JP2005125428A - Carbon nano-tube structure and its manufacturing method - Google Patents

Carbon nano-tube structure and its manufacturing method Download PDF

Info

Publication number
JP2005125428A
JP2005125428A JP2003361935A JP2003361935A JP2005125428A JP 2005125428 A JP2005125428 A JP 2005125428A JP 2003361935 A JP2003361935 A JP 2003361935A JP 2003361935 A JP2003361935 A JP 2003361935A JP 2005125428 A JP2005125428 A JP 2005125428A
Authority
JP
Japan
Prior art keywords
carbon nanotube
cnt
cnts
substrate
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003361935A
Other languages
Japanese (ja)
Other versions
JP4296074B2 (en
Inventor
Akio Kawabata
章夫 川端
Takaharu Asano
高治 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003361935A priority Critical patent/JP4296074B2/en
Publication of JP2005125428A publication Critical patent/JP2005125428A/en
Application granted granted Critical
Publication of JP4296074B2 publication Critical patent/JP4296074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refining process of a carbon-nano tube of a high refining yield; and a carbon nano-tube structure for accurately arranging the carbon nano-tube in a microstructure. <P>SOLUTION: The short carbon nano-tube cut in carboxylation reaction, is recovered after polymerization by peptidation or esterification reaction by using a compound expressed by a general formula NH<SB>2</SB>-R-NH<SB>2</SB>or HO-R-OH (in the formula, R represents aliphatic hydrocarbon or aromatic hydrocarbon). Treatment for cutting such bonding may be performed after recovery. The polymerized or chemically modified carbon nano-tube is arranged along a side wall surface of a projecting part or a recessed part of a base board. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、カーボンナノチューブ構造体及びその製造方法に係り、特に官能基を導入して可溶となったカーボンナノチューブを精製する精製工程を含むカーボンナノチューブ構造体の製造方法、及びかかるカーボンナノチューブを備えたカーボンナノチューブ構造体に関する。   The present invention relates to a carbon nanotube structure and a method for producing the same, and more particularly, to a method for producing a carbon nanotube structure including a purification step for purifying a carbon nanotube that has become soluble by introducing a functional group, and the carbon nanotube. The present invention relates to a carbon nanotube structure.

カーボンナノチューブは、電子デバイスやマイクロデバイスのチャネルや配線材料として、あるいは、機能性樹脂や繊維強化プラスチック等の複合性機能性樹脂などの機能性材料や構造材料として広範囲の応用が期待されている。   Carbon nanotubes are expected to be used in a wide range of applications as functional materials and structural materials such as channels and wiring materials for electronic devices and microdevices, or composite functional resins such as functional resins and fiber reinforced plastics.

カーボンナノチューブ(Carbon Nano Tube(CNT))は、バリスティックな電気伝導性や強靱な機械特性を有し、また、アスペクト比が大きく、チューブ内に中空空間を有するという独特の形状・構造を有し、特に、チューブを構成するグラファイトの配向に由来する特殊な表面の性質を有することから、新しいナノ炭素材料として検討が進められている。   Carbon Nano Tube (CNT) has a unique shape and structure that has ballistic electrical conductivity and tough mechanical properties, a large aspect ratio, and a hollow space in the tube. In particular, since it has a special surface property derived from the orientation of graphite constituting the tube, it has been studied as a new nanocarbon material.

カーボンナノチューブは、円筒部分のグラフェンシートが単層ものをSWCNT、2層のものをDWCNT、多層のものをMWCNTと呼んでいる。これらのカーボンナノチューブはチューブ内に様々な物質を内包することができ、チューブの物理的性質を大きく変化させることができることが明らかになりつつあり、注目されている。一方、化学的性質についてはこれらのカーボンナノチューブは酷似している。   Regarding the carbon nanotube, a single-layer graphene sheet of a cylindrical portion is called SWCNT, a double-layer graphene sheet is called DWCNT, and a multi-layer graphene sheet is called MWCNT. These carbon nanotubes are capable of enclosing various substances in the tube, and it is becoming clear that the physical properties of the tube can be greatly changed. On the other hand, these carbon nanotubes are very similar in terms of chemical properties.

カーボンナノチューブは、そのままでは液体中において分散せず、又固体状態のままでの成形や他の部材への正確な配列も困難であり、その結果、カーボンナノチューブの独特な特性を発揮するような応用が困難な状況である。したがって、いわゆるハンドリング性を向上するために溶媒中に可溶化させる処理等が検討されている。   Carbon nanotubes do not disperse in liquid as they are, and it is difficult to form them in a solid state or accurately align them with other members. As a result, applications that demonstrate the unique characteristics of carbon nanotubes Is a difficult situation. Therefore, in order to improve the so-called handling property, a treatment solubilized in a solvent has been studied.

可溶化の一手法として、カーボンナノチューブの末端あるいは欠陥にカルボキシル基等の特定の官能基を導入することが知られている(例えば特許文献1参照)。特に、カルボキシル基の導入(カルボキシル化反応)は強酸により処理することができることがよく知られている。さらに、処理の過程で製造時に派生するアモルファスカーボンやグラファイト断片などの不純物やFeやNi、Coなどの触媒金属の分解や除去が可能であるという利点がある。
特開平08−012310号公報 特開平10−149760号公報 特開2002−273741号公報
As one method of solubilization, it is known to introduce a specific functional group such as a carboxyl group into a terminal or a defect of a carbon nanotube (see, for example, Patent Document 1). In particular, it is well known that the introduction of a carboxyl group (carboxylation reaction) can be treated with a strong acid. Furthermore, there is an advantage that impurities such as amorphous carbon and graphite fragments derived during production in the course of processing and catalytic metals such as Fe, Ni, and Co can be decomposed and removed.
Japanese Patent Application Laid-Open No. 08-012310 JP-A-10-149760 JP 2002-273741 A

しかしながら、カルボキシル化反応を用いてカーボンナノチューブを精製すると、非常に精製収率が低いという問題がある。精製収率は、カーボンナノチューブの合成時の粗生成物の純度や構造欠陥の割合などの品質に大きく依存するが、品質が良好な粗生成物であっても、カルボキシル化により切断されて短小化したカーボンナノチューブを回収することが困難であるため、収率は10%〜20%の低いレベルとなってしまう。また、カーボンナノチューブの粗生成物の価格は数千円/gと高価であるので、粗生成物の精製において高収率のニーズは非常に高い。   However, when carbon nanotubes are purified using a carboxylation reaction, there is a problem that the purification yield is very low. The purification yield greatly depends on the quality of the crude product during synthesis of carbon nanotubes, such as the purity of the crude product and the proportion of structural defects, but even a crude product with good quality is shortened by being cleaved by carboxylation. Since it is difficult to collect the carbon nanotubes, the yield is as low as 10% to 20%. Further, since the price of the crude product of carbon nanotubes is as high as several thousand yen / g, the need for a high yield in the purification of the crude product is very high.

また、カーボンナノチューブを例えば半導体装置等の配線材料として用いる場合、粗生成物の状態ではチューブ同士が複雑に絡み合い、1本ずつハンドリングすることはその微細かつ高アスペクト比を有するので非常に困難である。   In addition, when carbon nanotubes are used as a wiring material for semiconductor devices, for example, it is very difficult to handle tubes one by one in a crude product state because they have fine and high aspect ratios because they are entangled with each other. .

そこで、本発明は上記問題点に鑑みてなされたもので、本発明の目的は、高い精製収率のカーボンナノチューブの精製工程を含むカーボンナノチューブ構造体の製造方法、及びカーボンナノチューブが精度良く配列されたカーボンナノチューブ構造体を提供することである。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a carbon nanotube structure manufacturing method including a carbon nanotube purification process with a high purification yield, and the carbon nanotubes are arranged with high accuracy. Another object is to provide a carbon nanotube structure.

本発明の一観点によれば、カーボンナノチューブの精製工程を含むカーボンナノチューブ構造体の製造方法において、前記精製工程は、カーボンナノチューブをカルボキシル化し、カルボキシル基と反応する官能基を少なくとも2個有する化合物と反応させることを特徴とするカーボンナノチューブ構造体の製造方法が提供される。   According to one aspect of the present invention, in the method for producing a carbon nanotube structure including a carbon nanotube purification step, the purification step includes a compound having at least two functional groups that carboxylate carbon nanotubes and react with carboxyl groups. A method of producing a carbon nanotube structure characterized by reacting is provided.

本発明によれば、従来のカーボンナノチューブの精製手法では回収が困難であった合成時に生成された短小なカーボンナノチューブやカルボキシル化反応において切断されて短小となったカーボンナノチューブを、カルボキシル基と反応する官能基を少なくとも2個有する化合物を用いて縮合反応等によりこれらのカーボンナノチューブを多量化して回収を容易化して、精製収率を著しく向上することができる。   According to the present invention, a short carbon nanotube produced during synthesis, which has been difficult to recover by a conventional carbon nanotube purification method, or a carbon nanotube that has been cut and shortened in a carboxylation reaction is reacted with a carboxyl group. By using a compound having at least two functional groups, the carbon nanotubes can be increased in quantity by a condensation reaction or the like to facilitate recovery, and the purification yield can be significantly improved.

前記化合物は、下記一般式(1)に示される化合物や下記一般式(2)に示される化合物であるあってもよい。ペプチド結合やエステル結合を形成してカーボンナノチューブを多量化することができる。なお式(1)及び(2)中、Rは脂肪族系炭化水素あるいは芳香族系炭化水素を表す。
NH−R−NH …(1)
HO−R−OH …(2)
本発明の他の観点によれば、基板と、前記基板上に設けられた凸部あるいは凹部と、多量化または化学修飾されたカーボンナノチューブとを備え、前記カーボンナノチューブが前記凸部あるいは凹部の側壁面に沿って配列されてなるカーボンナノチューブ構造体が提供される。
The compound may be a compound represented by the following general formula (1) or a compound represented by the following general formula (2). Carbon nanotubes can be increased in quantity by forming peptide bonds or ester bonds. In the formulas (1) and (2), R represents an aliphatic hydrocarbon or an aromatic hydrocarbon.
NH 2 —R—NH 2 (1)
HO-R-OH (2)
According to another aspect of the present invention, the apparatus includes a substrate, a convex portion or a concave portion provided on the substrate, and a carbon nanotube that has been increased or chemically modified, and the carbon nanotube is on a side of the convex portion or the concave portion. A carbon nanotube structure arranged along a wall surface is provided.

本発明によれば、カーボンナノチューブは多量化あるいは化学修飾されて官能基を有している。かかるカーボンナノチューブは、溶媒に可溶であり容易に分散することが可能である。かかる分散液に基板を浸漬し、あるいは分散液を基板表面に塗布等することにより、基板に形成された微小な凸部あるいは凹部の側壁面に自己形成的にカーボンナノチューブを沿わせて配列することができる。その結果、カーボンナノチューブが精度良く配列されたカーボンナノチューブ構造体を実現することができる。   According to the present invention, the carbon nanotubes are functionalized by being multiplied or chemically modified. Such carbon nanotubes are soluble in a solvent and can be easily dispersed. By immersing the substrate in such a dispersion, or by applying the dispersion to the surface of the substrate, the carbon nanotubes are aligned along the side surfaces of minute protrusions or recesses formed on the substrate in a self-forming manner. Can do. As a result, a carbon nanotube structure in which carbon nanotubes are arranged with high accuracy can be realized.

本発明によれば、カーボンナノチューブを多量化して回収を容易化すると共に回収量を増加させることができるのでて、精製収率を著しく向上することができる。また、多量化あるいは化学修飾されたカーボンナノチューブが精度良く配列されたカーボンナノチューブ構造体を実現することができる。   According to the present invention, carbon nanotubes can be increased in quantity to facilitate recovery and increase the recovery amount, so that the purification yield can be significantly improved. In addition, it is possible to realize a carbon nanotube structure in which carbon nanotubes that have been increased or chemically modified are arranged with high accuracy.

本発明は、従来フィルター等で回収していた比較的長いカーボンナノチューブ(以下、「CNT」と略称する。)に加えて、カルボキシル化反応によって切断され短小となったカルボキシル基を有するCNTを、カルボキシル基と反応する官能基を2つ以上有する化合物を使用して、ペプチド結合あるいはエステル結合を形成して、CNT同士を連結し多量化し、濾過等により回収する精製工程を含むCNT構造体の製造方法に係るものである。   In the present invention, in addition to relatively long carbon nanotubes (hereinafter abbreviated as “CNT”) that have been collected by a conventional filter or the like, CNTs having a carboxyl group that has been shortened by a carboxylation reaction are converted into carboxyl groups. A method for producing a CNT structure comprising a purification step in which a compound having two or more functional groups that react with a group is used to form a peptide bond or an ester bond, the CNTs are linked together to increase the amount, and recovered by filtration or the like It is related to.

ペプチド結合を形成する化合物としては、下記一般式(1)の化合物が挙げられる。
NH−R−NH …(1)
ここでRは脂肪族系炭化水素あるいは芳香族系炭化水素を表す。結合後の多量化されたCNTのハンドリング性の点ではRは低級アルキル(Cが2〜8)であることが好ましい。
As a compound which forms a peptide bond, the compound of following General formula (1) is mentioned.
NH 2 —R—NH 2 (1)
Here, R represents an aliphatic hydrocarbon or an aromatic hydrocarbon. R is preferably a lower alkyl (C is 2 to 8) from the viewpoint of the handleability of the multinized CNT after bonding.

上記一般式(1)の化合物としては、1,2−ジアミノプロパン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,6−ジアミヘキサン、1,5−ジアミノペンタン、ジアミノベンゼン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルアミン、2,2’−ジアミノスチルベン、4,4’−ジアミノスチルベン等が挙げられる。   Examples of the compound of the general formula (1) include 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diamihexane, 1,5-diaminopentane, diaminobenzene, 4, Examples include 4'-diaminodiphenylmethane, 4,4'-diaminodiphenylamine, 2,2'-diaminostilbene, 4,4'-diaminostilbene.

ペプチド結合を形成する際に縮合促進剤を添加してもよい。縮合促進剤としては、下記式(3)に示すジシクロヘキシルカルボジイミド(DCC)、下記式(4)に示すジイソプロピルカルボジイミド(DIPC)、下記式(5)に示すN−エチル−N’−3−ジメチルアミノプロピルカルボジイミド(EDC)及びその塩酸塩(EDC・HCl)、下記式(6)に示すベンゾトリアゾール−1−イル−トリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン化物塩(BOP)、下記式(7)に示すジフェニルホスホリルジアミド(DPPA)等が挙げられる。DIPCは有機溶媒に可溶である点、EDCは水溶性である点で好ましい。また、EDCは、未反応の試薬及び脱水反応によって副成する尿素誘導体をクエン酸や塩酸水溶液による洗浄で簡単に除去できる点で好ましい。   A condensation accelerator may be added when forming a peptide bond. As the condensation accelerator, dicyclohexylcarbodiimide (DCC) represented by the following formula (3), diisopropylcarbodiimide (DIPC) represented by the following formula (4), and N-ethyl-N′-3-dimethylamino represented by the following formula (5): Propylcarbodiimide (EDC) and its hydrochloride (EDC.HCl), benzotriazol-1-yl-tris (dimethylamino) phosphonium hexafluorophosphide salt (BOP) shown in the following formula (6), And diphenylphosphoryldiamide (DPPA) shown. DIPC is preferable in that it is soluble in an organic solvent, and EDC is preferable in that it is water-soluble. EDC is preferable in that it can easily remove unreacted reagents and urea derivatives by-produced by dehydration by washing with citric acid or hydrochloric acid aqueous solution.

Figure 2005125428
Figure 2005125428

Figure 2005125428
Figure 2005125428

Figure 2005125428
Figure 2005125428

Figure 2005125428
Figure 2005125428

Figure 2005125428
さらに縮合促進剤に、下記式(8)に示すN−ヒドロキシスクシンイミド(HOUSu)、下記式(9)に示す1−ヒドロキシベンゾトリアゾール(HOBt)、あるいは下記式(10)に示す3−ヒドロキシ−4−オキソ−3,4−ジヒドロ−1,2,3−ベンゾトリアジン(HOObt)などの添加剤を組み合わせてもよい。添加剤に縮合促進剤のDCCあるいはEDCを組み合わせることにより、ペプチド結合を形成する縮合反応が、縮合促進剤単独の場合よりも速く進行し、副反応が抑制される。
Figure 2005125428
Further, as the condensation accelerator, N-hydroxysuccinimide (HOUSu) represented by the following formula (8), 1-hydroxybenzotriazole (HOBt) represented by the following formula (9), or 3-hydroxy-4 represented by the following formula (10) Additives such as -oxo-3,4-dihydro-1,2,3-benzotriazine (HOObt) may be combined. By combining the additive with the condensation accelerator DCC or EDC, the condensation reaction for forming the peptide bond proceeds faster than the case of the condensation accelerator alone, and the side reaction is suppressed.

Figure 2005125428
Figure 2005125428

Figure 2005125428
Figure 2005125428

Figure 2005125428

また、エステル結合を形成する化合物としては、下記一般式(2)の化合物が挙げられる。
HO−R−OH …(2)
ここでRは脂肪族系炭化水素あるいは芳香族系炭化水素を表す。結合後の多量化されたCNTのハンドリング性の点ではRは低級アルキル(Cが2〜8)であることが好ましい。
Figure 2005125428

Moreover, as a compound which forms an ester bond, the compound of following General formula (2) is mentioned.
HO-R-OH (2)
Here, R represents an aliphatic hydrocarbon or an aromatic hydrocarbon. R is preferably a lower alkyl (C is 2 to 8) from the viewpoint of the handleability of the multinized CNT after bonding.

上記一般式(2)の化合物としては、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ベンゼンジオール、ナフタレンジオール、2−ブテン−1,4−ジオール、2,2−ジエチル−1,3−プロパンジオール等が挙げられる。   As the compound of the general formula (2), ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, benzenediol, naphthalenediol, 2-butene-1,4-diol, 2,2-diethyl-1, 3-propanediol etc. are mentioned.

またさらに、化合物は二官能性の化合物に限定されず、官能基を3個以上有する多官能性の化合物であってもよい。官能基はアミノ基及び水酸基に限定されない。例えば、各官能基がカルボキシル基と反応するものであればよい。   Furthermore, the compound is not limited to a bifunctional compound, and may be a polyfunctional compound having three or more functional groups. Functional groups are not limited to amino groups and hydroxyl groups. For example, any functional group may be used as long as it reacts with a carboxyl group.

本発明に用いられるCNTは、SWCNT(Single−Walled Carbon Nanotube)、DWCNT(Double−Walled Carbon Nanotube)、MWCNT(Multi−Walled Carbon Nanotube)のいずれでもよい。このようなCNTは、アーク放電法、レーザーアブレーション法、プラズマ合成法、HiPco(High−pressure carbon monoxide process)法、炭化水素触媒分解法などの合成法のいずれにより生成されたものでもよい。   The CNT used in the present invention may be any of SWCNT (Single-Walled Carbon Nanotube), DWCNT (Double-Walled Carbon Nanotube), and MWCNT (Multi-Walled Carbon Nanotube). Such CNTs may be generated by any of synthesis methods such as arc discharge method, laser ablation method, plasma synthesis method, HiPco (High-pressure carbon monoxide process) method, hydrocarbon catalyst decomposition method.

以下、本発明のCNT構造体の製造方法を構成するCNTの精製工程を説明する。まず、粗生成のCNTを酸、例えば、強酸の硫酸、塩酸、硝酸、酢酸などの水溶液(濃度:100vol%〜10vol%)に分散させ、この分散液を加熱処理する。ここで、粗生成のCNTは、上記の合成法を含む合成方法により生成されたCNTの未精製物、あるいは未精製物を何らかの手法に精製されたCNTにCNT以外の物質を含むCNTや欠陥の多いCNTなどの中間精製物である。また、本精製工程に用いられるCNTは、濾過等により回収しにくい短いCNTを含むCNTであってもよい。粗生成のCNTには、CNT以外に、Fe、Co、Ni等の触媒金属や、触媒金属の酸化物、アモルファスカーボン、グラファイト微粒子等の不純物が含まれている。酸により、主として触媒金属や、触媒金属の酸化物を溶解する。また、分散液に過酸化水素を添加してもよい。アモルファスカーボン及びグラファイト微粒子を酸化除去することができる。加熱処理の温度は130℃〜160℃、処理時間は酸の濃度に応じて適宜選択されるが、30分〜50時間に設定することが好ましく、加熱処理の間は還流あるいは撹拌を行う。なお、酸は上記いずれか1種を用いてもよく、2種以上を組み合わせて用いてもよい。   Hereafter, the purification process of CNT which comprises the manufacturing method of the CNT structure of this invention is demonstrated. First, crude CNTs are dispersed in an aqueous solution (concentration: 100 vol% to 10 vol%) of an acid such as a strong acid such as sulfuric acid, hydrochloric acid, nitric acid, and acetic acid, and the dispersion is heated. Here, the crudely produced CNT is an unpurified CNT produced by a synthesis method including the above synthesis method, or a CNT containing a substance other than CNT in a CNT purified by any method, or a defect CNT. Many intermediate purified products such as CNT. Further, the CNT used in this purification step may be a CNT containing short CNT that is difficult to recover by filtration or the like. In addition to CNTs, the coarsely produced CNTs contain impurities such as catalytic metals such as Fe, Co, and Ni, oxides of catalytic metals, amorphous carbon, and graphite fine particles. The acid mainly dissolves the catalyst metal and the oxide of the catalyst metal. Further, hydrogen peroxide may be added to the dispersion. Amorphous carbon and graphite fine particles can be oxidized and removed. The temperature of the heat treatment is 130 ° C. to 160 ° C., and the treatment time is appropriately selected according to the acid concentration, but is preferably set to 30 minutes to 50 hours, and refluxing or stirring is performed during the heat treatment. In addition, any 1 type of the above may be used for an acid, and it may use it in combination of 2 or more type.

次に反応物を冷却後、遠心分離機により遠心分離して上澄み液と沈殿物とに分離する。上澄み液をとりわけ、純水に置換して遠心分離処理と上澄み液の置換処理を、例えば2回〜10回繰り返す(以下、「洗浄処理」と称する)。これらの処理により、pH5〜7のほぼ中性となる。ここで得られた沈殿物は、上述したように不純物はほぼ溶解されているので、アスペクト比が大きく、数μm程度の長さを有する線状のCNTだけが含まれている(以下「第1の精製物」という。)。この沈殿物を純水に分散し、濃塩酸を添加して約50℃で1時間放置し、乾燥させて回収する。   Next, the reaction product is cooled and then centrifuged by a centrifuge to separate into a supernatant and a precipitate. In particular, the supernatant liquid is replaced with pure water, and the centrifugal separation process and the supernatant liquid replacement process are repeated, for example, 2 to 10 times (hereinafter referred to as “cleaning process”). By these treatments, the pH becomes almost neutral at 5-7. The precipitate obtained here contains only linear CNTs having a large aspect ratio and a length of about several μm because the impurities are almost dissolved as described above (hereinafter referred to as “first” "Purified product of."). This precipitate is dispersed in pure water, concentrated hydrochloric acid is added, the mixture is left at about 50 ° C. for 1 hour, dried and collected.

次に、上記洗浄処理の際に回収した上澄み液を加熱濃縮し、超音波振動機等を用いて分散させる。なお、上澄み液は、上記の洗浄処理を繰り返すと濁った上澄み液が得られる。この濁った上澄み液に、分断されたCNTが含まれている。   Next, the supernatant liquid collected at the time of the washing process is concentrated by heating and dispersed using an ultrasonic vibrator or the like. In addition, a turbid supernatant liquid is obtained for the supernatant liquid when the above washing treatment is repeated. This turbid supernatant contains fragmented CNTs.

次に、ペプチド反応によりCNTを多量化する場合は、このようにして得られた分散液を約0℃に冷却し、上述した上記一般式(1)の化合物、縮合促進剤、及び必要に応じて添加剤を撹拌しつつ順次添加し、適切な温度で撹拌し反応させる。   Next, in the case of increasing the amount of CNTs by peptide reaction, the dispersion thus obtained is cooled to about 0 ° C., the above-mentioned compound of the general formula (1), the condensation accelerator, and, if necessary, Add the additives sequentially while stirring, and stir at an appropriate temperature to react.

また、エステル反応によりCNTを多量化する場合は、分散液に上記一般式(2)の化合物を添加し、30℃〜120℃に加熱して、12分〜50時間に設定し、撹拌・還流して反応させる。   When the CNTs are to be increased by ester reaction, the compound of the general formula (2) is added to the dispersion, heated to 30 ° C. to 120 ° C., set to 12 minutes to 50 hours, stirred and refluxed And react.

得られた反応物を遠心分離処理と遠心分離して得られた上澄み液の純水への置換を5回程度繰り返し、濾別して濾過物を得る。濾過は0.1μmあるいは0.2μmの細孔径のポアフィルターを用いて行う。この濾過物には、ほぼ多量化されたCNTだけが含まれている(以下「第2の精製物」という。)。すなわち、従来の精製法では、上記の第1の精製物だけが得られたのに対し、本発明では、従来の精製手法では回収困難であった切断され短小となった、あるいは合成時に短小であったCNTを多量化することにより、第2の精製物を回収することができ、第2の精製物の寄与により精製収率を大幅に向上することができる。このようにして得られた多量化されたCNTは、例えば機能性材料や構造材、水素吸蔵体などのCNT構造体に用いることができる。   The obtained reaction product is centrifuged and the replacement of the supernatant obtained by centrifuging with pure water is repeated about 5 times and filtered to obtain a filtrate. Filtration is performed using a pore filter having a pore diameter of 0.1 μm or 0.2 μm. This filtrate contains only CNTs that have been substantially increased in quantity (hereinafter referred to as “second purified product”). That is, in the conventional purification method, only the first purified product described above was obtained, whereas in the present invention, it was cleaved and shortened, which was difficult to recover by the conventional purification method, or it was short during synthesis. The second purified product can be recovered by increasing the amount of CNTs present, and the purification yield can be greatly improved by the contribution of the second purified product. The CNTs obtained in this manner can be used for CNT structures such as functional materials, structural materials, and hydrogen storage materials.

なお、第2の精製物には不純物が含まれていない純粋なCNTの多量化体であるので、CNT同士の結合を切って短小なCNTが用いられる電子デバイス等に用いてもよい。結合を切るためには、例えば、第2の精製物をメタノール等の溶媒に超音波振動器により超音波を印加して分散させ、塩酸などの酸を添加し室温等で撹拌する。このようにして、得られたCNTは第1の精製物に含まれるCNTに対してアスペクト比は低いものの、電気的性質を利用するビアや配線層などに用いることができる。   Since the second purified product is a pure CNT multimer without impurities, it may be used in an electronic device or the like in which short CNTs are used by cutting bonds between CNTs. In order to break the bond, for example, the second purified product is dispersed in a solvent such as methanol by applying ultrasonic waves with an ultrasonic vibrator, and an acid such as hydrochloric acid is added and stirred at room temperature or the like. Thus, although the obtained CNT has a low aspect ratio with respect to the CNT contained in the first purified product, it can be used for a via or a wiring layer utilizing electrical properties.

また、第1または第2の精製物であるCNT内にフラーレン及びその派生体、エルビニウム(Er)等の元素を内包させてもよい。CNTの多機能化を図ることができる。以下本発明を構成するCNTの精製工程の実施例を示す。   Moreover, you may enclose elements, such as fullerene, its derivative (s), and erbium (Er), in CNT which is the 1st or 2nd refinement | purification thing. Multifunctionalization of CNT can be achieved. Examples of the purification process of CNT constituting the present invention are shown below.

[実施例1]
レーザーアブレーション法により作製した粗生成SWCNT1gをフラスコに取り、49%硫酸100mlと30%過酸化水素水50mlを注ぎ、オイルバスを用いて90℃〜100℃の温度に保持して5時間還流した。
[Example 1]
1 g of crude SWCNT produced by the laser ablation method was placed in a flask, 100 ml of 49% sulfuric acid and 50 ml of 30% hydrogen peroxide solution were poured, and the mixture was refluxed for 5 hours while being kept at a temperature of 90 ° C. to 100 ° C. using an oil bath.

反応液を冷却後、市販の遠心分離機を用いて遠心分離(4000rpm、30分)し、沈殿物と上澄み液(以下、洗浄液と呼ぶ。)が得られた。洗浄液を純水と置換しさらに遠心分離する処理を3〜6回繰り返すと濁った洗浄液が得られた。この処理によりpHが6〜7程度になり、沈殿物と洗浄液を回収した。   After cooling the reaction solution, it was centrifuged (4000 rpm, 30 minutes) using a commercially available centrifuge to obtain a precipitate and a supernatant (hereinafter referred to as a washing solution). When the process of substituting the cleaning liquid with pure water and further centrifuging was repeated 3 to 6 times, a cloudy cleaning liquid was obtained. By this treatment, the pH became about 6 to 7, and the precipitate and the washing liquid were collected.

このようにして得た沈殿物を再び純水に分散し、濃塩酸1mlを添加して50℃、1時間放置した後乾燥し、100mgの乾燥体を得た。この乾燥体を1mg計り取って少量のエタノールに分散させ、これをシリコン基板上に展開・乾燥したものをSEM(走査型顕微鏡)で観察したところ、ほとんどが長さ数μmの線状CNTであった。   The precipitate thus obtained was again dispersed in pure water, 1 ml of concentrated hydrochloric acid was added, and the mixture was allowed to stand at 50 ° C. for 1 hour and then dried to obtain 100 mg of a dried product. 1 mg of this dried product was weighed and dispersed in a small amount of ethanol. When this was developed and dried on a silicon substrate, it was observed with a SEM (scanning microscope), and most of it was linear CNTs of several μm in length. It was.

上記の濁った洗浄液のうち、処理の後半に回収した硫酸分が少ない洗浄液を集め、水を蒸発させて10mlまで濃縮した後、市販の超音波振動器を用いて短時間超音波を印加してよく分散させる。この分散液を0℃に冷却し、1,6−ジアミノヘキサン(ヘキサメチレンジアミン)を1g、EDC0.1g、HOBt0.1gをゆっくりと添加し、10℃に保持して10時間撹拌する。得られた反応物を上記の純水による置換と遠心分離の処理を5回行った後、このようにして得た沈殿物を再び純水に分散し、濃塩酸1mlを添加して50℃、1時間放置した後乾燥し、100mgの乾燥体を得た。この乾燥体を1mg計り取って少量のエタノールに分散させ、これをシリコン基板上に展開・乾燥したものをSEMで観察したところ、ほとんどが長さ数μmの線状CNTであった。   Of the above turbid cleaning liquid, a cleaning liquid with a low sulfuric acid content collected in the latter half of the treatment is collected, water is evaporated and concentrated to 10 ml, and then ultrasonic waves are applied for a short time using a commercially available ultrasonic vibrator. Disperse well. The dispersion is cooled to 0 ° C., 1 g of 1,6-diaminohexane (hexamethylenediamine), 0.1 g of EDC and 0.1 g of HOBt are slowly added, and the mixture is kept at 10 ° C. and stirred for 10 hours. After the obtained reaction product was subjected to the above-described replacement with pure water and centrifugation five times, the precipitate thus obtained was dispersed again in pure water, and 1 ml of concentrated hydrochloric acid was added thereto at 50 ° C. It was allowed to stand for 1 hour and then dried to obtain 100 mg of a dried product. When 1 mg of this dried product was weighed and dispersed in a small amount of ethanol, and developed and dried on a silicon substrate, it was observed with an SEM. As a result, most were linear CNTs having a length of several μm.

このようにして得られた生成物を再び純水に分散し、濃塩酸1mlを添加して40℃、1時間放置した後十分に乾燥した。乾燥体を再び純水に分散させ、ポア径0.2μmのマイクロポアフィルターを用いて濾過し、乾燥後170mgの濾過物を得た。この濾過物を1mg計り取って少量のエタノールに分散させ、これをシリコン基板上に展開・乾燥したものをSEMで観察したところ、大部分が線状のCNT多量化体であった。   The product thus obtained was again dispersed in pure water, 1 ml of concentrated hydrochloric acid was added, and the mixture was allowed to stand at 40 ° C. for 1 hour, and then sufficiently dried. The dried product was dispersed again in pure water and filtered using a micropore filter having a pore diameter of 0.2 μm. After drying, 170 mg of a filtrate was obtained. When 1 mg of this filtrate was weighed and dispersed in a small amount of ethanol, and this was developed and dried on a silicon substrate and observed with an SEM, the majority was a linear CNT multimer.

このようにして本実施例により得られたCNTは合計270mgと、通常の方法から得られるCNTに比べ約2〜3倍量を回収することができた。   In this way, the total amount of CNT obtained by this example was 270 mg, which was about 2 to 3 times as much as the CNT obtained from the ordinary method.

[実施例2]
レーザーアブレーション法により作製した粗生成SWCNT1gをフラスコに取り、49%硫酸100mlと30%過酸化水素水50mlを注ぎ、オイルバスを用いて90℃〜100℃の温度に保持して5時間還流した。
[Example 2]
1 g of crude SWCNT produced by the laser ablation method was placed in a flask, 100 ml of 49% sulfuric acid and 50 ml of 30% hydrogen peroxide solution were poured, and the mixture was refluxed for 5 hours while being kept at a temperature of 90 ° C. to 100 ° C. using an oil bath.

反応液を冷却後、市販の遠心分離機を用いて遠心分離(4000rpm、30分)し、沈殿物と上澄み液(以下、洗浄液と呼ぶ。)が得られた。洗浄液を純水と置換しさらに遠心分離する処理を3回繰り返し、濁った洗浄液が得られた。濁った洗浄液と沈殿物に希薄な水酸化ナトリウム溶液を添加するとpHが7となり、沈殿物と洗浄液を回収した。   After cooling the reaction solution, it was centrifuged (4000 rpm, 30 minutes) using a commercially available centrifuge to obtain a precipitate and a supernatant (hereinafter referred to as a washing solution). The process of substituting the cleaning liquid with pure water and further centrifuging was repeated three times to obtain a turbid cleaning liquid. When dilute sodium hydroxide solution was added to the turbid washing solution and the precipitate, the pH became 7, and the precipitate and the washing solution were recovered.

このようにして得た沈殿物を再び純水に分散し、濃塩酸1mlを添加して50℃、1時間放置した後乾燥し、100mgの乾燥体を得た。この乾燥体を1mg計り取って少量のエタノールに分散させ、これをシリコン基板上に展開・乾燥したものをSEMで観察したところ、ほとんどが長さ数μmの線状CNTであった。   The precipitate thus obtained was again dispersed in pure water, 1 ml of concentrated hydrochloric acid was added, and the mixture was allowed to stand at 50 ° C. for 1 hour and then dried to obtain 100 mg of a dried product. When 1 mg of this dried product was weighed and dispersed in a small amount of ethanol, and developed and dried on a silicon substrate, it was observed with an SEM. As a result, most were linear CNTs having a length of several μm.

上記の濁った洗浄液のうち、処理の後半に回収した硫酸分が少ない洗浄液を集め、水を完全に蒸発させ、これにTHF1mlを添加し、超音波を短時間印加してよく分散させる。1,6−ジアミノヘキサン(ヘキサメチレンジアミン)を0.5g、DCIP0.1g、NHS(N−メチルスクシンイミド)0.1gをゆっくりと添加し、10℃に保持して10時間撹拌した。その後、得られた反応物を過剰のTHFにより洗浄した後、置換と遠心分離の処理を5回行った後、ポア径0.2μmのマイクロポアフィルターを用いて濾過し、得られた濾過物を生成物として得た。   Of the turbid cleaning solution, a cleaning solution containing a small amount of sulfuric acid collected in the latter half of the treatment is collected, water is completely evaporated, 1 ml of THF is added thereto, and ultrasonic waves are applied for a short time to disperse well. 0.5 g of 1,6-diaminohexane (hexamethylenediamine), 0.1 g of DCIP and 0.1 g of NHS (N-methylsuccinimide) were slowly added, and the mixture was kept at 10 ° C. and stirred for 10 hours. Thereafter, the obtained reaction product was washed with excess THF, and then subjected to substitution and centrifugation treatment five times, followed by filtration using a micropore filter having a pore diameter of 0.2 μm. Obtained as product.

このようにして得られた生成物を再び純水に分散し、濃塩酸1mlを添加して40℃、1時間放置した後十分に乾燥した。乾燥体を再び純水に分散させ、ポア径0.2μmのマイクロポアフィルターを用いて濾過し、この濾過物を乾燥したところ140mgの濾過物を得た。この濾過物を1mg計り取って少量のエタノールに分散させ、これをシリコン基板上に展開・乾燥したものをSEMで観察したところ、大部分が線状のCNT多量化体であった。   The product thus obtained was again dispersed in pure water, 1 ml of concentrated hydrochloric acid was added, and the mixture was allowed to stand at 40 ° C. for 1 hour, and then sufficiently dried. The dried product was dispersed again in pure water and filtered using a micropore filter having a pore diameter of 0.2 μm. The filtrate was dried to obtain 140 mg of the filtrate. When 1 mg of this filtrate was weighed and dispersed in a small amount of ethanol, and this was developed and dried on a silicon substrate and observed with an SEM, the majority was a linear CNT multimer.

このようにして本実施例により得られたCNTは合計240mgと、通常の方法から得られるCNTに比べ約2〜3倍量を回収することができた。   In this way, the total amount of CNTs obtained by this example was 240 mg, which was about 2-3 times as much as the CNTs obtained from the ordinary method.

[実施例3]
アーク放電法により作製した粗生成SWCNT1gをフラスコに取り、40%硝酸100mlを注ぎ、オイルバスを用いて130℃の温度に保持して40時間還流した。
[Example 3]
1 g of crude SWCNT produced by the arc discharge method was placed in a flask, 100 ml of 40% nitric acid was poured, and the mixture was refluxed for 40 hours while maintaining the temperature at 130 ° C. using an oil bath.

反応液を冷却後、市販の遠心分離機を用いて遠心分離(5000rpm、30分)し、沈殿物と上澄み液(以下、第1洗浄液と呼ぶ。)が得られた。第1洗浄液を純水と置換し、遠心分離する処理を計3回繰り返し、濁った第1洗浄液が得られた。沈殿物に希薄な水酸化ナトリウム溶液を添加して中和するとpHが7となり、沈殿物と第1洗浄液を回収した。   After cooling the reaction solution, it was centrifuged (5000 rpm, 30 minutes) using a commercially available centrifuge to obtain a precipitate and a supernatant (hereinafter referred to as a first washing solution). The process of substituting the first cleaning liquid with pure water and centrifuging was repeated a total of three times to obtain a turbid first cleaning liquid. When a dilute sodium hydroxide solution was added to the precipitate for neutralization, the pH became 7, and the precipitate and the first washing solution were recovered.

得られた沈殿物を再び純水に分散させ、微量の塩酸を添加した後、再び市販の遠心分離機を用いて遠心分離(4000rpm、20分)し、沈殿物と上澄み液(以下、第2洗浄液と呼ぶ。)が得られた。第2洗浄液を純水と置換し、遠心分離する処理を計3回繰り返し、濁った第2洗浄液が得られた。濁った第2洗浄液と沈殿物に希薄な水酸化ナトリウム溶液を添加するとpHが7となり、沈殿物と第2洗浄液を回収した。   The obtained precipitate was dispersed again in pure water, a small amount of hydrochloric acid was added, and then centrifuged again (4000 rpm, 20 minutes) using a commercially available centrifuge. This was called a cleaning solution.) The process of substituting the second cleaning liquid with pure water and centrifuging was repeated a total of three times to obtain a turbid second cleaning liquid. When dilute sodium hydroxide solution was added to the cloudy second washing liquid and the precipitate, the pH became 7, and the precipitate and the second washing liquid were recovered.

このようにして得た沈殿物をポア径0.2μmのマイクロポアフィルターを用いて濾過し、乾燥後70mgの濾過物を得た。この濾過物を1mg計り取って少量のエタノールに分散させ、これをシリコン基板上に展開・乾燥したものをSEMで観察したところ、大部分が純度の高い線状のCNTであった。   The precipitate thus obtained was filtered using a micropore filter having a pore diameter of 0.2 μm, and after drying, 70 mg of a filtrate was obtained. When 1 mg of this filtrate was weighed and dispersed in a small amount of ethanol, and this was developed and dried on a silicon substrate and observed with an SEM, the majority were linear CNTs with high purity.

第2洗浄液のうち、硝酸分の少ない処理の後半に得られた第2洗浄液を集め、これを十分に乾燥させた後、これに1,2−ジヒドロキシエタン(エチレングリコール)50g(約45ml)を添加して、110℃に保持したオイルバスで10時間ほど撹拌・還流した。   Of the second cleaning solution, the second cleaning solution obtained in the second half of the treatment with a low amount of nitric acid was collected and dried sufficiently, and then 50 g (about 45 ml) of 1,2-dihydroxyethane (ethylene glycol) was added thereto. The mixture was added and stirred and refluxed in an oil bath maintained at 110 ° C. for about 10 hours.

得られた反応物をポア径0.1μmのマイクロポアフィルターを用いて濾過し、濾過物に含まれるエチレングリコールをアセトンを使用してよく洗浄し、乾燥後190mgの濾過物を得た。この濾過物を1mg計り取って上記と同様にしてSEMで観察したところ、大部分が線状のCNT多量化体であった。   The obtained reaction product was filtered using a micropore filter having a pore diameter of 0.1 μm, and ethylene glycol contained in the filtrate was thoroughly washed with acetone, and after drying, 190 mg of a filtrate was obtained. When 1 mg of this filtrate was weighed and observed with an SEM in the same manner as described above, most of the filtrate was a linear CNT multimer.

このようにして本実施例により得られたCNTは合計260mgと、通常の方法から得られるCNTに比べ約2〜3倍量を回収することができた。   In this way, the total amount of CNTs obtained by this example was 260 mg, which was about 2-3 times as much as the CNTs obtained from the ordinary method.

さらに、得られたCNT多量化体190mgのうち50mgをエタノール20mlに超音波を印加(時間30分)して、少量の塩酸を添加して20℃で10時間撹拌処理を行った。この反応物を乾燥したところ約55mgのCNT反応物を得た。この反応物を1mg計り取って上記と同様にしてSEMで観察したところ、大部分が線状CNTであった。   Further, 50 mg of 190 mg of the obtained CNT multimer was applied with ultrasound to 20 ml of ethanol (time 30 minutes), a small amount of hydrochloric acid was added, and the mixture was stirred at 20 ° C. for 10 hours. When this reaction product was dried, about 55 mg of a CNT reaction product was obtained. When 1 mg of this reaction product was weighed and observed by SEM in the same manner as described above, most of the reaction product was linear CNT.

(CNT構造体)
次に本発明に係る上記の多量化あるいは化学修飾されたCNTが配列されたCNT構造体及びCNTの配列方法について説明する。なお、以下、「CNT構造体」を「構造体」と略称する。
(CNT structure)
Next, a CNT structure in which the above-mentioned quantified or chemically modified CNTs according to the present invention are arranged and a method for arranging the CNTs will be described. Hereinafter, the “CNT structure” is abbreviated as “structure”.

図1は、凸部が設けられた基板にCNTが配列された構造体の斜視図、図2は、図1に示す構造体の断面図である。図2はCNTの長手方向に垂直に切った断面を示しているので、CNTは円として示されている。   FIG. 1 is a perspective view of a structure in which CNTs are arranged on a substrate provided with convex portions, and FIG. 2 is a cross-sectional view of the structure shown in FIG. Since FIG. 2 shows a cross section cut perpendicular to the longitudinal direction of the CNT, the CNT is shown as a circle.

図1及び図2を参照するに、構造体10は基板11と、基板11上に設けられた凸部12と、基板11表面と凸部12の側壁面に沿って配列されたCNT13とから構成されている。   Referring to FIGS. 1 and 2, the structure 10 includes a substrate 11, a convex portion 12 provided on the substrate 11, and a CNT 13 arranged along the surface of the substrate 11 and the side wall surface of the convex portion 12. Has been.

CNT13は、以下の方法によって配列することができる。例えば、CNT13をメタノール等のアルコール、水、有機溶媒等の溶媒に分散させて形成した分散液を用いて、凸部12が設けられた基板11を分散液に浸漬し基板11を引き上げる引き上げ法、同様に浸漬し分散液の液面を蒸発により低下させる液面低下法、分散液をスピンコータにより回転塗布するスピンコート法等(以下、「引き上げ法等」という。)が挙げられる。CNT13が移動する時間を確保する点で、引き上げ法及び液面低下法が好ましい。   The CNTs 13 can be arranged by the following method. For example, using a dispersion formed by dispersing CNT 13 in a solvent such as alcohol such as methanol, water, or an organic solvent, a pulling method in which the substrate 11 provided with the convex portions 12 is immersed in the dispersion and the substrate 11 is pulled up, Similarly, there are a liquid level lowering method in which the liquid level of the dispersion liquid is reduced by evaporation, a spin coating method in which the dispersion liquid is spin-coated with a spin coater (hereinafter referred to as “lifting method”). The pulling method and the liquid level lowering method are preferable from the viewpoint of securing time for the CNT 13 to move.

CNT13は、上述した多量化されたCNT、あるいは多量化されたCNTの結合部分を切断されたCNTであり、あるいは化学修飾され官能基を有するCNTであってもよい。CNT13は多量化等されているので、メタノール等のアルコール溶媒、水、有機溶媒等に分散し易く、図1に示すように1本ごとに独立して配列することができる。   The CNT 13 may be the above-mentioned multinized CNT, the CNT obtained by cutting the binding part of the multinized CNT, or a chemically modified CNT having a functional group. Since the CNTs 13 are increased in number, etc., they are easily dispersed in alcohol solvents such as methanol, water, organic solvents, etc., and can be arranged independently for each one as shown in FIG.

特に本発明では、数nmの微小な段差にCNT13を配列するので、溶媒は、ジメチルホルムアミドであることが好ましい。CNT13の分散性が良好となり、配列が容易となる。   In particular, in the present invention, since the CNTs 13 are arranged at a minute step of several nm, the solvent is preferably dimethylformamide. The dispersibility of the CNTs 13 becomes good and the arrangement becomes easy.

基板11は、シリコン基板、ゲルマニウム基板等の半導体基板に限定されず、金属板、セラミックス板、MgO、樹脂などの絶縁体基板でもよい。   The substrate 11 is not limited to a semiconductor substrate such as a silicon substrate or a germanium substrate, but may be an insulating substrate such as a metal plate, a ceramic plate, MgO, or a resin.

凸部12は、基板11上に、例えば、レジスト膜やシリコン酸化膜等の絶縁体膜、金属膜など形成し、フォトリソグラフィー法によるパターニング及び現像処理や、選択的にエッチングすることにより形成することができる。また、LB膜などの高分子膜を選択的に形成したものでもよい。形成方法はこれら限定されず、数nm〜数百nmの高さを有する凸部12を形成できる方法であれば特に限定されない。   The convex portion 12 is formed on the substrate 11 by, for example, forming an insulating film such as a resist film or a silicon oxide film, a metal film, etc., and performing patterning and development processing by a photolithography method or selective etching. Can do. Moreover, what selectively formed polymer films, such as LB film | membrane, may be used. The formation method is not limited to these, and is not particularly limited as long as the method can form the convex portion 12 having a height of several nm to several hundred nm.

凸部12の高さは、CNT13の直径に対して大であってもよく、小であってもよい。凸部12の高さを、CNT13の直径に対して大とすることにより、複数本のCNT13を凸部12の側壁面12aに沿って配列することができる。一方、凸部12の高さを、CNT13の直径に対して小とすることにより、CNT13を一本だけ凸部12の側壁面12aに沿って配列することができる。また、凸部12の高さを低く抑えることにより、構造体の高さを抑制して小型化することができる。ただし、少なくともCNT13の半径の10%以上の高さがあることが好ましい。CNT13が基板11表面を満たす溶媒中を凸部12の側壁面12aとCNT13とのファンデルワールス力により移動し吸着するので、10%を切ると吸着し難くなる。   The height of the convex portion 12 may be larger or smaller than the diameter of the CNT 13. By making the height of the convex portion 12 larger than the diameter of the CNT 13, a plurality of CNTs 13 can be arranged along the side wall surface 12 a of the convex portion 12. On the other hand, by making the height of the convex portion 12 smaller than the diameter of the CNT 13, only one CNT 13 can be arranged along the side wall surface 12 a of the convex portion 12. Moreover, by suppressing the height of the convex part 12 low, the height of the structure can be suppressed and the size can be reduced. However, it is preferable that the height is at least 10% of the radius of the CNT 13. Since the CNT 13 moves and adsorbs in the solvent that fills the surface of the substrate 11 due to the van der Waals force between the side wall surface 12a of the convex portion 12 and the CNTs 13, it becomes difficult to adsorb at less than 10%.

なお、図1及び図2では、CNT13が凸部12の一方の側壁面12aに配列されているが、かかる選択性は側壁面12aの表面エネルギーを異ならせたり、基板11を傾けて重力の作用により可能となる。   In FIGS. 1 and 2, the CNTs 13 are arranged on one side wall surface 12a of the convex portion 12. However, such selectivity is caused by the action of gravity by varying the surface energy of the side wall surface 12a or tilting the substrate 11. Is possible.

図3は、凹部が設けられた基板にCNTが配列された構造体の斜視図である。図3を参照するに、構造体20は、凹部21−1が設けられた基板21と、凹部21−1の側壁面21aと底面21bに接して配列されたCNT13から構成されている。   FIG. 3 is a perspective view of a structure in which CNTs are arranged on a substrate provided with a recess. Referring to FIG. 3, the structure 20 includes a substrate 21 provided with a recess 21-1, and CNTs 13 arranged in contact with the side wall surface 21a and the bottom surface 21b of the recess 21-1.

基板21の凹部21−1は、凸部12と同様にして基板21を選択的にエッチング等することにより形成する。かかる構造体20の場合も、上述した引き上げ法等によりCNT13を配列することができる。   The concave portion 21-1 of the substrate 21 is formed by selectively etching the substrate 21 in the same manner as the convex portion 12. Also in the case of this structure 20, the CNTs 13 can be arranged by the above-described pulling method or the like.

他のCNTを配列した他の構造体の例としては、図4及び図5に示す例が挙げられる。
図4は、ステップが形成された単結晶基板にCNTが配列された構造体の断面図である。図4を参照するに、構造体30は単結晶基板31の所定の結晶方位(矢印Xにより示す方向)に沿って微傾斜した表面に現れる1原子又は1分子分の段差、いわゆるステップ31aを利用したものである。たとえば、シリコン単結晶基板の(001)面において[110]結晶方位に傾斜角度を0.5度〜4度、あるいは4度より大きくすることにより、格子定数をaとすると段差の高さがそれぞれa/4、a/2で面内方向にほぼ直線のステップ31aが周期的に現れる。係る微傾斜した単結晶基板31を用いることにより、上述した引き上げ法等によりCNT13を規則的に配列することができる。
Examples of other structures in which other CNTs are arranged include the examples shown in FIGS. 4 and 5.
FIG. 4 is a cross-sectional view of a structure in which CNTs are arranged on a single crystal substrate on which steps are formed. Referring to FIG. 4, the structure 30 uses a step corresponding to one atom or one molecule appearing on a surface slightly inclined along a predetermined crystal orientation (direction indicated by an arrow X) of the single crystal substrate 31, so-called step 31 a. It is a thing. For example, by increasing the inclination angle in the [110] crystal orientation in the (001) plane of the silicon single crystal substrate from 0.5 degrees to 4 degrees, or larger than 4 degrees, if the lattice constant is a, the heights of the steps are respectively At a / 4 and a / 2, substantially linear steps 31a appear periodically in the in-plane direction. By using such a slightly tilted single crystal substrate 31, the CNTs 13 can be regularly arranged by the above-described pulling method or the like.

図5は、V字形の溝が形成された基板にCNTが配列された構造体の断面図である。図5を参照するに、構造体40は、基板41にV字形の溝41−1が形成され、溝41−1の底にCNT13が配列されている。かかる溝41−1は、例えばシリコン単結晶基板の(100)面にKOH溶液を用いた異方性ウエットエッチング(結晶面毎にエッチング速度が異なる現象を利用した方法)により自己形成的に(111)面及びこれと結晶学的に等価な面を露出することによって斜面41aが形成されてV字形となる。CNT13は上述した引き上げ法等により溝41−1の底に配列することができる。   FIG. 5 is a cross-sectional view of a structure in which CNTs are arranged on a substrate on which V-shaped grooves are formed. Referring to FIG. 5, in the structure 40, a V-shaped groove 41-1 is formed in a substrate 41, and CNTs 13 are arranged at the bottom of the groove 41-1. The groove 41-1 is self-formed (111) by anisotropic wet etching using a KOH solution on the (100) plane of a silicon single crystal substrate (a method using a phenomenon in which the etching rate differs for each crystal plane). ) Surface and a crystallographically equivalent surface are exposed to form a slope 41a to be V-shaped. The CNTs 13 can be arranged at the bottom of the groove 41-1 by the above-described pulling method or the like.

図6〜図8は、本発明の構造体の応用例を示す図である。図6を参照するに、構造体50は、図1に示す構造体10のCNT13の両側に導電材料よりなる電極51を形成し、半導体装置等に用いることができる配線層を形成したものである。CNT13はバリスティックな電気伝導性を有するので、高速伝送の配線部を形成することができる。   6-8 is a figure which shows the example of application of the structure of this invention. Referring to FIG. 6, a structure 50 is formed by forming electrodes 51 made of a conductive material on both sides of the CNT 13 of the structure 10 shown in FIG. 1 and forming a wiring layer that can be used for a semiconductor device or the like. . Since the CNT 13 has ballistic electrical conductivity, a high-speed transmission wiring portion can be formed.

図7を参照するに、構造体60は、基板11上に凸部121〜123を長手方向の長さを異ならせて形成し、凸部121〜123の長手方向の一辺に沿って、その一辺よりも長いCNT131〜133を配列し、CNT131とCNT132、CNT132とCNT133を重ならせて電気的に接続したものである。かかる構造体60により、CNTを用いた2次元配線を有する配線層を実現することができる。 Referring to FIG. 7, in the structure 60, convex portions 12 1 to 12 3 are formed on the substrate 11 with different lengths in the longitudinal direction, and along the longitudinal sides of the convex portions 12 1 to 12 3. Thus, CNTs 13 1 to 13 3 longer than one side are arranged, and CNT 13 1 and CNT 13 2 , CNT 13 2 and CNT 13 3 are overlapped and electrically connected. With this structure 60, a wiring layer having a two-dimensional wiring using CNTs can be realized.

図8を参照するに、構造体70は、基板11上に高さを異ならせた複数の凸部124〜126を形成し、凸部124〜126の高さに対応した直径を有するCNT134〜136を配列したものである。かかる構造体70により、CNTをその直径に応じて分級して配列し、例えば流れる電流密度の大きさに応じたCNTを配列した配線層を実現することができる。 Referring to FIG. 8, the structure 70 forms a plurality of convex portions 12 4 to 12 6 having different heights on the substrate 11, and has a diameter corresponding to the height of the convex portions 12 4 to 12 6. CNTs 13 4 to 13 6 are arranged. With such a structure 70, it is possible to realize a wiring layer in which CNTs are classified and arranged according to their diameters, and for example, CNTs are arranged according to the magnitude of flowing current density.

なお、図6〜図8に示す構造体において、配列後に、構造体の所定の位置を基準としてレーザビームの位置決めを行い、不要なCNT13、131〜136を切断して調整することができる。 Note that in the structure shown in FIGS. 6 to 8, after sequence, performs positioning of the laser beam relative to the predetermined position of the structure can be adjusted by cutting unnecessary CNT13,13 1 ~13 6 .

以上本発明の好ましい実施の形態について詳述したが、本発明は係る特定の実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the present invention described in the claims. It can be changed.

なお、以上の説明に関して更に以下の付記を開示する。
(付記1) カーボンナノチューブの精製工程を含むカーボンナノチューブ構造体の製造方法において、
前記精製工程は、カーボンナノチューブをカルボキシル化し、カルボキシル基と反応する官能基を少なくとも2個有する化合物と反応させることを特徴とするカーボンナノチューブ構造体の製造方法。
(付記2) 前記精製工程は、カーボンナノチューブに酸を添加して加熱処理するカルボキシル化処理と、
前記カルボキシル化処理の反応物を遠心分離して得られた上澄み液を中和して前記化合物を反応させてカーボンナノチューブを多量化する多量化処理とを含むことを特徴とする付記1記載のカーボンナノチューブ構造体の製造方法。
(付記3) 前記化合物は、下記一般式(1)に示される化合物であることを特徴とする付記1または2記載のカーボンナノチューブ構造体の製造方法。
NH−R−NH …(1)
(式中、Rは脂肪族系炭化水素あるいは芳香族系炭化水素を表す)
(付記4) 前記化合物にさらに縮合促進剤を添加することを特徴とする付記3記載のカーボンナノチューブ構造体の製造方法。
(付記5) 前記化合物は、下記一般式(2)に示される化合物であることを特徴とする付記1または2記載のカーボンナノチューブ構造体の製造方法。
HO−R−OH …(2)
(式中、Rは脂肪族系炭化水素あるいは芳香族系炭化水素を表す)
(付記6) 前記多量化処理の後に、多量化されたカーボンナノチューブを回収し、さらに該カーボンナノチューブに酸を加え超音波を印加してカーボンナノチューブ間の結合を切ることを特徴とする付記2〜5のうち、いずれか一項記載のカーボンナノチューブ構造体の製造方法。
(付記7) 基板と、
前記基板上に設けられた凸部あるいは凹部と、
多量化または化学修飾されたカーボンナノチューブとを備え、
前記カーボンナノチューブが前記凸部あるいは凹部の側壁面に沿って配列されてなるカーボンナノチューブ構造体。
(付記8) 前記凸部の高さまたは凹部の深さがカーボンナノチューブの直径よりも小さいことを特徴とする付記7記載のカーボンナノチューブ構造体。
(付記9) 前記凸部が金属膜、絶縁膜、及び有機分子膜の群のうちいずれか1種からなることを特徴とする付記7または8記載のカーボンナノチューブ構造体。
(付記10) 前記凸部あるいは凹部が原子ステップあるいは分子ステップより形成されてなることを特徴とする付記7または8記載のカーボンナノチューブ構造体。
In addition, the following additional notes are disclosed regarding the above description.
(Additional remark 1) In the manufacturing method of the carbon nanotube structure including the refinement | purification process of a carbon nanotube,
The said refinement | purification process carboxylates a carbon nanotube and makes it react with the compound which has at least 2 functional group which reacts with a carboxyl group, The manufacturing method of the carbon nanotube structure characterized by the above-mentioned.
(Additional remark 2) The said refinement | purification process includes the carboxylation process which adds an acid to a carbon nanotube, and heat-processes,
The carbon according to claim 1, further comprising a multimerization treatment for neutralizing a supernatant obtained by centrifuging the reaction product of the carboxylation treatment and reacting the compound to increase the number of carbon nanotubes. A method for producing a nanotube structure.
(Additional remark 3) The said compound is a compound shown by following General formula (1), The manufacturing method of the carbon nanotube structure of Additional remark 1 or 2 characterized by the above-mentioned.
NH 2 —R—NH 2 (1)
(In the formula, R represents an aliphatic hydrocarbon or an aromatic hydrocarbon)
(Additional remark 4) The manufacturing method of the carbon nanotube structure of Additional remark 3 characterized by adding a condensation accelerator to the said compound further.
(Additional remark 5) The said compound is a compound shown by following General formula (2), The manufacturing method of the carbon nanotube structure of Additional remark 1 or 2 characterized by the above-mentioned.
HO-R-OH (2)
(In the formula, R represents an aliphatic hydrocarbon or an aromatic hydrocarbon)
(Additional remark 6) After the said multimerization process, the multimerized carbon nanotube is collect | recovered, Furthermore, an acid is added to this carbon nanotube, and an ultrasonic wave is applied, and the coupling | bonding between carbon nanotubes is cut | disconnected. 5. The method for producing a carbon nanotube structure according to claim 1.
(Supplementary note 7) a substrate,
A convex portion or a concave portion provided on the substrate;
With carbon nanotubes that have been multimerized or chemically modified,
A carbon nanotube structure in which the carbon nanotubes are arranged along a side wall surface of the convex portion or the concave portion.
(Additional remark 8) The carbon nanotube structure of Additional remark 7 characterized by the height of the said convex part or the depth of a recessed part being smaller than the diameter of a carbon nanotube.
(Supplementary note 9) The carbon nanotube structure according to supplementary note 7 or 8, wherein the convex portion is made of any one of a group of a metal film, an insulating film, and an organic molecular film.
(Supplementary note 10) The carbon nanotube structure according to supplementary note 7 or 8, wherein the convex portion or the concave portion is formed by an atomic step or a molecular step.

本発明の凸部が設けられた基板にカーボンナノチューブが配列された構造体の斜視図である。It is a perspective view of a structure in which carbon nanotubes are arranged on a substrate provided with a convex portion of the present invention. 図1に示す構造体の断面図である。It is sectional drawing of the structure shown in FIG. 本発明の凹部が設けられた基板にカーボンナノチューブが配列された構造体の斜視図である。It is a perspective view of a structure in which carbon nanotubes are arranged on a substrate provided with a recess according to the present invention. 本発明のステップが形成された単結晶基板にカーボンナノチューブが配列された構造体の断面図である。It is sectional drawing of the structure in which the carbon nanotube was arranged on the single crystal substrate in which the step of this invention was formed. 本発明のV字形の溝が形成された基板にカーボンナノチューブが配列された構造体の断面図である。It is sectional drawing of the structure in which the carbon nanotube was arranged on the board | substrate with which the V-shaped groove | channel of this invention was formed. 本発明の構造体の応用例(その1)を示す図である。It is a figure which shows the application example (the 1) of the structure of this invention. 本発明の構造体の応用例(その2)を示す図である。It is a figure which shows the application example (the 2) of the structure of this invention. 本発明の構造体の応用例(その3)を示す図である。It is a figure which shows the application example (the 3) of the structure of this invention.

符号の説明Explanation of symbols

10、20、30、40、50、60、70 構造体
11、21、31、41 基板
12 凸部
12a、21a 側壁面
13 カーボンナノチューブ、CNT
21−1 凹部
31a ステップ
41−1 溝
41a 斜面
10, 20, 30, 40, 50, 60, 70 Structure 11, 21, 31, 41 Substrate 12 Protrusion 12a, 21a Side wall 13 Carbon nanotube, CNT
21-1 Concave portion 31a Step 41-1 Groove 41a Slope

Claims (5)

カーボンナノチューブの精製工程を含むカーボンナノチューブ構造体の製造方法において、
前記精製工程は、カーボンナノチューブをカルボキシル化し、カルボキシル基と反応する官能基を少なくとも2個有する化合物と反応させることを特徴とするカーボンナノチューブ構造体の製造方法。
In the method for producing a carbon nanotube structure including a carbon nanotube purification step,
The said refinement | purification process carboxylates a carbon nanotube and makes it react with the compound which has at least 2 functional group which reacts with a carboxyl group, The manufacturing method of the carbon nanotube structure characterized by the above-mentioned.
前記化合物は、下記一般式(1)に示される化合物であることを特徴とする請求項1記載のカーボンナノチューブ構造体の製造方法。
NH−R−NH …(1)
(式中、Rは脂肪族系炭化水素あるいは芳香族系炭化水素を表す)
The said compound is a compound shown by following General formula (1), The manufacturing method of the carbon nanotube structure of Claim 1 characterized by the above-mentioned.
NH 2 —R—NH 2 (1)
(In the formula, R represents an aliphatic hydrocarbon or an aromatic hydrocarbon)
前記化合物は、下記一般式(2)に示される化合物であることを特徴とする請求項1または2記載のカーボンナノチューブ構造体の製造方法。
HO−R−OH …(2)
(式中、Rは脂肪族系炭化水素あるいは芳香族系炭化水素を表す)
The method for producing a carbon nanotube structure according to claim 1 or 2, wherein the compound is a compound represented by the following general formula (2).
HO-R-OH (2)
(In the formula, R represents an aliphatic hydrocarbon or an aromatic hydrocarbon)
基板と、
前記基板上に設けられた凸部あるいは凹部と、
多量化または化学修飾されたカーボンナノチューブとを備え、
前記カーボンナノチューブが前記凸部あるいは凹部の側壁面に沿って配列されてなるカーボンナノチューブ構造体。
A substrate,
A convex portion or a concave portion provided on the substrate;
With carbon nanotubes that have been multimerized or chemically modified,
A carbon nanotube structure in which the carbon nanotubes are arranged along a side wall surface of the convex portion or the concave portion.
前記凸部の高さ及び凹部の深さがカーボンナノチューブの直径よりも小さいことを特徴とする請求項4記載のカーボンナノチューブ構造体。
The carbon nanotube structure according to claim 4, wherein the height of the convex portion and the depth of the concave portion are smaller than the diameter of the carbon nanotube.
JP2003361935A 2003-10-22 2003-10-22 Method for purifying carbon nanotube and method for producing carbon nanotube structure Expired - Fee Related JP4296074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361935A JP4296074B2 (en) 2003-10-22 2003-10-22 Method for purifying carbon nanotube and method for producing carbon nanotube structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361935A JP4296074B2 (en) 2003-10-22 2003-10-22 Method for purifying carbon nanotube and method for producing carbon nanotube structure

Publications (2)

Publication Number Publication Date
JP2005125428A true JP2005125428A (en) 2005-05-19
JP4296074B2 JP4296074B2 (en) 2009-07-15

Family

ID=34641733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361935A Expired - Fee Related JP4296074B2 (en) 2003-10-22 2003-10-22 Method for purifying carbon nanotube and method for producing carbon nanotube structure

Country Status (1)

Country Link
JP (1) JP4296074B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169614A (en) * 2003-11-19 2005-06-30 Canon Inc Orientation unit, device and orientation method of acicular material
WO2006085559A1 (en) * 2005-02-10 2006-08-17 Matsushita Electric Industrial Co., Ltd. Structure for holding fine structure, semiconductor device, tft driving circuit, panel, display, sensor and their manufacturing methods
JP2006256881A (en) * 2005-03-15 2006-09-28 Nippon Telegr & Teleph Corp <Ntt> Method for production of aligned carbon nanotube
WO2009104537A1 (en) * 2008-02-18 2009-08-27 国立大学法人名古屋工業大学 Method of manufacturing microstructure and substrate provided with the microstructure
JP2009190152A (en) * 2008-02-18 2009-08-27 Nagoya Institute Of Technology Method of manufacturing microstructure and substrate provided with microstructure
JP2009190153A (en) * 2008-02-18 2009-08-27 Nagoya Institute Of Technology Method of manufacturing microstructure and substrate with microstructure
JP2009274900A (en) * 2008-05-14 2009-11-26 Tatsuhiro Takahashi Carbon nanotube having low molecular weight polyaniline grafted thereto and its dispersion liquid
KR101050142B1 (en) 2008-08-28 2011-07-19 한국과학기술연구원 Method for manufacturing nanowire multichannel FET device
US8389987B2 (en) 2008-11-10 2013-03-05 Nec Corporation Switching element and method for fabricating same
US8790998B2 (en) 2008-12-16 2014-07-29 Samsung Electronics Co., Ltd. Method of forming core-shell type structure and method of manufacturing transistor using the same
CN111056526A (en) * 2019-12-30 2020-04-24 中国科学院空间应用工程与技术中心 Method for preparing semiconductor carbon nano tube array film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748111A (en) * 1993-08-04 1995-02-21 Agency Of Ind Science & Technol Method for separating and purifying carbon nanotube
JPH0812310A (en) * 1994-07-05 1996-01-16 Nec Corp Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group
JPH08198611A (en) * 1995-01-18 1996-08-06 Nec Corp Purifying method of carbon nano-tube
JPH10120409A (en) * 1996-10-17 1998-05-12 Toyo Tanso Kk Separation and purification of monolayered nanotube and separation ad purification of metal-including nanocapsule
JP2000072422A (en) * 1998-08-25 2000-03-07 Daiken Kagaku Kogyo Kk Method for refining carbon nano tube and apparatus therefor
JP2001035362A (en) * 1999-07-26 2001-02-09 Futaba Corp Pattern forming method for carbon nanotube, pattern forming material for the carbon nanotube, electron emitting source and fluorescent type display
JP2002346996A (en) * 2001-05-21 2002-12-04 Fuji Xerox Co Ltd Method of manufacturing carbon nanotube structure as well as carbon nanotube structure and carbon nanotube device using the same
JP2003054921A (en) * 2001-08-13 2003-02-26 Sony Corp Purification, alignment, and quasi-crystallization of carbon nanotube
WO2003053846A2 (en) * 2001-07-10 2003-07-03 Universities Space Research Association Spatial localization of dispersed single walled carbon nanotubes into useful structures
JP2003285299A (en) * 2002-03-27 2003-10-07 Sony Corp Functional material or functional element and method of manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748111A (en) * 1993-08-04 1995-02-21 Agency Of Ind Science & Technol Method for separating and purifying carbon nanotube
JPH0812310A (en) * 1994-07-05 1996-01-16 Nec Corp Purifying-opening method of carbon-nanotube in liquid phase and introducing method of functional group
JPH08198611A (en) * 1995-01-18 1996-08-06 Nec Corp Purifying method of carbon nano-tube
JPH10120409A (en) * 1996-10-17 1998-05-12 Toyo Tanso Kk Separation and purification of monolayered nanotube and separation ad purification of metal-including nanocapsule
JP2000072422A (en) * 1998-08-25 2000-03-07 Daiken Kagaku Kogyo Kk Method for refining carbon nano tube and apparatus therefor
JP2001035362A (en) * 1999-07-26 2001-02-09 Futaba Corp Pattern forming method for carbon nanotube, pattern forming material for the carbon nanotube, electron emitting source and fluorescent type display
JP2002346996A (en) * 2001-05-21 2002-12-04 Fuji Xerox Co Ltd Method of manufacturing carbon nanotube structure as well as carbon nanotube structure and carbon nanotube device using the same
WO2003053846A2 (en) * 2001-07-10 2003-07-03 Universities Space Research Association Spatial localization of dispersed single walled carbon nanotubes into useful structures
JP2003054921A (en) * 2001-08-13 2003-02-26 Sony Corp Purification, alignment, and quasi-crystallization of carbon nanotube
JP2003285299A (en) * 2002-03-27 2003-10-07 Sony Corp Functional material or functional element and method of manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169614A (en) * 2003-11-19 2005-06-30 Canon Inc Orientation unit, device and orientation method of acicular material
JP4689237B2 (en) * 2003-11-19 2011-05-25 キヤノン株式会社 Method for aligning carbon nanotubes
US7772125B2 (en) 2005-02-10 2010-08-10 Panasonic Corporation Structure in which cylindrical microstructure is maintained in anisotropic groove, method for fabricating the same, and semiconductor device, TFT driving circuit, panel, display and sensor using the structure in which cylindrical microstructure is maintained in anisotropic groove
WO2006085559A1 (en) * 2005-02-10 2006-08-17 Matsushita Electric Industrial Co., Ltd. Structure for holding fine structure, semiconductor device, tft driving circuit, panel, display, sensor and their manufacturing methods
JP5127442B2 (en) * 2005-02-10 2013-01-23 パナソニック株式会社 Structure manufacturing method for holding fine structure, semiconductor device manufacturing method, and sensor manufacturing method
JP2006256881A (en) * 2005-03-15 2006-09-28 Nippon Telegr & Teleph Corp <Ntt> Method for production of aligned carbon nanotube
JP4664098B2 (en) * 2005-03-15 2011-04-06 日本電信電話株式会社 Method for producing aligned carbon nanotubes
JP2009190152A (en) * 2008-02-18 2009-08-27 Nagoya Institute Of Technology Method of manufacturing microstructure and substrate provided with microstructure
CN101970341A (en) * 2008-02-18 2011-02-09 福吉米株式会社 Method of manufacturing microstructure and substrate provided with the microstructure
JP2009190153A (en) * 2008-02-18 2009-08-27 Nagoya Institute Of Technology Method of manufacturing microstructure and substrate with microstructure
WO2009104537A1 (en) * 2008-02-18 2009-08-27 国立大学法人名古屋工業大学 Method of manufacturing microstructure and substrate provided with the microstructure
US8716678B2 (en) 2008-02-18 2014-05-06 Fujimi Incorporated Method of manufacturing microstructure and substrate provided with the microstructure
KR101446167B1 (en) 2008-02-18 2014-10-01 가부시키가이샤 후지미인코퍼레이티드 Method of manufacturing microstructure and substrate provided with the microstructure
JP2009274900A (en) * 2008-05-14 2009-11-26 Tatsuhiro Takahashi Carbon nanotube having low molecular weight polyaniline grafted thereto and its dispersion liquid
KR101050142B1 (en) 2008-08-28 2011-07-19 한국과학기술연구원 Method for manufacturing nanowire multichannel FET device
US8389987B2 (en) 2008-11-10 2013-03-05 Nec Corporation Switching element and method for fabricating same
US8790998B2 (en) 2008-12-16 2014-07-29 Samsung Electronics Co., Ltd. Method of forming core-shell type structure and method of manufacturing transistor using the same
CN111056526A (en) * 2019-12-30 2020-04-24 中国科学院空间应用工程与技术中心 Method for preparing semiconductor carbon nano tube array film

Also Published As

Publication number Publication date
JP4296074B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
JP5613230B2 (en) Graphene nanoribbons produced from carbon nanotubes by alkali metal exposure
Banerjee et al. Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes
US9770709B2 (en) Compositions comprising functionalized carbon-based nanostructures and related methods
US10335765B2 (en) Complex of carbon structure and covalent organic framework, preparation method therefor, and use thereof
Mickelson et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents
Deng et al. An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry
Dimiev et al. Mechanism of graphene oxide formation
JP3676337B2 (en) Gel-like composition comprising carbon nanotube and ionic liquid and method for producing the same
Yang et al. Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids
US7514063B1 (en) Method for the purification of semiconducting single walled carbon nanotubes
JP4887489B2 (en) Method for producing hollow carbon particles using resorcinol polymer as a precursor
EP1630128B1 (en) Process for producing a carbon nanotube device
US7943110B2 (en) Crosslinked carbon nanotube
JP4419507B2 (en) Capacitor manufacturing method
EP1650808A1 (en) Electronic element, integrated circuit and process for fabricating the same
JP4296074B2 (en) Method for purifying carbon nanotube and method for producing carbon nanotube structure
JP2005041835A (en) Carbon nanotube structure, method for producing the same, carbon nanotube transfer and solution
Choi et al. Patterning of Hierarchically Aligned Single-Walled Carbon Nanotube Langmuir− Blodgett Films by Microcontact Printing
JP2008081384A (en) Carbon nanotube dispersion, method for manufacturing carbon nanotube structure, and carbon nanotube structure
JP2005125187A (en) Gas decomposer, electrode for fuel cell, and method for manufacturing the decomposer
JP4005571B2 (en) Amphiphilic hexaperihexabenzocoronene derivatives
Yu et al. The covalently organic functionalization of graphene: methodologies and protocols
KR20070076875A (en) Dispersant for dispersing carbon nanotube and carbon nanotube composition comprising the same
Aida et al. Soft materials with graphitic nanostructures
JP2005095806A (en) Method for fractionating carbon nanotube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees