JP2005161199A - Plastic laminate and production method for the same - Google Patents

Plastic laminate and production method for the same Download PDF

Info

Publication number
JP2005161199A
JP2005161199A JP2003403357A JP2003403357A JP2005161199A JP 2005161199 A JP2005161199 A JP 2005161199A JP 2003403357 A JP2003403357 A JP 2003403357A JP 2003403357 A JP2003403357 A JP 2003403357A JP 2005161199 A JP2005161199 A JP 2005161199A
Authority
JP
Japan
Prior art keywords
plastic laminate
curable resin
resin composition
active energy
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003403357A
Other languages
Japanese (ja)
Inventor
Masahiro Ikeda
昌弘 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003403357A priority Critical patent/JP2005161199A/en
Publication of JP2005161199A publication Critical patent/JP2005161199A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plastic laminate capable of both preventing reflection of Newton ring and maintaining transparency and provided with a high transfer ratio to the surface from a transfer roll by controlling various conditions at the time of transferring. <P>SOLUTION: A production method is used for producing the plastic laminate having a roughened face layer which is an active energy beam-curable resin composition layer on at least one face of a transparent substrate, and involves a step of bringing the active energy beam-curable resin composition layer into contact with the transfer roll having an arithmetical mean deviation (Ra) 50 nm to 900 nm as the surface roughness and average intervals (Sm) of the unevenness of 30 μm to 300 μm. The plastic laminate is produced by the production method. A touch panel is produced from the plastic laminate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高い透明性と視認性を維持したプラスチック積層体及びその製造方法、特にそのプラスチック積層体を用いたタッチパネルに関するものである。   The present invention relates to a plastic laminate that maintains high transparency and visibility, and a method for manufacturing the same, and particularly to a touch panel using the plastic laminate.

透明タッチパネルは2枚の透明導電層の電極面同士を相対するように配置された構造を有し、その電極間の空間部には誤動作を防ぐ為に少なくとも一方の電極層上に、10μm以下の非導電性のスペーサーにより、一定保持されている。例えば、アナログ式タッチパネルの場合、タッチペン又は指の押し圧により電極面同士が接触して導通し、位置検出をする構造をとる。   The transparent touch panel has a structure in which the electrode surfaces of two transparent conductive layers are opposed to each other, and a space between the electrodes has a structure of 10 μm or less on at least one of the electrode layers in order to prevent malfunction. It is held constant by a non-conductive spacer. For example, in the case of an analog touch panel, the electrode surfaces are brought into contact with each other by the pressure of a touch pen or a finger and are connected to detect the position.

透明タッチパネルの構造は、一般的には上部電極/下部電極としてフィルム/ガラス、ガラス/ガラスの構成がほとんどである。上部電極のほとんどはポリエチレンテレフタレートなどの透明プラスチックフィルムを用いて作製されており、上部電極にガラス基板を用いる場合にはかなり薄い基板が必要になる。ガラスは基板サイズの大型化が難しく、高コストではあるがフィルムなど樹脂を使用しないために耐熱性に優れ、カーナビ用途では適しているが、軽量化、薄型化、破損防止、更にはロール・ツー・ロール方式による高生産性などのメリットから上部電極、下部電極ともにガラス基板からプラスチック基板への置き換えは徐々に進んでいる。   The structure of a transparent touch panel generally has a film / glass or glass / glass configuration as an upper electrode / lower electrode. Most of the upper electrode is made of a transparent plastic film such as polyethylene terephthalate. When a glass substrate is used for the upper electrode, a considerably thin substrate is required. Glass is difficult to increase in substrate size and is expensive, but because it does not use resin such as film, it has excellent heat resistance and is suitable for car navigation applications, but it is lightweight, thin, prevents damage, and roll to・ Replacement of glass substrate with plastic substrate for both upper and lower electrodes is gradually progressing due to the merit of high productivity by roll method.

ところが、透明なプラスチック基板を透明導電性積層体として透明タッチパネルの上部電極に用いると、プラスチック基板自身のたわみにより上部電極部材と下部電極部材との間隔が不均一になり、この間隔が狭い場合には、両電極部材が互いに接近する部分が発生する。そして、そのような接触部分を中心として間隔が連続的に変化する部分が存在するため、光学干渉縞(ニュートンリング)が発生するという問題がある。このニュートンリングは透明タッチパネルのタッチ側をペン又は指でタッチして情報入力を行う際にもそのタッチ点を中心に発生する。
また、透明タッチパネル対面に明るい光源や明るい背景が存在する場合に、透明タッチパネル表面上に光反射を生じたり、景色の映り込みが生じることがある。このようなニュートンリングの発生や光反射、透明タッチパネル表面への映り込みは、透明タッチパネルの性能面への影響は特にないが、使用者にとっては大変不快に感じるものであり、その防止方法として、電極表面に適当な凹凸形状を付与し、反射光を散乱光にすることが従来より試みられている。
However, when a transparent plastic substrate is used for the upper electrode of a transparent touch panel as a transparent conductive laminate, the gap between the upper electrode member and the lower electrode member becomes non-uniform due to the deflection of the plastic substrate itself. The part where both electrode members approach each other occurs. And since there exists a part from which a space | interval changes continuously centering on such a contact part, there exists a problem that an optical interference fringe (Newton ring) generate | occur | produces. This Newton ring also occurs around the touch point when inputting information by touching the touch side of the transparent touch panel with a pen or a finger.
In addition, when a bright light source or a bright background exists on the opposite side of the transparent touch panel, light reflection may occur on the surface of the transparent touch panel, or a scene may be reflected. Such Newton ring occurrence, light reflection, and reflection on the surface of the transparent touch panel have no particular effect on the performance of the transparent touch panel, but they feel very uncomfortable for the user. Attempts have heretofore been made to impart an appropriate uneven shape to the electrode surface and to convert the reflected light into scattered light.

この凹凸形状の付与は、無機及び有機微粒子を添加した有機樹脂液をコーティング等の方法によりプラスチック基板へ積層する方法(特許文献1,2,3参照)が提案されている。しかしながらこの方法は、景色の映り込みやニュートンリングに対し充分な防止効果を発揮するよう必要量の無機及び有機微粒子を添加すると透明性が低下する傾向がある。   For the provision of the uneven shape, a method of laminating an organic resin liquid added with inorganic and organic fine particles on a plastic substrate by a method such as coating has been proposed (see Patent Documents 1, 2, and 3). However, this method tends to decrease transparency when a necessary amount of inorganic and organic fine particles are added so as to exhibit a sufficient prevention effect against the reflection of scenery and Newton's ring.

また、上記手法の他にも、プラスチック基板表面に凹凸を有する部材を接触させ、凹凸形状の転写を行う方法がある。具体的には、未硬化状態の塗膜表面に微細な凹凸を有するマット状賦型フィルムのラミネートによる凹凸形状の転写の方法(特許文献4参照)、またはサンドブラスト処理等により表面凹凸を形成した金属ロールによる凹凸形状の転写の方法(特許文献5参照)が提案されている。このうち前者の凹凸を有するマット状賦型フィルムのラミネートによる凹凸形状の転写の方法は、ニュートンリングの発生、映り込みが防止でき、無機及び有機微粒子を添加する方法と比較して透明性に優れるが、賦型フィルムの消費の分だけコストが高くなってしまう。また、後者の特許文献5が示す表面凹凸を有する金属ロールによる凹凸形状の転写の方法は、賦型フィルムを使用しない分だけコスト的に有利であるが、金属ロールの表面粗度(Ra)1〜3μm、(Rmax)5〜20μmに対してこれにより賦型されたタッチパネル基体の表面粗度(Ra)0.05〜2.0μm、(Rmax)0.6〜3.0μmと転写率が比較的低いこと、また実施例1に記述されているようにエンボス用基体としてPETフィルムを使用した際の金属ロール表面温度が170℃であることなどから転写時のタッチパネル基体表面は比較的軟化している状態でありこの為にPETフィルムが変形を生じたり、転写時金属ロール表面を汚してしまい生産性に影響を与えることとなる。   In addition to the above-described method, there is a method of transferring a concavo-convex shape by bringing a concavo-convex member into contact with the plastic substrate surface. Specifically, a metal having surface irregularities formed by a method of transferring irregularities by laminating a mat-like shaped film having fine irregularities on the surface of an uncured coating film (see Patent Document 4) or sandblasting. A method of transferring uneven shapes by a roll (see Patent Document 5) has been proposed. Among these, the method of transferring the uneven shape by laminating the mat-shaped shaping film having the unevenness of the former can prevent the generation and reflection of Newton rings, and is excellent in transparency as compared with the method of adding inorganic and organic fine particles. However, the cost is increased by the consumption of the shaped film. In addition, the method of transferring the uneven shape by the metal roll having the surface unevenness shown in the latter patent document 5 is advantageous in terms of cost because the shaping film is not used, but the surface roughness (Ra) 1 of the metal roll. The surface roughness (Ra) 0.05-2.0 μm and (Rmax) 0.6-3.0 μm of the touch panel substrate formed by ˜3 μm and (Rmax) 5-20 μm are compared with the transfer rate. As described in Example 1, the surface of the touch panel substrate during transfer is relatively soft because the metal roll surface temperature is 170 ° C. when a PET film is used as the embossing substrate. For this reason, the PET film is deformed or the surface of the metal roll is soiled during transfer, which affects the productivity.

特開平8−281856号公報JP-A-8-281856 特開平10−323931号公報Japanese Patent Laid-Open No. 10-323931 特開平11−296303号公報JP 11-296303 A 特開平6−16851号公報Japanese Patent Laid-Open No. 6-16851 特開平8−77871号公報Japanese Patent Application Laid-Open No. 8-77871

本発明は上述の課題を解決することを目的とし、基板の中心線平均粗さ(Ra)に加え凹凸の平均間隔(Sm)を同時に制御することにより、ニュートンリングや映り込みの防止と透明性の維持を両立させ、また凹凸を賦型する活性エネルギー線硬化性樹脂組成物の成分など転写時の条件を制御することにより転写用ロールからプラスチック積層体表面への凹凸形状の転写率を高めるとともに高い生産性を実現したプラスチック積層体を提供することにある。   The present invention aims to solve the above-mentioned problems, and by simultaneously controlling the average interval (Sm) of the irregularities in addition to the center line average roughness (Ra) of the substrate, Newton rings and reflection are prevented and transparency is achieved. In addition to increasing the transfer rate of the uneven shape from the transfer roll to the surface of the plastic laminate by controlling the transfer conditions such as the components of the active energy ray-curable resin composition that shapes the unevenness The object is to provide a plastic laminate that achieves high productivity.

本発明は、
(1)透明プラスチック基板の少なくとも片面上に活性エネルギー線硬化性樹脂組成物層から形成された粗化面層を有するプラスチック積層体の製造方法であって、該活性エネルギー線硬化性樹脂組成物層を表面粗度が中心線平均粗さ(Ra)50nm〜900nmかつ凹凸の平均間隔(Sm)が30μm〜300μmである転写用ロールに接触する工程を有することを特徴とするプラスチック積層体の製造方法。
(2)前記活性エネルギー線硬化性樹脂組成物層がアクリレートモノマーおよび分子量が
2000〜30000である高分子量アクリレートからなる(1)記載のプラスチック積層体の製造方法。
(3)前記プラスチック積層体の少なくとも片面に透明導電層を形成した(1)又は(2)載のプラスチック積層体の製造方法。
(4)前記透明導電層と透明プラスチック基板の間に金属酸化物層を形成してなる請求項(1)、(2)又は(3)記載のプラスチック積層体の製造方法。
(5)(1)〜(4)のいずれか記載のプラスチック積層体の製造方法で製造され、活性エネルギー線硬化性樹脂組成物層の表面粗度が中心線平均粗さ(Ra)50nm〜900nmかつ凹凸の平均間隔(Sm)が30μm〜300μmであり、かつ全光線透過率が80%以上であることを特徴とするプラスチック積層体。
(6)(5)記載のプラスチック積層体を用いたタッチパネル。
である。
The present invention
(1) A method for producing a plastic laminate having a roughened surface layer formed from an active energy ray-curable resin composition layer on at least one surface of a transparent plastic substrate, the active energy ray-curable resin composition layer A step of contacting a transfer roll having a surface roughness of a center line average roughness (Ra) of 50 nm to 900 nm and an average interval of irregularities (Sm) of 30 μm to 300 μm. .
(2) The method for producing a plastic laminate according to (1), wherein the active energy ray-curable resin composition layer comprises an acrylate monomer and a high molecular weight acrylate having a molecular weight of 2000 to 30000.
(3) The method for producing a plastic laminate according to (1) or (2), wherein a transparent conductive layer is formed on at least one surface of the plastic laminate.
(4) The method for producing a plastic laminate according to (1), (2) or (3), wherein a metal oxide layer is formed between the transparent conductive layer and the transparent plastic substrate.
(5) The surface roughness of the active energy ray-curable resin composition layer produced by the method for producing a plastic laminate according to any one of (1) to (4) is a center line average roughness (Ra) of 50 nm to 900 nm. The plastic laminate is characterized in that the average interval (Sm) of the irregularities is 30 μm to 300 μm and the total light transmittance is 80% or more.
(6) A touch panel using the plastic laminate according to (5).
It is.

本発明に従うとプラスチック積層体に所望の凹凸を安定して付与できる。これによりニュートンリングや映り込みの防止と透明性の維持を両立することができ、また凹凸を賦型する活性エネルギー線硬化性樹脂組成物の成分など転写時の様々な条件を制御することにより転写用ロールからプラスチック積層体表面へのその凹凸形状の転写率を高めることが可能となり、その結果高い生産性を実現したプラスチック積層体を得ることができる。   According to the present invention, desired unevenness can be stably imparted to the plastic laminate. This makes it possible to achieve both Newton's rings and reflections and maintain transparency, and transfer by controlling various conditions during transfer, such as the components of an active energy ray-curable resin composition that shapes irregularities. It is possible to increase the transfer rate of the concavo-convex shape from the roll to the surface of the plastic laminate, and as a result, a plastic laminate that achieves high productivity can be obtained.

本発明は透明導電基板の少なくとも一方の面に粗面化層を転写によって形成したプラスチック積層体である。その構成は例えば図1に示すように、透明性を有する平滑な透明プラスチック基板(a)の片面に平滑層(b)をもう一方の面に粗面化層(c)を形成したものでも良いし、又図示しないが、透明プラスチック基板(a)の両面に粗面化層(c)を形成しても構わない。プラスチック積層体の構成は本発明の効果を損なわない範囲で、透明プラスチック基板の片面又は両面に目的に応じて各種構成層を設けても良い。各種構成層としては例えば耐薬品性、耐熱性、打鍵耐久性などの性能を向上させるためには、活性エネルギー線硬化樹脂や熱硬化性樹脂が良く、ガスバリア性の向上、透明導電性と透明プラスチックとの密着性などを向上させるには金属酸化物を用いると良い。     The present invention is a plastic laminate in which a roughened layer is formed by transfer on at least one surface of a transparent conductive substrate. For example, as shown in FIG. 1, a smooth transparent plastic substrate (a) having transparency may have a smooth layer (b) on one side and a roughened layer (c) on the other side. Further, although not shown, a roughened layer (c) may be formed on both sides of the transparent plastic substrate (a). The configuration of the plastic laminate may be provided with various constituent layers according to the purpose on one or both sides of the transparent plastic substrate as long as the effects of the present invention are not impaired. As various constituent layers, for example, in order to improve the performance such as chemical resistance, heat resistance, keystroke durability, active energy ray curable resin and thermosetting resin are good, gas barrier property is improved, transparent conductivity and transparent plastic A metal oxide is preferably used to improve adhesion to the substrate.

本発明者らは鋭意検討した結果、粗面化層(c)は中心線平均粗さ(Ra)50nm〜900nmかつ凹凸の平均間隔(Sm)が30μm〜300μmの表面粗度を有していれば、ニュートンリングや景色の映り込みが無くかつ高い透明性を維持することが可能であることを明らかにした。従って、中心線平均粗さ(Ra)と凹凸の平均間隔(Sm)の値がいずれか一方でも前記範囲をはずれたら、本発明の目的は達成されない。   As a result of intensive studies, the present inventors have found that the roughened layer (c) has a surface roughness with a center line average roughness (Ra) of 50 nm to 900 nm and an average interval of unevenness (Sm) of 30 μm to 300 μm. For example, it was clarified that Newton's ring and scenery are not reflected and it is possible to maintain high transparency. Therefore, the object of the present invention is not achieved if the center line average roughness (Ra) and the average interval between the irregularities (Sm) are out of the above range.

本発明者らは、プラスチック基板表面へ付与する凹凸の中心線平均粗さ(Ra)および凸の平均間隔(Sm)を詳細に検討した。その結果、中心線平均粗さ(Ra)が50nm〜900nmの範囲内、より好ましくは60〜300nm、中心線平均粗さ(Ra)を有するとともに、表面凹凸の平均間隔(Sm)が30μm〜300μmの範囲内、より好ましくは60μm〜120μmにある場合に、タッチパネルのニュートンリング或いは映り込みを防止出来るとともに、高い透明性を維持出来ることを明らかにした。   The present inventors have studied in detail the centerline average roughness (Ra) and the average spacing (Sm) of the projections and depressions imparted to the plastic substrate surface. As a result, the center line average roughness (Ra) is in the range of 50 nm to 900 nm, more preferably 60 to 300 nm, the center line average roughness (Ra), and the average interval (Sm) of surface irregularities is 30 μm to 300 μm. It was clarified that, when the thickness is in the range of 60 μm to 120 μm, it is possible to prevent Newton ring or reflection of the touch panel and maintain high transparency.

すなわち、中心線平均粗さ(Ra)が900nmよりも大きくなれば、基板の曇度が高くなり視認性が低下する。逆に、中心線平均粗さ(Ra)が50nmより小さくなれば、ニュートンリング或いは映り込みが発生するため好ましくない。   That is, if the center line average roughness (Ra) is greater than 900 nm, the haze of the substrate increases and the visibility decreases. On the contrary, if the center line average roughness (Ra) is smaller than 50 nm, Newton's ring or reflection is generated, which is not preferable.

また、表面凹凸の平均間隔(Sm)が300μmより大きくなれば、ニュートンリング或いは映り込みが発生するため好ましくない。また、30μmより小さくなれば、基板の曇度が高くなり視認性が低下する。   Further, if the average interval (Sm) of the surface irregularities is larger than 300 μm, it is not preferable because Newton ring or reflection occurs. Moreover, if it becomes smaller than 30 micrometers, the cloudiness of a board | substrate will become high and visibility will fall.

このように本発明は、上述の限定された範囲内の中心線平均粗さ(Ra)と表面凹凸の平均間隔(Sm)とが組合わされた転写用ロールを用いて基板に凹凸を付与することを特徴として持つ。従って、他の表面凹凸形成技術では、本発明の目的は達成されない。   As described above, the present invention provides the substrate with irregularities using the transfer roll in which the centerline average roughness (Ra) and the average interval (Sm) of the surface irregularities within the limited range described above are combined. As a feature. Therefore, the object of the present invention cannot be achieved by other surface unevenness forming techniques.

前記基体面に賦形される凹凸の形状は、例えば、半円形、円柱形、角柱形、円錐形等が例示できるが、特には限定しない。また、配列状態としては、例えば千鳥状、格子状等があるが、特に限定しない。   Examples of the shape of the irregularities formed on the substrate surface include a semicircular shape, a cylindrical shape, a prismatic shape, and a conical shape, but are not particularly limited. The arrangement state includes, for example, a staggered pattern and a lattice pattern, but is not particularly limited.

本発明で用いる透明性を有する透明プラスチック基板(a)は、特に限定はしないが、基板となる樹脂原料としては、ポリエチレン系樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリイミド樹脂、環状ポリオレフィン樹脂、エポキシ系樹脂、多官能アクリレート樹脂、フェノキシ樹脂等が挙げられるが、この中でも真空蒸着、イオンプレーティング法等で導電性及び絶縁性の無機薄膜を形成する為に耐熱性のある透明な高分子基材が好ましい。更にはタッチパネルの構成物に求められる、機械的強度、光学的特性、耐熱性等の観点からポリエチレン系樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、環状ポリオレフィン樹脂、ポリエーテルスルホン樹脂が好ましい。また、その厚みに関しても特に限定はしないが、好ましくは50〜500μmであり、より好ましくは100〜400μmである。   The transparent plastic substrate (a) having transparency used in the present invention is not particularly limited, but as a resin raw material to be a substrate, polyethylene resin, polysulfone resin, polyethersulfone resin, polycarbonate resin, polyarylate resin, polyester Resin, polyamide resin, polyimide resin, cyclic polyolefin resin, epoxy resin, polyfunctional acrylate resin, phenoxy resin, etc., among them, conductive and insulating inorganic thin films by vacuum deposition, ion plating method, etc. In order to form the film, a heat-resistant transparent polymer base material is preferable. Further, polyethylene resins, polyester resins, polycarbonate resins, cyclic polyolefin resins, and polyethersulfone resins are preferable from the viewpoints of mechanical strength, optical characteristics, heat resistance, and the like required for touch panel components. Moreover, although it does not specifically limit regarding the thickness, Preferably it is 50-500 micrometers, More preferably, it is 100-400 micrometers.

本発明のプラスチック積層体の粗面化層と反対側の面に形成できる平滑層(b)を形成する場合も、前記の粗面化層(c)の場合と同様の方法を使用することができる。なお、この平滑層(b)も耐熱性、耐薬品性を備えており、実質的に透明であることが好ましい。
本発明のプラスチック積層体の粗面化層(c)上に透明電極を形成したものを用いて、入力デバイスであるタッチパネルを組み立てた場合、外光の映り込みが少なく、視認性が高く、かつ入力装置として透明性を損なわない、光学特性に優れたタッチパネルを提供することが出来る。
Even when the smooth layer (b) that can be formed on the surface opposite to the roughened layer of the plastic laminate of the present invention is formed, the same method as in the case of the roughened layer (c) may be used. it can. This smooth layer (b) also has heat resistance and chemical resistance, and is preferably substantially transparent.
When a touch panel, which is an input device, is assembled using a transparent electrode formed on the roughened layer (c) of the plastic laminate of the present invention, there is little reflection of external light, high visibility, and As an input device, it is possible to provide a touch panel with excellent optical characteristics that does not impair transparency.

本発明の透明導電層の作成法は、金属薄膜形成法や印刷法などがあるが、好ましくはスパッタリング法、又は真空蒸着法等の金属薄膜形成法が挙げられる。透明導電層としては、例えば酸化インジウム錫(ITO)、酸化錫、銀、銅等の無機薄膜層が挙げられるが、ITOが一般的に用いられる。透明導電層の膜厚は、10〜200nmが一般的であり、表面抵抗値としては、100〜1000Ω/□が一般的である。   The method for producing the transparent conductive layer of the present invention includes a metal thin film forming method and a printing method, and preferably a metal thin film forming method such as a sputtering method or a vacuum deposition method. Examples of the transparent conductive layer include inorganic thin film layers such as indium tin oxide (ITO), tin oxide, silver, and copper, but ITO is generally used. The film thickness of the transparent conductive layer is generally 10 to 200 nm, and the surface resistance value is generally 100 to 1000 Ω / □.

本発明の活性エネルギー線硬化性樹脂組成物とは電子線、可視光線及び紫外線等の活性エネルギー線の照射により硬化するものである。活性エネルギー線硬化性樹脂組成物層の厚みに特に制限はないが、1〜100μmが好ましい。厚みが1μm以下になると転写用ロールにより凹凸転写をする際、凸部が活性エネルギー線硬化性樹脂層の厚み深さ以上まで達し易くなり、その結果、安定した凹凸転写が得られず、またその箇所における活性エネルギー線硬化性樹脂組成物の特性を損なう傾向があり好ましくない。厚みが100μm以上になると外観や透明性が悪くなる傾向があり好ましくない。そして本発明においては、活性エネルギー線硬化性樹脂組成物形成用の樹脂液として、活性エネルギー線硬化型樹脂に、ラジカル反応性を有する二重結合とエポキシ基、水酸基、イソシアネート基およびアルコキシシラン基よりなる群から選ばれた少なくとも1種の基とを有するモノマーを配合した組成物を用いる。   The active energy ray-curable resin composition of the present invention is cured by irradiation with active energy rays such as an electron beam, visible light, and ultraviolet rays. Although there is no restriction | limiting in particular in the thickness of an active energy ray curable resin composition layer, 1-100 micrometers is preferable. When the thickness is 1 μm or less, when the uneven transfer is performed by the transfer roll, the convex portion easily reaches the thickness depth of the active energy ray-curable resin layer, and as a result, a stable uneven transfer cannot be obtained. This is not preferable because it tends to impair the properties of the active energy ray-curable resin composition at the location. When the thickness is 100 μm or more, the appearance and transparency tend to deteriorate, which is not preferable. In the present invention, as a resin liquid for forming an active energy ray-curable resin composition, an active energy ray-curable resin is composed of a double bond having radical reactivity and an epoxy group, a hydroxyl group, an isocyanate group, and an alkoxysilane group. A composition containing a monomer having at least one group selected from the group is used.

まず活性エネルギー線硬化性樹脂としては、腰(剛性)、硬度、耐熱性、耐溶剤性、耐スクラッチ性、ガスバリア性などを考慮して、シリコーンアクリレート、エポキシアクリレート、アクリルエステルまたはウレタンアクリレート系などの活性エネルギー線硬化型樹脂(光重合性プレポリマー)が好適に用いられる。この中でも分子量が2000〜30000のものが好ましい。分子量が2000以下であると活性エネルギー線硬化性樹脂の硬化が進んでも比較的軟化状態の傾向にあるため、転写用ロールによる凹凸転写時の転写率が悪くなり結果的に転写用ロール表面を汚してしまい生産性が劣ることとなる。分子量が30000以上であると他成分との相溶性が悪くなり、転写状態のバラツキの原因となってしまう。またこの活性エネルギー線硬化性樹脂の配合比は5%〜50%が好ましい。配合比が5%以下であると樹脂組成物が転写用ロールに移行するか、転写用ロール表面を汚すこととなる。配合比が50%以上であると活性エネルギー線樹脂層に含まれる成分、例えば耐熱性向上に寄与しているイソシアヌール酸EO変性トリアクリレートが少なくなる為、その効果が減少してしまう。   First, the active energy ray curable resin includes silicone acrylate, epoxy acrylate, acrylic ester, urethane acrylate, etc. in consideration of waist (rigidity), hardness, heat resistance, solvent resistance, scratch resistance, gas barrier properties, etc. An active energy ray curable resin (photopolymerizable prepolymer) is preferably used. Among these, those having a molecular weight of 2000 to 30000 are preferable. If the molecular weight is 2,000 or less, the active energy ray curable resin tends to be in a relatively soft state even if the curing of the active energy ray curable resin proceeds. As a result, productivity is inferior. When the molecular weight is 30000 or more, the compatibility with other components is deteriorated, which causes variations in the transfer state. Further, the blending ratio of the active energy ray curable resin is preferably 5% to 50%. If the blending ratio is 5% or less, the resin composition moves to the transfer roll or the transfer roll surface is soiled. When the blending ratio is 50% or more, the component contained in the active energy ray resin layer, for example, isocyanuric acid EO-modified triacrylate contributing to improvement in heat resistance is reduced, and the effect is reduced.

本発明において、紫外線硬化性樹脂に転写用ロールで転写する際の紫外線照射条件を検討する必要がある。紫外線硬化性樹脂組成物がアクリレートモノマーおよび分子量が2000以上である高分子量アクリレートである場合、紫外線照射量は100−500mJ/cm2、好ましくは200−400mJ/cm2、さらに好ましくは300−350mJ/cm2である。紫外線照射量が100mJ/cm2より弱いと転写用ロールで転写する際に紫外線硬化性樹脂が比較的軟化状態であるため、転写用ロールを汚し、転写用ロールでの転写率も悪くなる。紫外線照射量が500mJ/cm2より強いと透明プラスチック基板など樹脂組成物が変色更には劣化してしまう。 In the present invention, it is necessary to study the ultraviolet irradiation conditions when transferring to an ultraviolet curable resin with a transfer roll. When the ultraviolet curable resin composition is an acrylate monomer and a high molecular weight acrylate having a molecular weight of 2000 or more, the ultraviolet irradiation amount is 100-500 mJ / cm 2 , preferably 200-400 mJ / cm 2 , more preferably 300-350 mJ / cm 2 . When the amount of ultraviolet irradiation is weaker than 100 mJ / cm 2 , the ultraviolet curable resin is in a relatively soft state when transferred with the transfer roll, so that the transfer roll is soiled and the transfer rate with the transfer roll is also deteriorated. When the amount of ultraviolet irradiation is higher than 500 mJ / cm 2 , the resin composition such as a transparent plastic substrate is discolored and further deteriorated.

本発明における金属酸化物層としては、珪素、アルミニウム、マグネシウム等から選ばれる1種または2種以上の金属を主成分とする金属酸化物が挙げられ、ガスバリア性の向上、透明導電性と透明プラスチックとの密着性の向上、高温高湿下での表面抵抗値上昇を抑制する為に用いられる。これら酸化物層はスパッタ法、イオンプレーテイング法、プラズマCVD法等により作製される。この中でも、ガスバリア性、透明性、表面平滑性、屈曲性等の点から珪素原子数に対する酸素原子数の割合(x)が1.0〜4.0の珪素酸化物(SiOx)を主成分とする金属酸化物が良好である。該金属酸化物層の厚は、3nm〜300nmの範囲が好ましい。3nmよりも薄くなると均一に膜を形成することは困難であり、ガスバリア性が悪くなる。また、300nmよりも厚くなると透明性を欠くだけでなく、屈曲性が悪く、クラックが発生してガスバリア性の低下、表面抵抗値の上昇の原因となる。   Examples of the metal oxide layer in the present invention include metal oxides mainly composed of one or more metals selected from silicon, aluminum, magnesium, etc., and improved gas barrier properties, transparent conductivity and transparent plastics. It is used to improve the adhesion to the surface and to suppress the increase in surface resistance value under high temperature and high humidity. These oxide layers are formed by sputtering, ion plating, plasma CVD, or the like. Among these, the main component is silicon oxide (SiOx) having a ratio (x) of oxygen atoms to silicon atoms of 1.0 to 4.0 in terms of gas barrier properties, transparency, surface smoothness, flexibility, and the like. Good metal oxide. The thickness of the metal oxide layer is preferably in the range of 3 nm to 300 nm. If the thickness is less than 3 nm, it is difficult to form a uniform film, and the gas barrier property is deteriorated. On the other hand, when the thickness is larger than 300 nm, not only the transparency is lost, but also the flexibility is poor and cracks are generated, which causes a decrease in gas barrier property and an increase in surface resistance value.

本発明における凹凸形状を転写する際の加工条件は次のとおりである。凹凸形状を転写する転写用ロールおよび受けロールの材質は特に限定しないが、鉄、銅、ステンレス、ニッケル、コバルト、クロムなどの金属製、硬質ゴムなどの樹脂製のものが挙げられる。また、これら転写用ロール、受けロールの表面は樹脂など汚れの付着を防止する為、ハードクロムメッキ、ニッケルメッキ、ポリテトラフロロエチレンのようなフッ素樹脂などで表面を被覆する方が好ましい。   The processing conditions for transferring the concavo-convex shape in the present invention are as follows. The material of the transfer roll and the receiving roll for transferring the uneven shape is not particularly limited, and examples thereof include a metal such as iron, copper, stainless steel, nickel, cobalt, and chromium, and a resin such as hard rubber. Further, the surfaces of the transfer roll and the receiving roll are preferably covered with a hard resin such as hard chrome plating, nickel plating, or fluororesin such as polytetrafluoroethylene in order to prevent adhesion of dirt such as resin.

転写用ロール、受けロールの温度は加温する方が安定した転写状態となり好ましく、加熱温度は樹脂成分のガラス転移温度(Tg)+50℃以下であることが好ましい。この温度以上になるとシワの発生、転写用ロール表面が汚れ生産性が劣ってしまう。転写の際の圧力は0.05MPa以上であることが好ましい。0.05MPaより小さくなると転写率が悪くなってしまう。   It is preferable that the temperature of the transfer roll and the receiving roll is heated so that a stable transfer state can be obtained, and the heating temperature is preferably the glass transition temperature (Tg) of the resin component + 50 ° C. or less. Above this temperature, wrinkles are generated and the transfer roll surface is inferior in dirt productivity. The pressure during transfer is preferably 0.05 MPa or more. If the pressure is less than 0.05 MPa, the transfer rate is deteriorated.

以下実施例を上げて本発明を更に詳細に説明するが、これらは単なる例示であり、本発明はこれらの実施例に何ら限定されることはない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, these are merely examples, and the present invention is not limited to these examples.

<実施例1>
透明プラスチック基板(a)として厚さ188μmの延伸透明ポリエチレンテレフタレートフィルム(透過率89.0%)を用い、巻出装置、コーター部、加熱乾燥ゾーン、ラミネートロール、高圧水銀灯、巻取装置を有する製造装置を用いて次の加工を行った。
まず、紫外線硬化性樹脂組成物として分子量:400のイソシアヌール酸EO変性トリアクリレート80重量部、分子量:11500のウレタンアクリレート20重量部、酢酸ブチル300重量部,セロソルブアセテート100重量部,ベンゾインエチルエーテル2重量部を50℃にて撹拌、溶解して均一な溶液としたものをコーター部のグラビヤロールコーターで乾燥前膜厚5μm塗布し、加熱乾燥ゾーン中120℃で2分間加熱して溶媒を除去した。続いて表面に中心線平均粗さ(Ra)125nmかつ凹凸の平均間隔(Sm)が80μmの表面粗度を有する金属ロールを50℃に加温し、密着させて350mJ/cmの紫外線を照射して紫外線硬化性樹脂組成物を硬化させ、粗面化層(c)を積層した。続いて、このフィルムの祖面化面に透明導電層としてDCマグネトロン法により初期真空度3×10−4Paの状態から酸素/アルゴンガス4%の混合ガスを導入して 1×10−1Paの条件下においてスパッタリングを行いIn/(In+Sn)の原子比が0.98である酸化インジウム錫(ITO)からなる透明導電層を得た。このフィルムの全光線透過率を測定したところ、90%であった。
<Example 1>
Production using a stretched transparent polyethylene terephthalate film (transmittance of 89.0%) with a thickness of 188 μm as the transparent plastic substrate (a) and having an unwinding device, coater section, heat drying zone, laminating roll, high-pressure mercury lamp, and winding device The following processing was performed using the apparatus.
First, 80 parts by weight of isocyanuric acid EO-modified triacrylate having a molecular weight of 400, 20 parts by weight of urethane acrylate having a molecular weight of 11500, 300 parts by weight of butyl acetate, 100 parts by weight of cellosolve acetate, benzoin ethyl ether 2 as an ultraviolet curable resin composition A uniform solution was prepared by stirring and dissolving the weight part at 50 ° C., and the film thickness before drying was applied by a gravure roll coater of the coater part, and the solvent was removed by heating at 120 ° C. for 2 minutes in the heating and drying zone. . Subsequently, a metal roll having a surface roughness with an average roughness (Ra) of 125 nm and an average interval of unevenness (Sm) of 80 μm is heated to 50 ° C. and adhered to the surface, and irradiated with ultraviolet rays of 350 mJ / cm 2. Then, the ultraviolet curable resin composition was cured, and the roughened layer (c) was laminated. Subsequently, a mixed gas of oxygen / argon gas 4% was introduced from the state of an initial vacuum of 3 × 10 −4 Pa as a transparent conductive layer to the roughened surface of this film by a DC magnetron method to 1 × 10 −1 Pa. Sputtering was performed under the above conditions to obtain a transparent conductive layer made of indium tin oxide (ITO) having an In / (In + Sn) atomic ratio of 0.98. The total light transmittance of this film was measured and found to be 90%.

<実施例2>
金属ロールとして表面に中心線平均粗さ(Ra)300nmかつ凹凸の平均間隔(Sm)が100μmの表面粗度を有するものを用いたこと以外は、実施例1と全く同様の手法で
基板に粗面化層(c)、ITO層を積層した。この基板の全光線透過率を測定したところ88.5%であった。
<Example 2>
The substrate was roughened in the same manner as in Example 1 except that a metal roll having a surface roughness with a center line average roughness (Ra) of 300 nm and an average interval of unevenness (Sm) of 100 μm was used. A surface layer (c) and an ITO layer were laminated. The total light transmittance of this substrate was measured and found to be 88.5%.

<実施例3>
透明プラスチック基板(a)として厚さ188μmの延伸透明ポリエチレンテレフタレートフィルム(透過率89.0%)を用い、巻出装置、コーター部、加熱乾燥ゾーン、ラミネートロール、高圧水銀灯、巻取装置を有する製造装置を用いて次の加工を行った。
まず、紫外線硬化性樹脂組成物として分子量:400のイソシアヌール酸EO変性トリアクリレート60重量部、分子量:5000のウレタンアクリレート40重量部、酢酸ブチル300重量部,セロソルブアセテート100重量部,ベンゾインエチルエーテル2重量部を50℃にて撹拌、溶解して均一な溶液としたものをコーター部のグラビヤロールコーターで乾燥前膜厚5μm塗布し、加熱乾燥ゾーン中120℃で2分間加熱して溶媒を除去した。続いて表面に中心線平均粗さ(Ra)125nmかつ凹凸の平均間隔(Sm)が80μmの表面粗度を有する金属ロールを50℃に加温し、密着させて350mJ/cmの紫外線を照射して紫外線硬化性樹脂組成物を硬化させ、粗面化層(c)を積層した。続いて、このフィルムの祖面化面に透明導電層としてDCマグネトロン法により初期真空度3×10−4Paの状態から酸素/アルゴンガス4%の混合ガスを導入して 1×10−1Paの条件下においてスパッタリングを行いIn/(In+Sn)の原子比が0.98である酸化インジウム錫(ITO)からなる透明導電層を得た。このフィルムの全光線透過率を測定したところ、90%であった。
<Example 3>
Production using a stretched transparent polyethylene terephthalate film (transmittance of 89.0%) with a thickness of 188 μm as the transparent plastic substrate (a) and having an unwinding device, coater section, heat drying zone, laminating roll, high-pressure mercury lamp, and winding device The following processing was performed using the apparatus.
First, 60 parts by weight of isocyanuric acid EO-modified triacrylate having a molecular weight of 400, 40 parts by weight of urethane acrylate having a molecular weight of 5000, 300 parts by weight of butyl acetate, 100 parts by weight of cellosolve acetate, and benzoin ethyl ether 2 as an ultraviolet curable resin composition A uniform solution was prepared by stirring and dissolving the weight part at 50 ° C., with a gravure roll coater in the coater part, coated with a film thickness of 5 μm before drying, and heated at 120 ° C. for 2 minutes in a heat drying zone to remove the solvent. . Subsequently, a metal roll having a surface roughness with an average roughness (Ra) of 125 nm and an average interval of unevenness (Sm) of 80 μm is heated to 50 ° C. and adhered to the surface, and irradiated with ultraviolet rays of 350 mJ / cm 2. Then, the ultraviolet curable resin composition was cured, and the roughened layer (c) was laminated. Subsequently, a mixed gas of oxygen / argon gas 4% was introduced from the state of an initial vacuum of 3 × 10 −4 Pa as a transparent conductive layer to the roughened surface of this film by a DC magnetron method to 1 × 10 −1 Pa. Sputtering was performed under the above conditions to obtain a transparent conductive layer made of indium tin oxide (ITO) having an In / (In + Sn) atomic ratio of 0.98. The total light transmittance of this film was measured and found to be 90%.

<比較例1>
紫外線硬化性樹脂組成物として、分子量:400のイソシアヌール酸EO変性トリアクリレート80重量部、分子量:11500のウレタンアクリレート20重量部、酢酸ブチル300重量部,セロソルブアセテート100重量部,ベンゾインエチルエーテル2重量部を50℃にて撹拌、溶解して均一な溶液としたものをコーター部のグラビヤロールコーターで乾燥前膜厚5μm塗布し、加熱乾燥ゾーン中120℃で2分間加熱して溶媒を除去した後、350mJ/cmの紫外線を照射して基板に平滑層(b)を積層した。続いて、このフィルムの平滑層(b)面に透明導電層としてDCマグネトロン法により初期真空度3×10−4Paの状態から酸素/アルゴンガス4%の混合ガスを導入して 1×10−1Paの条件下においてスパッタリングを行いIn/(In+Sn)の原子比が0.98である酸化インジウム錫(ITO)からなる透明導電層を得た。このフィルムの全光線透過率を測定したところ、90%であった。
<Comparative Example 1>
As an ultraviolet curable resin composition, molecular weight: 400 isocyanuric acid EO-modified triacrylate having a molecular weight of 400, 20 parts by weight of urethane acrylate having a molecular weight of 11,500, 300 parts by weight of butyl acetate, 100 parts by weight of cellosolve acetate, 2 parts by weight of benzoin ethyl ether After stirring and dissolving the part at 50 ° C. to obtain a uniform solution, a 5 μm film thickness before drying was applied with a gravure roll coater in the coater part, and the solvent was removed by heating at 120 ° C. for 2 minutes in the heating and drying zone. The smooth layer (b) was laminated on the substrate by irradiating with 350 mJ / cm 2 of ultraviolet rays. Subsequently, the smoothing layer of the film (b) Initial vacuum degree by DC magnetron sputtering as the transparent conductive layer on the surface 3 × 10 -4 by introducing oxygen / argon gas 4% of the mixed gas from the state of Pa 1 × 10 - Sputtering was performed under the condition of 1 Pa to obtain a transparent conductive layer made of indium tin oxide (ITO) having an In / (In + Sn) atomic ratio of 0.98. The total light transmittance of this film was measured and found to be 90%.

<比較例2>
紫外線硬化性樹脂組成物として、分子量:400のイソシアヌール酸EO変性トリアクリレート80重量部、分子量:11500のウレタンアクリレート20重量部、平均粒径1.8μmの無機微粒子含有のウレタンアクリレート45%溶液15.0重量部、2、2−ジメトキシ−1、2−ジフェニルエタン−1−オン0.5重量部、酢酸ブチル300重量部、セロソルブアセテート100重量部を50℃にて撹拌、溶解して均一な溶液としたものをコーター部のグラビヤロールコーターで乾燥前膜厚5μm塗布し、120℃で2分間加熱して溶媒を除去した後、350mJ/cmの紫外線を照射して基板に粗面化層(c)を積層した。続いて、このフィルムの粗面化層(c)に透明導電層としてDCマグネトロン法により初期真空度3×10−4Paの状態から酸素/アルゴンガス4%の混合ガスを導入して 1×10−1Paの条件下においてスパッタリングを行いIn/(In+Sn)の原子比が0.98である酸化インジウム錫(ITO)からなる透明導電層を得た。このフィルムの全光線透過率を測定したところ、77%であった。
<Comparative example 2>
As an ultraviolet curable resin composition, 80% by weight of isocyanuric acid EO-modified triacrylate having a molecular weight of 400, 20 parts by weight of urethane acrylate having a molecular weight of 11500, and a 45% urethane acrylate solution 15 containing inorganic fine particles having an average particle size of 1.8 μm 15 0.02 parts by weight, 2,2-dimethoxy-1,2-diphenylethane-1-one 0.5 parts by weight, butyl acetate 300 parts by weight, cellosolve acetate 100 parts by weight, stirred and dissolved at 50 ° C. The solution was coated with a gravure roll coater in the coater part at a film thickness of 5 μm before drying, heated at 120 ° C. for 2 minutes to remove the solvent, and then irradiated with 350 mJ / cm 2 of ultraviolet light to roughen the substrate. (C) was laminated. Subsequently, a mixed gas of oxygen / argon gas 4% was introduced into the roughened layer (c) of the film as a transparent conductive layer from a state of an initial vacuum of 3 × 10 −4 Pa by a DC magnetron method. Sputtering was performed under the condition of −1 Pa to obtain a transparent conductive layer made of indium tin oxide (ITO) having an In / (In + Sn) atomic ratio of 0.98. The total light transmittance of this film was measured and found to be 77%.

<比較例3>
金属ロールとして表面に中心線平均粗さ(Ra)45nmかつ凹凸の平均間隔(Sm)が90μmの凹凸が設けられたものを用いたこと以外は、実施例1と同様の手法で基板に粗面化層(c)、ITO層を積層した。この基板の全光線透過率を測定したところ、90%であった。
<Comparative Example 3>
The substrate was roughened in the same manner as in Example 1 except that a metal roll having a surface with an average roughness (Ra) of 45 nm and an average interval of unevenness (Sm) of 90 μm was used. A layer (c) and an ITO layer were laminated. The total light transmittance of this substrate was measured and found to be 90%.

<比較例4>
透明プラスチック基板(a)として厚さ188μmの延伸透明ポリエチレンテレフタレートフィルム(透過率89.0%)を用い、巻出装置、コーター部、加熱乾燥ゾーン、ラミネートロール、高圧水銀灯、巻取装置を有する製造装置を用いて次の加工を行った。
まず、紫外線硬化性樹脂組成物として分子量:400のイソシアヌール酸EO変性トリアクリレート100重量部、酢酸ブチル300重量部,セロソルブアセテート100重量部,ベンゾインエチルエーテル2重量部を50℃にて撹拌、溶解して均一な溶液としたものをコーター部のグラビヤロールコーターで乾燥前膜厚5μm塗布し、加熱乾燥ゾーン中120℃で2分間加熱して溶媒を除去した。続いて表面に中心線平均粗さ(Ra)125nmかつ凹凸の平均間隔(Sm)が80μmの表面粗度を有する金属ロールを50℃に加温し、密着させて350mJ/cmの紫外線を照射して紫外線硬化性樹脂組成物を硬化させ、粗面化層(c)の積層を試みたが金属ロール表面に紫外線硬化性樹脂組成物が貼り付きロール表面も汚れ、安定した凹凸状態が得られなかった。
<Comparative example 4>
Production using a stretched transparent polyethylene terephthalate film (transmittance of 89.0%) with a thickness of 188 μm as the transparent plastic substrate (a) and having an unwinding device, coater section, heat drying zone, laminating roll, high-pressure mercury lamp, and winding device The following processing was performed using the apparatus.
First, 100 parts by weight of isocyanuric acid EO-modified triacrylate having a molecular weight of 400, 300 parts by weight of butyl acetate, 100 parts by weight of cellosolve acetate, and 2 parts by weight of benzoin ethyl ether are stirred and dissolved at 50 ° C. as an ultraviolet curable resin composition. Then, a uniform solution was applied with a gravure roll coater in the coater part to a film thickness of 5 μm before drying, and the solvent was removed by heating at 120 ° C. for 2 minutes in a heating and drying zone. Subsequently, a metal roll having a surface roughness with an average roughness (Ra) of 125 nm and an average interval of unevenness (Sm) of 80 μm is heated to 50 ° C. and adhered to the surface, and irradiated with ultraviolet rays of 350 mJ / cm 2. Then, the UV curable resin composition was cured and the lamination of the roughened layer (c) was attempted, but the UV curable resin composition adhered to the surface of the metal roll, and the roll surface was also soiled, and a stable uneven state was obtained. There wasn't.

以上のようにして得られたプラスチック基板の表面形状、光学特性、及び得られた基板での外光の映り込みの有無の結果を表1に記す。
なお、金属ロールの表面形状及び、粗面化した表面形状(Ra)、(Sm)については、非接触3次元表面構造解析装置 NewView5000(Zygo社製)を使用して測定長1.44mmにおける測定値を記した。また、全光線透過率、曇度についてはJIS K 7361に準じて測定を行った。そして、外光の映り込みの有無については入射角60℃の蛍光灯光源の反射像が鮮明に確認されるかどうかで判定した。
Table 1 shows the surface shape and optical characteristics of the plastic substrate obtained as described above, and the results of the presence or absence of reflection of external light on the obtained substrate.
In addition, about the surface shape of a metal roll, and the roughened surface shape (Ra), (Sm), it is a measurement at a measurement length of 1.44 mm using a non-contact three-dimensional surface structure analyzer NewView 5000 (manufactured by Zygo). The values are noted. The total light transmittance and haze were measured according to JIS K 7361. The presence or absence of reflection of external light was determined based on whether or not the reflected image of the fluorescent lamp light source with an incident angle of 60 ° C. was clearly confirmed.

Figure 2005161199
Figure 2005161199

本発明に従うとプラスチック積層体に所望の凹凸を安定して付与できる。これによりニュートンリングや映り込みの防止と透明性の維持を両立することができ、また凹凸を賦型する活性エネルギー線硬化性樹脂組成物の成分など転写時の様々な条件を制御することにより転写用ロールからプラスチック積層体表面へのその凹凸形状の転写率を高めることが可能となり、その結果高い生産性を実現したプラスチック積層体を得ることができる。   According to the present invention, desired unevenness can be stably imparted to the plastic laminate. This makes it possible to achieve both Newton's rings and reflections and maintain transparency, and transfer by controlling various conditions during transfer, such as the components of an active energy ray-curable resin composition that shapes irregularities. It is possible to increase the transfer rate of the concavo-convex shape from the roll to the surface of the plastic laminate, and as a result, a plastic laminate that achieves high productivity can be obtained.

本発明におけるプラスチック積層体の断面図の一例であり、透明導電層(d)を積層した状態を示してある。It is an example of sectional drawing of the plastic laminated body in this invention, and the state which laminated | stacked the transparent conductive layer (d) is shown.

符号の説明Explanation of symbols

a…透明プラスチック基板
b…平滑層
c…粗面化層
d…透明導電層
a ... transparent plastic substrate b ... smooth layer c ... roughened layer d ... transparent conductive layer

Claims (6)

透明プラスチック基板の少なくとも片面上に活性エネルギー線硬化性樹脂組成物層から形成された粗化面層を有するプラスチック積層体の製造方法であって、該活性エネルギー線硬化性樹脂組成物層を表面粗度が中心線平均粗さ(Ra)50nm〜900nmかつ凹凸の平均間隔(Sm)が30μm〜300μmである転写用ロールに接触する工程を有することを特徴とするプラスチック積層体の製造方法。   A method for producing a plastic laminate having a roughened surface layer formed from an active energy ray-curable resin composition layer on at least one surface of a transparent plastic substrate, the active energy ray-curable resin composition layer having a rough surface. A method for producing a plastic laminate, comprising a step of contacting a transfer roll having a degree of centerline average roughness (Ra) of 50 nm to 900 nm and an average interval of unevenness (Sm) of 30 μm to 300 μm. 前記活性エネルギー線硬化性樹脂組成物層がアクリレートモノマーおよび分子量が2000〜30000である高分子量アクリレートからなる請求項1記載のプラスチック積層体の製造方法。   The method for producing a plastic laminate according to claim 1, wherein the active energy ray-curable resin composition layer comprises an acrylate monomer and a high molecular weight acrylate having a molecular weight of 2000 to 30000. 前記プラスチック積層体の少なくとも片面に透明導電層を形成した請求項1又は2記載のプラスチック積層体の製造方法。   The method for producing a plastic laminate according to claim 1 or 2, wherein a transparent conductive layer is formed on at least one surface of the plastic laminate. 前記透明導電層と透明プラスチック基板の間に金属酸化物層を形成してなる請求項1,2又は3記載のプラスチック積層体の製造方法。   The method for producing a plastic laminate according to claim 1, 2 or 3, wherein a metal oxide layer is formed between the transparent conductive layer and the transparent plastic substrate. 請求項1〜4のいずれか記載のプラスチック積層体の製造方法で製造され、活性エネルギー線硬化性樹脂組成物層の表面粗度が中心線平均粗さ(Ra)50nm〜900nmかつ凹凸の平均間隔(Sm)が30μm〜300μmであり、かつ全光線透過率が80%以上であることを特徴とするプラスチック積層体。   It is manufactured with the manufacturing method of the plastic laminated body in any one of Claims 1-4, The surface roughness of an active energy ray curable resin composition layer is centerline average roughness (Ra) 50nm-900nm, and the average space | interval of unevenness | corrugation (Sm) is 30 μm to 300 μm, and the total light transmittance is 80% or more. 請求項5記載のプラスチック積層体を用いたタッチパネル。   A touch panel using the plastic laminate according to claim 5.
JP2003403357A 2003-12-02 2003-12-02 Plastic laminate and production method for the same Pending JP2005161199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003403357A JP2005161199A (en) 2003-12-02 2003-12-02 Plastic laminate and production method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403357A JP2005161199A (en) 2003-12-02 2003-12-02 Plastic laminate and production method for the same

Publications (1)

Publication Number Publication Date
JP2005161199A true JP2005161199A (en) 2005-06-23

Family

ID=34726688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403357A Pending JP2005161199A (en) 2003-12-02 2003-12-02 Plastic laminate and production method for the same

Country Status (1)

Country Link
JP (1) JP2005161199A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018431A (en) * 2005-07-11 2007-01-25 Sumitomo Bakelite Co Ltd Film for touch panel, and liquid touch panel using the same
JP2008155387A (en) * 2006-12-21 2008-07-10 Nippon Synthetic Chem Ind Co Ltd:The Laminate
WO2009004957A1 (en) * 2007-06-29 2009-01-08 Toray Industries, Inc. Filter for display
JP2009208282A (en) * 2008-03-03 2009-09-17 Sumitomo Bakelite Co Ltd Plastic sheet
JP2015204009A (en) * 2014-04-15 2015-11-16 シャープ株式会社 Touch sensor panel and touch sensor system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825926A (en) * 1981-08-04 1983-02-16 スコツト・ペ−パ−・コンパニ− Method and device for executing surface transfer to coating exfoliated on supporter and exfoliated sheet
JPS6025750A (en) * 1983-07-22 1985-02-08 大日本印刷株式会社 Manufacture of synthetic resin composite sheet
JPH08115645A (en) * 1994-10-13 1996-05-07 Dainippon Printing Co Ltd Surface material of tablet
JP2002032036A (en) * 2000-07-18 2002-01-31 Sumitomo Bakelite Co Ltd Substrate for display element and reflection type liquid crystal display device
JP2003084137A (en) * 2001-07-02 2003-03-19 Sumitomo Chem Co Ltd Translucent semi-reflective polarizer and application of the same to optical device
JP2003197035A (en) * 2002-09-24 2003-07-11 Gunze Ltd Transparent conductive film
JP2003316505A (en) * 2002-04-25 2003-11-07 Sumitomo Bakelite Co Ltd Substrate for touch panel and touch panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825926A (en) * 1981-08-04 1983-02-16 スコツト・ペ−パ−・コンパニ− Method and device for executing surface transfer to coating exfoliated on supporter and exfoliated sheet
JPS6025750A (en) * 1983-07-22 1985-02-08 大日本印刷株式会社 Manufacture of synthetic resin composite sheet
JPH08115645A (en) * 1994-10-13 1996-05-07 Dainippon Printing Co Ltd Surface material of tablet
JP2002032036A (en) * 2000-07-18 2002-01-31 Sumitomo Bakelite Co Ltd Substrate for display element and reflection type liquid crystal display device
JP2003084137A (en) * 2001-07-02 2003-03-19 Sumitomo Chem Co Ltd Translucent semi-reflective polarizer and application of the same to optical device
JP2003316505A (en) * 2002-04-25 2003-11-07 Sumitomo Bakelite Co Ltd Substrate for touch panel and touch panel
JP2003197035A (en) * 2002-09-24 2003-07-11 Gunze Ltd Transparent conductive film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018431A (en) * 2005-07-11 2007-01-25 Sumitomo Bakelite Co Ltd Film for touch panel, and liquid touch panel using the same
JP2008155387A (en) * 2006-12-21 2008-07-10 Nippon Synthetic Chem Ind Co Ltd:The Laminate
WO2009004957A1 (en) * 2007-06-29 2009-01-08 Toray Industries, Inc. Filter for display
JP2009208282A (en) * 2008-03-03 2009-09-17 Sumitomo Bakelite Co Ltd Plastic sheet
JP2015204009A (en) * 2014-04-15 2015-11-16 シャープ株式会社 Touch sensor panel and touch sensor system

Similar Documents

Publication Publication Date Title
US8531406B2 (en) Transparent conductive film, electrode sheet for use in touch panel, and touch panel
TW525195B (en) Transparent conductive film, transparent conductive sheet and touch panel
JP5556436B2 (en) Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel
JP4004025B2 (en) Transparent conductive laminate and touch panel
US9005750B2 (en) Transparent conductive film, electronic device, and touch panel
JP5229108B2 (en) Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel
TWI631012B (en) Transparent conductive film having protection film
JP6656799B2 (en) Anti-Newton ring laminate and capacitive touch panel using the anti-Newton ring laminate
JP4943091B2 (en) Transparent conductive film, electrode plate for touch panel and touch panel
JP2012183822A (en) Transparent laminate for optical display
JP2013107349A (en) Transparent conductive film
JP4697450B2 (en) Transparent conductive film or transparent conductive sheet, and touch panel using the same
JPWO2013103104A1 (en) Transparent conductive film
JP4096268B2 (en) Transparent conductive film and touch panel using the same
JP6070356B2 (en) Manufacturing method of conductive sheet for touch panel, and conductive sheet for touch panel
JP2014205247A (en) Transfer member
TW550598B (en) Transparent conductive films and method for produce the same, transparent conductive sheets, and touch panels
JP4975897B2 (en) Transparent conductive film, transparent conductive sheet and touch panel
JP2005161199A (en) Plastic laminate and production method for the same
TWI327736B (en) Transparent conductive film, transparent conductive sheet, and touch panel
JP2011129527A (en) Method of manufacturing transparent conductive film
JP3471217B2 (en) Transparent conductive film
JP4296462B2 (en) Transparent conductive film, transparent conductive sheet and touch panel
JP4517255B2 (en) Transparent conductive film for touch panel, transparent conductive sheet for touch panel, and touch panel
JP2003316505A (en) Substrate for touch panel and touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012