JP4314938B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP4314938B2
JP4314938B2 JP2003314818A JP2003314818A JP4314938B2 JP 4314938 B2 JP4314938 B2 JP 4314938B2 JP 2003314818 A JP2003314818 A JP 2003314818A JP 2003314818 A JP2003314818 A JP 2003314818A JP 4314938 B2 JP4314938 B2 JP 4314938B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
oxidizing agent
capacitor element
polymerizable monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003314818A
Other languages
Japanese (ja)
Other versions
JP2005085910A (en
Inventor
敏行 村上
孝 新井
裕也 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003314818A priority Critical patent/JP4314938B2/en
Publication of JP2005085910A publication Critical patent/JP2005085910A/en
Application granted granted Critical
Publication of JP4314938B2 publication Critical patent/JP4314938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、エージング工程での歩留まりを高め、高融点の鉛フリー半田に対応可能な固体電解コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor capable of increasing the yield in an aging process and adapting to a high melting point lead-free solder.

タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。   An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.

この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。   In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, an anode foil and a cathode foil made of a valve metal such as aluminum are generally wound with a separator interposed therebetween to form a capacitor element. It is impregnated with a driving electrolyte, and has a sealed structure in which a capacitor element is housed in a metal case such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.

また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)等の導電性ポリマーに着目した技術(特許文献1参照)が存在している。   As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (see Patent Document 1) that focuses on a conductive polymer such as polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.

このような巻回型のコンデンサ素子にPEDT等の導電性ポリマーからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作成される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなるが、その表面にはエッチング処理を施すのみである。   A solid electrolytic capacitor of a type in which a solid electrolyte layer made of a conductive polymer such as PEDT is formed on such a wound capacitor element is produced as follows. First, the surface of the anode foil made of valve action metal such as aluminum is roughened by electrochemical etching treatment in an aqueous chloride solution to form many etching pits, and then in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical conversion). Similar to the anode foil, the cathode foil is made of a valve metal such as aluminum, but the surface is only subjected to etching treatment.

このようにして表面に酸化皮膜層が形成された陽極箔とエッチングピットのみが形成された陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDTと記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出し、あるいは両者の混合液に浸漬して、コンデンサ素子内で重合反応を促進し、PEDT等の導電性ポリマーからなる固体電解質層を生成する。その後、このコンデンサ素子を有底筒状の外装ケースに収納し、ケースの開口部を封ロゴムで封止して固体電解コンデンサを作成する。
特開平2−15611号公報
Thus, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pits are wound through a separator to form a capacitor element. Subsequently, a polymerizable monomer such as 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidizer solution are respectively discharged into the capacitor element subjected to restoration conversion, or immersed in a mixed solution of the two. The polymerization reaction is promoted in the capacitor element, and a solid electrolyte layer made of a conductive polymer such as PEDT is generated. Thereafter, the capacitor element is housed in a bottomed cylindrical outer case, and the opening of the case is sealed with a sealing rubber to produce a solid electrolytic capacitor.
JP-A-2-15611

ところで、近年、上述したような固体電解コンデンサへの高電圧仕様の要求が高まっており、特に20〜30Vの高耐電圧が要求されている。しかしながら、このような高い定格電圧を有する固体電解コンデンサを得ようとすると、エージング工程においてショートの発生する割合が多く、歩留まりが低いという問題点があった。   By the way, in recent years, demands for high voltage specifications for the solid electrolytic capacitors as described above are increasing, and in particular, a high withstand voltage of 20 to 30 V is required. However, when trying to obtain a solid electrolytic capacitor having such a high rated voltage, there is a problem in that the ratio of occurrence of a short circuit in the aging process is large and the yield is low.

また、近年環境問題から高融点の鉛フリー半田が用いられるようになり、半田リフロー温度が200〜220℃から230〜270℃へと更に高温化している。このように高温でのリフローを行うと、電極箔の劣化もしくは電解質層の劣化によって漏れ電流(以下、LCと記す)が増大するという問題点があった。
なお、このような問題点は、重合性モノマーとしてEDTを用いた場合に限らず、他のチオフェン誘導体、ピロール、アニリン等を用いた場合にも同様に生じていた。
In recent years, lead-free solder having a high melting point has been used due to environmental problems, and the solder reflow temperature has been further increased from 200 to 220 ° C. to 230 to 270 ° C. When reflow is performed at such a high temperature as described above, there has been a problem that leakage current (hereinafter referred to as LC) increases due to deterioration of the electrode foil or electrolyte layer.
Such a problem occurs not only when EDT is used as the polymerizable monomer but also when other thiophene derivatives, pyrrole, aniline, and the like are used.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、耐電圧特性をさらに向上させて、エージング工程での歩留まりを高め、高融点の鉛フリー半田に対応可能な固体電解コンデンサの製造方法を提供することにある。   The present invention has been proposed in order to solve the problems of the prior art as described above, and its purpose is to further improve the withstand voltage characteristics, increase the yield in the aging process, and lead with a high melting point. An object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor that can handle free solder.

本発明者等は、上記課題を解決すべく、エージング工程でのショートの発生を防止すると共に、高融点の鉛フリー半田に対応可能な固体電解コンデンサの製造方法について鋭意検討を重ねた結果、本発明を完成するに至ったものである。すなわち、本出願人が別途特許出願している、リフロー後のLCの上昇を防止するのに顕著な効果が得られるポリイミドシリコン処理を行うと共に、さらに耐電圧を向上させて、エージング工程での歩留まりを高めるべく、重合性モノマーと酸化剤のモル比を種々変えて検討したものである。   In order to solve the above-mentioned problems, the present inventors have made extensive studies on a method of manufacturing a solid electrolytic capacitor capable of dealing with a high melting point lead-free solder while preventing occurrence of a short circuit in the aging process. The invention has been completed. That is, the present applicant has applied for a patent separately, and performs a polyimide silicon treatment that can obtain a remarkable effect in preventing an increase in LC after reflow, and further improves the withstand voltage, thereby improving the yield in the aging process. The molar ratio of the polymerizable monomer to the oxidizing agent was changed in various ways in order to increase the viscosity.

すなわち、本発明者等は、高耐電圧品を製造する場合に、エージング工程でショートが発生する割合が高くなる原因について種々検討を重ねた結果、以下の結論に達したものである。通常、導電性ポリマーを形成した後のコンデンサ素子内には、導電性ポリマーの他に、重合反応に関与しなかったモノマーや酸化剤及びその他の反応残余物が存在している。そして、これらの導電性ポリマー以外の物質の耐電圧は導電性ポリマーの耐電圧より低いため、これらの物質が固体電解コンデンサの耐電圧を低下させていると考えられる。   That is, the present inventors have made the following conclusion as a result of various studies on the cause of the high ratio of occurrence of shorts in the aging process when manufacturing a high withstand voltage product. Usually, in the capacitor element after the formation of the conductive polymer, in addition to the conductive polymer, there are monomers, oxidizing agents and other reaction residues that have not been involved in the polymerization reaction. And since the withstand voltage of substances other than these conductive polymers is lower than the withstand voltage of conductive polymers, it is thought that these substances are reducing the withstand voltage of a solid electrolytic capacitor.

そこで、本発明者等は、これらの反応残余物を減少させることにより固体電解コンデンサの耐電圧を向上させるべく検討を重ねた結果、重合性モノマーと酸化剤のモル比を適切に調整することによって、固体電解コンデンサの耐電圧を向上させることができることが判明したものである。   Therefore, as a result of repeated studies to improve the withstand voltage of the solid electrolytic capacitor by reducing these reaction residues, the present inventors have appropriately adjusted the molar ratio of the polymerizable monomer and the oxidizing agent. It has been found that the withstand voltage of the solid electrolytic capacitor can be improved.

(固体電解コンデンサの製造方法)
本発明に係る固体電解コンデンサの製造方法は以下の通りである。すなわち、表面に酸化皮膜層が形成された陽極箔と陰極箔をセパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子に修復化成を施す。その後、このコンデンサ素子をポリイミドシリコンの0.05〜20wt%、好ましくは1.5〜9wt%、さらに好ましくは2〜6wt%のケトン系溶媒に溶解した溶液に浸漬し、引き上げた後、40〜100℃で溶媒を蒸発させ、その後、150〜200℃で熱処理する。
続いて、このコンデンサ素子を、重合性モノマーと酸化剤のモル比が、酸化剤を1とした場合に4:1〜10:1、好ましくは5:1〜8:1となるように調製した重合性モノマーと酸化剤の混合液に浸漬し、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。そして、このコンデンサ素子を外装ケースに収納し、開口端部を封ロゴムで封止し、固体電解コンデンサを形成する。
(Method for manufacturing solid electrolytic capacitor)
The manufacturing method of the solid electrolytic capacitor according to the present invention is as follows. That is, an anode foil and a cathode foil having an oxide film layer formed on the surface thereof are wound through a separator to form a capacitor element, and this capacitor element is subjected to restoration conversion. Thereafter, the capacitor element is immersed in a solution of 0.05 to 20 wt% of polyimide silicon, preferably 1.5 to 9 wt%, more preferably 2 to 6 wt% in a ketone solvent, and after lifting, 40 to 40 wt% The solvent is evaporated at 100 ° C., and then heat-treated at 150 to 200 ° C.
Subsequently, the capacitor element was prepared such that the molar ratio of the polymerizable monomer to the oxidizing agent was 4: 1 to 10: 1, preferably 5: 1 to 8: 1, when the oxidizing agent was 1. A solid electrolyte layer is formed by immersing in a mixed solution of a polymerizable monomer and an oxidizing agent to cause a polymerization reaction of the conductive polymer in the capacitor element. And this capacitor | condenser element is accommodated in an exterior case, and an opening edge part is sealed with sealing rubber | gum, and a solid electrolytic capacitor is formed.

(重合性モノマーと酸化剤のモル比)
重合反応時の重合性モノマーと酸化剤のモル比を種々変更して、固体電解コンデンサの耐電圧を向上させることができるか否かを調べたところ、重合性モノマーと酸化剤のモル比が、酸化剤を1とした場合に4:1〜10:1、好ましくは5:1〜8:1とすると耐電圧が上昇することが判明した。このように、重合性モノマーが多い状態で重合反応を進行させると、重合反応後に残存する酸化剤が減少するため、この酸化剤による電極箔の損傷を防止することができる。その結果、電極箔の損傷に起因する耐電圧の低下を抑制して、耐電圧特性を向上させ、エージング時の歩留まりを改善することができると考えられる。
(Molar ratio of polymerizable monomer to oxidizing agent)
Various investigations were made as to whether or not the withstand voltage of the solid electrolytic capacitor can be improved by changing the molar ratio of the polymerizable monomer and the oxidizing agent during the polymerization reaction. It has been found that the withstand voltage increases when the oxidizing agent is 1 and the ratio is 4: 1 to 10: 1, preferably 5: 1 to 8: 1. As described above, when the polymerization reaction is allowed to proceed with a large amount of the polymerizable monomer, the oxidant remaining after the polymerization reaction is reduced, so that the electrode foil can be prevented from being damaged by the oxidant. As a result, it is considered that the withstand voltage reduction due to damage to the electrode foil can be suppressed, the withstand voltage characteristics can be improved, and the yield during aging can be improved.

なお、コンデンサ素子に重合性モノマーと酸化剤を含浸する方法としては、モノマーと酸化剤の混合溶液にコンデンサ素子を浸漬する方法、モノマー溶液にコンデンサ素子を浸漬した後、酸化剤溶液に浸漬する方法、コンデンサ素子にモノマー溶液を吐出した後、酸化剤溶液を吐出する方法等を用いることができる。   The capacitor element is impregnated with a polymerizable monomer and an oxidizing agent. The capacitor element is immersed in a mixed solution of the monomer and the oxidizing agent. The capacitor element is immersed in the monomer solution and then immersed in the oxidizing agent solution. A method of discharging the oxidant solution after discharging the monomer solution to the capacitor element can be used.

(ポリイミドシリコン)
ポリイミドシリコンを溶解する溶媒としては、ポリイミドシリコンの溶解性の良好なケトン系溶媒が好ましく、シクロヘキサノン、アセトン、メチルエチルケトン等を用いることができる。
また、ポリイミドシリコンの濃度は、0.05〜20wt%、好ましくは1.5〜9wt%、さらに好ましくは2〜6wt%である。濃度がこの範囲未満では耐圧が十分ではなく、この範囲を超えると静電容量が低下する。
(Polyimide silicon)
As a solvent for dissolving polyimide silicon, a ketone solvent having good solubility of polyimide silicon is preferable, and cyclohexanone, acetone, methyl ethyl ketone, or the like can be used.
Moreover, the density | concentration of a polyimide silicon is 0.05-20 wt%, Preferably it is 1.5-9 wt%, More preferably, it is 2-6 wt%. If the concentration is less than this range, the withstand voltage is not sufficient, and if it exceeds this range, the capacitance decreases.

(EDT及び酸化剤)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDTとしては、EDTモノマーを用いることができるが、EDTと揮発性溶媒とを1:0〜1:3の体積比で混合したモノマー溶液を用いることもできる。
前記揮発性溶媒としては、ペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
(EDT and oxidizing agent)
When EDT is used as the polymerizable monomer, EDT monomer can be used as EDT impregnated in the capacitor element, but a monomer solution in which EDT and a volatile solvent are mixed at a volume ratio of 1: 0 to 1: 3. Can also be used.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.

また、酸化剤としては、エタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができ、酸化剤の溶媒に対する濃度は40〜65wt%が好ましく、45〜57wt%がより好ましい。酸化剤の溶媒に対する濃度が高い程、ESRは低減する。なお、酸化剤の溶媒としては、上記モノマー溶液に用いた揮発性溶媒を用いることができ、なかでもエタノールが好適である。酸化剤の溶媒としてエタノールが好適であるのは、蒸気圧が低いため蒸発しやすく、残存する量が少ないためであると考えられる。   As the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in ethanol can be used, and the concentration of the oxidizing agent with respect to the solvent is preferably 40 to 65 wt%, and 45 to 57 wt%. % Is more preferable. The higher the oxidant concentration in the solvent, the lower the ESR. As the oxidant solvent, the volatile solvent used in the monomer solution can be used, and ethanol is particularly preferable. Ethanol is suitable as the oxidant solvent because it is easy to evaporate due to its low vapor pressure and the remaining amount is small.

(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、浸漬時間は、5〜120分が望ましい。
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. The immersion time is preferably 5 to 120 minutes.

(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。

Figure 0004314938
(Other polymerizable monomers)
As the polymerizable monomer used in the present invention, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
Figure 0004314938

(作用・効果)
本発明の構成で、エージング工程でのショートの発生とリフロー後のLC変動の抑制効果が得られる理由は、以下の通りと考えられる。すなわち、修復化成後にコンデンサ素子をポリイミドシリコン溶液に浸漬することにより、酸化皮膜の表面にポリイミドシリコン層が形成され、このポリイミドシリコン層は酸化皮膜との接合性が良い、すなわち、酸化皮膜の被覆性が良好なので、酸化剤の酸化皮膜へのアタックを防止することができるので、耐圧が上昇し、初期のLCが低減される。また、このポリイミドシリコンは耐熱性が良好なので、高温リフローによっても劣化せずに耐圧特性が維持されて、リフローでのLCの上昇抑制効果が得られる。
(Action / Effect)
The reason why the effect of suppressing the occurrence of a short circuit in the aging process and the LC fluctuation after the reflow can be obtained with the configuration of the present invention is considered as follows. That is, by immersing the capacitor element in the polyimide silicon solution after the repair formation, a polyimide silicon layer is formed on the surface of the oxide film, and this polyimide silicon layer has good bondability with the oxide film. Is good, it is possible to prevent the oxidant from attacking the oxide film, so that the withstand voltage increases and the initial LC is reduced. Further, since this polyimide silicon has good heat resistance, the pressure resistance characteristics are maintained without being deteriorated even by high-temperature reflow, and the effect of suppressing the rise of LC in reflow can be obtained.

また、コンデンサ素子に含浸する重合性モノマーと酸化剤を、重合性モノマーと酸化剤のモル比が酸化剤を1とした場合に4:1〜10:1、好ましくは5:1〜8:1となるように混合することにより、鉛フリーリフローによる耐電圧特性の劣化を防止することができると共に、エージング工程でショートが発生する割合を大幅に低減することができる。   Further, the polymerizable monomer and the oxidizing agent impregnated in the capacitor element are 4: 1 to 10: 1, preferably 5: 1 to 8: 1, when the molar ratio of the polymerizable monomer and the oxidizing agent is 1. By mixing so as to become, it is possible to prevent deterioration of the withstand voltage characteristics due to lead-free reflow, and to greatly reduce the rate of occurrence of short circuit in the aging process.

このように、エージング工程でショートが発生する割合を大幅に低減することができる理由は、重合性モノマーが多い状態で重合反応を進行させると、残余する酸化剤が減少するため、結果的に重合反応に関与しなかったモノマーや酸化剤及びその他の反応残余物を減少させることができるためと考えられる。また、鉛フリーリフローによる耐電圧特性の劣化を防止することができる理由は、残余する酸化剤が減少するため、結果として電解質層の耐熱性が向上するためと考えられる。   As described above, the reason why the rate of occurrence of short-circuits in the aging process can be greatly reduced is that if the polymerization reaction proceeds with a large amount of polymerizable monomer, the remaining oxidant is reduced, resulting in polymerization. This is considered to be because monomers, oxidants and other reaction residues that were not involved in the reaction can be reduced. Further, the reason why the withstand voltage characteristics can be prevented from deteriorating due to lead-free reflow is considered to be because the remaining oxidizing agent is reduced, and as a result, the heat resistance of the electrolyte layer is improved.

本発明によれば、耐電圧特性をさらに向上させて、エージング工程での歩留まりを高め、高融点の鉛フリー半田に対応可能な固体電解コンデンサの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the withstand voltage characteristic can be improved further, the yield in an aging process can be improved, and the manufacturing method of the solid electrolytic capacitor which can respond to a high melting point lead-free solder can be provided.

続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。   Subsequently, the present invention will be described in more detail based on Examples and Comparative Examples manufactured as follows.

(実施例1)
表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回してコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。その後、このコンデンサ素子をポリイミドシリコンの2wt%シクロヘキサノン溶液に浸漬し、引き上げた後、170℃で1時間熱処理した。
続いて、所定の容器に、EDTとp−トルエンスルホン酸第二鉄の45wt%ブタノール溶液を、そのモル比が6:1となるように注入して混合液を調製し、コンデンサ素子を上記混合液に10秒間浸漬してコンデンサ素子にEDTと酸化剤を含浸した。そして、このコンデンサ素子を120℃の恒温槽内に1時間放置して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。その後、このコンデンサ素子を有底筒状のアルミニウムケースに収納し、封ロゴムで封止し、固体電解コンデンサを形成した。
Example 1
An electrode lead means was connected to the anode foil and the cathode foil having an oxide film layer formed on the surface, and both electrode foils were wound through a separator to form a capacitor element. And this capacitor | condenser element was immersed in ammonium dihydrogen phosphate aqueous solution for 40 minutes, and restoration | restoration conversion was performed. Thereafter, the capacitor element was immersed in a 2 wt% cyclohexanone solution of polyimide silicon, pulled up, and then heat treated at 170 ° C. for 1 hour.
Subsequently, a 45 wt% butanol solution of EDT and ferric p-toluenesulfonate is poured into a predetermined container so that the molar ratio is 6: 1 to prepare a mixed solution, and the capacitor element is mixed as described above. The capacitor element was impregnated with EDT and an oxidizing agent by dipping in the solution for 10 seconds. Then, this capacitor element was left in a constant temperature bath at 120 ° C. for 1 hour to cause a polymerization reaction of PEDT in the capacitor element to form a solid electrolyte layer. Then, this capacitor | condenser element was accommodated in the bottomed cylindrical aluminum case, and it sealed with sealing rubber | gum, and formed the solid electrolytic capacitor.

(実施例2)
EDTとp−トルエンスルホン酸第二鉄の45wt%ブタノール溶液を、そのモル比が7:1となるように注入して混合液を調製し、コンデンサ素子を上記混合液に10秒間浸漬してコンデンサ素子にEDTと酸化剤を含浸した。その他は、実施例1と同様の条件及び工程で固体電解コンデンサを作成した。
(Example 2)
A 45 wt% butanol solution of EDT and ferric p-toluenesulfonate is injected so that the molar ratio is 7: 1 to prepare a mixed solution, and the capacitor element is immersed in the mixed solution for 10 seconds to form a capacitor. The device was impregnated with EDT and an oxidizing agent. Otherwise, a solid electrolytic capacitor was prepared under the same conditions and steps as in Example 1.

(比較例1)
EDTとp−トルエンスルホン酸第二鉄の45wt%ブタノール溶液を、そのモル比が3:1となるように注入して混合液を調製し、コンデンサ素子を上記混合液に10秒間浸漬してコンデンサ素子にEDTと酸化剤を含浸した。その他は、実施例1と同様の条件及び工程で固体電解コンデンサを作成した。
(Comparative Example 1)
A 45 wt% butanol solution of EDT and ferric p-toluenesulfonate is injected so that the molar ratio is 3: 1 to prepare a mixed solution, and the capacitor element is immersed in the mixed solution for 10 seconds to obtain a capacitor. The device was impregnated with EDT and an oxidizing agent. Otherwise, a solid electrolytic capacitor was prepared under the same conditions and steps as in Example 1.

(比較例2)
ポリイミドシリコン処理を施すことなく、他の条件は上記実施例1と同様にして固体電解コンデンサを作成した。
(Comparative Example 2)
A solid electrolytic capacitor was prepared in the same manner as in Example 1 except that the polyimide silicon treatment was not performed.

[比較結果]
上記の方法により得られた実施例及び比較例について、初期特性及びリフロー後の漏れ電流を調べたところ、表1に示したような結果が得られた。なお、リフロー試験は、ピーク温度250℃、230℃以上40秒保持の鉛フリーリフローを行った後の漏れ電流を測定した。

Figure 0004314938
[Comparison result]
When the initial characteristics and the leakage current after reflow were examined for the examples and comparative examples obtained by the above method, the results shown in Table 1 were obtained. In addition, the reflow test measured the leakage current after performing lead-free reflow with a peak temperature of 250 ° C. and 230 ° C. or more and holding for 40 seconds.
Figure 0004314938

表1から明らかなように、実施例1の初期のショート電圧は比較例に比べて上昇しており、特に、重合性モノマーと酸化剤のモル比が実施例1とは異なる比較例1と比べて、46Vから58Vへと10V以上も上昇した。また、初期の漏れ電流も10μAから5μAへと低減した。さらに、リフロー後の漏れ電流も比較例1と比べて15μAから7μAへと低減した。   As is apparent from Table 1, the initial short-circuit voltage of Example 1 is higher than that of Comparative Example, and in particular, compared with Comparative Example 1 in which the molar ratio of the polymerizable monomer to the oxidizing agent is different from that of Example 1. As a result, the voltage increased from 46V to 58V by 10V or more. The initial leakage current was also reduced from 10 μA to 5 μA. Furthermore, the leakage current after reflow was also reduced from 15 μA to 7 μA compared to Comparative Example 1.

また、実施例1とはポリイミドシリコン処理の有無が異なる比較例2と比較すると、初期の漏れ電流は10μAから5μAへと低減し、リフロー後の漏れ電流は1000μAに比べて7μAと顕著な効果が得られた。このように、重合性モノマーと酸化剤のモル比を調整するだけでなく、ポリイミドシリコン処理を施すことにより、リフロー後の漏れ電流の低減に極めて有効であることが示された。   In addition, compared with Comparative Example 2 in which the presence or absence of the polyimide silicon treatment is different from that in Example 1, the initial leakage current is reduced from 10 μA to 5 μA, and the leakage current after reflow is 7 μA compared to 1000 μA. Obtained. As described above, it was shown that not only the molar ratio of the polymerizable monomer and the oxidizing agent was adjusted but also the polyimide silicon treatment was extremely effective in reducing the leakage current after reflow.

さらに、重合性モノマーと酸化剤のモル比が異なる実施例1と実施例2を比較すると、重合性モノマーの比率が大きい実施例2の方がより良好な結果が得られた。また、このような初期のショート電圧の向上に伴って、定格電圧が25WVの固体電解コンデンサにおいて、エージング時の歩留まりが70%から95%へ大幅に改善された。   Furthermore, when Example 1 and Example 2 in which the molar ratio of the polymerizable monomer and the oxidizing agent are different were compared, Example 2 with a larger ratio of the polymerizable monomer gave better results. As the initial short-circuit voltage is improved, the yield during aging is greatly improved from 70% to 95% in the solid electrolytic capacitor having a rated voltage of 25 WV.

Claims (4)

陽極箔と陰極箔とをセパレータを介して巻回したコンデンサ素子に、重合性モノマーと酸化剤とを含浸して導電性ポリマーからなる固体電解質層を形成する固体電解コンデンサの製造方法において、
前記コンデンサ素子をポリイミドシリコン溶液に浸漬した後、そのコンデンサ素子に、前記重合性モノマーと酸化剤のモル比を、酸化剤を1とした場合に4:1〜10:1とした重合液を含浸させ、前記導電性ポリマーからなる固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。
In a method for producing a solid electrolytic capacitor in which a capacitor element obtained by winding an anode foil and a cathode foil through a separator is impregnated with a polymerizable monomer and an oxidizing agent to form a solid electrolyte layer made of a conductive polymer,
After immersing the capacitor element in a polyimide silicon solution, the capacitor element is impregnated with a polymerization solution in which the molar ratio of the polymerizable monomer and the oxidizing agent is 4: 1 to 10: 1 when the oxidizing agent is 1. And a solid electrolyte layer made of the conductive polymer is formed.
前記ポリイミドシリコン溶液の濃度が0.05wt%〜20wt%であることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the concentration of the polyimide silicon solution is 0.05 wt% to 20 wt%. 前記重合性モノマーが、チオフェン誘導体であることを特徴とする請求項1又は請求項2に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the polymerizable monomer is a thiophene derivative. 前記チオフェン誘導体が、3,4−エチレンジオキシチオフェンであることを特徴とする請求項3に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 3, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2003314818A 2003-09-05 2003-09-05 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4314938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314818A JP4314938B2 (en) 2003-09-05 2003-09-05 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314818A JP4314938B2 (en) 2003-09-05 2003-09-05 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005085910A JP2005085910A (en) 2005-03-31
JP4314938B2 true JP4314938B2 (en) 2009-08-19

Family

ID=34415262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314818A Expired - Fee Related JP4314938B2 (en) 2003-09-05 2003-09-05 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4314938B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164586B (en) * 2020-08-28 2021-11-23 福建国光新业科技有限公司 Preparation method of laminated solid-state aluminum electrolytic capacitor based on microcapsule technology

Also Published As

Publication number Publication date
JP2005085910A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4529687B2 (en) Manufacturing method of solid electrolytic capacitor
JP4779277B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP2003017369A (en) Method for manufacturing solid electrolytic capacitor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4821818B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5011624B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780894B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4639504B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003289019A (en) Manufacturing method for solid electrolytic capacitor
JP2005109079A (en) Solid electrolytic capacitor and its manufacturing method
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP4474886B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP5541756B2 (en) Manufacturing method of solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005085911A (en) Method for manufacturing solid electrolytic capacitor
JP5303085B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Ref document number: 4314938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees