JP2005075666A - Method for selectively synthesizing carbon nanotube - Google Patents

Method for selectively synthesizing carbon nanotube Download PDF

Info

Publication number
JP2005075666A
JP2005075666A JP2003306248A JP2003306248A JP2005075666A JP 2005075666 A JP2005075666 A JP 2005075666A JP 2003306248 A JP2003306248 A JP 2003306248A JP 2003306248 A JP2003306248 A JP 2003306248A JP 2005075666 A JP2005075666 A JP 2005075666A
Authority
JP
Japan
Prior art keywords
thin film
substrate
carbon nanotubes
chromium layer
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003306248A
Other languages
Japanese (ja)
Other versions
JP3837584B2 (en
Inventor
Hideki Shiozaki
秀喜 塩崎
Hiroaki Kawada
博昭 川田
Yoshikazu Nakayama
喜萬 中山
Rogun Han
路軍 潘
Seiji Akita
成司 秋田
Masaaki Yasuda
雅昭 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2003306248A priority Critical patent/JP3837584B2/en
Publication of JP2005075666A publication Critical patent/JP2005075666A/en
Application granted granted Critical
Publication of JP3837584B2 publication Critical patent/JP3837584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for patterning carbon nanotubes without damaging them. <P>SOLUTION: In forming a thin film comprising catalyst metal particles on the surface of a substrate and growing carbon nanotubes on the thin film by chemical vapor deposition by using the catalyst particles on the thin film as nuclei, a specifically patterned chromium layer that prevents carbon nanotube growth is interposed between the substrate and the thin film to allow the carbon nanotubes to grow on only an area where no thin film chromium layer is present. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板上の所望の位置においてカーボンナノチューブを選択的に合成・成長させる方法に関するものである。   The present invention relates to a method for selectively synthesizing and growing carbon nanotubes at a desired position on a substrate.

カーボンナノチューブは、カーボン原子が網目状に結合してできた穴径ナノ(1ナノは10億分の1)メートルサイズの極微細な筒(チューブ)状の物質である。通常の電解液の電解質イオン直径は約0.4〜0.6nmであるので、穴径1〜2nmのカーボンナノチューブがイオンの吸脱着に好ましい。   A carbon nanotube is an extremely fine tube (tube) substance having a hole diameter of nanometers (one nano is one billionth of a meter) formed by bonding carbon atoms in a network. Since the electrolyte ion diameter of a normal electrolytic solution is about 0.4 to 0.6 nm, carbon nanotubes having a hole diameter of 1 to 2 nm are preferable for adsorption and desorption of ions.

カーボンナノチューブは、シリコンやモリブデンで作られたスピント型エミッターやダイヤモンド薄膜などの従来の電子放出素材に比べて、電流密度、駆動電圧、頑健さ、寿命などの特性において総合的に優れており、FED用電子源として現在最も有望視されている。これは、カーボンナノチューブが大きなアスペクト比(長さと直径の比)と鋭い先端とを持ち、化学的に安定で機械的にも強靱であり、しかも、高温での安定性に優れているなど、電界放出素子の材料として有利な物理化学的性質を備えているからである。   Compared with conventional electron emission materials such as Spindt-type emitters and diamond thin films made of silicon and molybdenum, carbon nanotubes are comprehensively superior in characteristics such as current density, driving voltage, robustness, and lifetime. It is currently the most promising electron source. This is because carbon nanotubes have a large aspect ratio (length-to-diameter ratio) and sharp tip, are chemically stable and mechanically tough, and have excellent stability at high temperatures. This is because it has advantageous physicochemical properties as a material for the emitting element.

カーボンナノチューブフィルムを所定パターンに形成する方法として、粘着テープを所定パターンに被着された銅板を、カーボンナノチューブを分散した溶液に入れ、溶液を蒸発させることにより、銅板上にカーボンナノチューブを堆積させ、その後銅板から粘着テープを剥離する方法が提案されている(特許文献1参照)。   As a method of forming a carbon nanotube film in a predetermined pattern, a copper plate coated with an adhesive tape in a predetermined pattern is placed in a solution in which carbon nanotubes are dispersed, and the solution is evaporated to deposit carbon nanotubes on the copper plate, Then, the method of peeling an adhesive tape from a copper plate is proposed (refer patent document 1).

また、転写法、スプレー法、印刷法などで基板上にカーボンナノチューブを形成し、同基板上にマスクを配し、基板の非マスク部におけるカーボンナノチューブを布状物質によって擦り落とす方法も提案されている(特許文献2参照)。
特開2000−203821号公報 特開2002−234000号公報
Also proposed is a method in which carbon nanotubes are formed on a substrate by a transfer method, spray method, printing method, etc., a mask is disposed on the substrate, and the carbon nanotubes in the non-masked portion of the substrate are scraped off by a cloth-like substance. (See Patent Document 2).
JP 2000-203821 A JP 2002-234000 A

カーボンナノチューブは、アスペクト比が非常に大きい管状物質が複雑に絡み合っているものであるため、特許文献1のように、粘着テープを用いたカーボンナノチューブのパターニング方法では、粘着テープの剥離の際に同テープにカーボンナノチューブの端部が絡んだりカーボンナノチューブが傷付いたりする恐れがある。また、マスクを用いる特許文献2の方法では、粘着テープを用いる方法よりはカーボンナノチューブのパターニングを確実に行うことができるが、マスク部と非マスク部の境界においてカーボンナノチューブに損傷を生じさせずにパターニングを行うには限界がある。   Since carbon nanotubes are intricately entangled with a tubular material having a very high aspect ratio, the carbon nanotube patterning method using an adhesive tape as described in Patent Document 1 is the same as when the adhesive tape is peeled off. There is a risk that the end of the carbon nanotube may get entangled with the tape or the carbon nanotube may be damaged. Further, in the method of Patent Document 2 using a mask, the patterning of carbon nanotubes can be performed more reliably than in the method using an adhesive tape, but without causing damage to the carbon nanotubes at the boundary between the mask part and the non-mask part. There is a limit to patterning.

本発明は、この点に鑑み、カーボンナノチューブの損傷なしにこれをパターニングすることができる方法を提供することを課題とする。   In view of this point, an object of the present invention is to provide a method capable of patterning a carbon nanotube without damaging it.

本発明の第1のものは、基板表面に触媒金属粒子からなる薄膜を形成し、該薄膜の触媒粒子を核として薄膜上に化学蒸着法によりカーボンナノチューブを成長させるに当たり、基板と上記薄膜の間に、カーボンナノチューブの成長を阻止するクロム層を所要パターンで介在させることにより、薄膜のクロム層非介在部のみにカーボンナノチューブを成長させることを特徴とするカーボンナノチューブの選択合成方法である。クロム層の介在によりカーボンナノチューブの成長が阻止される理由は、明確ではないが、クロムと基板を構成するシリコンとの表面エネルギーの相異により、上記薄膜のクロム層介在部と非介在部とで薄膜を構成する触媒金属粒子の粒径が異なるためであると考えられる。   According to the first aspect of the present invention, a thin film composed of catalytic metal particles is formed on the surface of a substrate, and carbon nanotubes are grown on the thin film by chemical vapor deposition using the catalyst particles of the thin film as a nucleus. In addition, a carbon nanotube selective synthesis method is characterized in that a carbon nanotube is grown only in a chromium layer non-intervening portion of a thin film by interposing a chromium layer that inhibits the growth of the carbon nanotube in a required pattern. The reason why the carbon nanotube growth is prevented by the interposition of the chromium layer is not clear, but due to the difference in surface energy between the chromium and silicon constituting the substrate, the chromium layer intervening part and the non-interposing part of the thin film This is probably because the catalyst metal particles constituting the thin film have different particle sizes.

本発明の第2のものは、基板表面に触媒金属粒子からなる薄膜を形成し、該薄膜の触媒粒子を核として薄膜上に化学蒸着法によりカーボンナノチューブを成長させるに当たり、基板の上に絶縁層を形成し、絶縁層の上に、カーボンナノチューブの成長を阻止するクロム層を所要マスクパターンで形成し、絶縁層の被マスク部をエッチングして貫通孔を形成することにより基板を露出させ、基板の露出部およびクロム層上に上記薄膜を形成し、上記化学蒸着法により基板露出部における薄膜にのみカーボンナノチューブを成長させることを特徴とするカーボンナノチューブの選択合成方法である。第2発明の方法により得られる製造物は、基板の露出部に成長させたカーボンナノチューブとクロム層上の触媒金属粒子薄膜(ゲート電極として働くことができる)とを一体化したものであり、しかも、絶縁層の貫通孔をサブミクロンレベルに微細化することも難しくないので、低電圧で駆動する高性能なフィールドエミッタとして有用である。   According to a second aspect of the present invention, a thin film made of catalytic metal particles is formed on the surface of a substrate, and carbon nanotubes are grown on the thin film by chemical vapor deposition using the catalyst particles of the thin film as a nucleus. A chromium layer that inhibits the growth of carbon nanotubes is formed on the insulating layer with a required mask pattern, and the substrate is exposed by etching the masked portion of the insulating layer to form a through hole. The carbon nanotube is selectively synthesized by growing the carbon thin film only on the thin film on the exposed portion of the substrate by the chemical vapor deposition method. The product obtained by the method of the second invention is an integrated product of carbon nanotubes grown on an exposed portion of a substrate and a catalytic metal particle thin film (which can act as a gate electrode) on a chromium layer, Since it is not difficult to miniaturize the through hole of the insulating layer to the submicron level, it is useful as a high-performance field emitter driven at a low voltage.

本発明において、クロム層は、基板上または絶縁層の上に例えば蒸着により形成することができる。クロム層の厚さは好ましくは2〜100nmである。   In the present invention, the chromium layer can be formed on the substrate or the insulating layer, for example, by vapor deposition. The thickness of the chromium layer is preferably 2 to 100 nm.

第2発明において、基板の上に絶縁層を形成するには、例えばシリコン製の基板の場合、高温の酸素雰囲気中でシリコン基板を酸化させることにより酸化珪素の絶縁膜が得られる。その他の基板の場合は、化学蒸着法(CVD)や塗装法により酸化珪素の絶縁膜が得られる。   In the second invention, in order to form the insulating layer on the substrate, for example, in the case of a silicon substrate, the silicon oxide insulating film is obtained by oxidizing the silicon substrate in a high-temperature oxygen atmosphere. In the case of other substrates, an insulating film of silicon oxide can be obtained by chemical vapor deposition (CVD) or painting.

絶縁層の被マスク部のエッチングは、例えば、反応性イオンエッチングであってよい。絶縁層の被マスク部のエッチングの後、絶縁層のエッチング側面を後退させるようにさらにエッチング処理を施すことが好ましい。後者のエッチングは例えば緩衝フッ酸溶液を用いるエッチングであってよい。   The etching of the masked portion of the insulating layer may be reactive ion etching, for example. After the etching of the masked portion of the insulating layer, it is preferable to further perform an etching process so as to recede the etching side surface of the insulating layer. The latter etching may be an etching using a buffered hydrofluoric acid solution, for example.

本発明方法において、基板およびクロム層の上に触媒金属粒子からなる薄膜を形成するには、触媒金属の化合物を含む液を超音波振動によりまたは超音波を伴ったスプレーにより基板表面に噴霧し、形成された噴霧層を加熱するのが好ましい。それ以外の方法として、触媒金属の化合物を含む液をスプレーや刷毛で基板に塗布した後、プラズマ照射または加熱する方法、同触媒をクラスター銃で打ち付け、乾燥させ、必要であれば加熱する方法、金属を化学蒸着させる方法、金属を基板に電子ビーム蒸着しその後この塗膜または蒸着膜を加熱方法等が採用できる。触媒金属は、鉄、コバルト、ニッケルなどであり、例えば鉄カルボニル錯体(ペンタカルボニル鉄等)のような錯体の形態、金属アルコキシド(Fe(OEt)等)の形態等をとることができる。金属錯体や金属アルコキシドは溶液で供給されてもよい。溶媒はアセトン、アルコール等であってよい。溶液中の金属錯体や金属アルコキシドの濃度は例えば1〜5重量%であってよい。薄膜の厚みは、厚過ぎると加熱による金属粒子化が困難になるので、好ましくは1〜100nmである。 In the method of the present invention, in order to form a thin film made of catalytic metal particles on the substrate and the chromium layer, a liquid containing a catalyst metal compound is sprayed on the substrate surface by ultrasonic vibration or by spraying with ultrasonic waves. The formed spray layer is preferably heated. As other methods, after applying a liquid containing a catalyst metal compound to the substrate with a spray or brush, a method of plasma irradiation or heating, a method of striking the catalyst with a cluster gun, drying, and heating if necessary, A method of chemical vapor deposition of metal, a method of heating the coating film or vapor deposition film after the metal is deposited on the substrate by electron beam can be employed. The catalyst metal is iron, cobalt, nickel, and the like, and can take the form of a complex such as an iron carbonyl complex (pentacarbonyliron or the like), a metal alkoxide (Fe (OEt) 3 or the like), or the like. The metal complex or metal alkoxide may be supplied in a solution. The solvent may be acetone, alcohol or the like. The concentration of the metal complex or metal alkoxide in the solution may be, for example, 1 to 5% by weight. The thickness of the thin film is preferably 1 to 100 nm because it is difficult to form metal particles by heating if it is too thick.

次いでこの薄膜を好ましくは減圧下または非酸化雰囲気中で好ましくは650〜800℃に加熱すると、直径1〜50nm程度の金属触媒粒子が形成される。   Next, when this thin film is heated preferably at 650 to 800 ° C., preferably under reduced pressure or in a non-oxidizing atmosphere, metal catalyst particles having a diameter of about 1 to 50 nm are formed.

触媒金属粒子からなる薄膜上に化学蒸着法によりカーボンナノチューブを成長させる工程では、原料ガスは通常はアセチレン(C)ガスであるが、メタンガス、エタンガスのような他の脂肪族炭化水素ガスであってもよい。アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが基板表面にブラシ毛状に形成される。原料ガスはヘリウムやアルゴン、キセノンのような不活性ガスで希釈された状態で原料ガス供給管を経て反応ゾーンに供給してもよい。ガス供給は連続的に行っても断続的に行ってもよい。化学蒸着法の操作条件は、好ましくは、大気圧下で、温度650〜800℃、時間1〜10分である。 In the process of growing carbon nanotubes on a thin film made of catalytic metal particles by chemical vapor deposition, the source gas is usually acetylene (C 2 H 2 ) gas, but other aliphatic hydrocarbon gas such as methane gas or ethane gas. It may be. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in the shape of brush hairs on the substrate surface. The source gas may be supplied to the reaction zone through a source gas supply pipe in a state diluted with an inert gas such as helium, argon or xenon. The gas supply may be performed continuously or intermittently. The operating conditions of the chemical vapor deposition method are preferably a temperature of 650 to 800 ° C. and a time of 1 to 10 minutes under atmospheric pressure.

本発明の方法により製造されたカーボンナノチューブを用いた電子放出素子はFEDの素子として特に好適である。   An electron-emitting device using carbon nanotubes produced by the method of the present invention is particularly suitable as an FED device.

カーボンナノチューブの長さは好ましくは1〜10μm、直径は好ましくは20〜30nm、カーボンナノチューブ相互間の間隔は好ましくは100〜150nmである。   The length of the carbon nanotube is preferably 1 to 10 μm, the diameter is preferably 20 to 30 nm, and the distance between the carbon nanotubes is preferably 100 to 150 nm.

本発明によれば、基板上の所望の位置において選択的に合成・成長させることができるので、カーボンナノチューブの損傷なしにこれをパターニングすることができる。   According to the present invention, since it can be selectively synthesized and grown at a desired position on the substrate, it can be patterned without damaging the carbon nanotubes.

つぎに、本発明を具体的に説明するために、本発明の実施例を挙げる。   Next, in order to describe the present invention specifically, examples of the present invention will be given.

実施例1
図1において、シリコン製の基板(1)の上面の右側半体の表面に厚さ約50nmのクロム層(2) を蒸着法により形成した。基板(1)の上面の左側半体およびクロム層(2) の表面に触媒となるFeを電子ビーム蒸着で全面に蒸着し、触媒Fe粒子からなる薄膜(3) を厚さ約5nmで形成した。こうして基板(1) と薄膜(3) の間にクロム層(2) を所要パターンで介在させた。
Example 1
In FIG. 1, a chromium layer (2) having a thickness of about 50 nm was formed on the surface of the right half of the upper surface of a silicon substrate (1) by vapor deposition. Fe as a catalyst was deposited on the entire surface of the left half of the upper surface of the substrate (1) and the surface of the chromium layer (2) by electron beam evaporation to form a thin film (3) of catalyst Fe particles with a thickness of about 5 nm. . Thus, a chromium layer (2) was interposed between the substrate (1) and the thin film (3) in a required pattern.

次いで、Fe薄膜(3) 付き基板(1)に大気圧熱CVD を施した。キャリアガスであるHeの流量は200sccm、原料ガスであるアセチレンガスの流量は30sccm、成長温度は715℃とした。   Next, atmospheric pressure thermal CVD was performed on the substrate (1) with the Fe thin film (3). The flow rate of He as the carrier gas was 200 sccm, the flow rate of the acetylene gas as the source gas was 30 sccm, and the growth temperature was 715 ° C.

その結果、図2に示すように、Fe薄膜(3) の左側半体すなわちクロム層(2) のない部分にはカーボンナノチューブが成長したが、Fe薄膜(3) の右側半体すなわちクロム層(2) のある部分にはカーボンナノチューブがまったく成長しなかった。   As a result, as shown in FIG. 2, carbon nanotubes grew on the left half of the Fe thin film (3), that is, the portion without the chromium layer (2), but the right half of the Fe thin film (3), that is, the chromium layer ( There was no growth of carbon nanotubes in the part 2).

実施例2
図3において、シリコン製の基板(1)上全面に厚さ約1μmの酸化珪素製の絶縁膜(4)を形成し、同膜(4) の上に厚さ約50nmのクロム層(2) を蒸着法により、多孔(6) パターンをなすように、形成した(図3a参照)。
Example 2
In FIG. 3, a silicon oxide insulating film (4) having a thickness of about 1 μm is formed on the entire surface of a silicon substrate (1), and a chromium layer (2) having a thickness of about 50 nm is formed on the film (4). Was formed by vapor deposition so as to form a porous (6) pattern (see FIG. 3a).

次いで、得られた3層構造物を、クロム層(2) をマスクにして反応性イオンエッチング処理に付し、クロム層(2) の孔(6) の位置にて絶縁膜(4) に貫通孔(5)を開けることにより露出させた。さらに緩衝フッ酸溶液で貫通孔(5)の側部をエッチングし貫通孔(5)を拡大した(図3b参照)。側部エッチングは、つぎのFe薄膜形成工程において、貫通孔の側面にもFeが蒸着するのを避けるためである。   Next, the resulting three-layer structure was subjected to reactive ion etching using the chromium layer (2) as a mask, and penetrated into the insulating film (4) at the position of the hole (6) in the chromium layer (2). The hole (5) was exposed by opening. Further, the side of the through hole (5) was etched with a buffered hydrofluoric acid solution to enlarge the through hole (5) (see FIG. 3b). The side etching is for avoiding the deposition of Fe on the side surface of the through hole in the next Fe thin film forming step.

つぎに、貫通孔(5) の形成により同孔内に露出させられた基板(1)上およびクロム層(2) 上に触媒となるFeを電子ビーム蒸着で全面に蒸着し、触媒Fe粒子からなる薄膜(3) を厚さ約3nmで形成した(図3c参照)。   Next, Fe as a catalyst is deposited on the entire surface by electron beam evaporation on the substrate (1) and the chromium layer (2) exposed in the hole by forming the through-hole (5), and from the catalyst Fe particles A thin film (3) was formed with a thickness of about 3 nm (see FIG. 3c).

次いで、Fe薄膜(3) 付き基板(1)に大気圧熱CVD を施した。キャリアガスであるHeの流量は200sccm、原料ガスであるアセチレンガスの流量は30sccm、操作温度は715℃ 、操作時間は15分とした。   Next, atmospheric pressure thermal CVD was performed on the substrate (1) with the Fe thin film (3). The flow rate of He as the carrier gas was 200 sccm, the flow rate of the acetylene gas as the source gas was 30 sccm, the operation temperature was 715 ° C., and the operation time was 15 minutes.

その結果、図3dおよび図4に示すように、Fe薄膜(3) のうち、多数の貫通孔(5) 内に露出した基板(1)上にある部分、すなわちクロム層のない部分にはカーボンナノチューブ(7) が成長したが、クロム層(2) のある部分にはカーボンナノチューブがまったく成長しなかった。カーボンナノチューブは約20μmの長さを有し、クロム層の孔から大きく出ており、クロム層の孔から2μm程度出る部分は基板に対しほぼ垂直であった(図4b参照)。   As a result, as shown in FIG. 3d and FIG. 4, the portion of the Fe thin film (3) on the substrate (1) exposed in the many through holes (5), that is, the portion without the chromium layer is carbon. Nanotubes (7) grew, but no carbon nanotubes grew on any part of the chromium layer (2). The carbon nanotubes had a length of about 20 μm and protruded greatly from the holes in the chromium layer, and the portion extending about 2 μm from the holes in the chromium layer was almost perpendicular to the substrate (see FIG. 4 b).

実施例3
実施例2において、に緩衝フッ酸溶液で貫通孔(5)の側部をエッチングし貫通孔(5)を拡大する工程(図3b参照)を省いた以外、実施例2と同じ操作を行った。
Example 3
In Example 2, the same operation as in Example 2 was performed, except that the step of expanding the through hole (5) (see FIG. 3b) was omitted by etching the side of the through hole (5) with a buffered hydrofluoric acid solution. .

その結果、図5に示すように、Fe薄膜のうち、貫通孔底部に露出した基板上ある部分に成長したカーボンナノチューブは1〜2μmの長さを有し、クロム層の孔から僅かに出る程度であった。これは、貫通孔の側面にもFe薄膜が形成され、この部分にもカーボンナノチューブが成長しているためであると考えられる。Fe薄膜(3) のうち、クロム層のある部分にはカーボンナノチューブがまったく成長しなかった。   As a result, as shown in FIG. 5, the carbon nanotubes grown on a portion of the Fe thin film on the substrate exposed at the bottom of the through hole have a length of 1 to 2 μm and slightly protrude from the hole of the chromium layer. Met. This is presumably because an Fe thin film is also formed on the side surface of the through-hole, and carbon nanotubes are grown in this portion. In the Fe thin film (3), carbon nanotubes did not grow at all in the portion with the chromium layer.

比較例1
図6は従来のフィールドエミッタを示すもので、これは、シリコン製の基板(51)上に厚さ約1μmの酸化珪素製の絶縁膜(54)が設けられ、絶縁膜(54)には多数の貫通孔(55)が形成され、貫通孔(3)の内部にて基板(51) 面上にカーボンナノチューブ(57)が成長させられ、カーボンナノチューブ(57)の外側にて絶縁膜(54)上にゲート電極(52)が設けられたものである。
Comparative Example 1
FIG. 6 shows a conventional field emitter, in which an insulating film (54) made of silicon oxide having a thickness of about 1 μm is provided on a silicon substrate (51). Through holes (55) are formed, carbon nanotubes (57) are grown on the surface of the substrate (51) inside the through holes (3), and an insulating film (54) is formed outside the carbon nanotubes (57). A gate electrode (52) is provided thereon.

実施例1において基板と金属触媒薄膜の間にクロム層を所要パターンで介在させた層構造を示す断面図である。In Example 1, it is sectional drawing which shows the layer structure which interposed the chromium layer by the required pattern between the board | substrate and the metal catalyst thin film. 実施例1においてカーボンナノチューブの成長状態を示す写真である。2 is a photograph showing a growth state of carbon nanotubes in Example 1. FIG. 実施例2における各工程を示す断面図である。10 is a cross-sectional view showing each step in Example 2. FIG. 実施例2においてカーボンナノチューブの成長状態を示す写真である。6 is a photograph showing a growth state of carbon nanotubes in Example 2. FIG. 実施例3においてカーボンナノチューブの成長状態を示す写真である。6 is a photograph showing a growth state of carbon nanotubes in Example 3. 比較例1において従来のフィールドエミッタを示す断面図である。10 is a cross-sectional view showing a conventional field emitter in Comparative Example 1. FIG.

符号の説明Explanation of symbols

(1) :基板
(2) :クロム層
(3) :触媒Fe粒子からなる薄膜
(4) :絶縁膜
(5) :貫通孔
(6) :孔
(7) :カーボンナノチューブ
(1): Board
(2): Chrome layer
(3): Thin film made of catalytic Fe particles
(4): Insulating film
(5): Through hole
(6): Hole
(7): Carbon nanotube

Claims (2)

基板表面に触媒金属粒子からなる薄膜を形成し、該薄膜の触媒粒子を核として薄膜上に化学蒸着法によりカーボンナノチューブを成長させるに当たり、基板と上記薄膜の間に、カーボンナノチューブの成長を阻止するクロム層を所要パターンで介在させることにより、薄膜のクロム層非介在部のみにカーボンナノチューブを成長させることを特徴とするカーボンナノチューブの選択合成方法。   Forming a thin film of catalytic metal particles on the surface of the substrate, and growing carbon nanotubes on the thin film by chemical vapor deposition using the catalyst particles of the thin film as a nucleus, prevents the growth of carbon nanotubes between the substrate and the thin film. A method of selectively synthesizing carbon nanotubes, characterized in that a carbon nanotube is grown only in a non-interposed portion of a chromium layer of a thin film by interposing a chromium layer in a required pattern. 基板表面に触媒金属粒子からなる薄膜を形成し、該薄膜の触媒粒子を核として薄膜上に化学蒸着法によりカーボンナノチューブを成長させるに当たり、基板の上に絶縁層を形成し、絶縁層の上に、カーボンナノチューブの成長を阻止するクロム層を所要マスクパターンで形成し、絶縁層の被マスク部をエッチングして貫通孔を形成することにより基板を露出させ、基板の露出部およびクロム層上に上記薄膜を形成し、上記化学蒸着報により基板露出部における薄膜にのみカーボンナノチューブを成長させることを特徴とするカーボンナノチューブの選択合成方法。
When a thin film made of catalytic metal particles is formed on the substrate surface, and carbon nanotubes are grown on the thin film by chemical vapor deposition using the catalyst particles of the thin film as a nucleus, an insulating layer is formed on the substrate, and the insulating layer is formed on the insulating layer. And forming a chromium layer for preventing the growth of carbon nanotubes with a required mask pattern, etching the masked portion of the insulating layer to form a through hole, exposing the substrate, and exposing the substrate on the exposed portion of the substrate and the chromium layer. A method of selectively synthesizing carbon nanotubes, comprising forming a thin film and growing carbon nanotubes only on the thin film in the exposed portion of the substrate by the chemical vapor deposition report.
JP2003306248A 2003-08-29 2003-08-29 Method for selective synthesis of carbon nanotubes Expired - Fee Related JP3837584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306248A JP3837584B2 (en) 2003-08-29 2003-08-29 Method for selective synthesis of carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306248A JP3837584B2 (en) 2003-08-29 2003-08-29 Method for selective synthesis of carbon nanotubes

Publications (2)

Publication Number Publication Date
JP2005075666A true JP2005075666A (en) 2005-03-24
JP3837584B2 JP3837584B2 (en) 2006-10-25

Family

ID=34409378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306248A Expired - Fee Related JP3837584B2 (en) 2003-08-29 2003-08-29 Method for selective synthesis of carbon nanotubes

Country Status (1)

Country Link
JP (1) JP3837584B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659624B2 (en) 2006-04-25 2010-02-09 Samsung Electronics Co,., Ltd. Semiconductor device having a nanoscale conductive structure
CN112028055A (en) * 2020-08-27 2020-12-04 温州大学 Method for directly growing carbon nanotube film on substrate in subarea manner and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659624B2 (en) 2006-04-25 2010-02-09 Samsung Electronics Co,., Ltd. Semiconductor device having a nanoscale conductive structure
CN112028055A (en) * 2020-08-27 2020-12-04 温州大学 Method for directly growing carbon nanotube film on substrate in subarea manner and application

Also Published As

Publication number Publication date
JP3837584B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
KR100537512B1 (en) carbon-nano tube structure and manufacturing method thereof and field emitter and display device both adopting the same
JP3442039B2 (en) Fabrication method of patterned carbon nanotube thin film
US7147894B2 (en) Method for assembling nano objects
US6656339B2 (en) Method of forming a nano-supported catalyst on a substrate for nanotube growth
US7923058B2 (en) Method for manufacturing carbon fibers and method for manufacturing electron emitting device using the same, method for manufacturing display, and ink for producing catalyst for use in these methods
US7160532B2 (en) Carbon nanotube array and method for forming same
US7070472B2 (en) Field emission display and methods of forming a field emission display
JP3912583B2 (en) Method for producing oriented carbon nanotube film
Oh et al. Room-temperature fabrication of high-resolution carbon nanotube field-emission cathodes by self-assembly
JP4912600B2 (en) Carbon nanotube horizontal growth method and device including carbon nanotube
US7074699B2 (en) Method for selective chemical vapor deposition of nanotubes
US20020114949A1 (en) Process for controlled introduction of defects in elongated nanostructures
US20080098805A1 (en) Nanotube-Based Nanoprobe Structure and Method for Making the Same
JP2001096499A (en) Nano-scale structural body assembly, electric field emission device, microwave vacuum tube amplifier, display device, and manufacture of electric field emission structural body
JP2002530805A (en) Self-oriented bundle of carbon nanotubes and method for producing the same
US20040036403A1 (en) Fabrication method of carbon nanotubes
JP3436219B2 (en) Carbon material, method for producing the same, and field emission cold cathode using the same
EP1102298A1 (en) Field emission display device using vertically-aligned carbon nanotubes and manufacturing method thereof
KR100335385B1 (en) Method for manufacturing of field emission display device using carbon nanotube
JP3837584B2 (en) Method for selective synthesis of carbon nanotubes
JP2010077007A (en) Base material for forming carbon nanotube, carbon nanotube orientedly grown on the base material and their production method
JP5246938B2 (en) Carbon nanotube growth substrate, transistor, and method of manufacturing carbon nanotube growth substrate
KR100362899B1 (en) Method for manufacturing field emission display device using carbon nanotube
JP4948939B2 (en) Carbon nanotube synthesis method, silicon substrate, electron source, and field emission display
Wang et al. Well-aligned carbon nanotube array membrane and its field emission properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees