JP2005103725A - 脚型ロボットの安定歩行法、歩幅制御法、操舵法、およびその装置 - Google Patents

脚型ロボットの安定歩行法、歩幅制御法、操舵法、およびその装置 Download PDF

Info

Publication number
JP2005103725A
JP2005103725A JP2003342928A JP2003342928A JP2005103725A JP 2005103725 A JP2005103725 A JP 2005103725A JP 2003342928 A JP2003342928 A JP 2003342928A JP 2003342928 A JP2003342928 A JP 2003342928A JP 2005103725 A JP2005103725 A JP 2005103725A
Authority
JP
Japan
Prior art keywords
hip joint
walking
leg
angle
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003342928A
Other languages
English (en)
Other versions
JP4304240B2 (ja
Inventor
Tokuji Okada
徳次 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIIGATA TLO KK
Niigata TLO Corp
Original Assignee
NIIGATA TLO KK
Niigata TLO Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIIGATA TLO KK, Niigata TLO Corp filed Critical NIIGATA TLO KK
Priority to JP2003342928A priority Critical patent/JP4304240B2/ja
Publication of JP2005103725A publication Critical patent/JP2005103725A/ja
Application granted granted Critical
Publication of JP4304240B2 publication Critical patent/JP4304240B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

【課題】平地、斜地、不整地を問わず荷台の上下動を低減し、自立トルクを荷台荷重で相殺し、また荷台に座椅子を取り付けて座位部を水平に保ち、胴体を左右に揺らすことなく任意の方向歩行、操舵、あるいは旋回することを可能とした脚型歩行ロボットを提供する。
【解決手段】股関節軸Cの周りに回転する腕R1・R2と、腕先に軸支される脚L1・L2からなる歩行ロボットであって、股関節軸CにカムEを結合し、カム輪郭に倣うローラ7の上下動を荷台5に伝えることで、荷台5の地面4からの高さを一定とする。また傾斜地においては股関節軸CとカムEとの位相をカム回転角移相器9で変更して、荷台5の傾斜面4からの高さを一定とする。
【選択図】図20

Description

本発明は、股関節を連続回転させる脚型歩行ロボットにおいて困難であった荷台上下動の防止、歩幅の変更、任意角での操舵や旋回、を可能にし、縦揺れ(ピッチ)、偏揺れ(ヨー)、横揺れ(ロール)、を抑えた、平地、斜地、不整地における人や物の移動の方法や手段に関する。とくに、凸凹の多い砂利道や山道、河川敷、浅瀬、沼地、砂地や滑り易い雪道、等の特殊環境での安定した移動と操舵を可能にする歩行技術に関する。
地震や台風、火災、土砂崩れ、等の天災や人災が発生する現場では人命救助や災害の拡大防止が優先される。また、坂等の多い都市では人に負担をかけない移動手段が求められる。このような現場に役立つ歩行車は、必要に応じて歩幅や進行方向を自由に変え、散在する瓦礫等の障害物にも邪魔されずに目的地に踏み入ることが求められる。とくに、人命の救出においては、荷台は、足場の乱れに影響されずに安静を保つ必要がある。
本発明はこのような現場で、地面に対する荷台の上下動を抑えながら障害物を着実に乗り越え、また、必要に応じて進行方向を変え、あるいはその場で旋回して目的箇所に踏み入ることを容易にする。人間にとって危険な災害現場には無線操縦による歩行や操舵によって移動性は高まる。
さらに、本発明は、既存の視覚センサや距離センサを併用して突起物に限らず水路等の溝に接近したことを感知することで歩幅や進路を変更し、乗り上げや踏み落とし、蹴つまづき、を起こさずに歩き進むことを可能にする。例えば、車椅子のバリアとなっているホームと電車の隙間等は本発明装置によってバリアフリー化できる。そこに段差があっても支障にならない。
ホーム階段等の昇降においては、そのときの踏み面間隔に合わせるように歩幅を自動調整して脚を踏み外す心配をなくす。また、荷物等を揺すらずに静かに運ぶ。さらに、踊り場でその場旋回し大幅に向きを変更し、断続的な曲がり階段の昇降も可能にする。
このような能力は、車椅子搭載用脚型歩行ロボット、あるいは雪道、砂利道、浅瀬、等の不整地用物資運搬ロボットや人移動ロボット、の商品化、事業化に有効である。このため、本発明は、不整地を移動する車両産業、および高齢化社会に向けた福祉機器産業の発展に益することが大である。
段差乗り越えに適する移動方式として脚型歩行方式に関する様々な機構や装置がこれまでに開発されている。例えば、生物の足のような多関節型、あるいは生物には見られないクローラ型、上下伸縮横移動型がある。しかし、これらは、脚を個別に制御するためロボット胴体のピッチ、ヨー、ロールを発生し、歩行を不安定にする。また、胴体を水平に保ち、あるいは胴体の上下動を軽減できるまでには至っていない。このため、乗る人や動物の平衡感覚を乱し、物資にあっては荷崩れを引き起こし、安定した移動手段とは言い難い。
特開2002−308159号公報 特許公報1599141号 米田、舟久保 著「車椅子・歩行介助装置の現状と課題」日本ロボット学会誌、11巻5号、644−648頁、1993年
走行の安定性を高めるにはクローラ式が有効である。その例として、車椅子用階段昇降車両、例えば特開2002−308159がある。しかし、これらは一般に、クローラ軌道を変形させる必要から複雑な構造になっている。
これに対し、腰部のまわりに固定長の腕を連続回転させ、腕先に軸支される脚で蹴上げと歩進の両動作を同時に実現する簡単な方式が考案されている(脚型走行方式とその装置、特願2002-211286)。この方式と装置は、少ない数のアクチュエータで地面上の障害物を跨ぎ越え、あるいは、階段を昇降するのに有効である。
この装置は、歩幅を変えずに脚の着地位置を一意にきめる。このため、前方に石や溝があっても強引に踏みこみ、多少の障害物にも邪魔されずに歩き進む。荷崩れ防止策等を施せば物資等の運搬に役立つ。しかし、脚を障害物に乗り上げ、あるいは窪地に沈めるので、地面の凸凹が乗る人や動物の心地を悪くする。
設計の段階で階段の寸法に合わせて最適に設計したロボットであっても、長い階段においては、積もる外乱の影響で踏み面上に着地する脚位置を徐々にずらし、やがて脚着地のリズムを崩して不安定な歩行に陥る。歩行の途中で進行方向を修正するには左右股関節の回転速度を違えるため、ピッチ、ヨー、ロールを引き起こし、ロボットの姿勢を不安定にする。
また、脚元が回転するため、積載物を上下させる特性がある。この特性は、エネルギーの利用効率を下げるだけでなく、乗る人に心地の悪さを強いることになる。さらには、途中で歩行を停止する場合、その時の腕姿勢を維持するための自立トルクを股関節軸に与え続ける必要がある。このためロボットは、停止中でもモータで移動に関係しないエネルギーを余分に出す必要がある。
ロボット胴体の上下動に相当する変位を股関節の回転運動を利用して逆方向に生成し、これで荷台の上下動変位を相殺する。すなわち、荷台を股関節から切り離し、腕回転による上昇分を同腕によって別途生成する下降運動で打ち消す。このため、腕の伸びる方向に対して所定の角度をもつ軸対称なカムを股関節の回転軸に固定する。また、荷台に軸を固定するローラを股関節軸上からこのカムに倣わせる。この方法によって、股関節が上がる分だけローラを下げ、あるいは股関節が下がる分だけローラを上げ、荷台の地面からの高さを一定に維持し上下動を消滅させる。
上記カムは、力学的にはローラを介して荷台荷重を股関節軸に伝えることを意味する。この荷重による股関節トルクは、地面から受けるロボットの自立トルクを相殺する方向に作用する。その結果、ロボットを自立させるためにモータに与えるエネルギーを軽減できる。本発明は、この効果によって、自立トルクを荷台荷重によって自動的に相殺する。また、このような手段によって従来の不安定な歩行を解決する。
さらに、本発明は、脚が荷重を支えられれば常時鉛直である必要のないことに着目し、左右脚の歩幅を一様に違えて歩行速度を変え、あるいは左右の歩幅を逆方向に違えて操舵する。この点も新規な手段で、従来の課題の解決に寄与する。
ロボットは、傾斜角センサを搭載し胴体が水平に対して傾く角を自動的に検出する。これは、一般に地面の傾斜角θsに等しく、以下の説明でもこの状況を想定する。また、股関節軸周りの腕の連続回転角θaを検出する。さらに、腕の水平時における脚偏角γの値をオペレータからの指令情報として入力する。そして、腕の回転角θaに対する脚の姿勢角を演算器で計算し、組み込むサーボ機構に出力して実現する。
本発明は、複数の股関節を有するロボットに適用できるが、以下ではロボット全体機構の説明を簡単にする目的で前部と後部の左右にそれぞれ一つの股関節を装備し、各股関節に腕と同数の脚(2本、もしくは3本)を備えるものとする。また、各脚に必要なサスペンション機構は既存の技術で容易に実現するため以下の説明では省略する。
要するに、本発明は、次の手段をとる。(1)股関節に軸対称なカムを固定し、前記カム上を転がりながら長穴によって股関節軸上方に案内されるローラの軸によって荷台を支持する。(2)脚の姿勢角を外開きにして歩幅を大に、また内閉じにして歩幅を小にする。(3)左右脚の歩幅を一様に違えて腕回転速度を変えずに歩行速度を変える。(4)左右脚の一方を外開きに、他方を内閉じに制御して歩幅を変え、胴体を水平に保ちながら歩行中の進行方向を変える。 (5)左右脚の歩幅を同じに保ち、かつ、左右の股関節軸を逆方向に回転させて胴体を水平に保ちながらその場で旋回する。(6) オペレータからの指令として、脚偏角、外開きと内閉じの区別、股関節軸回転の方向と速度、脚の姿勢角パターン、を選択的に入力して歩行を実現する。(7)左右の股関節軸駆動に2個、脚姿勢制御に2個、の合計4個のアクチュエータを用いてロボットの安定した歩行と操舵を実現する。斜地歩行においてはローラ案内用長穴板姿勢制御用に1個とカム取り付け角制御用に1個のアクチュエータを加える。
本発明の方法と装置は、人や荷物を背負って運ぶ2足歩行ロボットの開発が困難な現状において、自然界の不整地、あるいは人が作った2足歩行に適する踏み石、階段、歩道橋等の、環境を4脚で移動可能にする技術を提供する。とくに、股関節軸上に円筒軸を同心状に重ねて浮かし、これを股関節と切り離して揺動的に制御することで、歩進と蹴上げの基本運動に歩幅の制御を追加できる利点がある。また。回転軸数を減らしたことで運動機構を簡単にして脚運動の生成に必要な部品数を少なくする利点がある。さらに、4脚を同期させることで移動に必要なモータ数を減らし、制御を簡単にする効果がある。
全国の斜面住宅地では、移動に困る高齢者や障害者が多く、安心して乗れる移動手段を必要とする。しかし、現実には簡単に利用できる手段がなく、その有効な対策を見出せず、通院や外出、さらには日常生活の買い物さえ困難な状況にある。とくに、斜面都市とまで言われる坂の多い長崎市では市民ボランティア組織の協力を得て斜行モノレールや斜行エレベータを設置して問題の解決に当っている。
しかし、これらは、公共的な軌道式の屋外移動手段であり、家周りのあるいは屋内の移動手段を提供してはいない。これに対し、本発明は屋内外を問わず、また、階段や石段の有無に関わらず、上下動を少なくして不整地面上の障害物を跨ぎ越え、あるいは回避/迂回する安定した歩行手段を提供する。
例えば、段差の手前で歩幅を増減調整して跨ぎ越えを容易にし、あるいは、人工の規則的階段において当初指定した歩幅を昇降中に微調整し、あるいは、山道のような不規則な階段において段壁から一定の距離手前の位置に着地させる、等の技術を提供する。この他、不整地に対し様々な実施形態が考えられる。すでに述べたホームと電車間の移動もその一つである。小さな脚跡を断続的に残すだけですむ本発明は、田畑を荒らさずに農作業をするための移動手段としての実施形態も考えられる。
ロボット胴体に起きるピッチ、ヨー、ロールは、脚型ロボットに特有な現象であるが、この発明技術は、カムを使い、また、脚を同期駆動することでこれらを消滅させる利点をもつ。しかも、股関節の回転角を計算に入れて脚方向を微妙に違え歩幅を変更する。また、傾斜角センサとサーボ機構を用いて平地、斜地を問わず、荷台の地面に対する上下動を抑え歩行中の搭乗者に不安感や恐怖感を与えない。
平地においては、左右脚の一方を外開きに、他方を内閉じに、かつ、開閉の大きさを変更することで進行方向を大きくも小さくも制御する。さらに、左右の股関節軸を逆転させて大幅な方向転換やその場の旋回を可能にする。
歩行前方の障害物や、段差への脚衝突の危険性が視覚センサによって知らされる場合、適宜操舵し、あるいは歩幅を変更して衝突や踏み外し等の事故を未然に回避する。
図1は、本発明の実施例1としてカムEを有する歩行ロボットの股関節機構を示す。股関節軸Cから2本の腕R1、R2が互いに逆方向に伸び、各腕先の膝関節J1、J2で脚L1、L2を軸支する。ただし、最も簡単な構成で、股関節と同軸上に置かれるスプロケット等の動力伝達手段S1、S2と各脚の根元側に固定されるスプロケット等の動力伝達手段S1'、S2' とがベルト等の動力伝達手段B1、B2でそれぞれ結合する。
S1とS1'、およびS2とS2'の半径は等しく、S1とS2をロボット胴体1に固定する時、脚は、腕の回転角と無関係に常時特定な方向、例えば鉛直方向を向く。この場合の腕と脚の動きを線画で示すと図2となる。ただし、同図は、股関節を同位置に保ったまま腕を20度きざみで回転させる場合を股関節軸方向から見る。
上記のように動く脚と股関節をロボットの4隅に、しかも、前後と左右で対称に配置すると、平地に立つロボットの側外観は図3となる。ただし、図からモータや動力伝達手段を省いてある(以下、同様とする)。4股関節をもつ3次元構造であるが、左右が重なり平面構造に見える。細長枠はロボット胴体1、その両端は股関節軸C、中央は中心位置Gを指す。
4脚(左右合わせて8脚)とも着地する場合、ロボットは最も安定する。この状態から腕を回転させ右に歩行させる様子を重ねて描くと図4となる。逆方向に伸びる腕先の一方の脚が着地する間他方が遊脚となって回転し、その後着地してこれまでの着地脚と入れ替わるのが同図からわかる。ただし、見やすさを考え再着地手前で描写を止めてある。
各脚の交互着地動作は、地面を蹴上げると同時にロボット中心位置Gを移動させる。歩幅Qは、膝関節J1とJ2の間隔2r等しい。以下では、この歩行のようにどの位置にあっても互いに平行にある脚の姿勢を標準姿勢、そのときの歩幅を標準値、と呼ぶ。
左右の股関節は同方向、あるいは逆方向に位相を合わせて同期回転するため、歩行中のロボットにヨー、ロールは発生しない。しかし、ピッチが発生する。すなわち、歩行の過程(図4中のG、G’、G"、、、)でGが上下に繰り返し変位する。この上下動は、平地、斜地に関係なく起きる。
本発明は、この上下動を解消するため股関節軸にカムを結合する。とくに平地歩行用ロボットにおいてはカムを股関節軸に直接固定して構造を簡単にする。図1中のEがそれである。このカムEは腕数2、3の各場合に応じてそれぞれ図5中の2峰性(a)と3峰性(b)の形になる。(a)と(b)は、カムの股関節軸への固定状況をもそれぞれ示す。カム半径を腕が伸びる方向で最小、伸びない方向で最大にする理由は、腕の回転による荷台の降下量を取り戻すことにある。横から見る形は飛行機のプロペラ状になる。
カムは股関節軸上のローラ7を転動させる(図1参照)。また、その軸はロボット胴体1の側板上の長穴に案内されて荷台5に固定され、これを上下させる。その結果、股関節の上下動と逆向きの上下動がカムによって生成され、荷台5の着地面からの高さを変える。この高さを常時最上位に定める場合、カムの最大半径は、一般に腕の長さに等しい。
詳しくはカムの最大半径と最小半径の差が腕長になるように定まる。また、カムの強度やローラの半径を考慮してカム半径を腕に比べて短くする場合のカム機構も公知の各種変位拡大機構を用いて実現する。
図6は、図1の実施例1に関わる動作を詳しく説明する。とくに、腕の異なる回転角におけるカムとローラの作用について上方と側方から見る状況を示す。上下のいずれも、股関節が時計方向に数十度回転する場合を左に、また、それ以上に回転する場合を右に示す。腕が水平と垂直になる時の様子は図7となる。ただし、左に水平時、右に垂直時、上に側面、下に正面を示す。Hは、左右のローラ軸案内用長穴板を一体化するリンクである。これらの図からロボット胴体1が上下しても荷台5は、地面から殆ど同じ高さを保つのが明らかである。
さらに、荷台5に固定される軸上のローラ7は、荷台の荷重でカムを下に押しつける。このため、荷重トルク(図6中のTc)を股関節軸Cに発生させる。一方、股関節軸Cは、ロボットを支えるために地面から自立トルク(図6中のTL)を受ける。そして、トルクTcとTL は互いに逆向きに作用し打ち消しあう。
このことはいかなる股関節回転角においても言える。図のカム形状はそのように設計した結果である。また、TcとTLは、荷台の積載荷重に応じて同様に増減する。このような関係により、停止中でも自立のために供給しなければならないモータの動力は、荷重トルクによって自動的に相殺され、外部からモータに供給するエネルギーは節約される。
図8は、本発明の実施例2を示す。すなわち、歩幅変更のための脚姿勢変化を示す。これは、前記股関節側スプロケットのロボット胴体への取付け角を股関節の回転角に応じて相対的に変えることで実現する。この図から歩幅Qの増大が明らかである。
図9は、歩幅Qを小にする本発明の実施例3を示す。両図から脚姿勢を制御するだけで歩幅を自由に変更できるのがわかる。なお、この変え方は、ロボット胴体の傾斜角に関係するため以下で詳しく述べる。歩幅を変える実施例2と3において、前後の股関節軸は、同期回転し胴体1を常に水平に保つが、半回転する毎に上下に変位させる。事実、胴体1を、腕が水平のとき最低位、垂直のとき最高位にする(図7参照)。脚の開閉角が同じであれば図8の片仮名「ハ」の字形でも図9の「ソ」の字形でも上下の変位幅は同じである。これらの上下動を伴う歩行は、図4と同様、乗る人に不快感を与える。このため、本発明は腕と一体になって回転するカムを装備し、このカムにローラを倣わせ、ローラの軸で荷台を支持する。
すなわち、荷台を胴体から切り離し常に最高位に保つ。このため、腕が水平のときローラを上昇させ、また、垂直のとき下降させる。そうさせるカムとローラ、および荷台を含める実施例2と3の一歩行状態を描くと図10となる。
図中のEはカム、7は長穴に案内されて股関軸Cの上方においてカムを倣うローラ、を示す。ローラ7の軸は、荷台5に固定されその荷重によってローラを下方に押し付け、カムの形によって決まる高さに荷台を位置づける。
とくに、平地歩行用においては、プロペラ状のカムEを腕に機械的に固定できる利点がある。その結果、胴体1の上下動幅V1が概略腕の長さ(=R1=R2)になるのに対し、荷台5の上下動幅V2は限りなく狭くなる(図10参照)。
さらに、同図において、図6で説明した力学的事実が全く同様に有効である。すなわち、荷台に作用する荷重はローラとカムを介して股関節軸Cを時計方向に回転させる。一方、股関節軸 Cは、同図の状況で自立する場合、脚に作用する地面からの力の影響を受けて反時計方向に回転させられる。これらの向きは互いに逆のため、自立に必要な股関節トルクは、荷台に作用する荷重によって自動的に差し引かれる。その結果、モータの駆動エネルギーを軽減できる。
図10の平地歩行用ロボットは、異なる歩幅でも安定なことを示すが、そのまま斜地に入ると、谷側に重心位置をずらして傾き不安定になる。この不安定を解消するため、本発明は地面の斜角θsを検出し、これと腕の回転角θaを使って脚の姿勢角を制御する。この制御によって、図11の状態を自動的に実現する。ロボットの各部は、図12のように遷移する。
ここで、斜地歩行用においては、腕に固定したままのカムは役立たないことに注意しなければならない。ロボット胴体が傾き、荷台の上下動を解消できないばかりか自立トルクも補償できなくなるからである。この問題を解決するため、本発明は歩行中に計測する腕の回転角と地面傾斜角を使ってカムの股関節軸への取り付け角を演算器10の出力に基づいて半固定的に定める。
すなわち、図13の本発明実施例4のように、股関節軸に歯車U1を固定しこれに歯車U2を噛みあわせる。そしてU2と同一の軸上に一体化した歯車U3を外枠内歯車U4に内接するよう噛みあわせる。この機構は、U1を太陽歯車、U2とU3の軸を遊星軸、U4を内歯車、とする遊星歯車機構に似るが、遊星歯車をU2とU3で構成する点で特殊である。
股関節軸Cの外周3方にある遊星軸Jeは、股関節軸と同心状に回転する遊星キャリヤ8を形成する。さらに、カムEを内歯車U4の外枠に固定する。そして、歯車U1を入力軸、遊星キャリヤ8を固定、内歯車U4を出力軸として使う。遊星キャリヤ8は、平地で固定であるが地面が傾くと出力軸の角度を入力軸に対して相対的に偏奇させるための調整用として使われる。この意味で半固定的である。
このことを説明するため、図中の遊星キャリヤ8はレバー6をつけている。これに限らず歯車、ベルト、等他の手段であってよい。図14は、図13のカム回転角移相器9を採用する実施例4の外観スケッチを示す。
なお、遊星キャリヤ8を偏奇させる角度は後述する演算器からの出力θdとする。ただし、歯車U1、U2、 U3、U4のピッチ円半径をr1、r2、r3、r4としてr1・r3 = r2・r4とするので、カムは腕の回転速度に一致し互いに逆方向に回る。このため、カムの軸対称性を利用し、取り付け角を図10から図15のように違える。遊星歯車をU2とU3で構成する最大の理由は、CとEの回転量を同じにすることにある。また、そうすることで、遊星キャリヤ8を角度θdの半分だけ偏奇させてカムの取り付け角を指定される角度θdに変更可能にする。
結局、演算器10は、センサから検出されるロボット胴体の傾きに応じて定まるカムの取り付け偏奇角の半分(θd/2)を出力し、図にないサーボ機構を用いて地面の傾斜角に応じた腕へのカムの取り付け角θdを実現する。
図10は平地用のため、図5と同様、カムを腕に機械的に固定することを可とするが、斜地においては全脚(8脚)が着地する場合の腕の傾き角だけカムを偏奇させて腕に結合する必要がある。このため、図13の実施例4を採用する。
その結果、斜地歩行においても荷台の上下動幅V2を極めて小さくし、また、自立トルクを荷重トルクで補償できる。ただし、ローラを案内する前後の長穴板を相対する2辺とする四節平行リンク機構を構成し、斜角θsを使って長穴方向を常に股関節軸の真上方向に位置づけることが必要である。このような機構は、公知の技術で実現するため説明を省く。図15中のローラ7の位置は、そのようにして得られる状況を示す。
同図から図10と同様に、ロボット胴体1の上下動幅V1が大きいのに対し、荷台5の上下動幅V2は狭くなるのが明らかである。同時に、荷台5の荷重がカムを介して股関節軸Cに伝わる。このことは、図8、9の様に歩幅を変える場合でも同様である。ただし、この場合の図を省略する。
引き続き、歩幅制御と操舵制御を詳細に述べる。説明上、図16のように前記腕回転角θa、 胴体傾き角θs、脚姿勢角θbを用いてスプロケット(S1、S2)の胴体に対する相対的偏角θcを定める。ただし、図中の角度θa、θs、θb、θcは胴体正面、水平面、あるいは垂直面を基準とし、矢印方向を正とする。θaはロータリエンコーダ、θsは傾斜センサ、等を用いてそれぞれ計測される角度である。
本発明で必要な演算器10に関わる入出力情報は図17で示される。ただし、関数f1は脚姿勢角θbを、関数f2は股関節から伸びる腕数が2の場合にθc(=θs−θb)を、3の場合にθa−θsを、また、関数f3はカム取りつけ角変更レバー6の偏奇角θdをそれぞれ定める。これは、特別な装置に導くことなくカムの取りつけ角を変更する(図示してない)サーボ機構の入力となる。とくに、斜地を安定に歩行する時に不可欠である。θaとθsの他に脚偏角γと姿勢角パターンPiの識別子i、が指定されると上記関数f1, f2, f3が実際に演算される。ただし、γの符号の違いで歩幅の外開きと内閉じを、また、値の違いで歩幅の大小を定めるとする。
なお、θa は腕の回転数と共に増減し、演算器10はそれを常に0&ltθa&lt2πとなるように置換する。さらに、演算器10は、θaがπラジアン増す毎にそのときの歩幅を加え、また、πラジアン減る毎にそのときの歩幅を減じ、これらの累計値を歩行開始点からの移動距離と定める。上記関数f1は、θaの周期関数でなければならず、概ね次の4つに限られる。
(数1)
θb=γcos{θa−θs}
(数2)
θb=γsin{2(θa−θs)}
(数3)
θb=γcos{3(θa−θs)}
(数4)
θb=tan-1{(tanγcos(θa−θs))/(1+tanγsin(θa−θs))}
上記数式1、2、3、4で表される四つのパターンをそれぞれ、P1、P2、P3、P4とすると、これらは、図18のa, b, c, dで表される。ずれの図も腕が股関節軸 Cの周りに20度ずつ回転する場合の脚姿勢を示す。ただし、右は外開き(0<γ)、左は内閉じ(γ<0)を示す。関数 f1がθaに関係なくθb=0を定める場合のパターンは図2となり、歩幅は標準値になる。
図18中の4種のパターンにおいて、左右で対応づけられる脚の内閉じと外開きの量は同じである。このため、対応する左右の脚は股関節を地面から同じ高さに位置づける。左右脚の一方を外開きに、他方を内閉じに制御してロボット胴体を常時水平に保つ本発明操舵法の原理と利点はここにある。このように、関数f1は、γや(θa−θs)に三角関数を適用し演算器10の中で逐一計算され出力をθbとする。代数式に頼らず数値的に処理すれば上記aからdの4例以外のパターンを独自に定めることも可能である。
なお、演算器10の替わりにカムを使ってその輪郭を倣うことでこうしたパターンを作り出すことも考えられるが、そうすると歩幅や操舵角を必要に応じて柔軟に変更できない。このため、カムに依る歩行パターンの生成は、事実上意味がない。
図19の上は、上記パターンP2を採用し、等長な(仮に40cmとする)腕と脚をもつロボットで角度30度の斜地を左から右に向かってγ=+20度(歩幅大)歩幅小)で上昇する本発明の実施例5を示す。この歩幅の計算値は、Qmax=96cmとなる。ただし、γ=0の場合の歩幅は標準値80cmである。
同様に図19の下は、上記パターンP2を採用し、等長な(仮に40cmとする)腕と脚をもつロボットで角度30度の斜地を左から右に向かってγ=−20度(歩幅小)で上昇する本発明の実施例6を示す。歩幅の計算値は、Qmin=68cmとなる。
階段昇降時の膝関節を段差に衝突させないためには、脚先が膝に先行するのが望ましく、姿勢角パターンの選択肢が意味をもつ。このような候補として図18中のパターンaとb中の右と、パターンd中の右が推奨される。すなわち、パターンP1とP2による外開き、および、パターンP4による外開き歩行が有効となる。パターンP1〜P4のいずれにするかはロボットの用途に応じて決まる。急激な歩行動作の変化を避けるには、脚の開閉切り換えや開閉量を変更する時期、すなわち、脚偏角γや姿勢角パターンPi、の変更時期を、腕が鉛直になる時期に合わせるのが望ましい。
荷台5は、脚歩行椅子として座椅子を搭載可能である。この場合の座椅子は地面の傾きに関係なく水平を保つことが要求される。このため、本発明は実施例7として図20の様に股関節軸と平行な軸Jcを荷台5の前側にローラ軸とは別に置き、その周りに座椅子11を回転させる。上記実施例7を上部から見ると図21となる。ただし、同図は右脚をソの字形、左脚をハの字形にして右前方に操舵歩行する状態を示す。
平地においては、図20中の左のようにカムEを腕に固定可能であるが、斜地においては右のようにカム回転角移相器9を介してカムEのロボット胴体への取り付け角を斜角θsに応じて変更する。この場合、股関節軸に作用するトルクTcは、自立トルクTLと同じ向きに見えるが、カム回転角移相器9を介すためその内部で逆向きになり、荷重トルクが自立トルクを補償することに変わりない。
リンクHは、前後のローラ軸案内用長穴板を斜地においても股関節軸上に位置付けるために必要である。これは、その両端と前後の股関節軸を四つの節点とする前記四節平行リンク機構の一辺を構成する。そして、センサから入力される地面傾斜角θsを基に、図にないサーボ機構を使ってリンク機構を異なる四辺形に変え、長穴を股関節の真上に方向づける。
前記傾斜角θsは同時に、別のサーボ機構で座椅子の回転軸Jcの傾き角制御に活かされる。その結果、座椅子11の座面を水平にして搭乗者12の滑動落下を避ける。サーボ機構にバイアス信号を加え、搭乗者がいつも椅子に深く掛けられるよう座椅子を上向きに制御することも可能である。軸Jcを荷台の前側に置く理由は、視線を谷側に向ける一般的な利用形態を考えて搭乗者に与える心理的な恐怖感を払拭することにある。
さらに、本発明は、左右脚歩幅の一方を外開き、他方を内閉じにして左右股関節を同方向に回転させることで、歩行中の操舵を可能にする。平地においては、左右脚の歩幅を外開き、もしくは内閉じのいずれか一つに統一し、左右股関節を逆向きに回転させ、その場旋回を可能にする。また、統一する歩幅の大きさを違え、旋回角を任意に設定する。
図22はこの旋回の様子を上から見る。四つの着地脚が股関節の回転とともに地面を滑り、ロボットを右に旋回させるのがわかる。なお、図中の黒丸は、着地脚の地面への投影点を示す。鉛直になる瞬間の腕は見かけ上の長さを失う。
図23は、本発明実施例8として腕数が2の場合のスプロケットS1、 S2をそれぞれ+θc、−θcに制御するための歩幅制御装置を示す。すなわち、図1が脚を常時鉛直姿勢にしたのに対し、スプロケットS1、 S2を股関節軸上に軸支し、そのロボット胴体に対する取りつけ角を+θcと−θcの範囲で揺動させ、ハの字形、あるいはソの字形の脚姿勢を自動的に作り出す装置を示す。
サーボ機構によってかさ歯車の主動軸を関数f2の出力θc(=θs−θb)に制御し、これに噛み合う二つの従動歯車の回転角を股関節と同軸上に置く2重の円筒軸の他端に伝える。各端には、スプロケットS1、 S2を固定しこの角度をそれぞれ、+θcと−θcに同期制御する。
この機構により、図18の各種パターンを簡単に作り出す。なお、かさ歯車の主動軸回転角は、ポテンショメータで計測され前記サーボ機構のフィードバック信号として使われる。このかさ歯車は正逆方向に揺動し連続回転しないのが特徴である。
図24は、本発明実施例9として腕数3の場合の歩幅制御装置を示す。この場合も腕と同数のスプロケットS1、S2、S3を同一股関節軸上に配列する。また、クランク機構の回転軸に案内されて揺動する3本の揺動梃にそれぞれ固定される円筒軸を同一の股関節軸上に3重に装備する。各軸は対応する三つのスプロケットと揺動梃を順序正しく結合する。
なお、クランク機構は、スプロケットに噛み合うベルト等の運動を妨げない場所に配置され、その原動軸は専用のアクチュエータで演算器10の関数f2の出力θc(=θa−θs)に制御される。
クランク軸の回転は連続であるが、揺動梃の運動が往復運動であるため、前記三つのスプロケットは揺動運動となる。図25は、股関節軸方向から見股関節軸とクランク機構の詳細な接続を説明する。図から三つの円筒軸が股関節軸の回転に同期する三つのクランク軸の運動で常に位相を乱さず順次揺動するのがわかる。
図24、25中のDは、股関節軸とクランク機構原動軸間の距離を示す。この距離はスプロケットS1、 S2、 S3の偏角最大値を支配し、歩幅の制御に活かされる。すなわち、距離Dを小さくして脚の外開き、また、大きくして内閉じの制御を実現する。これにより、前記パターンP4を容易に生成できる。なお、距離Dは、演算器10の関数f1の出力θbに応じて一意に関係付けられ、公知の技術で制御できる。
図26は、実施例10として操舵歩行や旋回歩行に必要な指令を直感的に分かり易い形で入力する装置13の概観を示す。操縦桿と操作盤で構成され、操作盤を歩行ロボットとみなして操縦桿の頭部を進行方向に倒し、また、歩行速度に応じて倒す力を加減する。操縦桿周りの回転は旋回動作を指令する情報を与える。操作盤上のスイッチWは姿勢角パターンの種別を選択切り換える。隣の回転ツマミは、脚偏角γを入力する。例えば、右で+(外開き)、左で−(内閉じ)、中間目盛でγ=0を入力する。
以上、図を用いて実施例を説明した。使用するモータ、バッテリ、ベルト、歯車、スプロケット、軸支手段、カム、変位拡大機構、傾斜角センサ、ポテンショメータ、とその信号処理回路、指定した角度に制御するサーボ機構、かさ歯車機構、クランク機構、回転軸間距離可変装置、等は、市販の製品の中に見だし、あるいは特別に加工し、容易に調達できる。
要するに、本発明は、脚歩行ロボットの欠点であった荷台の上下動を解消し、同時に、荷台の荷重トルクで自立トルクを補償し、駆動エネルギーを節約して搭載物を安定に運搬する。また、脚を演算器10から指定される姿勢に制御して歩幅を変え、凸凹を跨ぎ越え障害物への衝突や溝への転落を回避する。あるいは、左右脚の一方を外開きに、他方を内閉じに制御し、ロボット胴体を水平に保ちながら進行方向を連続的に変更して障害物を迂回する技術を提供する。
階段においては、歩幅を階段に特有な踏み面間隔に合わせ、かつ、踏み面中央位置に脚を着地させて段差壁への衝突を避け、また、踏外しを無くす。平地においては、左右脚の歩幅を同じにして左右の股関節軸を逆転させ、ロボットをその場で旋回させる、等の技術を提供する。
本発明は、脚型歩行ロボットにおいて、自立に必要な回転トルクを荷台の荷重で補償し股関節駆動用モータへの供給エネルギーを低減し、また、荷台をロボット胴体から切り離し、腕に結合するカムに倣うローラ軸で支持することで荷台の上下動幅を小さくする。さらに、左右脚の歩幅を制御して進路を任意方向に変更し、あるいは左右股関節の回転方向を逆にしてその場で旋回する、等の方法と装置を提供する。
本発明の方法と装置は、広く不整地の歩行中に遭遇する障害物への衝突を避ける迂回動作に有効である。また、階段昇降中の脚が段差壁に衝突するのを避け、あるいは、踏み面を外すのを避けるのに有効である。このため、屋内外の不整地移動車両の新規開発のみならず、車椅子のバリアとなる階段の昇降を可能にする脚歩行椅子の開発にも新たな技術を提供し、車両産業や福祉関連機器産業の発展に寄与するものが大と考えられる。
歩行中の上下動解消に役立つカムの配置(実施例1) 股関節回転に伴う腕と脚の同期動作 平地に自立する歩行ロボット 平地歩行時の胴体、腕、および脚の運動軌跡 カム輪郭と腕への固定角度(腕数2の時左、3の時右) 実施例1のカム動作 実施例1の荷台上下動解消原理 外開き脚による平地歩行の運動軌跡(実施例2) 内閉じ脚による平地歩行の運動軌跡(実施例3) 実施例2と3における胴体上下動解消と自立トルク補償 斜角θsを考慮して斜地に自立する歩行ロボット 斜地歩行時の胴体、腕、および脚の遷移 カム取り付け角変更機構(実施例4) 実施例4の外観スケッチ 斜地でも荷台上下動を解消するカムの効果 角度変数の定義 演算器の入出力情報 脚の外開き(右図)と内閉じ(左図)のいろいろ(a、b、c、dは姿勢角パターンP1、P2、P3、P4に対応) 姿勢角パターンP2で斜地歩行時の胴体、腕、および脚の運動軌跡、上は外開き歩行(実施例5)、下は内閉じ歩行(実施例6) 荷台に取り付けられる座椅子(実施例7) 実施例8を上部から見る様子 その場旋回動作 腕数2の場合の脚姿勢角制御用かさ歯車機構(実施例9) 腕数3の場合の脚姿勢角制御用クランク機構(実施例10) 実施例9を軸方向から見る様子 ロボット歩行指令を入力する装置(実施例10)
符号の説明
1 脚型歩行ロボット胴体
2 かさ歯車機構
3 クランク機構
4 平地、斜地、階段、等の地面
5 荷台
6 カム取りつけ角変更レバー
7 カム輪郭倣いローラ
8 遊星キャリヤ
9 カム回転角移相器
10 演算器
11 座椅子
12 搭乗者
13 歩行指令入力装置
r 腕長、歯車半径
B タイミングベルト、もしくはチェイン
C 股関節軸
D 股関節軸とクランク原動軸間距離
E カム
F 操作力(左右方向成分をFx、 前後方向成分をFy)
G ロボット胴体中心位置
H 左右、あるいは前後のローラ軸案内用長穴板接続リンク
J 膝関節
Jc 座椅子回転軸
Je 遊星軸
L 脚
M 股関節駆動モータ
Q 歩幅
R 腕
S 股関節側の歯車、もしくはスプロケット
S' 膝関節側の歯車、もしくはスプロケット
T 回転力、回転トルク
U 歯車
V ロボット胴体、および荷台の上下動幅
W 姿勢角パターン選択スイッチ
θa 股関節回転角
θb 脚姿勢角
θc スプロケットSの偏角
θs 地面傾斜角(階段を含む)
θd ロボット胴体へのカム取りつけ偏奇角
γ 腕の水平時における脚偏角(一般には脚姿勢角)

Claims (12)

  1. 股関節を中心として連続回転する腕先に軸支される棒を脚とする歩行ロボットにおいて、股関節軸にカムを結合し、ロボット胴体の股関節上方側板に設けた長穴に案内されるローラを前記カムに沿って転動させ、かつ、ローラの回転軸を荷台に固定することにより、地面に対する荷台の高さを一定に保持し、同時に、荷台を含める積載荷重でロボットの自立に必要な股関節トルクを補償し、よって荷台の上下動を解消し、股関節の駆動エネルギーを小さくしたことを特徴とする脚型ロボットの安定歩行法。
  2. 前記請求項1に記載の歩行ロボットにおいて、ロボット胴体の重力方向に対する前後方向傾き角(=θs)と腕の回転角(=θa)を使い、演算器で脚の姿勢角(=θb)を表す関数f(θs、θa)をθaの周期関数、すなわち、f(θs、θa)= f(θs、θa+2nπ)と定めて脚姿勢変化の連続性を確保し、さらに、互いに逆方向に伸びる腕先脚の一方を前傾姿勢に、他方を後傾姿勢に制御する条件、すなわち、f(θs、θa)+f(θs、θa+π)=0を満足させ、左右脚の全てを内閉じ、あるいは外開きに制御することで前後への歩幅を変更可能にしたことを特徴とする脚型ロボットの歩幅制御法。
  3. 前記請求項2に記載の歩幅に関し、左右脚の一方を外開きに、他方を内閉じに、かつ、外開きと内閉じの角度幅を等しく定め、全股関節を同方向に同期駆動することでロボット胴体を水平に保ちながら、また、左右に傾けることなく任意方向に進行可能にしたことを特徴とする脚型ロボットの操舵法。
  4. 前記請求項2において、左右の股関節を互いに逆方向に同期回転駆動することで歩幅に依存する角度のその場旋回を、あるいは前記請求項3において、左右の股関節を互いに逆方向に同期回転駆動することで歩幅に依存する角度の旋回動作と移動をそれぞれ実現可能にしたことを特徴とする脚型ロボットの操舵法。
  5. 股関節において、腕に固定する軸対称なカム、前記カムの外周を転動するローラ、および、荷台側面下部を支持してローラを股関節軸の上方に往復移動可能にするロボット胴体側面上の長穴案内手段、とを備え、前記請求項1に記載の歩行法を実現する安定歩行装置。
  6. 前記請求項5に記載の歩行装置において、カムの取り付け角度を演算器からの出力に応じて半固定的に変えるサーボ機構を備え、斜地歩行においても地面に対する荷台の上下動を解消し、股関節の駆動エネルギーを小さくしたことを特徴とする安定歩行装置。
  7. 一股関節に装備する腕数が2で腕が互いに逆方向に伸びる場合、かさ歯車機構と、前記かさ歯車の主動軸を前記演算器の出力値(=θs−θb)に定めるサーボ制御機構、および前記かさ歯車の対向する従動軸の逆方向回転運動を脚の姿勢変化として伝達する目的で股関節軸上に2重に配置する円筒軸、を備えて前記請求項2、3、4に記載の方法を実現する装置
  8. 一股関節に装備する腕数が3で腕が円を等分割する方向に伸びる場合、股関節軸上に3重に配置する円筒軸、各円筒軸の一端に固定する円環、股関節軸と平行な原動軸をもつ3等分割クランク機構、前記円環に一端を固定し他端に長穴を有して前記クランク機構のクランク軸に個別に滑動案内される三つの揺動梃、股関節回転軸とクランク機構の原動軸間距離を可変にする移動手段、および前記クランク機構の原動軸を前記演算器の出力値(θa−θs)に制御するサーボ機構、とを備え、前記請求項2、3、4に記載の方法を実現したことを特徴とするロボットの歩幅制御装置と操舵装置。
  9. 前記請求項7に記載の操舵装置において、左右のかさ歯車主動軸間に回転方向を変換する装置を介在させ、両者を一個のアクチュエータで駆動可能にしたこと、および前記請求項8に記載の操舵装置において、股関節回転軸とクランク機構原動軸間距離を変える左右二つの移動機構間に移動方向を変換する装置を介在させ、両者を一個のアクチュエータで駆動可能にしたこと、を特徴とする装置。
  10. 前記請求項6、7、8に記載の演算器に、腕の回転角θaがπラジアン増す毎にそのときの歩幅を加え、また、πラジアン減る毎にそのときの歩幅を減じ、これらを累計する装置を組み込み、歩行距離を計測可能にしたことを特徴とするロボットの歩幅制御装置と操舵装置。
  11. 前記請求項6に記載の荷台において、股関節軸と平行に前側に取り付ける回転軸、前記回転軸に背を向けて固定される座椅子、および前記回転軸を傾斜角センサからの出力角に制御するサーボ機構、とを備えて地面の傾斜に関係なく座椅子を常時水平に保持したことを特徴とする安定歩行装置。
  12. 桿を倒す方向と力、および桿軸周りの回転方向と回転力を入力するセンサを内蔵する操作桿と、使用する脚の姿勢角パターンを選択するための切換えスイッチを取付ける操作盤と、操作桿と操作盤からの情報を使って股関節の回転方向と回転力、脚の外開きと内閉じの区別と開閉幅を定める回路、とを有する歩行指令入力装置を備えたことを特徴とする前記請求項5から11に記載の装置。
JP2003342928A 2003-10-01 2003-10-01 脚型ロボットの安定歩行法、歩幅制御法、操舵法、およびその装置 Expired - Fee Related JP4304240B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342928A JP4304240B2 (ja) 2003-10-01 2003-10-01 脚型ロボットの安定歩行法、歩幅制御法、操舵法、およびその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342928A JP4304240B2 (ja) 2003-10-01 2003-10-01 脚型ロボットの安定歩行法、歩幅制御法、操舵法、およびその装置

Publications (2)

Publication Number Publication Date
JP2005103725A true JP2005103725A (ja) 2005-04-21
JP4304240B2 JP4304240B2 (ja) 2009-07-29

Family

ID=34537038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342928A Expired - Fee Related JP4304240B2 (ja) 2003-10-01 2003-10-01 脚型ロボットの安定歩行法、歩幅制御法、操舵法、およびその装置

Country Status (1)

Country Link
JP (1) JP4304240B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336868A (ja) * 2005-06-02 2006-12-14 Robert Bosch Gmbh ドラムブレーキ
JP2008062306A (ja) * 2006-09-04 2008-03-21 Niigata Univ 脚型車輪型兼用移動装置
JP2010068654A (ja) * 2008-09-11 2010-03-25 Toyota Motor Corp 移動体、及びその制御方法
CN102407892A (zh) * 2011-08-02 2012-04-11 王伟 锥足式稻田行走机及使用这种行走机的喷药装置
CN101508315B (zh) * 2009-03-24 2012-07-11 合肥翔瑞车库自动化设备有限公司 一种多肢移动机器人
JP2013230524A (ja) * 2012-04-27 2013-11-14 Vstone Kk 二足歩行ロボット
JP2017029141A (ja) * 2015-07-31 2017-02-09 伊東電機株式会社 草刈り機
CN108263820A (zh) * 2016-12-31 2018-07-10 力博重工科技股份有限公司 轮轨式输送机用小半径转弯输送小车
KR20180087521A (ko) * 2017-01-24 2018-08-02 한양대학교 산학협력단 4족보행로봇 제어방법
CN110123539A (zh) * 2019-05-06 2019-08-16 重庆大学 一种新型爬楼梯轮椅机器人
CN110206981A (zh) * 2019-07-03 2019-09-06 咸宁职业技术学院 一种物料搬运机器人
CN110666808A (zh) * 2019-08-30 2020-01-10 太原理工大学 一种双马八足行走机构防爆机器人
CN112158273A (zh) * 2020-09-25 2021-01-01 东南大学 一种台阶自适应行走方法及装置
WO2021079578A1 (ja) * 2019-10-25 2021-04-29 ソニー株式会社 ロボット装置
CN114918972A (zh) * 2022-07-06 2022-08-19 郑州大学 一种万向节和仿生机器人
CN117944785A (zh) * 2024-03-25 2024-04-30 清华大学 探测机器人和探测***

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336868A (ja) * 2005-06-02 2006-12-14 Robert Bosch Gmbh ドラムブレーキ
JP2008062306A (ja) * 2006-09-04 2008-03-21 Niigata Univ 脚型車輪型兼用移動装置
JP4590639B2 (ja) * 2006-09-04 2010-12-01 国立大学法人 新潟大学 脚型車輪型兼用移動装置
JP2010068654A (ja) * 2008-09-11 2010-03-25 Toyota Motor Corp 移動体、及びその制御方法
CN101508315B (zh) * 2009-03-24 2012-07-11 合肥翔瑞车库自动化设备有限公司 一种多肢移动机器人
CN102407892A (zh) * 2011-08-02 2012-04-11 王伟 锥足式稻田行走机及使用这种行走机的喷药装置
CN102407892B (zh) * 2011-08-02 2013-10-30 王伟 锥足式稻田行走机及使用这种行走机的喷药装置
JP2013230524A (ja) * 2012-04-27 2013-11-14 Vstone Kk 二足歩行ロボット
JP2017029141A (ja) * 2015-07-31 2017-02-09 伊東電機株式会社 草刈り機
CN108263820A (zh) * 2016-12-31 2018-07-10 力博重工科技股份有限公司 轮轨式输送机用小半径转弯输送小车
KR20180087521A (ko) * 2017-01-24 2018-08-02 한양대학교 산학협력단 4족보행로봇 제어방법
KR101908215B1 (ko) 2017-01-24 2018-10-16 한양대학교 산학협력단 4족보행로봇 제어방법
CN110123539A (zh) * 2019-05-06 2019-08-16 重庆大学 一种新型爬楼梯轮椅机器人
CN110206981A (zh) * 2019-07-03 2019-09-06 咸宁职业技术学院 一种物料搬运机器人
CN110666808A (zh) * 2019-08-30 2020-01-10 太原理工大学 一种双马八足行走机构防爆机器人
WO2021079578A1 (ja) * 2019-10-25 2021-04-29 ソニー株式会社 ロボット装置
CN112158273A (zh) * 2020-09-25 2021-01-01 东南大学 一种台阶自适应行走方法及装置
CN114918972A (zh) * 2022-07-06 2022-08-19 郑州大学 一种万向节和仿生机器人
CN114918972B (zh) * 2022-07-06 2023-10-13 郑州大学 一种万向节和仿生机器人
CN117944785A (zh) * 2024-03-25 2024-04-30 清华大学 探测机器人和探测***

Also Published As

Publication number Publication date
JP4304240B2 (ja) 2009-07-29

Similar Documents

Publication Publication Date Title
JP4304240B2 (ja) 脚型ロボットの安定歩行法、歩幅制御法、操舵法、およびその装置
US5739655A (en) Ambulatory robot and ambulation control method for same
JP6400046B2 (ja) 輸送装置
JP4590639B2 (ja) 脚型車輪型兼用移動装置
KR102360100B1 (ko) 발 구조체를 포함하는 외골격
AU2017220582A1 (en) Supporting structure
CN111204382A (zh) 一种轮腿结合的四足机器人
CN105835979A (zh) 多功能代步机
CN103230320A (zh) 一种可重构的轮腿复合式轮椅车
Nakajima Evaluation of the mobility performance of a personal mobility vehicle for steps
KR20040068438A (ko) 보행식 로봇 및 그 위치이동방법
CN108338895A (zh) 一种平面行走跟随支撑助力装置及方法
WO2017100898A1 (pt) Exoesqueleto camber de rodas para locomoção humana
JP2011140096A (ja) 重心移動装置を有する2足歩行ロボット及び重心移動方法
Böttcher Principles of robot locomotion
JP2016155216A (ja) 2足歩行ロボット用無限軌道装置
JP3528171B2 (ja) 移動ロボット装置及び移動ロボット装置の転倒制御方法
KR20220010651A (ko) 가변시트를 구비한 장애물 극복형 전동 휠체어
Nakajima Concept of a novel four-wheel-type mobile robot for rough terrain, RT-mover
Lu et al. Mechanical system and stable gait transformation of a leg-wheel hybrid transformable robot
JP4111134B2 (ja) 搭乗型ロボット
JP2003340763A (ja) 2足歩行ロボットの階段昇降方法及び2足歩行ロボット
JP2004097712A (ja) 四足歩行装置
Nakajima Development of four-wheel-type mobile robot for rough terrain and verification of its fundamental capability of moving on rough terrain
CN215245183U (zh) 一种履带底盘姿态调节装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A521 Written amendment

Effective date: 20061016

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20080319

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20090303

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees