JP2005109077A - Method of manufacturing solid electrolytic capacitor - Google Patents

Method of manufacturing solid electrolytic capacitor Download PDF

Info

Publication number
JP2005109077A
JP2005109077A JP2003339216A JP2003339216A JP2005109077A JP 2005109077 A JP2005109077 A JP 2005109077A JP 2003339216 A JP2003339216 A JP 2003339216A JP 2003339216 A JP2003339216 A JP 2003339216A JP 2005109077 A JP2005109077 A JP 2005109077A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
capacitor
separator
capacitor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003339216A
Other languages
Japanese (ja)
Other versions
JP4529403B2 (en
Inventor
Toshiyuki Murakami
敏行 村上
Takashi Arai
孝 新井
Hironari Tamai
裕也 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003339216A priority Critical patent/JP4529403B2/en
Publication of JP2005109077A publication Critical patent/JP2005109077A/en
Application granted granted Critical
Publication of JP4529403B2 publication Critical patent/JP4529403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid electrolytic capacitor that has a high electrostatic capacitance and good ESR characteristics and can be improved further in withstand voltage characteristics. <P>SOLUTION: After a capacitor element is formed by winding an anode foil and a cathode foil having oxidized coating films on their surfaces with a separator containing a compound having a vinyl group in between and the element is boiled, restorative formation is performed on the element. Thereafter, the element is dipped in a ketone-based solution containing polyimide silicone at a rate of 0.05-20 wt.%. After the capacitor element is pulled up from the solution, a solvent is vaporized at a temperature of 40-100°C and the element is heat-treated at a temperature of 150-200°C. Then a solid electrolyte layer is formed by impregnating a polymerizable monomer and an oxidizing agent into the element, and causing the polymerization reaction of a conductive polymer in the element. Finally, the solid electrolytic capacitor is formed by housing the capacitor element in an encapsulating case and sealing the opened end section of the case with sealing rubber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、静電容量、ESR特性及び耐電圧特性の向上を図った固体電解コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor with improved electrostatic capacity, ESR characteristics, and withstand voltage characteristics.

タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。   An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.

この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔を、セパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。   In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, in general, an anode foil and a cathode foil made of valve metal such as aluminum are wound with a separator interposed therebetween to form a capacitor element. A capacitor element is housed in a case made of metal such as aluminum or a case made of synthetic resin and impregnated with a driving electrolyte solution. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.

また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)等の導電性ポリマーに着目した技術(特許文献1参照)が存在している。   As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (see Patent Document 1) that focuses on a conductive polymer such as polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.

このような巻回型のコンデンサ素子にPEDT等の導電性ポリマーからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作成される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなるが、その表面にはエッチング処理を施すのみである。   A solid electrolytic capacitor of a type in which a solid electrolyte layer made of a conductive polymer such as PEDT is formed on such a wound capacitor element is produced as follows. First, the surface of the anode foil made of valve action metal such as aluminum is roughened by electrochemical etching treatment in an aqueous chloride solution to form many etching pits, and then in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical conversion). Similar to the anode foil, the cathode foil is made of a valve metal such as aluminum, but the surface is only subjected to etching treatment.

このようにして表面に酸化皮膜層が形成された陽極箔とエッチングピットのみが形成された陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDTと記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出し、あるいは両者の混合液に浸漬して、コンデンサ素子内で重合反応を促進し、PEDT等の導電性ポリマーからなる固体電解質層を生成する。その後、このコンデンサ素子を有底筒状の外装ケースに収納し、ケースの開口部を封ロゴムで封止して固体電解コンデンサを作成する。
特開平2−15611号公報
Thus, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pits are wound through a separator to form a capacitor element. Subsequently, a polymerizable monomer such as 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidizer solution are respectively discharged into the capacitor element subjected to restoration conversion, or immersed in a mixed solution of the two. The polymerization reaction is promoted in the capacitor element, and a solid electrolyte layer made of a conductive polymer such as PEDT is generated. Thereafter, the capacitor element is housed in a bottomed cylindrical outer case, and the opening of the case is sealed with a sealing rubber to produce a solid electrolytic capacitor.
JP-A-2-15611

ところで、近年、電子情報機器はデジタル化され、さらにこれらの電子情報機器の心臓部であるマイクロプロセッサ(MPU)の駆動周波数の高速化が進んでいる。これに伴って、消費電力の増大化が進み、発熱による信頼性の問題が顕在化してきたため、その対策として駆動電圧の低減化が図られてきた。   By the way, in recent years, electronic information devices have been digitized, and the driving frequency of a microprocessor (MPU) which is the heart of these electronic information devices has been increased. Along with this, the power consumption has been increasing and the problem of reliability due to heat generation has become obvious. Therefore, the drive voltage has been reduced as a countermeasure.

上記駆動電圧の低減化を図るため、マイクロプロセッサに高精度な電力を供給する回路として電圧制御モジュールと呼ばれるDC−DCコンバーターが広く使用されており、その出力側コンデンサには、電圧降下を防ぐためESRの低いコンデンサが多数用いられている。このような低ESR特性を有するコンデンサとして、上述したような固体電解コンデンサが実用化され、多用されている。   In order to reduce the drive voltage, a DC-DC converter called a voltage control module is widely used as a circuit for supplying highly accurate power to the microprocessor, and the output side capacitor is used to prevent a voltage drop. Many capacitors with low ESR are used. As the capacitor having such a low ESR characteristic, the solid electrolytic capacitor as described above has been put into practical use and widely used.

しかしながら、マイクロプロセッサの駆動周波数の高速化は著しく、それに伴って消費電力がさらに増大し、それに対応するために電圧降下を防ぐためのコンデンサからの供給電力のさらなる増大化が求められている。すなわち、大きな電力を短時間で供給することができなければならず、このために固体電解コンデンサには大容量化、小型化、低電圧化と共に、さらに優れたESR特性が要求されている。   However, the increase in the driving frequency of the microprocessor is remarkable, and accordingly, the power consumption further increases, and in order to cope with this, further increase in the power supplied from the capacitor for preventing the voltage drop is required. That is, a large amount of power must be able to be supplied in a short time. For this reason, solid electrolytic capacitors are required to have higher ESR characteristics as well as larger capacity, smaller size, and lower voltage.

また、近年、上述したような固体電解コンデンサへの高電圧仕様の要求が高まっており、特に20〜30Vの高耐電圧が要求されている。しかしながら、このような高い定格電圧を有する固体電解コンデンサを得ようとすると、エージング工程においてショートの発生する割合が多く、歩留まりが低いという問題点があった。
なお、このような問題点は、重合性モノマーとしてEDTを用いた場合に限らず、他のチオフェン誘導体、ピロール、アニリン等を用いた場合にも同様に生じていた。
In recent years, demands for high voltage specifications for the solid electrolytic capacitors as described above are increasing, and in particular, a high withstand voltage of 20 to 30 V is required. However, when trying to obtain a solid electrolytic capacitor having such a high rated voltage, there is a problem that the ratio of occurrence of a short circuit is high in the aging process and the yield is low.
Such a problem occurs not only when EDT is used as the polymerizable monomer but also when other thiophene derivatives, pyrrole, aniline, and the like are used.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、静電容量が高く、ESR特性が良好で、耐電圧特性をさらに向上させて、エージング工程での歩留まりを高めることができる固体電解コンデンサの製造方法を提供することにある。   The present invention has been proposed in order to solve the above-described problems of the prior art, and its purpose is to have a high electrostatic capacity, good ESR characteristics, and further improve withstand voltage characteristics, An object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor that can increase the yield in the aging process.

本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、本発明を完成するに至ったものである。すなわち、本出願人が別途特許出願している、リフロー後のLCの上昇を防止するのに顕著な効果が得られるポリイミドシリコーン処理を行うと共に、さらに耐電圧を向上させて、エージング工程での歩留まりを高めるべく、ビニル基を有する化合物を含有させたセパレータを用い、煮沸処理を行うことによりセパレータに含有されたビニル基を有する化合物の一部を除去した後、ポリイミドシリコーン皮膜を形成すると良好な結果が得られることを見出したものである。
なお、本明細書中における「ビニル基を有する化合物」とは、後述する例に示したようなビニル基を有する化合物の重合体をいうものとする。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present applicant has applied for a patent separately, and performs a polyimide silicone treatment that is effective in preventing an increase in LC after reflow, and further improves the withstand voltage, yielding in the aging process When a separator containing a vinyl group-containing compound is used to increase the boiling point, a portion of the vinyl group-containing compound contained in the separator is removed by boiling, and then a polyimide silicone film is formed. Has been found to be obtained.
In the present specification, the “compound having a vinyl group” refers to a polymer of a compound having a vinyl group as shown in the examples described later.

(固体電解コンデンサの製造方法)
本発明に係る固体電解コンデンサの製造方法は以下の通りである。すなわち、表面に酸化皮膜層が形成された陽極箔と陰極箔を、ビニル基を有する化合物を含有するセパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子を煮沸処理した後、修復化成を施す。その後、このコンデンサ素子をポリイミドシリコーンの0.05〜20wt%のケトン系溶液に浸漬し、引き上げた後、40〜100℃で溶媒を蒸発させ、その後、150〜200℃で熱処理する。
続いて、このコンデンサ素子に重合性モノマーと酸化剤を含浸させて、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。そして、このコンデンサ素子を外装ケースに収納し、開口端部を封ロゴムで封止し、固体電解コンデンサを形成する。
(Method for manufacturing solid electrolytic capacitor)
The manufacturing method of the solid electrolytic capacitor according to the present invention is as follows. That is, an anode foil and a cathode foil having an oxide film layer formed on the surface thereof are wound through a separator containing a vinyl group-containing compound to form a capacitor element. After boiling the capacitor element, a restoration process is performed. Apply. Thereafter, the capacitor element is immersed in a 0.05-20 wt% ketone-based solution of polyimide silicone, pulled up, evaporated at 40-100 ° C., and then heat-treated at 150-200 ° C.
Subsequently, the capacitor element is impregnated with a polymerizable monomer and an oxidizing agent to cause a polymerization reaction of a conductive polymer in the capacitor element, thereby forming a solid electrolyte layer. And this capacitor | condenser element is accommodated in an exterior case, an opening edge part is sealed with sealing rubber | gum, and a solid electrolytic capacitor is formed.

(セパレータ)
通常、合成繊維を主体とする固体電解コンデンサ用セパレータは、合成繊維とこれらを接合するバインダーから構成されている。このバインダーとしては、合成樹脂そのものを用いたり、合成樹脂を繊維状にして、セパレータの作成工程で溶融させて主体繊維を接合させている。本発明においては、このようなセパレータの主体繊維又はバインダーにビニル基を有する化合物を含有させたセパレータを用いることにより、良好な結果が得られたものである。
(Separator)
Usually, a separator for a solid electrolytic capacitor mainly composed of synthetic fibers is composed of synthetic fibers and a binder for joining them. As this binder, synthetic resin itself is used, or synthetic resin is made into a fiber shape and melted in a separator manufacturing process to bond main fibers. In the present invention, good results were obtained by using a separator containing a compound having a vinyl group in the main fiber or binder of such a separator.

なお、セパレータの主体繊維又はバインダーに含有させるビニル基を有する化合物の量は、セパレータ重量の5〜40wt%が好ましい。その理由は、この範囲とすることで、巻回工程に必要なセパレータの強度を得ることができるからである。さらに、煮沸処理でビニル基を有する化合物を溶出させてセパレータの密度を下げ、その後の素子内に形成される導電性ポリマーを増大させ、さらに、導電性の低いビニル基を有する化合物を除去して、ESRを下げることができるからである。   The amount of the compound having a vinyl group contained in the main fiber or binder of the separator is preferably 5 to 40 wt% of the separator weight. The reason is that the strength of the separator required for the winding process can be obtained by setting the amount within this range. Furthermore, the compound having a vinyl group is eluted by boiling treatment to lower the density of the separator, increase the conductive polymer formed in the subsequent device, and further remove the compound having a vinyl group with low conductivity. This is because the ESR can be lowered.

ここで、ビニル基を有する化合物としては、ポリビニルアルコール(以下、PVAと記す)、ポリ酢酸ビニル、ポリビニルピロリドン、ポリアクリルアミド等を用いることができるが、なかでもPVAがより好ましい。具体的には、セパレータの主体繊維にPVA繊維(ビニロン)や未延伸のビニロンを用いても良いし、バインダーにPVAポリマーや未延伸のビニロンを用いても良い。例えば、繊維径が3.0〜12.0μmのビニロン繊維を所定のカット長の短繊維とし、所定のバインダーを用いて、任意の手段により不織布としたものを用いることができる。   Here, as the compound having a vinyl group, polyvinyl alcohol (hereinafter referred to as PVA), polyvinyl acetate, polyvinyl pyrrolidone, polyacrylamide and the like can be used, and among them, PVA is more preferable. Specifically, PVA fiber (vinylon) or unstretched vinylon may be used as the main fiber of the separator, and PVA polymer or unstretched vinylon may be used as the binder. For example, it is possible to use a vinylon fiber having a fiber diameter of 3.0 to 12.0 μm as a short fiber having a predetermined cut length and a non-woven fabric by an arbitrary means using a predetermined binder.

なお、セパレータにビニル基を有する化合物を含有させる方法としては、上述したような主体繊維やバインダーを、ビニル基を有する化合物から構成する方法(言い換えれば、ビニル基を有する化合物をセパレータの構成成分として含有させる方法)の他に、セパレータをビニル基を有する化合物の溶液に浸漬する方法や、ビニル基を有する化合物を塗布する方法を用いることもできる。   In addition, as a method of including a compound having a vinyl group in the separator, a method in which the main fibers and the binder as described above are composed of a compound having a vinyl group (in other words, a compound having a vinyl group is used as a component of the separator). In addition to the method of inclusion, a method of immersing the separator in a solution of a compound having a vinyl group or a method of applying a compound having a vinyl group can also be used.

(ポリイミドシリコーン)
ポリイミドシリコーンを溶解する溶媒としては、ポリイミドシリコーンの溶解性の良好なケトン系溶媒が好ましく、シクロヘキサノン、アセトン、メチルエチルケトン等を用いることができる。
また、ポリイミドシリコーンの濃度は、0.05〜20wt%、好ましくは1.5〜9wt%、さらに好ましくは2〜6wt%である。濃度がこの範囲未満では耐圧が十分ではなく、この範囲を超えると静電容量が低下する。
(Polyimide silicone)
As a solvent for dissolving polyimide silicone, a ketone solvent having good solubility of polyimide silicone is preferable, and cyclohexanone, acetone, methyl ethyl ketone, and the like can be used.
Moreover, the density | concentration of a polyimide silicone is 0.05-20 wt%, Preferably it is 1.5-9 wt%, More preferably, it is 2-6 wt%. If the concentration is less than this range, the withstand voltage is not sufficient, and if it exceeds this range, the capacitance decreases.

(煮沸処理)
煮沸処理は、100℃に加熱した水にコンデンサ素子を浸漬し、数分間加熱を続けることにより行う。そして、この煮沸処理により、セパレータに含まれるビニル基を有する化合物の残存量を5〜50%とすることが好ましく、5〜25%とすることがより好ましい。
なお、セパレータに含まれるビニル基を有する化合物の残存量の調整は、煮沸回数を変えることにより行うことが好ましい。煮沸処理時間を長くすると、水中のビニル基を有する化合物の濃度が上がって、溶出しにくくなるためである。
(Boiling treatment)
The boiling treatment is performed by immersing the capacitor element in water heated to 100 ° C. and continuing heating for several minutes. And by this boiling process, it is preferable to make the residual amount of the compound which has a vinyl group contained in a separator into 5 to 50%, and it is more preferable to set it as 5 to 25%.
The residual amount of the compound having a vinyl group contained in the separator is preferably adjusted by changing the number of boiling times. This is because if the boiling treatment time is lengthened, the concentration of the compound having a vinyl group in water increases and it becomes difficult to elute.

(EDT及び酸化剤)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDTとしては、EDTモノマーを用いることができるが、EDTと揮発性溶媒とを1:0〜1:3の体積比で混合したモノマー溶液を用いることもできる。
前記揮発性溶媒としては、ペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
(EDT and oxidizing agent)
When EDT is used as the polymerizable monomer, EDT monomer can be used as EDT impregnated in the capacitor element, but a monomer solution in which EDT and a volatile solvent are mixed at a volume ratio of 1: 0 to 1: 3. Can also be used.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.

また、酸化剤としては、エタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができ、酸化剤の溶媒に対する濃度は40〜65wt%が好ましく、45〜57wt%がより好ましい。酸化剤の溶媒に対する濃度が高い程、ESRは低減する。なお、酸化剤の溶媒としては、上記モノマー溶液に用いた揮発性溶媒を用いることができ、なかでもエタノールが好適である。酸化剤の溶媒としてエタノールが好適であるのは、蒸気圧が低いため蒸発しやすく、残存する量が少ないためであると考えられる。   As the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in ethanol can be used, and the concentration of the oxidizing agent with respect to the solvent is preferably 40 to 65 wt%, and 45 to 57 wt%. % Is more preferable. The higher the oxidant concentration in the solvent, the lower the ESR. As the oxidant solvent, the volatile solvent used in the monomer solution can be used, and ethanol is particularly preferable. Ethanol is suitable as the oxidant solvent because it is easy to evaporate due to its low vapor pressure and the remaining amount is small.

(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、浸漬時間は、5〜120分が望ましい。
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. The immersion time is preferably 5 to 120 minutes.

(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。

Figure 2005109077
(Other polymerizable monomers)
As the polymerizable monomer used in the present invention, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
Figure 2005109077

(作用・効果)
本発明の構成で、静電容量が高く、ESR特性が良好で、耐電圧特性をさらに向上させることができる固体電解コンデンサを得ることができる理由は、以下の通りと考えられる。
すなわち、ビニル基を有する化合物を含有するセパレータを用いてコンデンサ素子を形成し、このコンデンサ素子を煮沸処理することにより、セパレータに含有されたビニル基を有する化合物が溶出し、溶出したビニル基を有する化合物とポリイミドシリコーンの層が形成され、その結果、酸化皮膜と導電性ポリマーとの密着性が向上し、さらに、この2層構造によって耐電圧が上昇するためであると考えられる。
(Action / Effect)
The reason why a solid electrolytic capacitor having a high electrostatic capacity, good ESR characteristics, and further improved withstand voltage characteristics can be obtained with the structure of the present invention is considered as follows.
That is, a capacitor element is formed using a separator containing a compound having a vinyl group, and the capacitor element is boiled to elute the compound having a vinyl group contained in the separator, thereby having the eluted vinyl group. A layer of the compound and the polyimide silicone is formed. As a result, the adhesion between the oxide film and the conductive polymer is improved, and the withstand voltage is increased by this two-layer structure.

本発明によれば、静電容量が高く、ESR特性が良好で、耐電圧特性をさらに向上させて、エージング工程での歩留まりを高めることができる固体電解コンデンサの製造方法を提供することができる。   According to the present invention, it is possible to provide a method for manufacturing a solid electrolytic capacitor that has a high capacitance, good ESR characteristics, can further improve the withstand voltage characteristics, and can increase the yield in the aging process.

続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。   Subsequently, the present invention will be described in more detail based on Examples and Comparative Examples manufactured as follows.

(実施例1)
主体繊維にPET繊維を49wt%含み、PVAポリマーをバインダーとして用いたセパレータを用い、以下のようにして固体電解コンデンサを作成した。表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔を上記のセパレータを介して巻回してコンデンサ素子を形成した。そして、このコンデンサ素子に煮沸処理を施し、乾燥した後、再度煮沸処理を行った。この煮沸処理〜乾燥処理を数回繰り返して、PVAの残存量を50%とした後、リン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。その後、このコンデンサ素子をポリイミドシリコーンの2wt%シクロヘキサノン溶液に浸漬し、引き上げた後、170℃で1時間熱処理した。なお、PVAの残存量は、液体クロマトグラフィー定量分析によって求めた。
続いて、所定の容器に、EDTとp−トルエンスルホン酸第二鉄の40wt%ブタノール溶液を、その重量比が1:3となるように注入して混合液を調製し、コンデンサ素子を上記混合液に10秒間浸漬してコンデンサ素子にEDTと酸化剤を含浸した。そして、このコンデンサ素子を120℃の恒温槽内に1時間放置して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。その後、このコンデンサ素子を有底筒状のアルミニウムケースに収納し、封ロゴムで封止し、固体電解コンデンサを形成した。なお、この固体電解コンデンサの定格電圧は25WV、定格容量は10μFである。
(Example 1)
A solid electrolytic capacitor was prepared as follows using a separator containing 49 wt% PET fiber as the main fiber and using a PVA polymer as a binder. An electrode lead means was connected to the anode foil and the cathode foil each having an oxide film layer formed on the surface, and both electrode foils were wound through the separator to form a capacitor element. The capacitor element was boiled, dried, and boiled again. This boiling treatment to drying treatment were repeated several times to make the remaining amount of PVA 50%, and then immersed in an aqueous solution of ammonium dihydrogen phosphate for 40 minutes to perform restoration conversion. Thereafter, this capacitor element was immersed in a 2 wt% cyclohexanone solution of polyimide silicone, pulled up, and then heat treated at 170 ° C. for 1 hour. The residual amount of PVA was determined by liquid chromatography quantitative analysis.
Subsequently, a 40 wt% butanol solution of EDT and ferric p-toluenesulfonate is poured into a predetermined container so that the weight ratio thereof is 1: 3 to prepare a mixed solution, and the capacitor element is mixed as described above. The capacitor element was impregnated with EDT and an oxidizing agent by dipping in the solution for 10 seconds. Then, this capacitor element was left in a constant temperature bath at 120 ° C. for 1 hour to cause a polymerization reaction of PEDT in the capacitor element, thereby forming a solid electrolyte layer. Then, this capacitor | condenser element was accommodated in the bottomed cylindrical aluminum case, and it sealed with sealing rubber | gum, and formed the solid electrolytic capacitor. This solid electrolytic capacitor has a rated voltage of 25 WV and a rated capacity of 10 μF.

(実施例2)
煮沸処理により、PVAの残存量を25%とした。その他は、実施例1と同様の条件及び工程で固体電解コンデンサを作成した。
(実施例3)
煮沸処理により、PVAの残存量を15%とした。その他は、実施例1と同様の条件及び工程で固体電解コンデンサを作成した。
(実施例4)
煮沸処理により、PVAの残存量を5%とした。その他は、実施例1と同様の条件及び工程で固体電解コンデンサを作成した。
(Example 2)
The residual amount of PVA was 25% by boiling treatment. Otherwise, a solid electrolytic capacitor was prepared under the same conditions and steps as in Example 1.
(Example 3)
The residual amount of PVA was set to 15% by boiling treatment. Otherwise, a solid electrolytic capacitor was prepared under the same conditions and steps as in Example 1.
Example 4
The residual amount of PVA was set to 5% by boiling treatment. Otherwise, a solid electrolytic capacitor was prepared under the same conditions and steps as in Example 1.

(比較例1)
煮沸処理を行わず、PVAの残存量を100%とした。その他は、実施例1と同様の条件及び工程で固体電解コンデンサを作成した。
(比較例2)
煮沸処理を行わず、PVAの残存量を100%とし、ポリイミドシリコーン溶液への浸漬も行わなかった。その他は、実施例1と同様の条件及び工程で固体電解コンデンサを作成した。
(Comparative Example 1)
No boiling treatment was performed, and the residual amount of PVA was 100%. Otherwise, a solid electrolytic capacitor was prepared under the same conditions and steps as in Example 1.
(Comparative Example 2)
The boiling treatment was not performed, the residual amount of PVA was 100%, and the immersion in the polyimide silicone solution was not performed. Otherwise, a solid electrolytic capacitor was prepared under the same conditions and steps as in Example 1.

[比較結果]
上記の方法により得られた実施例及び比較例について、初期特性を調べたところ、表1に示したような結果が得られた。

Figure 2005109077
[Comparison result]
The initial characteristics of the examples and comparative examples obtained by the above methods were examined. The results shown in Table 1 were obtained.
Figure 2005109077

表1から明らかなように、PVAの残存量が25〜5%の実施例2〜4は、静電容量が9.5〜9.6μF、ESRは0.033〜0.034Ωと良好な結果が得られた。また、実施例2〜3は、ショート電圧が50.6〜51.7Vと高い値を示した。
また、このような初期のショート電圧の向上に伴って、定格電圧が25WVの固体電解コンデンサにおいて、エージング時の歩留まりが70%から95%へ大幅に改善された。
As is clear from Table 1, Examples 2 to 4 having a residual amount of PVA of 25 to 5% have a good capacitance of 9.5 to 9.6 μF and an ESR of 0.033 to 0.034Ω. was gotten. In Examples 2 to 3, the short voltage was as high as 50.6 to 51.7 V.
As the initial short-circuit voltage is improved, the yield during aging is greatly improved from 70% to 95% in the solid electrolytic capacitor having a rated voltage of 25 WV.

Claims (5)

陽極箔と陰極箔とをセパレータを介して巻回したコンデンサ素子に、重合性モノマーと酸化剤とを含浸して導電性ポリマーからなる固体電解質層を形成する固体電解コンデンサの製造方法において、
前記セパレータにビニル基を有する化合物を含有させ、このセパレータを用いて巻回したコンデンサ素子を煮沸処理した後、修復化成を行い、その後にコンデンサ素子をポリイミドシリコーン溶液に浸漬し、そのコンデンサ素子に、前記重合性モノマーと酸化剤を含浸させ、前記導電性ポリマーからなる固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
In a method for producing a solid electrolytic capacitor in which a capacitor element obtained by winding an anode foil and a cathode foil through a separator is impregnated with a polymerizable monomer and an oxidizing agent to form a solid electrolyte layer made of a conductive polymer,
The separator containing a compound having a vinyl group, the capacitor element wound using the separator is boiled, and then subjected to restoration conversion, and then the capacitor element is immersed in a polyimide silicone solution, A method for producing a solid electrolytic capacitor, comprising impregnating the polymerizable monomer and an oxidizing agent to form a solid electrolyte layer made of the conductive polymer.
前記ビニル基を有する化合物が、ポリビニルアルコールであることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the compound having a vinyl group is polyvinyl alcohol. 前記ポリイミドシリコーン溶液の濃度が0.05wt%〜20wt%であることを特徴とする請求項1又は請求項2に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the concentration of the polyimide silicone solution is 0.05 wt% to 20 wt%. 前記重合性モノマーが、チオフェン誘導体であることを特徴とする請求項1乃至請求項3のいずれか一に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to any one of claims 1 to 3, wherein the polymerizable monomer is a thiophene derivative. 前記チオフェン誘導体が、3,4−エチレンジオキシチオフェンであることを特徴とする請求項4に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 4, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2003339216A 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4529403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339216A JP4529403B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339216A JP4529403B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005109077A true JP2005109077A (en) 2005-04-21
JP4529403B2 JP4529403B2 (en) 2010-08-25

Family

ID=34534456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339216A Expired - Fee Related JP4529403B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4529403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258422A (en) * 2006-03-23 2007-10-04 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135491B2 (en) * 1982-03-18 1989-07-25 Nippon Chemicon
JPH0819380B2 (en) * 1987-05-11 1996-02-28 住友化学工業株式会社 Method for producing thick film insulator forming composition
JPH09293639A (en) * 1996-04-26 1997-11-11 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JP2003100565A (en) * 2001-09-27 2003-04-04 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor
JP2003109853A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
WO2003035739A1 (en) * 2001-10-19 2003-05-01 Hitachi Chemical Co., Ltd. Electroconductive resin composition and electronic parts using the same
JP2003257795A (en) * 2001-12-27 2003-09-12 Nippon Chemicon Corp Solid electrolytic capacitor
WO2004030004A1 (en) * 2002-09-30 2004-04-08 Nippon Chemi-Con Corporation Solid electrolytic capacitor
JP2004335124A (en) * 2003-04-30 2004-11-25 Shin Etsu Chem Co Ltd Impregnant for polyimide silicone electronic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135491B2 (en) * 1982-03-18 1989-07-25 Nippon Chemicon
JPH0819380B2 (en) * 1987-05-11 1996-02-28 住友化学工業株式会社 Method for producing thick film insulator forming composition
JPH09293639A (en) * 1996-04-26 1997-11-11 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JP2003100565A (en) * 2001-09-27 2003-04-04 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor
JP2003109853A (en) * 2001-09-28 2003-04-11 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacturing method
WO2003035739A1 (en) * 2001-10-19 2003-05-01 Hitachi Chemical Co., Ltd. Electroconductive resin composition and electronic parts using the same
JP2003257795A (en) * 2001-12-27 2003-09-12 Nippon Chemicon Corp Solid electrolytic capacitor
WO2004030004A1 (en) * 2002-09-30 2004-04-08 Nippon Chemi-Con Corporation Solid electrolytic capacitor
JP2004335124A (en) * 2003-04-30 2004-11-25 Shin Etsu Chem Co Ltd Impregnant for polyimide silicone electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258422A (en) * 2006-03-23 2007-10-04 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method

Also Published As

Publication number Publication date
JP4529403B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP4442287B2 (en) Manufacturing method of solid electrolytic capacitor
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP4821818B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780894B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4529404B2 (en) Manufacturing method of solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2005109079A (en) Solid electrolytic capacitor and its manufacturing method
JP2003197478A (en) Solid electrolytic capacitor and manufacturing method therefor
JP4720076B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP4474886B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2004128048A (en) Solid electrolytic capacitor
JP2005085911A (en) Method for manufacturing solid electrolytic capacitor
JP2005109075A (en) Method of manufacturing solid electrolytic capacitor
JP4110905B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees