of the furnace chamber 4 is 1700 ° C to 1850 ° C. It was possible to raise the temperature to about 0 ° C., and the amount of oil used could be reduced. Further, by using the emulsified oil / water mixture, generation of nitrogen oxides and sulfur oxides was eliminated, and generation of dioxins could be suppressed.

また、無機物粉体として、酸化鉄粉体及びアルミニウム粉体の混合物を用いたところ、その反応熱により炉室4内は2500℃〜2700℃程度まで昇温して、PCBなどの難処理廃棄物の熱分解反応を促進させることができた。さらに、酸化鉄粉体及びアルミニウム粉体に海砂を加えたものを使用したところ、錯イオンが生成されることによってPCBの熱分解反応をさらに促進させることができた。   Moreover, when a mixture of iron oxide powder and aluminum powder is used as the inorganic powder, the temperature in the furnace chamber 4 is raised to about 2500 ° C. to 2700 ° C. by the reaction heat, and difficult-to-process waste such as PCB It was possible to accelerate the thermal decomposition reaction. Furthermore, when iron oxide powder and aluminum powder added with sea sand were used, the thermal decomposition reaction of PCB could be further promoted by the formation of complex ions.

本実施形態において、炉壁8は石英を含有する耐熱性炉材で形成されているため、炉壁8の内面が1800℃程度に達した時点で石英の主成分である酸化珪素により炉壁8の内面が琺瑯状態となる。このため、炉室4内に送り込まれた被処理物の溶融体が炉壁8の内面に付着せず、滑落性も高まる結果、炉室4の耐蝕性、耐久性が向上し、熱分解反応の促進にも有効であった。   In this embodiment, since the furnace wall 8 is formed of a heat-resistant furnace material containing quartz, when the inner surface of the furnace wall 8 reaches about 1800 ° C., the furnace wall 8 is made of silicon oxide which is a main component of quartz. The inner surface of is in a saddle state. For this reason, the melt of the object to be processed fed into the furnace chamber 4 does not adhere to the inner surface of the furnace wall 8 and the sliding property is improved. As a result, the corrosion resistance and durability of the furnace chamber 4 are improved, and the thermal decomposition reaction is performed. It was also effective in promoting

このように、本実施形態の高温処理装置を使用することにより、比較的少ない消費エネルギで、PCBなどの難処理廃棄物を無害化することができる。また、炉壁8で包囲された炉室4、加熱バーナ5a,5b、粉体投入経路19、送気経路16、被処理物の加熱送給経路3,20および排気口11などで構成された比較的簡素な構造であるため、従来の処理設備のような広大な設置スペースを必要としない。   As described above, by using the high temperature treatment apparatus of the present embodiment, it is possible to render harmless waste such as PCBs harmless with relatively little energy consumption. The furnace chamber 4 surrounded by the furnace wall 8, the heating burners 5 a and 5 b, the powder charging path 19, the air supply path 16, the processing object heating and feeding paths 3 and 20, the exhaust port 11, and the like. Since it has a relatively simple structure, it does not require a large installation space like conventional processing equipment.

本発明の高温処理方法および高温処理装置は、PCBなどの難処理廃棄物や各種産業廃棄物や医療廃棄物を無害化する手段として広く利用することができる。   The high-temperature treatment method and high-temperature treatment apparatus of the present invention can be widely used as means for detoxifying difficult-to-process waste such as PCB, various industrial waste, and medical waste.

本発明の実施の形態である高温処理装置を示す垂直断面図である。It is a vertical sectional view showing a high temperature processing apparatus which is an embodiment of the present invention. 図1におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 図1におけるB−B線断面図である。It is the BB sectional view taken on the line in FIG. 図1におけるC−C線断面図である。It is CC sectional view taken on the line in FIG.

符号の説明Explanation of symbols

1 貯留タンク
2 送気口
3,20 加熱送給経路
3a 外部配管
4 炉室
5a,5b 加熱バーナ
6 冷却器
7 投入口
8 炉壁
9 粉体貯留槽
10 開閉具
11 排気口
12 補助壁体
13,15 開口部
14 傾斜部
16 送気経路
17 通気路
18a,18b 火炎噴出口
19 粉体投入経路
21 冷却装置
22 濾過装置
23 帰還経路
24 送給経路
25 回収容器
F 火炎
DESCRIPTION OF SYMBOLS 1 Storage tank 2 Air supply port 3,20 Heating supply path 3a External piping 4 Furnace chamber 5a, 5b Heating burner 6 Cooler 7 Input port 8 Furnace wall 9 Powder storage tank 10 Opening and closing tool 11 Exhaust port 12 Auxiliary wall body 13 , 15 Opening part 14 Inclined part 16 Air supply path 17 Ventilation path 18a, 18b Flame outlet 19 Powder input path 21 Cooling device 22 Filtration device 23 Return path 24 Supply path 25 Recovery container F Flame

Claims (8)

耐熱性炉材で包囲された炉室内を加熱バーナの燃焼熱および炉室内へ投入された無機物粉体の反応熱で昇温させる昇温工程と、被処理物を加熱して気化する予備加熱工程と、気化した前記被処理物を昇温した前記炉室内へ送り込んで熱分解する熱分解工程と、前記炉室内で生成した気体を冷却および濾過して前記炉室の外部へ排出する排気処理工程と、前記炉室内で生成した溶融物を回収する回収工程とを含むことを特徴とする高温処理方法。   A heating process for heating the furnace chamber surrounded by the heat-resistant furnace material with the combustion heat of the heating burner and the reaction heat of the inorganic powder put into the furnace chamber, and a preheating process for heating and vaporizing the workpiece A pyrolysis step in which the vaporized object to be processed is sent into the furnace chamber where the temperature is raised and pyrolyzed, and an exhaust treatment step in which the gas generated in the furnace chamber is cooled and filtered and discharged to the outside of the furnace chamber And a recovery step of recovering the melt produced in the furnace chamber. 前記加熱バーナの燃料として、エマルジョン化した油水混合物を用いた請求項1記載の高温処理方法。   The high-temperature treatment method according to claim 1, wherein an emulsified oil-water mixture is used as a fuel for the heating burner. 前記無機物粉体として、酸化鉄粉体及びアルミニウム粉体を用いた請求項1または2記載の高温処理方法。   The high temperature treatment method according to claim 1 or 2, wherein iron oxide powder and aluminum powder are used as the inorganic powder. 耐熱性炉材で包囲された炉室と、前記炉室内を昇温させるための加熱バーナと、前記炉室内へ無機物粉体を投入するための粉体投入経路と、前記炉室内へ空気を供給するための送気経路と、被処理物を加熱気化させて前記炉室内へ送り込むための加熱送給経路と、前記炉室内で発生した気体を冷却および濾過して前記炉室の外部へ排出する排気処理手段と、前記炉室内で生成した溶融物を回収する回収手段と、を備えたことを特徴とする高温処理装置。   A furnace chamber surrounded by a heat-resistant furnace material, a heating burner for raising the temperature of the furnace chamber, a powder charging path for charging inorganic powder into the furnace chamber, and supplying air to the furnace chamber An air supply path for heating, a heating / feeding path for heating and evaporating the object to be processed, and a gas generated in the furnace chamber are cooled and filtered and discharged to the outside of the furnace chamber A high-temperature treatment apparatus comprising: an exhaust treatment means; and a collection means for collecting a melt produced in the furnace chamber. 前記耐熱性炉材が石英を含有するものである請求項4記載の高温処理装置。   The high temperature processing apparatus according to claim 4, wherein the heat-resistant furnace material contains quartz. 前記加熱送給経路の少なくとも一部を、前記耐熱性炉材の内部、または前記耐熱性炉材内面から前記炉室内へ突設された補助壁体の内部に配置した請求項4または5記載の高温処理装置。   The at least one part of the said heating and feeding path | route is arrange | positioned in the inside of the said heat resistant furnace material, or the inside of the auxiliary wall body protruded in the said furnace chamber from the said heat resistant furnace material inner surface. High temperature processing equipment. 前記排気処理手段として、前記炉室外へ排出された前記気体を冷却する冷却手段と、前記冷却手段で冷却された気体を濾過する濾過手段とを設けた請求項4〜6のいずれかに記載の高温処理装置。   7. The exhaust gas processing unit according to claim 4, further comprising: a cooling unit that cools the gas discharged out of the furnace chamber; and a filtering unit that filters the gas cooled by the cooling unit. High temperature processing equipment. 前記炉室内の気体の一部を前記送気経路へ供給する循環経路を設けた請求項4〜7のいずれかに記載の高温処理装置。
The high temperature processing apparatus according to any one of claims 4 to 7, further comprising a circulation path for supplying a part of the gas in the furnace chamber to the air supply path.
JP2003409606A 2003-12-08 2003-12-08 High temperature treating method and high temperature treating device Pending JP2005172276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409606A JP2005172276A (en) 2003-12-08 2003-12-08 High temperature treating method and high temperature treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409606A JP2005172276A (en) 2003-12-08 2003-12-08 High temperature treating method and high temperature treating device

Publications (1)

Publication Number Publication Date
JP2005172276A true JP2005172276A (en) 2005-06-30

Family

ID=34730913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409606A Pending JP2005172276A (en) 2003-12-08 2003-12-08 High temperature treating method and high temperature treating device

Country Status (1)

Country Link
JP (1) JP2005172276A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065202A1 (en) * 2005-12-05 2007-06-14 Struan Glen Robertson Apparatus for treating materials
CN102410545A (en) * 2011-11-22 2012-04-11 大连卓瑞资源再生有限公司 De-oiling furnace for waste oil catalyst
CN104154551A (en) * 2014-08-15 2014-11-19 费禹铭 Soot heat source recycling and purification system
WO2015099261A1 (en) * 2013-12-24 2015-07-02 주식회사 포스코 Molten iron manufacturing apparatus and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065202A1 (en) * 2005-12-05 2007-06-14 Struan Glen Robertson Apparatus for treating materials
US8323369B2 (en) 2005-12-05 2012-12-04 Struan Glen Robertson Apparatus for treating materials
CN102410545A (en) * 2011-11-22 2012-04-11 大连卓瑞资源再生有限公司 De-oiling furnace for waste oil catalyst
WO2015099261A1 (en) * 2013-12-24 2015-07-02 주식회사 포스코 Molten iron manufacturing apparatus and manufacturing method thereof
KR101545721B1 (en) 2013-12-24 2015-08-19 주식회사 포스코 Apparatus for manufacturing molten iron and method for manufacturing the same
CN105683399A (en) * 2013-12-24 2016-06-15 株式会社Posco Molten iron manufacturing apparatus and manufacturing method thereof
CN104154551A (en) * 2014-08-15 2014-11-19 费禹铭 Soot heat source recycling and purification system

Similar Documents

Publication Publication Date Title
RU2286837C2 (en) Method and device for treating harmful waste
US8252244B2 (en) Method and apparatus of treating waste
CN1759941B (en) New type heating and fusing method and equipment for dealing with flying ash generated by burning garbage
US9599337B2 (en) Method for treating solid waste based on a gradient composed of two distinct thermal sources
JP6416804B2 (en) Equipment for thermal destruction of organic compounds by induction plasma
JP2009222288A (en) Treatment method of precious metal scraps and device therefor
KR101685033B1 (en) Waste processing system for a printed circuit board
JP2011206696A (en) Deposit drying device using waste heat
KR20010073025A (en) Process for thermal treatment of residual materials containing oil and iron oxide
JP4061564B2 (en) Cooling jacket structure of high-temperature gasifier in waste gasifier
JP2005172276A (en) High temperature treating method and high temperature treating device
JPH07301409A (en) Method and equipment for simultaneously generating effectivegas and inert inorganic residue and incinerating waste
JP4179122B2 (en) Method and apparatus for processing molten slag water
JP5216283B2 (en) Waste asbestos melting furnace
JPH11159718A (en) Device and method for combustion
JP2003262319A (en) Gasification melting system and gasification melting method
KR100489224B1 (en) A thermal treatment apparatus and its methods for medical waste and hazardous waste included heavy metal by plasma
JPH04302909A (en) Method and apparatus for treating waste
DK166517B (en) WASTE DISPOSAL PROCEDURES
US20180305789A1 (en) Method of recovery of zinc and other metals from metallurgical fines
JP4288186B2 (en) Fluid separation method and apparatus for pyrolysis residue
JP4702869B2 (en) Waste treatment method and treatment equipment
KR200360956Y1 (en) ash treatment system by molten slag
JP2008285730A (en) Apparatus and method for sorting and collecting steel material
JP2001227726A (en) Gasifying and melting furnace