JP2005152987A - シリコン鋳造用鋳型およびその製造方法 - Google Patents

シリコン鋳造用鋳型およびその製造方法 Download PDF

Info

Publication number
JP2005152987A
JP2005152987A JP2003398228A JP2003398228A JP2005152987A JP 2005152987 A JP2005152987 A JP 2005152987A JP 2003398228 A JP2003398228 A JP 2003398228A JP 2003398228 A JP2003398228 A JP 2003398228A JP 2005152987 A JP2005152987 A JP 2005152987A
Authority
JP
Japan
Prior art keywords
silicon
mold
release material
container
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003398228A
Other languages
English (en)
Inventor
Shinko Tsuchida
真弘 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003398228A priority Critical patent/JP2005152987A/ja
Publication of JP2005152987A publication Critical patent/JP2005152987A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

【課題】離型材に起因するシリコンインゴットの特性や歩留まりの低下を招くことのないシリコン鋳造用鋳型を提供する。
【解決手段】内部にシリコン融液3を保持して凝固させる鋳型容器1を備えたシリコン鋳造用鋳型であって、鋳型容器1の内表面は、窒化珪素を主成分とする離型材2で被覆されるとともに、この離型材2は、容器側2aよりもシリコン融液側2bの硬度を高くした。
【選択図】図1

Description

本発明は、特に太陽電池などを形成するための多結晶シリコンを鋳造するのに適したシリコン鋳造用鋳型およびその製造方法に関する。
従来から太陽電池を形成するための半導体基板の一種として多結晶シリコンが用いられている。このような多結晶シリコンは、通常、分割可能な黒鉛製の容器の内表面に刷毛もしくはへらを使用して離型材を塗布した鋳型内に、高温度で加熱溶融させたシリコン融液を注湯して凝固させることによって形成したり、鋳型内に入れたシリコン原料を一旦溶解した後、再び凝固させることによって形成している。
一般に、窒化珪素、炭化珪素、二酸化珪素などの粉末を、適当なバインダーと溶剤とから構成される溶液中に混合・攪拌してスラリーとし、これを容器の内壁に塗布若しくはスプレーなどの手段でコーティングすることが公知の技術として知られている。(例えば、非特許文献1参照)。
ところが、窒化珪素を黒鉛製鋳型の内表面に上記手段で塗布しシリコンを鋳造する場合、窒化珪素膜は脆弱であることから、シリコン融液を注湯する際に、またその後の凝固の際に、窒化珪素膜が破損して鋳型にシリコン融液が接触し、鋳型がシリコンインゴットに付着して脱型する際にシリコンインゴットに欠けが発生するという問題があった。また、鋳型内に入れたシリコン原料を溶解する際に、窒化珪素膜が破損するという問題があった。
また、二酸化珪素を黒鉛製鋳型の内表面に塗布してシリコンを鋳造することも提案されているが、二酸化珪素を離型材として用いる場合、二酸化珪素は黒鉛と付着性がよく、また二酸化珪素とシリコンインゴットも付着性がよいために、二酸化珪素が鋳型に付着して鋳型の再使用ができなくなったり、鋳型が離型材を介してシリコンインゴットに付着し、脱型するときにシリコンインゴットの一部に欠けが発生するという問題があった。
このような問題を解決するために、一層目に二酸化珪素を塗布して付着性を確保し、二層目に二酸化珪素と窒化珪素の混合物を塗布し、さらに三層目に窒化珪素を塗布することが提案されている(例えば、特許文献1参照)。ところが、このように離型材を三層構造に塗布すると、それぞれの層に対応する離型材を調合して塗布しなければならず、離型材の塗布と調合に手間が掛かるという問題がある。
また、スラリー状の離型材を作製し鋳型に塗布するためには、水やアルコールなどの溶剤と塗布成形用バインダー更には流動性を高めるための添加材などを、適宜、混合・攪拌するのが普通である。成形用バインダーの中で最も利用されている物質としてPVA(ポリビニルアルコール)がある。PVAは接着性に優れることから粉体の接着・結合に適している。
成形(塗布)後は、その後の加熱や融液との接触中に熱分解生成物が融液中に混入するのを防ぐために、酸化雰囲気中で600℃程度の温度で脱脂することが通常行われている。PVAは300℃付近で急激に熱分解を起こしてCOなどにガス化する結果、90%程度までは急速に除去することができるが、残り10%は500℃以上の温度に加熱してもなかなか除去されず、カーボン残査として残ってしまうことが多い。
また、離型材を黒鉛系鋳型材に塗布した場合、酸化雰囲気中で高温脱脂を行うと、鋳型材が酸化するため消耗が進む結果耐久性が落ち、結果的にシリコンインゴット製作コストを増大させてしまう問題がある。
PVAに代わる有機バインダーは種々存在するが、塗布性・接着性を兼ね備えた物は無いのが実情である。
上記事情から、本発明者らは、鋳型の内表面に離型材を塗布してシリコン融液を注湯するシリコンの鋳造法において、窒化珪素と二酸化珪素粉末を混合したものをプラズマ溶射機を用いてコーティングすることにより、鋳型がシリコンインゴットに付着することによって発生するシリコンの欠けを防止することができると共に、従来使用していた有機バインダーを除去する脱バインダー工程を省略することができ、シリコンインゴット製作コストを削減することができるシリコンの鋳造法を提案した(特許文献2参照)。
特開平7−206419号公報 特開2002−292449号公報 15TH PHOTOVOLTAIC SPESIALISTS CONF. (1981), P576~P580, "A NEW DIRECTIONAL SOLIDIFICATION TECHNIQUEFOR POLYCRYSTALLINE SOLAR GRADE SILICON"
しかしながら、プラズマ溶射機による溶射は、コーティング材料を加熱により溶融もしくは軟化させ、微粒子状にして加速し被覆対象物表面に衝突させて扁平に潰れた粒子を凝固・堆積させることにより皮膜を形成するコーティング技術であり、刷毛塗り若しくはスプレー塗布により形成した離型材層に比べ、より緻密な層の形成が可能ではあるが、形成された溶射皮膜層密度が高過ぎることに起因して、被溶射材である側部および底部用鋳型材との熱膨張係数の違いからくる溶射離型材層の剥離が起きる場合があるという問題があった。
また、窒化珪素および二酸化珪素からなる溶射粉体を溶射する場合、窒化珪素は液相を持たないため、前記2粉体を結合させているのは、1000℃付近という低温で軟化し液相を形成する二酸化珪素が、溶射中に軟化・液相化して窒化珪素を内含しながら凝固するという物理的な結合力のみであり、鋳型内でのシリコン凝固中の高温環境下で再度二酸化珪素が軟化することによる結合力低下に伴い、離型材層粉体が脱落し融液中に混入し易くなるという問題があった。
また二酸化珪素と窒化珪素を混合して使用する場合、二酸化珪素を混合させることによって鋳型材と鋳型容器の接着力は増加するが、二酸化珪素の重量比率が大きくなると離型材と鋳型容器の付着が生じるため、鋳型の再利用ができなくなる問題や、離型材をカーボン系鋳型容器に塗布した場合、酸化雰囲気中で高温脱脂を行うと、鋳型容器が酸化するため消耗が進む結果、耐久性が落ち、結果的にシリコンインゴット製作コストを増大させてしまう問題がある。
本発明はこのような問題に鑑みてなされたものであり、離型材に起因するシリコンインゴットの特性や歩留まりの低下を抑制するシリコン鋳造用鋳型を提供することを目的とする。
上記目的を達成するために、本発明の請求項1にかかるシリコン鋳造用鋳型は、内部にシリコン融液を保持して凝固させる容器を備えたシリコン鋳造用鋳型であって、前記容器の内表面は、窒化珪素を主成分とする離型材で被覆されるとともに、この離型材は、容器に接する側よりもシリコン融液に接する側の硬度を高くしたことを特徴とする。このようにしたので、離型材の容器に接する側は硬度が低くて脆弱であるため、凝固させたシリコンインゴットを取り出すことが容易であるとともに、離型材のシリコン融液に接する側は硬度が高いので、離型材が破損してシリコン融液中に混入するという問題を回避することができる。
本発明の請求項2にかかるシリコン鋳造用鋳型は、請求項1に記載のシリコン鋳造用鋳型において、前記離型材を構成する窒化珪素粉末は、シリコン融液に接する側において少なくともその一部がネッキングしていることを特徴とする。このようにしたので、窒化珪素粉末は粉体同士で結合して、その硬度は格段に向上し、離型材が破損するという問題の発生をより一層抑制することができる。
本発明の請求項3にかかるシリコン鋳造用鋳型は、請求項1ないし2のいずれかに記載のシリコン鋳造用鋳型において、前記容器は、黒鉛であることを特徴とする。また、本発明の請求項4にかかるシリコン鋳造用鋳型は、請求項3に記載のシリコン鋳造用鋳型において、前記黒鉛は、炭素繊維強化材料であることを特徴とする。このような黒鉛製の鋳型は繰り返し使用に適しているが、酸化に弱いため、従来用いられていた二酸化珪素を含有する離型材では、黒鉛部と接する箇所から酸化が進むなどの問題があったが、本発明では酸化珪素と黒鉛部とが接触しないので、好適に用いることができる。また、黒鉛の炭素繊維強化材料は、高強度で破損しにくいので好ましい。
本発明の請求項5にかかるシリコン鋳造用鋳型の製造方法は、内部にシリコン融液を保持して凝固させる容器の内表面を離型材で被覆したシリコン鋳造用鋳型の製造方法であって、窒化珪素とバインダーを混合したスラリーを前記容器の内表面に塗布した後、窒素雰囲気1気圧中1600℃以上で加熱処理することを特徴とする。この製法によれば、離型材の容器側は容器に接しており、シリコン融液側は加熱された窒素雰囲気に接しているため、シリコン融液側の方が容器側よりも温度が高くなる。したがって、シリコン融液側の方が容器側よりも焼結が進みやすく、シリコン融液側の方が容器側よりも硬度が高い本発明のシリコン鋳造用鋳型を容易に作製することができる。
本発明の請求項6にかかるシリコン鋳造用鋳型の製造方法は、内部にシリコン融液を保持して凝固させる容器の内表面を離型材で被覆したシリコン鋳造用鋳型の製造方法であって、窒化珪素とバインダーを混合したスラリーを前記容器の内表面に塗布した後、その上から窒化珪素を含む粉体をプラズマ溶射機による溶射法でコーティングすることを特徴とする。この製法によれば、離型材のシリコン融液に接する側は、プラズマ溶射によって相互に適度に焼結した離型材となるので、シリコン融液側の方が容器側よりも硬度が高い本発明のシリコン鋳造用鋳型を容易に作製することができる。
なお、本発明において、離型材の硬度は、離型材同士の結合の強さを表す目安として用いており、その絶対値については特に意味を持つものではない。したがって、周知のいかなる硬度測定法を用いてもよいが、同一測定法で同一の条件によって、離型材のシリコン融液側と容器側との硬度をそれぞれ測定して比較すればよい。
例えば、ヴィッカース硬度計、ヌープ硬度計などによって、離型材の容器側とシリコン側に、それぞれ所定加重を印加しながら圧子によって圧痕をうがち、その圧痕の大きさの比較によってそれぞれの硬度の大小を比較することができる。また、スクラッチ試験によって、離型材の硬度を評価してもよい。スクラッチ試験は、所定加重を所定形状の針先に印加しながら対象物を引っ掻き、破壊が起きたときの荷重やその状態によって対象物の結合力の強さや硬度の大小を比較するものであり、針の先端径や印加荷重を自在に変化させることによって、膜同士の微小な結合力の差異を比較することが可能である。
離型材の硬度を測定するための試料については、例えば、黒鉛の鋳型に形成された離型材を機械的に研削・研磨して鋳型部を除去したり、600℃以上の酸化雰囲気に保持して黒鉛部分を化学的に除去すればよい。ある程度、鋳型の部分を機械的に除去してから、最終的に酸化雰囲気で高温保持して化学的に除去して離型材を得るのが効率的である。また、鋳型自体を破断して、離型材の断面部分からシリコン融液側と容器側のそれぞれの硬度を測定しても構わない。なお、一度、離型材の形成条件と、シリコン融液側・容器側の離型材の硬度の関係を求めておけば、次回からは同一条件で離型材を形成すればよく、毎回試料を作製して硬度を求める必要はない。
本発明の請求項1にかかるシリコン鋳造用鋳型によれば、離型材の容器に接する側は硬度が低くて脆弱であるため、凝固させたシリコンインゴットを取り出すことが容易であるとともに、離型材のシリコン融液に接する側は硬度が高いので、離型材が破損してシリコン融液中に混入するという問題を回避することができる。また窒化珪素粉末を主成分とする離型材を使用することから、二酸化珪素を離型材に混ぜることにより発生していた、離型材と鋳型容器の付着が生じるため、鋳型の再利用ができなくなる問題や、離型材を黒鉛系鋳型容器に塗布した場合、酸化雰囲気中で高温脱脂を行うと、鋳型容器が酸化するため消耗が進む結果耐久性が落ち、結果的にシリコンインゴット製作コストを増大させてしまうという問題が発生することはない。
本発明の請求項2にかかるシリコン鋳造用鋳型によれば、窒化珪素粉末は粉体同士で結合しているため、その硬度は格段に向上し、離型材が破損するという問題の発生をより一層抑制することができ、離型材に起因するシリコンインゴットの特性や歩留まりの低下を招くことのないシリコン鋳造用鋳型を得ることができる。
本発明の請求項3ないし請求項4にかかるシリコン鋳造用鋳型によれば、従来、二酸化珪素を含有する離型材で、黒鉛部と接する箇所から酸化が進むなど酸化に弱いという問題を抱えていた黒鉛製の鋳型、特に高い強度を有する炭素繊維強化材料を好適に用いることができ、繰り返して使用して生産性を上げることができる。
本発明の請求項5にかかるシリコン鋳造用鋳型の製造方法によれば、離型材の容器側は容器に接しており、シリコン融液側は加熱された窒素雰囲気に接しているため、シリコン融液側の方が容器側よりも温度が高くなる。したがって、シリコン融液側の方が容器側よりも焼結が進みやすく、シリコン融液側の方が容器側よりも硬度が高い本発明のシリコン鋳造用鋳型を容易に作製することができる。そして、二酸化珪素や酸素を用いることなく硬度が高い離型材を作製することができるため、従来問題であった酸化による鋳型容器の寿命低下の問題を解消し、結果としてシリコンインゴットの製造コストを下げることができるようになる。
本発明の請求項6にかかるシリコン鋳造用鋳型の製造方法によれば、離型材のシリコン融液に接する側は、プラズマ溶射によって相互に適度に焼結した離型材となるので、シリコン融液側の方が容器側よりも硬度が高い本発明のシリコン鋳造用鋳型を容易に作製することができる。そして、凝固したシリコンインゴットを簡単に脱型できるとともに、シリコンインゴット中への離型材混入を防止した、離型材に起因するシリコンインゴットの特性や歩留まりの低下を抑制することのできるシリコン鋳造用鋳型を得ることができる。
以下、各請求項にかかる発明を添付図面に基づき詳細に説明する。
図1は、本発明のシリコン鋳造用鋳型を示す図であり、図1(a)は、本発明のシリコン鋳造用鋳型にかかる容器である鋳型容器1の一実施例を示す図である。図1(b)、(c)は本発明のシリコン鋳造用鋳型にかかる離型材の作用を示す図である。
内部にシリコン融液を保持して凝固させる鋳型容器1は、例えば黒鉛などからなり、一つの底部材1aと4つの側部材1bを組み合わせた分割、組み立て可能な分割鋳型容器の形態で構成される。なお、底部材1aと側部材1bは、ボルト(不図示)などで固定することによって分割可能に組み立てられたり、底部材1aと側部材1bが丁度嵌まる枠部材(不図示)で固定することによって分割可能に組み立てられる。
そして、鋳型容器1の内表面には、底部材1aや側部材1bを何回も繰り返して使用することができるように窒化珪素を主成分とする離型材2によって被覆されている。そして、この離型材2は、鋳型容器1と接する側よりもシリコン融液に接する側の方が、離型材2の硬度が高くなるように構成されている。
図1(b)、(c)に本発明にかかる離型材の作用について示す。図1(b)は、本発明にかかる離型材2を設けた鋳型容器1にシリコン融液3を注湯したときの状態を示し、図1(c)は、このシリコン融液3が冷却凝固して得られたシリコンインゴット4を鋳型容器1から脱型するときの状態を示す。このように、離型材2の容器側2aは、硬度が低くて脆弱であるため、凝固させたシリコンインゴット4を取り出すときに、容易に破壊してスムースにシリコンインゴット4を脱型することができる。それに対して、シリコン融液側2bは硬度が高く、相互により強く結合しているので、シリコン融液3を注湯するときや冷却中などに破損して、離型材2の成分がシリコン融液中に混入するという問題を回避することができる。
従来、窒化珪素による離型材2が脆弱なため、破損してシリコン融液3の中に溶け込むという問題が発生していたのは、離型材2の容器側2aからシリコン融液側2bまで全てが脆弱であるために発生した問題であり、本発明のようにシリコン融液側2bにあたる表面部の離型材2の硬度を高くすることによって、この問題は解消される。逆に離型材2の容器側2aからシリコン融液側2bまで全ての硬度を高くしてしまうと、中で凝固させたシリコンインゴット4が脱型できなくなり、離型材2の本来の目的を果たさなくなってしまい、鋳型容器1を再利用することができなくなるため、シリコンインゴット4の製作コストを増大させてしまうことになる。
また本発明では窒化珪素粉末を主成分とする離型材を使用することから、従来の二酸化珪素を添加して使用していた離型材において発生していた、離型材2と鋳型容器1とが付着して鋳型の再利用ができなくなる問題が発生することはない。
本発明のシリコン鋳造用鋳型にかかる離型材2を構成する窒化珪素粉末は、シリコン融液に接する側において少なくともその一部がネッキングしていることが望ましい。
図2にネッキングを説明するための模式図を示す。粉体を加熱すると粒子5同士が接触面で結合する現象がおきる。この現象をネッキングとよび、その結合部分をネック6という。粒子5の表面エネルギーを減少させようとする力が駆動力となって、ネック6へと物質移動が起こり、ブロック矢印に示すようにネック6が徐々に太ることにより結合状態となる。つまりネッキングとは粉体同士の結合が始まった、仮焼結の状態を指す。
従来の方法において、窒化珪素粉末とバインダーを混合したスラリーを鋳型容器1の内表面に塗布し、乾燥させる方法では粉体はネッキングされておらず、粒子がバラバラな状態であった。そのため離型材2は脆弱であり、破損したり割れたりすることによって、離型材2がシリコンインゴット中に混入したり、シリコン融液が鋳型容器1に付着して割れるなどの問題が発生することがあった。
しかし本発明のシリコン鋳造用鋳型にかかる離型材2においては、主成分とする窒化珪素粉末が、ネッキングして粉体同士で結合させることによって、その硬度は格段に向上する。またネックが太り結合状態になればさらにその硬度は高くなる。よって離型材2が破損するという問題の発生を抑制することができ、離型材2に起因するシリコンインゴットの特性や歩留まりの低下を招くことのないシリコン鋳造用鋳型を得ることができる。
また、本発明にかかるシリコン鋳造用鋳型にかかる鋳型容器1は、黒鉛を用いることが望ましく、さらに、黒鉛の中でも炭素繊維強化材料とすることが望ましい。このような黒鉛製の鋳型は繰り返し使用に適しているが、酸化に弱いため、従来用いられていた酸化珪素を含有する離型材では、黒鉛部と酸化珪素(二酸化珪素)とが接する箇所から酸化が進むなどの問題があった。それに対して、本発明にかかる離型材2を用いた場合、二酸化珪素と黒鉛部とが接触しないので、このように酸化の問題が生じにくく、好適に用いることができる。また、黒鉛の炭素繊維強化材料は、高強度で破損しにくいので、好ましい。
次にシリコン鋳造用鋳型の製造方法について説明する。
図1(a)は、本発明にかかるシリコン鋳造用鋳型に用いられる鋳型の一実施例を示す図である。鋳型容器1は例えば黒鉛などからなり、一つの底部材1aと4つの側部材1bを組み合わせた分割、組み立て可能な分割鋳型などで構成される。
なお、底部材1aと側部材1bは、ボルト(不図示)などで固定することによって分割可能に組み立てられたり、底部材1aと側部材1bが丁度嵌まる枠部材(不図示)で固定することによって分割可能に組み立てられる。
鋳型容器1の内表面には、底部材1aや側部材1bを何回も繰り返して使用することができるように離型材2が被覆される。具体的には、鋳型内面となる側に、少なくとも窒化珪素を所定量秤量し、成形用バインダーとして5〜15重量%のPVA(ポリビニルアルコール)水溶液に混合し、撹拌すれば、粉体であるこれらの原料をスラリー状とすることができ、鋳型容器1に塗布することが容易となる。このようにして作製した離型材スラリーを鋳型容器1の内面に塗布、乾燥することによって、離型材2を形成する。成形用バインダーとしては、PVAを用いることが望ましい。PVAは接着性に優れることから粉体の接着・結合に適している。その他、スラリーに対して、流動性を高めるための添加材などを、適宜、混合してもよい。
塗布法法としては、刷毛や、へらで鋳型容器1の部材に塗布し、ホットプレート上で乾燥させる方法を用いても良いが、例えば、スプレーなどを用いて鋳型容器1の内面に塗布し、乾燥して形成する方法、加熱板・シリコンラバーダイアフラムを設えたラミネート装置を用いて、加熱圧着させる方法も可能である。また、鋳型容器1が略平面形状を有する分割可能な側部材1bと底部材1aなどによって組み立てられている場合には、多くの塗布方法を適用することができるので好ましく、その中でも、スクリーン印刷を用いて離型材2のスラリーを塗布形成することが望ましい。このスクリーン印刷を用いて離型材2を内側面部や内底面部に塗布すれば、離型材2の均一性を格段に高めることができ、その結果、極めて高い品質の離型材2を鋳型容器1の内部に形成し、シリコンインゴット4の歩留まりを高くすることができる。
この離型材2の厚みは、0.3mmから1.2mmの範囲となるように形成することが望ましい。この範囲より薄いとシリコン融液3が離型材2を貫通して鋳型容器1と融着し、鋳造したシリコンインゴット4に割れ、欠けなどが生じ、一方、この範囲よりも厚いとシリコン融液3を鋳型容器1に融着させない離型材2としては十分な厚みであるが離型材2の形成に時間がかかり、また離型材2の厚みが必要以上に厚過ぎると離型材2に破損や剥離が生じ易くなり、鋳型容器1から剥離した離型材2がシリコンの溶解やシリコン融液3の冷却固化過程でシリコン内に異物として混入し、シリコンインゴット4に不良を発生させ歩留まりが低下するためである。
本発明のシリコン鋳造用鋳型の製造方法においては、ここで塗布によって形成した離型材2を窒素雰囲気1気圧中1600℃以上で加熱処理するか、もしくは、塗布によって形成した離型材2の上から窒化珪素を含む粉体をプラズマ溶射機による溶射法でコーティングすることを特徴としている。詳細については後述する。
このようにして離型材2を形成した後、鋳型を70〜90Torrに減圧したアルゴン(Ar)雰囲気中に置き、シリコン融液3と同程度か若干低い温度に加熱してシリコン融液3を注湯する。また内表面に離型材2を塗布した鋳型容器1内にシリコン原料を入れ、直接溶解してもよい。しかる後、鋳型容器1の底部から徐々に降温させてシリコン融液3を鋳型の底部から徐々に凝固させる。最後に鋳型容器1を分割してシリコンインゴット4を取り出すことによりシリコンインゴット4が完成する。シリコンインゴット4を脱型した鋳型容器1は再び組み立て、繰り返し使用することができる。
本発明の請求項5にかかるシリコン鋳造用鋳型の製造方法においては、塗布によって形成した離型材2を窒素雰囲気1気圧中1600℃以上で加熱処理する。この製法によれば、離型材2の容器側2aは鋳型容器1に接しており、シリコン融液側2bは加熱された窒素雰囲気に接しているため、シリコン融液側2bの方が容器側2aよりも温度が高くなる。したがって、シリコン融液側2bの方が容器側2aよりも焼結が進みやすく、シリコン融液側2bの方が容器側2aよりも硬度が高い本発明のシリコン鋳造用鋳型を容易に作製することができる。
ここで、この機構についてより詳しく説明する。鋳型容器1の内表面に塗布した窒化珪素とバインダーを混合したスラリーからなる離型材2を窒素雰囲気中で1600℃以上で熱処理することにより、窒化珪素粉末の周囲に存在する自然酸化膜が焼結助剤の役割を果たし、粒子間のネッキングが進展し、仮焼結状態となる。
通常、窒化珪素原料の表面には、酸化層として1〜3%程度が含まれており、これはTEM(透過型電子顕微鏡)による観察で確認することができる。ここで、上述の図2で説明したように、ネッキング状態とは、焼結の初期の段階でわずかに粒子5同士が融着し、ネック6が生じた仮焼結の状態である。このように、窒素雰囲気中の加熱処理により生じた粒子5同士のネッキングにより離型材2同士が適度に結合するため、注湯、もしくは凝固の途中でシリコン融液中に取り込まれる量を減少させることができる。
窒化珪素粉体のネッキングは窒素雰囲気1気圧中では約1600℃以上から急速に起きるため、加熱処理の処理温度を1600℃以上で行う。1600℃以下でもネッキングは起きるが、焼結速度が遅く現実的でない。また、1800℃以上では昇華し分解してしまうため、処理温度は1800℃以下で行う。1750℃の場合、1時間の加熱処理により本発明にかかる離型材2として充分な強度を得ることが可能である。
離型材2すべてが完全に焼結し、板状の強固な層になると、部分的に浸透したシリコン融液3が凝固し、凝固した固化層が冷却する際、シリコンインゴット4と離型材2の熱膨張係数の差によりシリコンインゴット4が割れるという問題やシリコンインゴット4が脱型できないという問題が生じてしまうが、本発明では離型材2の容器側2aとシリコン融液側2bの硬度が異なるため、上記のような問題が発生することはない。また窒化珪素とポリビニルアルコールからなる(二酸化珪素を含有しない)スラリーを用いる場合、焼結助剤の役割をするのは自然酸化膜が主となるため、完全な焼結体になることはない。また、この方法によれば離型材2に、二酸化珪素を含有させないので、従来問題であった離型材2に含まれる二酸化珪素に起因する鋳型容器1の劣化の問題が発生することはない。
さらに本発明では、窒素雰囲気中で加熱を行うので、従来のように酸化雰囲気中で高温脱脂を行い、鋳型が酸化され消耗がすすむという問題も発生することがない。したがって、比較的安価な黒鉛を鋳型容器1として使用しても耐久性を確保することができ、シリコンインゴットの製造コストを下げることが可能になる。ここで、黒鉛としては、炭素繊維強化材料を使用することによって、さらにその耐久性は高くなる。
また、本発明の請求項6にかかるシリコン鋳造用鋳型の製造方法は、塗布によって形成した離型材2をその上から窒化珪素を含む粉体をプラズマ溶射機による溶射法でコーティングする。この製法によれば、離型材2のシリコン融液側2bは、プラズマ溶射によって相互に適度に焼結した離型材2となるので、シリコン融液側2bの方が容器側2aよりも硬度が高い本発明のシリコン鋳造用鋳型を容易に作製することができる。
ここで用いるプラズマ溶射機は、プラズマ流中に各種粉末材料を送り溶融噴射して皮膜を形成する装置である。溶射温度は32000Kに及ぶプラズマ気流中の10000℃前後の温度帯を使用し、溶融粒子の噴射速度はマッハ1に達する。この結果、極めて高品質でより緻密な皮膜層を形成することができる。
このとき、原料粉体として、窒化珪素粉末に対して、比較的低温でガラス層を形成する二酸化珪素を焼結助剤として混合することが望ましい。その理由として、窒化珪素は約1800℃(1atm,in N)で昇華分解してしまうため、単体では液相を作らず溶射による皮膜層を形成することが困難である。ここで、二酸化珪素を焼結助剤として混合することにより、窒化珪素粉体は溶融した二酸化珪素中に溶け込んだ状態で基材に融着し急速に冷却されることによりネッキング状態で固着される。なお、プラズマ溶射によって表面部に形成される離型材2は窒化珪素と二酸化珪素の混合比が1:9〜9:1であったほうがよい。このような混合比にすれば、脱型しやすくかつシリコン融液3への溶けこみや混入を防ぐ効果をさらに高めることができる。
なお、このとき鋳型容器1には、すでに窒化珪素を主成分とする離型材2が形成されており、二酸化珪素を含有する離型材2は、鋳型容器1と直接接触しないので、従来、問題であった離型材2に含まれる二酸化珪素に起因する鋳型容器1の劣化の問題は生じない。
なお、本発明の実施形態は上述の例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることはもちろんである。
本発明においては、離型材2の容器側2aの部分に比べ、シリコン融液側2bの硬度が高くなっていれば発明の効果を奏する。例えば、硬度の高い部分と低い部分の2層またはそれ以上の多層構造であってもよいし、容器側2aからシリコン融液側2bに向かい徐々に硬度が高くなる構造であっても構わない。
ここで、離型材を2層もしくはそれ以上の多層構造にする場合、シリコン融液3と接する硬度の高い部分の厚みは5μm以上であったほうがよい。5μm以下であると、離型材2がシリコン融液3への溶けこみを防止するという効果を充分に発揮することができない場合があるからである。また、鋳型容器1と接する容器側2aの硬度の低い部分の厚みは50〜200μm程度とすることによって、シリコン融液3の鋳型容器1への付着を防止するとともに、鋳型容器1の内部で凝固したシリコンインゴット4を容易に脱型することが可能になる。
本発明のシリコン鋳造用鋳型の一例を示す図であり、(a)は鋳型容器の一例、(b)と(c)は本発明にかかる離型材の作用を示す図である。 ネッキングの状態を示す図である。
符号の説明
1:鋳型容器
1a:底部材
1b:側部材
2:離型材
2a:容器側
2b:シリコン融液側
3:シリコン融液
4:シリコンインゴット
5:粒子
6:ネック

Claims (6)

  1. 内部にシリコン融液を保持して凝固させる容器を備えたシリコン鋳造用鋳型であって、前記容器の内表面は、窒化珪素を主成分とする離型材で被覆されるとともに、この離型材は、前記容器に接する側よりもシリコン融液に接する側の硬度を高くしたことを特徴とするシリコン鋳造用鋳型。
  2. 前記離型材を構成する窒化珪素粉末は、シリコン融液に接する側において少なくともその一部がネッキングしていることを特徴とする請求項1に記載のシリコン鋳造用鋳型。
  3. 前記容器は、黒鉛であることを特徴とする請求項1ないし2のいずれかに記載のシリコン鋳造用鋳型。
  4. 前記黒鉛は、炭素繊維強化材料であることを特徴とする請求項3に記載のシリコン鋳造用鋳型。
  5. 内部にシリコン融液を保持して凝固させる容器の内表面を離型材で被覆したシリコン鋳造用鋳型の製造方法であって、窒化珪素とバインダーを混合したスラリーを前記容器の内表面に塗布した後、窒素雰囲気1気圧中1600℃以上で加熱処理することを特徴とするシリコン鋳造用鋳型の製造方法。
  6. 内部にシリコン融液を保持して凝固させる容器の内表面を離型材で被覆したシリコン鋳造用鋳型の製造方法であって、窒化珪素とバインダーを混合したスラリーを前記容器の内表面に塗布した後、その上から窒化珪素を含む粉体をプラズマ溶射機による溶射法でコーティングすることを特徴とするシリコン鋳造用鋳型の製造方法。
JP2003398228A 2003-11-27 2003-11-27 シリコン鋳造用鋳型およびその製造方法 Withdrawn JP2005152987A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003398228A JP2005152987A (ja) 2003-11-27 2003-11-27 シリコン鋳造用鋳型およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003398228A JP2005152987A (ja) 2003-11-27 2003-11-27 シリコン鋳造用鋳型およびその製造方法

Publications (1)

Publication Number Publication Date
JP2005152987A true JP2005152987A (ja) 2005-06-16

Family

ID=34723132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003398228A Withdrawn JP2005152987A (ja) 2003-11-27 2003-11-27 シリコン鋳造用鋳型およびその製造方法

Country Status (1)

Country Link
JP (1) JP2005152987A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048221B2 (en) 2006-01-20 2011-11-01 Stoddard Nathan G Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
US8440157B2 (en) 2007-07-20 2013-05-14 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing cast silicon from seed crystals
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048221B2 (en) 2006-01-20 2011-11-01 Stoddard Nathan G Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
US8951344B2 (en) 2006-01-20 2015-02-10 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
US8440157B2 (en) 2007-07-20 2013-05-14 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing cast silicon from seed crystals
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials

Similar Documents

Publication Publication Date Title
US6334603B1 (en) Mold for producing silicon ingot and method for fabricating the same
CH618361A5 (ja)
JP4328161B2 (ja) シリコン鋳造用鋳型
JP3931322B2 (ja) シリコンインゴット鋳造用鋳型およびその製造方法
WO2011122585A1 (ja) シリコンインゴット鋳造用積層ルツボ及びその製造方法
JP4192070B2 (ja) シリコン鋳造用鋳型およびその製造方法
JP4081411B2 (ja) シリコン鋳造用鋳型およびその製造方法
JP4884150B2 (ja) シリコン鋳造用鋳型の製造方法
JP2005152987A (ja) シリコン鋳造用鋳型およびその製造方法
JP3250149B2 (ja) シリコンインゴット鋳造用鋳型およびその製造方法
JP4081413B2 (ja) シリコン鋳造用鋳型およびその製造方法
JP4471692B2 (ja) 離型層を有するシリコン溶融用容器の製造方法
JP3206540B2 (ja) シリコンインゴット製造用積層ルツボおよびその製造方法
JP4051181B2 (ja) シリコン鋳造用鋳型及びこれを用いた太陽電池の形成方法
JP2005104743A (ja) シリコン鋳造用鋳型
JP4025671B2 (ja) シリコン鋳造用鋳型の製造方法
JP2006327912A (ja) シリコンインゴット形成用鋳型およびシリコンインゴットの製造方法
JP2005211937A (ja) シリコン鋳造用鋳型とそれを用いたシリコン鋳造装置
JP2003313023A (ja) シリコン鋳造用鋳型
US6997233B2 (en) Mold and method for manufacturing metal-ceramic composite member
JP4838591B2 (ja) シリコン凝固用鋳型及びその製造方法
JP2002321037A (ja) シリコン鋳造方法
JP6096653B2 (ja) シリコン鋳造用鋳型およびその製造方法
JP2009215137A (ja) 多結晶シリコン基板鋳造用鋳型およびその製造方法並びに多結晶シリコン基板の製造方法
JP2004243387A (ja) シリコン鋳造用鋳型

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070802