JP2005082781A - Curable resin composition excellent in electroconductivity, its cured product and separator for fuel cell - Google Patents

Curable resin composition excellent in electroconductivity, its cured product and separator for fuel cell Download PDF

Info

Publication number
JP2005082781A
JP2005082781A JP2003319564A JP2003319564A JP2005082781A JP 2005082781 A JP2005082781 A JP 2005082781A JP 2003319564 A JP2003319564 A JP 2003319564A JP 2003319564 A JP2003319564 A JP 2003319564A JP 2005082781 A JP2005082781 A JP 2005082781A
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
weight
hydroxyl group
modified novolak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319564A
Other languages
Japanese (ja)
Inventor
Yasuhiro Komori
康広 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP2003319564A priority Critical patent/JP2005082781A/en
Publication of JP2005082781A publication Critical patent/JP2005082781A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a curable resin composition which has a short curing time, does not require postcure after molding and gives a molded article having a good surface state and excellent in electroconductivity, electric resistance, gas permeability, mechanical strengths and hot strength, and to provide its cured product and a separator for a fuel cell. <P>SOLUTION: The curable resin composition comprises a mixture of (A) a modified novolak-type phenolic resin bearing both a phenolic hydroxy group and a radically polymerizable unsaturated group in its structure with (B) a polyvalent oxazine compound bearing a plurality of oxazine rings in the molecule, (C) a radical polymerization initiator, and (D) a carbonaceous filler. The separator for the fuel cell is obtained by curing the curable resin composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、導電性に優れた硬化性樹脂組成物に関するものであり、更に詳しくは導電性に加えて耐熱性、耐蝕性に優れた硬化性樹脂組成物及びその硬化物、並びに燃料電池用セパレーターに関するものである。   The present invention relates to a curable resin composition excellent in conductivity, and more specifically, a curable resin composition excellent in heat resistance and corrosion resistance in addition to conductivity, a cured product thereof, and a separator for a fuel cell. It is about.

炭素系充填材と熱硬化性樹脂とからなる高伝導性素材は、導電性ペーストや低公害で高い発電効率を持つ次世代の発電装置として期待されている燃料電池のためのセパレーター等として広範囲な用途に使用されている。この燃料電池の種類としては、電解質の種類によりアルカリ型、りん酸型、固体高分子型、溶融炭酸塩型、固体電解質型などがある。これらの燃料電池には、水素含有ガスと酸素含有ガスとの電気化学反応により起電力を生ずる単位電池と積層された単位電池の隣り合う単位電池間に介在し、隣り合う単位電池双方の電極と接触して、これら単位電池間を電気的に接続すると共に、反応ガスを分離する作用をなす燃料電池用セパレーター(以下、セパレーター)とが備えられている。   Highly conductive materials composed of carbon-based fillers and thermosetting resins are widely used as conductive pastes and separators for fuel cells that are expected as next-generation power generators with low pollution and high power generation efficiency. Used for applications. As types of this fuel cell, there are alkaline type, phosphoric acid type, solid polymer type, molten carbonate type, solid electrolyte type, etc., depending on the type of electrolyte. These fuel cells are interposed between adjacent unit cells of a unit cell and a stacked unit cell that generate an electromotive force by an electrochemical reaction between a hydrogen-containing gas and an oxygen-containing gas, A fuel cell separator (hereinafter referred to as “separator”) that contacts and electrically connects the unit cells and separates the reaction gas is provided.

なかでも固体高分子型燃料電池は、他のタイプの燃料電池と比べて低温で作動するので、電池を構成する部品について材料面での腐食の心配が少ないばかりか、低温作動の割に比較的大電流を放電可能といった特徴をもち、家庭用定置型や車載用の内燃機関の代替として注目を集めている。   In particular, polymer electrolyte fuel cells operate at lower temperatures than other types of fuel cells, so there is less concern about material corrosion of the components that make up the cells, and relatively low for low temperature operation. It has the feature of being able to discharge large currents, and is attracting attention as an alternative to household stationary engines and in-vehicle internal combustion engines.

この固体高分子型燃料電池を構成する部品の中で、セパレーターは一般的に導電性平板の両面又は片面に複数の平行する溝を形成してなるもので、燃料電池セル内のガス拡散電極で発電した電気を外部へ伝達すると共に、発電の過程で生成した水を排水し、当該溝を燃料電池セルへ流入する反応ガスの流路として確保するという役割を担っている。   Among the components constituting this polymer electrolyte fuel cell, the separator is generally formed by forming a plurality of parallel grooves on both sides or one side of a conductive flat plate, and is a gas diffusion electrode in the fuel cell. It plays a role of transmitting the generated electricity to the outside, draining water generated in the process of power generation, and securing the groove as a flow path for the reaction gas flowing into the fuel cell.

炭素系充填材と熱硬化性樹脂とからなる高導電性素材は、過去に多くの検討がなされている。例えば、黒鉛とフェノール樹脂との組合せの提案(例えば特許文献1参照)が開示されているが、通常のフェノール樹脂を用いた場合、製造時の硬化時間が長く生産性に問題があるばかりでなく、硬化時に縮合水分や低分子物がガスとなって遊離し、成形品中に泡やピンホール、内部ボイドなどが発生する場合があるなど、特性的にもセパレーター用としては問題がある。   Many studies have been made in the past on highly conductive materials composed of carbon-based fillers and thermosetting resins. For example, a proposal of a combination of graphite and a phenol resin has been disclosed (for example, see Patent Document 1). However, when a normal phenol resin is used, not only has a problem of productivity due to a long curing time during production. The condensed moisture and low molecular weight substances are liberated as a gas upon curing, and there are cases where bubbles, pinholes, internal voids, and the like are generated in the molded product.

また、炭素充填材のバインダーとして、開環重合により硬化するフェノール樹脂との組合せの提案(特許文献2参照)がある。この系統のフェノール樹脂を用いるときは成形時の内部ボイド等は抑えられるが、成形後に200℃程度のアフターキュアを必要としており生産性に劣る。   Moreover, there exists a proposal of the combination with the phenol resin hardened | cured by ring-opening polymerization as a binder of a carbon filler (refer patent document 2). When this type of phenolic resin is used, internal voids during molding can be suppressed, but after-curing at about 200 ° C. is required after molding, resulting in poor productivity.

特開昭59−213610号公報JP 59-213610 A 特開平11−354135号公報Japanese Patent Laid-Open No. 11-354135

一般的に、樹脂量が多くなると常態強度は高くなるが導電性や耐熱性は低下する傾向にある。本発明は、硬化時間が短く、成形後のアフターキュアを必ずしも必要としないだけでなく、成形品の表面状態が良好であり、導電性に優れ、電気抵抗、ガス透過性、機械的強度特に80℃熱間強度に優れた硬化性樹脂組成物及びその硬化物、並びに燃料電池用セパレーターを提供するものである。   Generally, as the amount of resin increases, the normal strength increases but the conductivity and heat resistance tend to decrease. The present invention has a short curing time and does not necessarily require after-curing after molding, but also has a good surface condition of the molded product, excellent electrical conductivity, electrical resistance, gas permeability, mechanical strength, especially 80. A curable resin composition excellent in hot strength at 0 ° C., a cured product thereof, and a fuel cell separator are provided.

本発明は、
[1](A)フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂と(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物、(C)ラジカル重合開始剤及び(D)炭素充填材からなる硬化性樹脂組成物、
[2](A)成分であるフェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂と(B)成分である分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物において、上記フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂100重量部に対して分子内に複数のオキサジン環を持つ多価オキサジン化合物5〜200重量部である上記[1]に記載の硬化性樹脂組成物、
[3](A)変性ノボラック型フェノール樹脂成分と(B)多価オキサジン化合物成分の混合物の合計が5〜40重量部、(C)ラジカル重合開始剤成分が0.05〜10重量部、(D)炭素充填材成分が60〜95重量部からなる上記[1]または[2]に記載の硬化性樹脂組成物、
[4](A)成分であるフェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂が、ノボラック樹脂のフェノール性水酸基100当量に対して当量比20〜90当量当量のグリシジル(メタ)アクリレートを反応させることにより得られる変性ノボラック樹脂組成物である上記[1]〜[3]のいずれかに記載の硬化性樹脂組成物、
[5](A)成分であるフェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂が、ノボラック樹脂のフェノール性水酸基100当量に対して20〜200当量のN−メチロールアクリルアミドを反応させることにより得られる変性ノボラック樹脂である上記[1]〜[4]のいずれかに記載の硬化性樹脂組成物、
[6](C)成分であるラジカル重合開始剤が、有機過酸化物である上記[1]〜[5]のいずれかに記載の硬化性樹脂組成物
The present invention
[1] (A) a mixture of a modified novolak type phenol resin containing both a phenolic hydroxyl group and a radically polymerizable unsaturated group in the structure and (B) a polyvalent oxazine compound having a plurality of oxazine rings in the molecule; C) a curable resin composition comprising a radical polymerization initiator and (D) a carbon filler,
[2] A modified novolak type phenolic resin containing both a phenolic hydroxyl group and radically polymerizable unsaturated group as component (A) in the structure, and a polyvalent oxazine having a plurality of oxazine rings in the molecule as component (B) In a mixture with a compound, a polyvalent oxazine compound having a plurality of oxazine rings in the molecule with respect to 100 parts by weight of the modified novolak type phenol resin containing both the phenolic hydroxyl group and the radical polymerizable unsaturated group in the structure 5 to 5 The curable resin composition according to the above [1], which is 200 parts by weight,
[3] The total of the mixture of (A) the modified novolak type phenol resin component and (B) the polyvalent oxazine compound component is 5 to 40 parts by weight, (C) the radical polymerization initiator component is 0.05 to 10 parts by weight, D) The curable resin composition according to the above [1] or [2], wherein the carbon filler component comprises 60 to 95 parts by weight,
[4] The modified novolak-type phenol resin containing both the phenolic hydroxyl group and the radical polymerizable unsaturated group as component (A) in the structure has an equivalent ratio of 20 to 90 equivalents relative to 100 equivalents of the phenolic hydroxyl group of the novolak resin. The curable resin composition according to any one of the above [1] to [3], which is a modified novolak resin composition obtained by reacting an equivalent amount of glycidyl (meth) acrylate,
[5] The modified novolak-type phenol resin containing both the phenolic hydroxyl group and the radically polymerizable unsaturated group as component (A) in the structure is 20 to 200 equivalents of N to 100 equivalents of the phenolic hydroxyl group of the novolak resin. -Curable resin composition in any one of said [1]-[4] which is modified | denatured novolak resin obtained by making methylol acrylamide react.
[6] The curable resin composition according to any one of [1] to [5], wherein the radical polymerization initiator as the component (C) is an organic peroxide.

[7] 上記[1]〜[5]のいずれかに記載の硬化性樹脂組成物を硬化して得られた導電性硬化物、及び
[8] 上記[1]〜[5]のいずれかに記載の硬化性樹脂組成物を硬化して得られた燃料電池用セパレーター。
[7] A conductive cured product obtained by curing the curable resin composition according to any one of [1] to [5], and [8] any one of [1] to [5]. A fuel cell separator obtained by curing the curable resin composition described.

本発明の導電性に優れた硬化性樹脂組成物は、硬化時間が短く生産性に優れており、またその硬化物が導電性、耐蝕性、機械的強度、中でも耐熱性に優れ、例えば導電性ペースト、電気製品、機械部品、車両部品などの各種用途に広く適用可能であり、特に固体燃料電池用セパレーター用素材として非常に有用である。   The curable resin composition having excellent conductivity according to the present invention has a short curing time and excellent productivity, and the cured product has excellent conductivity, corrosion resistance, mechanical strength, and particularly heat resistance. It can be widely applied to various uses such as pastes, electrical products, machine parts, vehicle parts, etc., and is particularly useful as a material for separators for solid fuel cells.

本発明は(A)フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂と(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物、(C)ラジカル重合開始剤、(D)炭素充填材からなる導電性に優れた硬化性樹脂組成物及びその硬化物、並びに燃料電池用セパレーターを提供するものである。   The present invention relates to (A) a mixture of a modified novolak type phenol resin containing both a phenolic hydroxyl group and a radically polymerizable unsaturated group in the structure and (B) a polyvalent oxazine compound having a plurality of oxazine rings in the molecule; C) A radical polymerization initiator, (D) a curable resin composition excellent in electrical conductivity, a cured product thereof, and a separator for a fuel cell comprising a carbon filler.

本発明における(A)フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂としては、ノボラック樹脂のフェノール性水酸基100に対して20〜90当量、より好ましくは40〜75当量のグリシジル(メタ)アクリレートを反応させることにより得られる変性ノボラック樹脂や、ノボラック樹脂のフェノール性水酸基100当量に対して20〜200当量、より好ましくは40〜150当量のN−メチロールアクリルアミドを酸性触媒下で反応させることにより得られる変性ノボラック樹脂などが挙げられる。   In the present invention, (A) the modified novolak type phenol resin containing both a phenolic hydroxyl group and a radically polymerizable unsaturated group in the structure is 20 to 90 equivalents, more preferably 40 to the phenolic hydroxyl group 100 of the novolak resin. A modified novolak resin obtained by reacting ˜75 equivalents of glycidyl (meth) acrylate, or 20 to 200 equivalents, more preferably 40 to 150 equivalents of N-methylolacrylamide with respect to 100 equivalents of the phenolic hydroxyl group of the novolak resin. Examples thereof include a modified novolak resin obtained by reacting under an acidic catalyst.

ノボラック樹脂のフェノール性水酸基100当量に対して20当量未満のグリシジル(メタ)アクリレートまたはN−メチロールアクリルアミドを反応させることにより得られる変性ノボラック樹脂であるときは、不飽和基が少ないために架橋密度の低下により機械的強度が劣る。   When the modified novolak resin is obtained by reacting less than 20 equivalents of glycidyl (meth) acrylate or N-methylolacrylamide with respect to 100 equivalents of the phenolic hydroxyl group of the novolak resin, the crosslinking density is low due to the small number of unsaturated groups. The mechanical strength is inferior due to the decrease.

一方、ノボラック樹脂のフェノール性水酸基100当量に対して90当量より多いグリシジル(メタ)アクリレートを反応させることにより得られる変性ノボラック樹脂の場合、フェノール性の水酸基が少なくなり、そのため炭素充填材との密着性の低下と硬化時の流れが悪くなり硬化物の機械的強度が低下してしまう。   On the other hand, in the case of a modified novolak resin obtained by reacting more than 90 equivalents of glycidyl (meth) acrylate with 100 equivalents of phenolic hydroxyl group of novolak resin, the phenolic hydroxyl group is reduced, and thus the adhesion to the carbon filler is reduced. The deterioration of the property and the flow at the time of curing become worse, and the mechanical strength of the cured product is lowered.

(A)変性ノボラック型フェノール樹脂成分と(B)多価オキサジン化合物成分の混合物の合計が5〜40重量部 また。ノボラック樹脂のフェノール性水酸基100当量に対して200当量より多いN−メチロールアクリルアミドを反応させることにより得られる変性ノボラック樹脂の場合、N−メチロールアクリルアミド同士の縮合反応が進行し低分子化合物の増加してしまい、結果として硬化物の機械的強度が低下してしまう。 The total of the mixture of (A) the modified novolac type phenol resin component and (B) the polyvalent oxazine compound component is 5 to 40 parts by weight. In the case of a modified novolak resin obtained by reacting more than 200 equivalents of N-methylolacrylamide with 100 equivalents of phenolic hydroxyl group of novolak resin, the condensation reaction between N-methylolacrylamides proceeds and the number of low molecular compounds increases. As a result, the mechanical strength of the cured product decreases.

尚ここで本発明におけるラジカル重合性不飽和基とは、分子の末端または炭素鎖の中間にラジカル重合活性を有する二重結合を有するものであればよく、この様な結合としてはビニル基、アリル基などが挙げられる。   Here, the radical polymerizable unsaturated group in the present invention may be any one having a double bond having radical polymerization activity at the end of the molecule or in the middle of the carbon chain. Groups and the like.

本発明における(B)多価オキサジン化合物としては分子内に複数のオキサジン環を持つ多価オキサジン化合物としては、下記一般式(1)で示されるものが好適である。   As the polyvalent oxazine compound (B) in the present invention, those represented by the following general formula (1) are preferred as the polyvalent oxazine compound having a plurality of oxazine rings in the molecule.


(式中のRは水素又は炭化水素基である)

(Wherein R 1 is hydrogen or a hydrocarbon group)

上記式(1)で示される化学構造単位において、Rで示される炭化水素基としては、メチル基、エチル基、シクロヘキシル基、フェニル基、置換フェニル基等の炭素原子数1〜10の炭化水素基が挙げられる。また、置換フェニレン環に結合する水素の代わりに置換される置換基としてはメチル基、エチル基、プロピル基等特に制限はない。 In the chemical structural unit represented by the above formula (1), the hydrocarbon group represented by R 1 is a hydrocarbon having 1 to 10 carbon atoms such as a methyl group, an ethyl group, a cyclohexyl group, a phenyl group, or a substituted phenyl group. Groups. Further, the substituent substituted in place of hydrogen bonded to the substituted phenylene ring is not particularly limited, such as a methyl group, an ethyl group, and a propyl group.

前記分子内に複数のオキサジン環を持つ多価オキサジン化合物は、例えば、フェノール性水酸基を有する化合物、ホルムアルデヒド類及び第1級アミンを溶剤中において反応させて合成することができる。これら材料から分子内に複数のオキサジン環を持つ多価オキサジン化合物を合成する方法としては、フェノール性水酸基を有する化合物と第1級アミン及び溶剤を仕込み、ついでホルムアルデヒド類を約70〜110℃の反応温度で、約20〜120分反応させ、その後120℃以下の温度で減圧下に脱溶剤して製造する方法が好ましい。   The polyvalent oxazine compound having a plurality of oxazine rings in the molecule can be synthesized, for example, by reacting a compound having a phenolic hydroxyl group, formaldehydes and a primary amine in a solvent. As a method for synthesizing a polyvalent oxazine compound having a plurality of oxazine rings in the molecule from these materials, a compound having a phenolic hydroxyl group, a primary amine and a solvent are charged, and then a formaldehyde is reacted at about 70 to 110 ° C. A method of producing by reacting at a temperature for about 20 to 120 minutes and then removing the solvent under reduced pressure at a temperature of 120 ° C. or lower is preferred.

該フェノール性水酸基を有する化合物としては、例えばビス(4−ヒドロキシフェニル)メタン〔ビスフェノールF〕、2、2−ビス(4−ヒドロキシフェニル)プロパン〔ビスフェノールA〕、ビス(4−ヒドロキシフェニル)スルホン〔ビスフェノールS〕などのビスフェノール化合物、トリスフェノール化合物、テトラフェノール化合物などの低分子フェノール化合物や、フェノール樹脂を挙げることができる。   Examples of the compound having a phenolic hydroxyl group include bis (4-hydroxyphenyl) methane [bisphenol F], 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) sulfone [ Examples thereof include bisphenol compounds such as bisphenol S], low molecular phenol compounds such as trisphenol compounds and tetraphenol compounds, and phenol resins.

前記第1級アミンの例としては、メチルアミン、エチルアミン、ブチルアミン、プロピルアミン、シクロヘキシルアミン等の脂肪族アミン類、アニリン、トルイジン等の芳香族アミンなどが挙げられる。耐熱面から、芳香族アミンが好ましい。ホルムアルデヒド類としては、ホルムアルデヒドの他、ホルマリン、パラホルムアルデヒドなどを用いることができる。   Examples of the primary amine include aliphatic amines such as methylamine, ethylamine, butylamine, propylamine and cyclohexylamine, and aromatic amines such as aniline and toluidine. An aromatic amine is preferable from the viewpoint of heat resistance. As formaldehydes, formalin, paraformaldehyde, etc. can be used in addition to formaldehyde.

本発明において、(A)フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂と(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物において、上記(A)フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂100重量部に対して(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物が5〜200重量部、好ましくは20〜120重量部が好適である。(A)変性ノボラック型フェノール樹脂100重量部に対し(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物が5重量部未満であると耐熱性が十分に改善されず、また(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物が200重量部を超えると硬化が遅く機械的強度が十分に発揮されない。   In the present invention, (A) a mixture of a modified novolak type phenol resin containing both a phenolic hydroxyl group and a radically polymerizable unsaturated group in the structure and (B) a polyvalent oxazine compound having a plurality of oxazine rings in the molecule The (A) polyvalent oxazine compound having a plurality of oxazine rings in the molecule (B) with respect to 100 parts by weight of the modified novolak type phenol resin containing both the phenolic hydroxyl group and the radical polymerizable unsaturated group in the structure. 5 to 200 parts by weight, preferably 20 to 120 parts by weight is suitable. When the amount of the polyvalent oxazine compound having a plurality of oxazine rings in the molecule is less than 5 parts by weight with respect to 100 parts by weight of the (A) modified novolak type phenol resin, the heat resistance is not sufficiently improved, and (B) When the polyvalent oxazine compound having a plurality of oxazine rings in the molecule exceeds 200 parts by weight, the curing is slow and the mechanical strength is not sufficiently exhibited.

本発明において、(A)フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂と(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物形状は粉末−粉末状、液−液状、固形溶融物、液−粉末状等であってよく、特に制限はない。   In the present invention, (A) a modified novolak type phenolic resin containing both a phenolic hydroxyl group and a radically polymerizable unsaturated group in the structure, and (B) a polyvalent oxazine compound having a plurality of oxazine rings in the molecule is powder- There may be no powder, liquid-liquid, solid melt, liquid-powder, and the like.

本発明における(A)ノボラック樹脂とグリシジル(メタ)アクリレートとの反応は、触媒を用いる公知慣用の方法により、70℃〜150℃、好ましくは75℃〜100℃の温度範囲で行い樹脂を合成することができる。この合成の際には、反応中のゲル化を防止する目的や生成物の保存安定性、更には硬化性の調整の目的で重合禁止剤を用いても良い。触媒としては特に限定されないが、塩基性触媒が好ましく、特にエポキシ基と反応性を有する第2級アミンまたは分子内第3級アミン基と水酸基の両方を有する化合物を使用することが好ましい。
固体高分子型燃料電池用としては、アミン類が水分などによりセパレーターから溶出する可能性があり、これがあるとガス拡散層の触媒の劣化を招くため好ましくなく、このためグリシジル(メタ)アクリレートと反応し、硬化した後では樹脂骨格内に入り固定化される触媒が好ましい。
The reaction of (A) the novolak resin and glycidyl (meth) acrylate in the present invention is carried out in a temperature range of 70 ° C. to 150 ° C., preferably 75 ° C. to 100 ° C., by a conventional method using a catalyst to synthesize the resin. be able to. In this synthesis, a polymerization inhibitor may be used for the purpose of preventing gelation during the reaction, the storage stability of the product, and the adjustment of curability. Although it does not specifically limit as a catalyst, A basic catalyst is preferable and it is preferable to use the compound which has a secondary amine especially reactive with an epoxy group, or an intramolecular tertiary amine group and a hydroxyl group.
For polymer electrolyte fuel cells, amines may elute from the separator due to moisture, etc., and this is not preferable because it causes deterioration of the catalyst in the gas diffusion layer. Therefore, it reacts with glycidyl (meth) acrylate. Then, after curing, a catalyst that enters the resin skeleton and is immobilized is preferable.

また(A)ノボラック樹脂とN−メチロールアクリルアミドとの反応においては、前記のグリシジル(メタ)アクリレートにおけると同様に、触媒を用いて70℃〜150℃、好ましくは75℃〜100℃の温度範囲で樹脂化反応をすることができる。触媒としては特に限定されるものではないがこの場合には酸性触媒が好ましい。樹脂を合成する際には、反応中のゲル化を防止する目的や、生成物の保存安定性、更には硬化性の調整の目的で重合禁止剤を用いても良い。   In the reaction of (A) the novolak resin and N-methylolacrylamide, as in the above glycidyl (meth) acrylate, the catalyst is used in the temperature range of 70 ° C. to 150 ° C., preferably 75 ° C. to 100 ° C. A resinification reaction can be performed. Although it does not specifically limit as a catalyst, In this case, an acidic catalyst is preferable. In synthesizing the resin, a polymerization inhibitor may be used for the purpose of preventing gelation during the reaction, the storage stability of the product, and the adjustment of curability.

本発明における(C)ラジカル重合開始剤としては、有機過酸化物、アゾビス系化合物等のラジカル重合開始剤が挙げられる。有機過酸化物としては、ジアルキルパーオキサイド、アシルパーオキサイド、ハイドロパーオキサイド、ケトンパーオキサイド、パーオキシエステルなど公知のものを用いることができる。具体例としては、ベンゾイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサネート、2,5−ジメチル−2,5ジ(2−エチルヘキサノイル)パーオキシヘキサン、t−ブチルパーオキシベンゾエート、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキシド、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5ジブチルパーオキシヘキサンなどが挙げられ、アゾビス系化合物としてはアゾビスイソブチロニトリルその他のアゾビス系重合開始剤を挙げることができる。これらのラジカル重合開始剤は1種でもよく、2種以上混合して用いても良い。また、その配合割合は(A)変性ノボラック型フェノール樹脂成分と(B)多価オキサジン化合物成分の混合物の合計が100重量部に対して0.05〜10重量部がよく、より好ましくは0.1〜5重量部である。   Examples of the radical polymerization initiator (C) in the present invention include radical polymerization initiators such as organic peroxides and azobis compounds. As the organic peroxide, known ones such as dialkyl peroxide, acyl peroxide, hydroperoxide, ketone peroxide, and peroxyester can be used. Specific examples include benzoyl peroxide, t-butylperoxy-2-ethylhexanate, 2,5-dimethyl-2,5 di (2-ethylhexanoyl) peroxyhexane, t-butylperoxybenzoate, t -Butyl hydroperoxide, cumene hydroperoxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-dibutylperoxyhexane and the like. As the azobis compounds, azobisiso Examples thereof include butyronitrile and other azobis-based polymerization initiators. These radical polymerization initiators may be used alone or in combination of two or more. The blending ratio is 0.05 to 10 parts by weight with respect to 100 parts by weight of the total of the mixture of the (A) modified novolak type phenol resin component and the (B) polyvalent oxazine compound component, more preferably 0.8. 1 to 5 parts by weight.

本発明における(D)炭素充填材としては導電性を有する炭素質物質であれば良く、カーボンブラック、人造黒鉛、天然黒鉛、カーボンファイバー、カーボン短繊維、グラッシーカーボンなど及びこれらの2種類またはそれ以上の複合物を用いることができる。これらの中で特に黒鉛粉末を用いることが好ましい。黒鉛粉末としては平均粒径が3〜200μmのものが好ましい。また、その配合割合は(A)変性ノボラック型フェノール樹脂成分と(B)多価オキサジン化合物成分の混合物の合計が5〜40重量部に対して60〜95重量部がよく、より好ましくは70〜90重量部である。60重量部未満であると電気特性が劣り好ましくなく、95重量部より多くなると樹脂成分が少なくなりすぎて機械的強度が低下してしまう。   In the present invention, the carbon filler (D) may be any carbonaceous material having electrical conductivity, such as carbon black, artificial graphite, natural graphite, carbon fiber, carbon short fiber, glassy carbon, and the like, or two or more of these. These composites can be used. Of these, graphite powder is particularly preferred. The graphite powder preferably has an average particle size of 3 to 200 μm. Further, the blending ratio is preferably 60 to 95 parts by weight, more preferably 70 to 95 parts by weight based on 5 to 40 parts by weight of the total of the mixture of the (A) modified novolak type phenol resin component and (B) polyvalent oxazine compound component. 90 parts by weight. If the amount is less than 60 parts by weight, the electrical properties are inferior, which is not preferable. If the amount exceeds 95 parts by weight, the resin component becomes too small and the mechanical strength decreases.

本発明の硬化性樹脂組成物は、(A)変性ノボラック型フェノール樹脂、(B)多価オキサジン化合物、(C)ラジカル重合開始剤及び(D)炭素充填材のほかに、ラジカル重合可能な一般的なビニルエステル樹脂や(メタ)アクリル酸エステルモノマー、具体的にはフェノキシエチルメタクリレート、イソボニルメタクリレート、ベンジルメタクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,6−ヘキサンジオールジアクリレート等やフェノール性水酸基との反応可能なエポキシ基含有するエポキシ樹脂などの化合物やイソシアネート基含有の化合物等(以下これらを一括して「第三モノマー」という。)との併用も可能である。第三モノマーの配合比は(A)フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂と(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物100重量部に対し150重量部以下であり、これらの総合計したものが、(A)+(B)成分として硬化性樹脂組成物中に5〜40重量部配合されることになる。   In addition to (A) a modified novolak type phenol resin, (B) a polyvalent oxazine compound, (C) a radical polymerization initiator, and (D) a carbon filler, the curable resin composition of the present invention is capable of radical polymerization. Vinyl ester resins and (meth) acrylic acid ester monomers, specifically phenoxyethyl methacrylate, isobornyl methacrylate, benzyl methacrylate, dicyclopentenyloxyethyl (meth) acrylate, trimethylolpropane di (meth) acrylate, glycerin diester Compounds such as (meth) acrylates, 1,6-hexanediol diacrylate, epoxy resins containing epoxy groups capable of reacting with phenolic hydroxyl groups, and compounds containing isocyanate groups (hereinafter these are collectively referred to as “third monomer”) Can also be used in combination with That. The blending ratio of the third monomer is (A) a modified novolak type phenol resin containing both a phenolic hydroxyl group and a radical polymerizable unsaturated group in the structure, and (B) a polyvalent oxazine compound having a plurality of oxazine rings in the molecule. 150 parts by weight or less with respect to 100 parts by weight of the mixture, and the total sum of these is 5 to 40 parts by weight in the curable resin composition as the component (A) + (B).

本発明の硬化性樹脂組成物を得るには、上記各成分をロール、ニーダー、バンバリミキサー、ヘンシェルミキサー、プラネタリミキサーなど樹脂分野で一般的に用いられている混合機を使用し、なるべく均一に混合させるのが好ましい。   In order to obtain the curable resin composition of the present invention, the above components are mixed as uniformly as possible using a mixer generally used in the resin field such as a roll, a kneader, a Banbury mixer, a Henschel mixer, and a planetary mixer. It is preferable to do so.

本発明の硬化性樹脂組成物は(A)変性ノボラック型フェノール樹脂成分中にラジカル重合性の不飽和基を有するため、ラジカル重合開始剤の存在により硬化が早く、生産性を向上させることができる。この不飽和基のラジカル重合性分は樹脂骨格中に含まれるためフェノール樹脂特有の脆さが解消され、高強度(靭性)な硬化物を得ることができる。耐熱性としては通常のフェノール樹脂に匹敵するものであり、フェノール樹脂を用いているためラジカル重合のみの硬化物に比して耐熱性は優れている。
また変性ノボラック樹脂中にフェノール性水酸基を残すことにより、オキサジン環の開環重合時の触媒作用をもたらし、硬化を早くするとともにフェノール樹脂と反応させて耐熱性が向上する。
Since the curable resin composition of the present invention has a radical polymerizable unsaturated group in the (A) modified novolak type phenol resin component, the presence of the radical polymerization initiator allows the curing to be quick and the productivity to be improved. . Since the radically polymerizable component of the unsaturated group is contained in the resin skeleton, the brittleness unique to the phenol resin is eliminated, and a cured product having high strength (toughness) can be obtained. The heat resistance is comparable to that of a normal phenol resin. Since the phenol resin is used, the heat resistance is superior to a cured product obtained only by radical polymerization.
Further, leaving the phenolic hydroxyl group in the modified novolak resin brings about a catalytic action at the time of ring-opening polymerization of the oxazine ring, accelerates curing and improves the heat resistance by reacting with the phenol resin.

本発明の導電性硬化物としては、体積固有抵抗が50mΩcm以下が好ましく、より好ましくは30mΩcm以下である。また、強度としては45MPa以上が好ましい。また、80℃熱間曲げ強度としては40MPa以上が好ましい。更に、表面状態も重要であり、表面状態が悪いと長期耐久性に悪影響を及ぼす可能性があるため、成形板表面は凹凸の無いことが好ましい。   The conductive cured product of the present invention preferably has a volume resistivity of 50 mΩcm or less, more preferably 30 mΩcm or less. Further, the strength is preferably 45 MPa or more. The 80 ° C. hot bending strength is preferably 40 MPa or more. Furthermore, the surface state is also important, and if the surface state is poor, the long-term durability may be adversely affected. Therefore, it is preferable that the surface of the molded plate has no irregularities.

以下に本発明を実施例によりさらに詳細に説明するが、本発明は実施例に何ら限定されるものではない。測定方法を以下に示す。
体積固有抵抗はJIS H0602に準拠し、4端子測定法により測定した。曲げ強度はJIS K6911に準拠し曲げ強度及び曲げ弾性率を測定した。80℃熱間曲げ強度は、80℃の恒温槽に試験片を30分間保持し、その後80℃の恒温槽中でJIS K6911に準拠し曲げ強度及び曲げ弾性率を測定した。
(合成例1)
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the examples. The measuring method is shown below.
The volume resistivity was measured by a four-terminal measurement method according to JIS H0602. Flexural strength and flexural modulus were measured in accordance with JIS K6911. The 80 ° C. hot bending strength was obtained by holding the test piece in an 80 ° C. constant temperature bath for 30 minutes, and then measuring the bending strength and bending elastic modulus in accordance with JIS K6911 in the 80 ° C. constant temperature bath.
(Synthesis Example 1)

温度計、攪拌機、ジムロート冷却管を備えた3口セパラブルフラスコにポリスチレン換算重量平均分子量が3000のノボラック型フェノール樹脂100重量部、メチルエチルケトン100重量部、グリシジルメタクリレート101重量部、ジメチルエタノールアミン2重量部を仕込み、80℃で7時間反応させた。この時のノボラック型フェノール樹脂のフェノール性水酸基当量とグリシジル(メタ)アクリレートの当量比は約100:75である。その後、減圧下にて溶媒を除去することによりポリスチレン換算重量平均分子量6000の変性ノボラック樹脂を得た。
(合成例2)
A three-neck separable flask equipped with a thermometer, a stirrer, and a Dimroth condenser, 100 parts by weight of a novolak type phenol resin having a polystyrene equivalent weight average molecular weight of 3000, 100 parts by weight of methyl ethyl ketone, 101 parts by weight of glycidyl methacrylate, 2 parts by weight of dimethylethanolamine And reacted at 80 ° C. for 7 hours. At this time, the equivalent ratio of the phenolic hydroxyl group equivalent to the glycidyl (meth) acrylate of the novolac type phenol resin is about 100: 75. Thereafter, the solvent was removed under reduced pressure to obtain a modified novolak resin having a polystyrene-equivalent weight average molecular weight of 6000.
(Synthesis Example 2)

ポリスチレン換算重量平均分子量が約370のノボラック型フェノール樹脂100重量部を用い、グリシジルメタクリレート68重量部、反応触媒としてジメチルアミンを用いること以外は合成例1と同様の条件で合成を行った。この時のノボラック型フェノール樹脂のフェノール性水酸基当量とグリシジルメタクリレートの当量比は約100:50である。このとき、ポリスチレン換算重量平均分子量600の変性ノボラック樹脂を得た。
(合成例3)
The synthesis was performed under the same conditions as in Synthesis Example 1 except that 100 parts by weight of a novolak type phenol resin having a polystyrene-equivalent weight average molecular weight of about 370 was used, 68 parts by weight of glycidyl methacrylate, and dimethylamine as a reaction catalyst. At this time, the equivalent ratio of the phenolic hydroxyl group equivalent to the glycidyl methacrylate of the novolak type phenol resin is about 100: 50. At this time, a modified novolak resin having a weight average molecular weight of 600 in terms of polystyrene was obtained.
(Synthesis Example 3)

ポリスチレン換算重量平均分子量が3000のノボラック型フェノール樹脂100重量部を用い、Nメチロールアクリルアミド144重量部、反応触媒としてパラトルエンスルホン酸1重量部を用いること以外は合成例1と同様の条件で合成を行った。この時のノボラック型フェノール樹脂のフェノール性水酸基当量とN−メチロールアクリルアミドの当量比は約100:150である。このとき、ポリスチレン換算重量平均分子量5000の変性ノボラック樹脂を得た。
(合成例4)
The synthesis was carried out under the same conditions as in Synthesis Example 1 except that 100 parts by weight of novolak type phenol resin having a weight average molecular weight of 3000 in terms of polystyrene was used, 144 parts by weight of N-methylolacrylamide, and 1 part by weight of paratoluenesulfonic acid as a reaction catalyst. went. At this time, the equivalent ratio of the phenolic hydroxyl group equivalent of the novolak type phenol resin to N-methylol acrylamide is about 100: 150. At this time, a modified novolak resin having a weight average molecular weight of 5000 in terms of polystyrene was obtained.
(Synthesis Example 4)

ポリスチレン換算重量平均分子量が3000のノボラック型フェノール樹脂100重量部を用い、Nメチロールアクリルアミド72重量部、反応触媒としてパラトルエンスルホン酸1重量部を用いること以外は合成例1と同様の条件で合成を行った。この時のノボラック型フェノール樹脂のフェノール性水酸基当量とN−メチロールアクリルアミドの当量比は約100:75である。このとき、ポリスチレン換算重量平均分子量5000の変性ノボラック樹脂を得た。
(実施例1)
The synthesis was carried out under the same conditions as in Synthesis Example 1 except that 100 parts by weight of novolak type phenol resin having a weight average molecular weight of 3000 in terms of polystyrene was used, 72 parts by weight of N-methylolacrylamide, and 1 part by weight of paratoluenesulfonic acid as a reaction catalyst. went. At this time, the equivalent ratio of the phenolic hydroxyl group equivalent of the novolak type phenol resin to N-methylolacrylamide is about 100: 75. At this time, a modified novolak resin having a weight average molecular weight of 5000 in terms of polystyrene was obtained.
(Example 1)

分子内に複数のオキサジン環を持つ多価オキサジン化合物としてはビスフェノールA型ベンゾオキサジン(四国化成工業社製)を用いた。   Bisphenol A-type benzoxazine (manufactured by Shikoku Kasei Kogyo Co., Ltd.) was used as the polyvalent oxazine compound having a plurality of oxazine rings in the molecule.

表1の配合に従って、成分Aとして合成例1にて合成した変性ノボラック樹脂、成分Bとしてジクミルパーオキサイド、成分Cとして人造黒鉛(平均粒径35μm)を70℃の小型ニーダーにて30分間混合し、樹脂組成物を得た。この配合物を180℃で3分間加圧加熱成形して作成した厚さ4mm、幅10mm、長さ100mmの試験片を用いて曲げ強度を測定した。さらに、図1に示す最大厚み2.0mm、最小厚み1.0mm、溝深さ1.0mm、溝幅2mm、条幅2mmの薄板(セパレーター)を試作した。硬化条件は180℃で3分であり、アフターキュアは行わなかった。ここで得られた薄板は体積固有抵抗が6mΩcmであり、燃料電池用セパレーターに要求される特性を充分満足していた。また、成形性を見るため図1に示す、最大厚み2.0mm、最小厚み1.0mm、溝深さ1.0mm、溝幅2mm、条幅2mmの薄板作製時の180℃−1分以内での脱型の可否の確認を行なった。その結果を表1に示す。
(実施例2〜6)
According to the composition of Table 1, the modified novolak resin synthesized in Synthesis Example 1 as Component A, dicumyl peroxide as Component B, and artificial graphite (average particle size 35 μm) as Component C were mixed for 30 minutes in a small kneader at 70 ° C. Thus, a resin composition was obtained. The bending strength was measured using a test piece having a thickness of 4 mm, a width of 10 mm, and a length of 100 mm, which was prepared by pressurizing and heating the blend at 180 ° C. for 3 minutes. Further, a thin plate (separator) having a maximum thickness of 2.0 mm, a minimum thickness of 1.0 mm, a groove depth of 1.0 mm, a groove width of 2 mm, and a strip width of 2 mm shown in FIG. The curing condition was 3 minutes at 180 ° C., and no after cure was performed. The thin plate thus obtained had a volume resistivity of 6 mΩcm and sufficiently satisfied the characteristics required for a fuel cell separator. Further, in order to check the moldability, the maximum thickness of 2.0 mm, the minimum thickness of 1.0 mm, the groove depth of 1.0 mm, the groove width of 2 mm, and the strip width of 2 mm shown in FIG. It was confirmed whether or not demolding was possible. The results are shown in Table 1.
(Examples 2 to 6)

実施例1と同様にして、表1に示す配合にて厚さ4mm、幅10mm、長さ100mmの試験片と最大厚み2.0mm、最小厚み1.0mm、溝深さ1.0mm、溝幅2mm、条幅2mmの薄板を作成し、評価を行った。その結果を表1に示す。   In the same manner as in Example 1, a test piece having a thickness of 4 mm, a width of 10 mm, and a length of 100 mm and a maximum thickness of 2.0 mm, a minimum thickness of 1.0 mm, a groove depth of 1.0 mm, and a groove width in the composition shown in Table 1 A thin plate having a width of 2 mm and a width of 2 mm was prepared and evaluated. The results are shown in Table 1.


(比較例1〜3)

(Comparative Examples 1-3)

表2に示す配合(実施例1における混合物に代え、比較例1〜2においては多価オキサジン化合物を配合せずに変性ノボラック型フェノール樹脂のみを用い、比較例3においては変性ノボラック型フェノール樹脂を用いずに多価オキサジン化合物のみを用いた。)にて厚さ4mm、幅10mm、長さ100mmの試験片と最大厚み2.0mm、最小厚み1.0mm、溝深さ1.0mm、溝幅2mm、条幅2mmの薄板を作成し、評価を行った。その結果を表2に示す。なお比較例3は硬化不良を生じてしまい試験片を作製することができなかった。
(比較例4〜5)
Formulation shown in Table 2 (in place of the mixture in Example 1, in Comparative Examples 1 and 2, only the modified novolac type phenol resin was used without compounding the polyvalent oxazine compound, and in Comparative Example 3, the modified novolac type phenol resin was used. Only a polyvalent oxazine compound was used.) A test piece having a thickness of 4 mm, a width of 10 mm, and a length of 100 mm, a maximum thickness of 2.0 mm, a minimum thickness of 1.0 mm, a groove depth of 1.0 mm, and a groove width. A thin plate having a width of 2 mm and a width of 2 mm was prepared and evaluated. The results are shown in Table 2. In Comparative Example 3, poor curing occurred and a test piece could not be prepared.
(Comparative Examples 4-5)

比較例4は、多価オキサジン化合物に代えフェノール樹脂(レゾール型フェノール樹脂、商品名BRL−274、昭和高分子株式会社製、樹脂固形分76%)を用いる以外は実施例1と同様に、また比較例5は変性ノボラック型フェノール樹脂に代え通常のノボラック型フェノール樹脂を、表2に示す配合にて厚さ4mm、幅10mm、長さ100mmの試験片と最大厚み2.0mm、最小厚み1.0mm、溝深さ1.0mm、溝幅2mm、条幅2mmの薄板を作成し、評価を行った。その結果を表2に示す。ただし、表中のフェノール樹脂使用部数は樹脂固形分換算した値とした。結果、硬化不良を生じてしまい試験片を作製することができなかった。   Comparative Example 4 is the same as in Example 1 except that a phenol resin (resol type phenol resin, trade name BRL-274, Showa Polymer Co., Ltd., resin solid content 76%) is used instead of the polyvalent oxazine compound. In Comparative Example 5, a normal novolak type phenol resin was used instead of the modified novolak type phenol resin, and a test piece having a thickness of 4 mm, a width of 10 mm and a length of 100 mm, a maximum thickness of 2.0 mm and a minimum thickness of 1. A thin plate having a thickness of 0 mm, a groove depth of 1.0 mm, a groove width of 2 mm, and a strip width of 2 mm was prepared and evaluated. The results are shown in Table 2. However, the number of phenol resin parts used in the table was a value converted to resin solids. As a result, poor curing occurred and a test piece could not be prepared.


比較例6はレゾール樹脂中の水分や縮合水のためラジカル重合が進行せず。
比較例7は硬化時間が短すぎるためやや硬化不良。

In Comparative Example 6, radical polymerization does not proceed due to water or condensed water in the resole resin.
In Comparative Example 7, the curing time is too short, so the curing is slightly poor.

上記の実施例及び比較例で得た成形体の粘弾性を測定した。
測定試料としては、180℃で3分間加圧、加熱成形して作製した厚さ4mm、幅10mm、長さ50mmの実施例2(図2)と比較例1(図3)の成形体を用いた。動的粘弾性測定の条件は、昇温速度2.0℃/分、周波数1Hzで50℃から250℃まで昇温した。そのときの、貯蔵弾性率E’とtanδ(損失弾性率と動的弾性率の比)を示す。測定装置は強制振動型粘弾性測定装置(オリエンテック社製、レオバイブロンIII型)を用いた。
比較例1の資料においては80℃付近から貯蔵弾性率E’の低下が見られるが、実施例2の資料では、およそ150℃付近までは貯蔵弾性率E’の低下は見られず、従って本発明品の耐熱性がフェノール樹脂並みであることがわかる。
以上からも本発明の硬化性樹脂組成物は、ラジカル重合性の速硬化性を有する上、その硬化体はフェノール樹脂とほぼ匹敵する耐熱性を兼ね備えた非常に優れた硬化物が与えられるものである。
The viscoelasticity of the molded bodies obtained in the above examples and comparative examples was measured.
As a measurement sample, the molded body of Example 2 (FIG. 2) and Comparative Example 1 (FIG. 3) having a thickness of 4 mm, a width of 10 mm, and a length of 50 mm produced by pressurizing and thermoforming at 180 ° C. for 3 minutes is used. It was. The dynamic viscoelasticity measurement was performed by raising the temperature from 50 ° C. to 250 ° C. at a heating rate of 2.0 ° C./min and a frequency of 1 Hz. The storage elastic modulus E ′ and tan δ (ratio of loss elastic modulus and dynamic elastic modulus) at that time are shown. The measurement apparatus used was a forced vibration type viscoelasticity measurement apparatus (Orientec Co., Ltd., Leo Vibron III type).
In the data of Comparative Example 1, the storage elastic modulus E ′ decreases from about 80 ° C., but in the data of Example 2, the storage elastic modulus E ′ does not decrease up to about 150 ° C. It can be seen that the heat resistance of the invention is comparable to that of phenolic resin.
In view of the above, the curable resin composition of the present invention has radically polymerizable fast curability, and the cured product is provided with a very excellent cured product having heat resistance almost comparable to that of a phenol resin. is there.

本発明の硬化性樹脂組成物は、硬化時間が短く生産性に優れ、ガスの発生が少なく内部ボイドの発生に少ない硬化性樹脂組成物を生産性高く製造できるものであり、それからは耐熱性、耐蝕性、耐酸化性、耐薬品性、曲げ強度、曲げ弾性率等の機械的性質に優れ並びに体積固有抵抗が小さいなどの特性のある硬化物が得られるので耐酸化性、耐薬品性、耐食性などを必要とする硬化体、特に燃料電池用セパレーターとして利用可能なものである。   The curable resin composition of the present invention is capable of producing a curable resin composition with a short curing time, excellent productivity, low gas generation and low internal void generation with high productivity. A cured product with excellent mechanical properties such as corrosion resistance, oxidation resistance, chemical resistance, bending strength, flexural modulus, and low volume resistivity can be obtained, resulting in oxidation resistance, chemical resistance, and corrosion resistance. Can be used as a separator for a fuel cell, particularly a fuel cell separator.

実施例及び比較例で成形した燃料電池用セパレーターの斜視図The perspective view of the separator for fuel cells shape | molded by the Example and the comparative example 実施例2において成形した成形体の粘弾性曲線Viscoelastic curve of the molded body molded in Example 2 比較例1において成形した成形体の粘弾性曲線Viscoelastic curve of the molded body molded in Comparative Example 1

Claims (8)

(A)フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂と(B)分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物、(C)ラジカル重合開始剤及び(D)炭素充填材からなる硬化性樹脂組成物。 (A) A mixture of a modified novolak-type phenol resin containing both a phenolic hydroxyl group and a radically polymerizable unsaturated group in the structure and (B) a polyvalent oxazine compound having a plurality of oxazine rings in the molecule, (C) a radical A curable resin composition comprising a polymerization initiator and (D) a carbon filler. (A)成分であるフェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂と(B)成分である分子内に複数のオキサジン環を持つ多価オキサジン化合物との混合物において、上記フェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂100重量部に対して、分子内に複数のオキサジン環を持つ多価オキサジン化合物5〜200重量部である請求項1に記載の硬化性樹脂組成物。 (A) a modified novolak type phenolic resin containing both a phenolic hydroxyl group as a component and a radically polymerizable unsaturated group in the structure, and a polyvalent oxazine compound having a plurality of oxazine rings in the molecule as the component (B) In the mixture, the polyhydric oxazine compound having a plurality of oxazine rings in the molecule in an amount of 5 to 200 weights per 100 weight parts of the modified novolak type phenol resin containing both the phenolic hydroxyl group and the radical polymerizable unsaturated group in the structure. The curable resin composition according to claim 1, which is a part. (A)変性ノボラック型フェノール樹脂と(B)多価オキサジン化合物成分の混合物の合計が5〜40重量部、(C)ラジカル重合開始剤成分が変性ノボラック型フェノール樹脂(A)と多価オキサジン化合物成分の混合物(C)の合計100重量部に対し0.05〜10重量部、(D)炭素充填材成分が60〜95重量部からなる請求項1または2に記載の硬化性樹脂組成物。 (A) The total of the mixture of the modified novolak type phenol resin and (B) the polyvalent oxazine compound component is 5 to 40 parts by weight, and (C) the radical polymerization initiator component is the modified novolak type phenol resin (A) and the polyvalent oxazine compound. The curable resin composition according to claim 1 or 2, comprising 0.05 to 10 parts by weight and (D) a carbon filler component of 60 to 95 parts by weight with respect to a total of 100 parts by weight of the component mixture (C). (A)成分であるフェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂が、ノボラック樹脂のフェノール性水酸基100当量に対して20〜90当量のグリシジル(メタ)アクリレートを反応させることにより得られる変性ノボラック樹脂組成物である請求項1〜3のいずれか1項に記載の硬化性樹脂組成物。 The modified novolak type phenolic resin containing both the phenolic hydroxyl group and radically polymerizable unsaturated group (A) in the structure is 20 to 90 equivalents of glycidyl (meth) with respect to 100 equivalents of the phenolic hydroxyl group of the novolak resin. The curable resin composition according to any one of claims 1 to 3, which is a modified novolak resin composition obtained by reacting an acrylate. (A)成分であるフェノール性水酸基とラジカル重合性不飽和基を共に構造中に含有する変性ノボラック型フェノール樹脂が、ノボラック樹脂のフェノール性水酸基100に対して20〜200当量のN−メチロールアクリルアミドを反応させることにより得られる変性ノボラック樹脂である請求項1〜4のいずれか1項に記載の硬化性樹脂組成物。 The modified novolak type phenolic resin containing both the phenolic hydroxyl group and radically polymerizable unsaturated group (A) in the structure contains 20 to 200 equivalents of N-methylolacrylamide with respect to the phenolic hydroxyl group 100 of the novolak resin. The curable resin composition according to any one of claims 1 to 4, which is a modified novolak resin obtained by reacting. (C)成分であるラジカル重合開始剤が、有機過酸化物である請求項1〜5のいずれか1項に記載の硬化性樹脂組成物。 The radical polymerization initiator which is (C) component is an organic peroxide, The curable resin composition of any one of Claims 1-5. 請求項1〜6いずれか1項に記載の硬化性樹脂組成物を硬化して得られた導電性硬化物。 The electroconductive hardened | cured material obtained by hardening | curing the curable resin composition of any one of Claims 1-6. 請求項1〜6いずれか1項に記載の硬化性樹脂組成物を硬化して得られた燃料電池用セパレーター。 The separator for fuel cells obtained by hardening | curing the curable resin composition of any one of Claims 1-6.
JP2003319564A 2003-09-11 2003-09-11 Curable resin composition excellent in electroconductivity, its cured product and separator for fuel cell Pending JP2005082781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003319564A JP2005082781A (en) 2003-09-11 2003-09-11 Curable resin composition excellent in electroconductivity, its cured product and separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319564A JP2005082781A (en) 2003-09-11 2003-09-11 Curable resin composition excellent in electroconductivity, its cured product and separator for fuel cell

Publications (1)

Publication Number Publication Date
JP2005082781A true JP2005082781A (en) 2005-03-31

Family

ID=34418475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319564A Pending JP2005082781A (en) 2003-09-11 2003-09-11 Curable resin composition excellent in electroconductivity, its cured product and separator for fuel cell

Country Status (1)

Country Link
JP (1) JP2005082781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893523B1 (en) 2006-12-15 2009-04-17 삼성에스디아이 주식회사 Electrode for fuel cell, preparing method thereof, and fuel cell employing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893523B1 (en) 2006-12-15 2009-04-17 삼성에스디아이 주식회사 Electrode for fuel cell, preparing method thereof, and fuel cell employing the same

Similar Documents

Publication Publication Date Title
CN1280352C (en) Electrically conductive thermoset composition, method for preparation thereof and articles derived therefrom
EP3436502B1 (en) Resin blends of resorcinol diphthalonitrile ether with bisphenol m diphthalonitrile ether and/or bisphenol t diphthalonitrile ether
JPWO2003079475A1 (en) FUEL CELL SEPARATOR, MANUFACTURING METHOD THEREOF, AND FUEL CELL USING THE FUEL CELL SEPARATOR
US6746792B2 (en) Fuel cell separator composition, fuel cell separator and method of manufacture, and solid polymer fuel cell
KR100987683B1 (en) Conductive resin composition, process for production thereof, and fuel cell separators
JP2004103495A (en) Fuel cell separator, its manufacturing method, and fuel cell using the fuel cell separator
JP2004103494A (en) Fuel cell separator, its manufacturing method and fuel cell using the fuel cell separator
JP5041309B2 (en) Separator material for fuel cell and manufacturing method thereof
US7883650B2 (en) Fabrication of carbon nanotubes reinforced polymer composite bipolar plates for fuel cell
JP5321465B2 (en) Fuel cell separator
JP2005082781A (en) Curable resin composition excellent in electroconductivity, its cured product and separator for fuel cell
JP2005082782A (en) Electroconductive curable resin composition
CA2960454A1 (en) Fuel cell separator
JP5502552B2 (en) Composition for fuel cell separator, fuel cell separator, and method for producing fuel cell
JP4507182B2 (en) Fuel cell separator
JP5842142B2 (en) Resin composition for fuel cell separator, sheet for molding fuel cell separator, and fuel cell separator
JP5486276B2 (en) Resin composition for fuel cell separator, sheet for molding fuel cell separator, and fuel cell separator
JP2009158118A (en) Separator material for solid polymer fuel battery and manufacturing method for the separator material
JP5156975B2 (en) Separator material for polymer electrolyte fuel cell and manufacturing method thereof
JP4761979B2 (en) Raw material composition for fuel cell separator and fuel cell separator
Kimura et al. Performance of graphite filled composite based on benzoxazine resin. II. Decreasing the moulding time of the composite
JP5520104B2 (en) Manufacturing method of fuel cell separator
JP2006252905A (en) Separator material for fuel cell, and manufacturing method of the same
JP4020088B2 (en) Conductive resin composition, method for producing the same, and fuel cell separator
JP2004134159A (en) Molding material for fuel cell separator and fuel cell separator molded from the same

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20050520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120