JP2005055162A - Operation method of microwave oven, and microwave oven - Google Patents

Operation method of microwave oven, and microwave oven Download PDF

Info

Publication number
JP2005055162A
JP2005055162A JP2003400335A JP2003400335A JP2005055162A JP 2005055162 A JP2005055162 A JP 2005055162A JP 2003400335 A JP2003400335 A JP 2003400335A JP 2003400335 A JP2003400335 A JP 2003400335A JP 2005055162 A JP2005055162 A JP 2005055162A
Authority
JP
Japan
Prior art keywords
heated
microwave
heating
furnace
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003400335A
Other languages
Japanese (ja)
Other versions
JP4214040B2 (en
Inventor
Teizo Sakami
定三 酒見
Katsuhiko Mizuno
克彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Industry Co Ltd
Original Assignee
Takasago Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Industry Co Ltd filed Critical Takasago Industry Co Ltd
Priority to JP2003400335A priority Critical patent/JP4214040B2/en
Publication of JP2005055162A publication Critical patent/JP2005055162A/en
Application granted granted Critical
Publication of JP4214040B2 publication Critical patent/JP4214040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive operation method of a microwave oven capable of minimizing the power consumption while keeping the quality of a heating object, and the microwave oven. <P>SOLUTION: In this operation method of the microwave oven for heating the heating object by microwaves, the heating object M is housed in a heating element 11 which generates heat by radiation of microwaves, and the heating object M is microwave-heated with the heating element 11. A heating element having microwave absorptivity smaller than the heating element 11 may be arranged on the inside surface of an oven wall and used in combination. Further, the heating element 11 can be surrounded by a heat insulating material having a small microwave absorptivity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はマイクロ波を用いたマイクロ波加熱炉の操業方法およびマイクロ波加熱炉に関する。詳しくは、マイクロ波を照射して発熱する発熱体内に被加熱物を収容してマイクロ波加熱を施す加熱炉の操業方法およびマイクロ波加熱炉に関する。   The present invention relates to a method for operating a microwave heating furnace using microwaves and a microwave heating furnace. More specifically, the present invention relates to a method for operating a heating furnace in which an object to be heated is accommodated in a heating element that generates heat when irradiated with microwaves, and microwave heating is performed, and a microwave heating furnace.

マイクロ波による加熱においては、被加熱物を表面からのみでなくその内部からも同時に加熱することができる。しかし、通常は加熱処理時のマイクロ波加熱炉の炉内温度は、被加熱物の表面温度よりもかなり低い温度であるため、被加熱物の表面から熱が放射され、結果的に被加熱物の中心部と表面部との間に温度差を生じる。このため被加熱物はクラックなどの欠陥が発生しやすい。また、肉厚差の大きい形状の被加熱物の場合には、被加熱物の中心部と表面部との間だけではなく、被加熱物の薄肉部と厚肉部とでも温度差を生じて、このことによってもクラックなどの欠陥を発生することがある。さらに、マイクロ波の特性として、加熱温度が高くなるにしたがって被加熱物のマイクロ波吸収率が大きくなる。従って、被加熱物にその部位による温度差が生じると、温度の高い部位のマイクロ波吸収率が高くなるので、その部位の温度はさらに高くなる。このように、一旦被加熱物に部位による温度差が生じると、マイクロ波加熱を施すことによってさらに部位間の温度差が拡大されることになり、これによってクラックなどの欠陥がさらに発生しやすくなる。   In heating by microwaves, an object to be heated can be heated not only from the surface but also from the inside. However, since the temperature inside the microwave heating furnace during heat treatment is usually much lower than the surface temperature of the object to be heated, heat is radiated from the surface of the object to be heated, resulting in the object to be heated. A temperature difference is produced between the central part and the surface part of the surface. For this reason, the object to be heated is likely to have defects such as cracks. In the case of a heated object having a large thickness difference, a temperature difference occurs not only between the central part and the surface part of the heated object but also between the thin part and the thick part of the heated object. This also may cause defects such as cracks. Furthermore, as a characteristic of the microwave, the microwave absorption rate of the object to be heated increases as the heating temperature increases. Therefore, when a temperature difference is generated in the heated object due to the part, the microwave absorption rate of the part having a high temperature is increased, so that the temperature of the part is further increased. As described above, once a temperature difference due to the part occurs in the object to be heated, the temperature difference between the parts is further expanded by applying microwave heating, and thereby defects such as cracks are more likely to occur. .

このため、マイクロ波加熱によって生じる被加熱物の部位による温度差を補正するために、被加熱物の周囲にマイクロ波を照射することによって発熱する発熱体(以後、本明細書においてはサセプタと称する。)を使用して、サセプタからの放射熱を被加熱物に照射し、被加熱物の表面温度と内部温度との温度差を縮小させる方法がとられている。   For this reason, in order to correct the temperature difference due to the part of the object to be heated generated by microwave heating, a heating element that generates heat by irradiating the surroundings of the object to be heated (hereinafter referred to as a susceptor in this specification) .) Is used to irradiate the object to be heated with radiant heat from the susceptor, thereby reducing the temperature difference between the surface temperature of the object to be heated and the internal temperature.

例えば、マイクロ波加熱炉の炉壁の内周面にマイクロ波の吸収率の高い材料を用いて被加熱物をマイクロ波加熱する連続式加熱炉が提案されている(特許文献1)。しかし、この従来技術においては、加熱炉の炉内全体を被加熱物の加熱温度近くまで昇温することとなるので、多くの電力を必要とする。また、高温に耐える耐熱材料で炉壁を構成することになるので、加熱炉が高価なものとなる。さらに、炉壁の外表面の温度が上昇するために、放散熱量が多くなり、加熱炉の外表面を構成する炉殻が変形しやすくなって、炉殻の溶接部分の破断などを生じてマイクロ波が漏洩する危険を招く、などといった問題があった。
特公平6−80391号公報
For example, a continuous heating furnace that heats an object to be heated using a material having a high microwave absorption rate on the inner peripheral surface of a furnace wall of a microwave heating furnace has been proposed (Patent Document 1). However, in this prior art, the entire inside of the heating furnace is heated to near the heating temperature of the object to be heated, and thus a large amount of electric power is required. Further, since the furnace wall is made of a heat-resistant material that can withstand high temperatures, the heating furnace becomes expensive. Furthermore, since the temperature of the outer surface of the furnace wall rises, the amount of heat dissipated increases, and the furnace shell constituting the outer surface of the heating furnace becomes easily deformed, resulting in breakage of the welded portion of the furnace shell and the like. There were problems such as incurring the risk of waves leaking.
Japanese Patent Publication No. 6-80391

本発明は上記の問題に鑑みてなされたもので、その第1の目的は、被加熱物の品質を維持しながら消費電力の少ない、また、安価なマイクロ波加熱炉の操業方法を提供することである。また、本発明の第2の目的は、第1の目的を達成するマイクロ波加熱炉を提供することである。   The present invention has been made in view of the above problems, and a first object of the present invention is to provide an operation method of a microwave heating furnace with low power consumption and low cost while maintaining the quality of an object to be heated. It is. The second object of the present invention is to provide a microwave heating furnace that achieves the first object.

請求項1のマイクロ波加熱炉の操業方法に係わる発明は、上記の第1の目的を達成するために、被加熱物をマイクロ波により加熱するマイクロ波加熱炉の操業方法であって、マイクロ波を照射することによって発熱する発熱体(以下、サセプタと称する。)内に被加熱物を収容して該サセプタとともに該被加熱物を加熱することを特徴とする。   The invention related to the operation method of the microwave heating furnace according to claim 1 is an operation method of the microwave heating furnace in which the object to be heated is heated by microwaves in order to achieve the first object. The object to be heated is housed in a heating element (hereinafter referred to as a susceptor) that generates heat by irradiating the element, and the object to be heated is heated together with the susceptor.

上記の構成により、本発明のマイクロ波加熱炉の操業方法は、マイクロ波加熱炉の炉内壁をサセプタとしないで、被加熱物を収容する容器をサセプタとすることにより、炉壁の熱負荷を減少させることができる。従って、加熱炉の消費電力量を低減することができるとともに、加熱炉の炉材を安価なものとすることができる。さらに、炉殻の熱によるひずみが少なくなり、マイクロ波の漏洩の危険を防止することができる。   With the above configuration, the microwave heating furnace operating method of the present invention does not use the furnace inner wall of the microwave heating furnace as a susceptor, but uses a container for storing the object to be heated as a susceptor, thereby reducing the heat load on the furnace wall. Can be reduced. Therefore, the power consumption of the heating furnace can be reduced, and the furnace material of the heating furnace can be made inexpensive. Furthermore, the distortion of the furnace shell due to heat is reduced, and the risk of microwave leakage can be prevented.

請求項2のマイクロ波加熱炉の操業方法に係わる発明は、上記の第1の目的を達成するために、請求項1に記載の発明において、前記マイクロ波加熱炉は、該加熱炉の炉壁内側面に前記被加熱物を収容するサセプタよりも小さいマイクロ波吸収率を有するサセプタを備えることを要旨とする。   In order to achieve the above first object, the microwave heating furnace according to claim 2 is characterized in that the microwave heating furnace is a furnace wall of the heating furnace. The gist is to provide a susceptor having a microwave absorption rate smaller than that of the susceptor accommodating the object to be heated on the inner surface.

このように炉内壁内周面にサセプタを設け、このサセプタを被加熱物を収容する容器のサセプタよりマイクロ波の吸収率の小さい材質とすることによって、炉内を被加熱物の加熱温度より低い適当な温度にまで加熱し、被加熱物を収容する容器を所望の加熱温度にまで加熱することができるから、容器内に収容した被加熱物の温度を一層安定した温度とすることができる。   Thus, the susceptor is provided on the inner peripheral surface of the furnace inner wall, and the susceptor is made of a material having a lower microwave absorption rate than the susceptor of the container for containing the object to be heated, so that the inside of the furnace is lower than the heating temperature of the object to be heated. Since the container containing the object to be heated can be heated to a desired heating temperature by heating to an appropriate temperature, the temperature of the object to be heated accommodated in the container can be further stabilized.

請求項3のマイクロ波加熱炉の操業方法に係わる発明は、上記の第1の目的を達成するために、請求項1又は2に記載の発明において、前記被加熱物を収容するサセプタは、このサセプタの外周部にマイクロ波吸収率の低い断熱材を設けたことを要旨とする。   In order to achieve the first object, the invention relating to the operation method of the microwave heating furnace according to claim 3 is the invention according to claim 1 or 2, wherein the susceptor for accommodating the object to be heated is The gist is that a heat insulating material having a low microwave absorption rate is provided on the outer periphery of the susceptor.

被加熱物を収容した容器のサセプタの外周面をマイクロ波の吸収が低くて断熱性の高いセラミックファイバなどで構成することにより、請求項1又は2と組み合わせることによって、被加熱物を収容した容器のサセプタからの放散熱を低減できる。従って、より一層の消費電力の低減が図られるとともに、炉内温度を一層低下することができ、加熱炉の炉材をより安価なものとすることができる。さらに、炉殻の熱によるひずみが少なくなり、マイクロ波の漏洩の危険を防止することができる。   A container containing the object to be heated by combining the outer peripheral surface of the susceptor of the container containing the object to be heated with a ceramic fiber or the like having low microwave absorption and high heat insulation properties. The heat dissipated from the susceptor can be reduced. Therefore, the power consumption can be further reduced, the furnace temperature can be further lowered, and the furnace material of the heating furnace can be made cheaper. Furthermore, the distortion of the furnace shell due to heat is reduced, and the risk of microwave leakage can be prevented.

請求項4のマイクロ波加熱炉の操業方法に係わる発明は、上記の第1の目的を達成するために、請求項1〜3のいずれかに記載の発明において、前記被加熱物を収容するサセプタは、前記被加熱物の表面温度を測定する測温孔を有することを要旨とする。   According to a fourth aspect of the present invention, there is provided a method for operating the microwave heating furnace according to any one of the first to third aspects of the present invention, in order to achieve the first object. Is summarized as having a temperature measuring hole for measuring the surface temperature of the object to be heated.

被加熱物の表面温度を計測することにより被加熱物の品質を安定化することができる。   By measuring the surface temperature of the object to be heated, the quality of the object to be heated can be stabilized.

請求項5のマイクロ波加熱炉の操業方法に係わる発明は、上記の第1の目的を達成するために、請求項1〜4のいずれかに記載の発明において、前記被加熱物を収容するサセプタは、ムライトと溶融アルミナとを混合して形成したサセプタであることを要旨とする。   According to a fifth aspect of the present invention, there is provided a method for operating a microwave heating furnace according to any one of the first to fourth aspects of the present invention, in order to achieve the first object. Is a susceptor formed by mixing mullite and molten alumina.

被加熱物を収容する容器のサセプタをムライトと溶融アルミナとを混合して形成したサセプタとすることにより、マイクロ波加熱による被加熱物との温度差を低減することができ、被加熱物の品質を安定的に維持することができる。   By using a susceptor formed by mixing mullite and molten alumina as the susceptor of the container that contains the object to be heated, the temperature difference from the object to be heated by microwave heating can be reduced, and the quality of the object to be heated Can be stably maintained.

請求項6のマイクロ波加熱炉の操業方法に係わる発明は、上記の第1の目的を達成するために、請求項1〜4のいずれかに記載の発明において、前記被加熱物を収容するサセプタは、炭化珪素と溶融アルミナとを混合して形成したサセプタであることを要旨とする。   The invention related to the operation method of the microwave heating furnace according to claim 6 is the susceptor that accommodates the object to be heated in the invention according to any one of claims 1 to 4, in order to achieve the first object. Is a susceptor formed by mixing silicon carbide and molten alumina.

被加熱物を収容する容器のサセプタを炭化珪素と溶融アルミナとを混合して形成したサセプタとすることにより、マイクロ波加熱による被加熱物との温度差を低減することができ、被加熱物の品質を安定的に維持することができる。   By using a susceptor formed by mixing silicon carbide and molten alumina as a susceptor for a container that accommodates an object to be heated, a temperature difference from the object to be heated by microwave heating can be reduced. Quality can be maintained stably.

請求項7のマイクロ波加熱炉の操業方法に係わる発明は、上記の第1の目的を達成するために、請求項1〜4のいずれかに記載の発明において、前記被加熱物を収容するサセプタは、マイクロ波吸収率の異なる少なくとも2種以上のサセプタからなり、前記サセプタの外周部を形成する第1のサセプタは、前記サセプタの内周部を形成する第2のサセプタよりもマイクロ波吸収率が小さいことを要旨とする。   In order to achieve the first object, an invention relating to a microwave heating furnace operating method according to claim 7 is the susceptor that accommodates the object to be heated in the invention according to any one of claims 1 to 4. Is composed of at least two types of susceptors having different microwave absorption rates, and the first susceptor forming the outer peripheral portion of the susceptor has a higher microwave absorption rate than the second susceptor forming the inner peripheral portion of the susceptor. Is a small point.

被加熱物を収容する容器のサセプタをマイクロ波吸収率の異なる2種以上のサセプタで構成し、被加熱物に近い内周部ほどマイクロ波吸収率の高いサセプタとすることにより、被加熱物をより高温で加熱処理することができる。   The susceptor of the container for storing the object to be heated is composed of two or more types of susceptors having different microwave absorption rates, and the susceptor having a higher microwave absorption rate toward the inner peripheral portion closer to the object to be heated is used. Heat treatment can be performed at a higher temperature.

請求項8のマイクロ波加熱炉の操業方法に係わる発明は、上記の第1の目的を達成するために、請求項7に記載の発明において、第1のサセプタはムライトと溶融アルミナとを混合して形成したサセプタであり、第2のサセプタはジルコニアとカルシアなどとを混合して形成したサセプタであることを要旨とする。   In order to achieve the first object, the invention relating to the microwave heating furnace operating method according to claim 8 is the invention according to claim 7, wherein the first susceptor is a mixture of mullite and molten alumina. The gist is that the second susceptor is a susceptor formed by mixing zirconia and calcia.

被加熱物を収容するサセプタをこのようなマイクロ波吸収率の異なるサセプタの二重構造とすることでマイクロ波加熱の加熱効率を向上することができ、被加熱物をより高温で加熱処理することができる。   The heating efficiency of microwave heating can be improved by making the susceptor that accommodates the object to be heated into a double structure of such susceptors having different microwave absorption rates, and the object to be heated is heated at a higher temperature. Can do.

請求項9のマイクロ波加熱炉に係わる発明は、上記の第2の目的を達成するために、炉壁によって区画された加熱室と、該加熱室にマイクロ波を導入するマイクロ波発生装置とを有するマイクロ波加熱炉であって、前記加熱室内に被加熱物を収容するマイクロ波を照射することにより発熱する発熱体容器を備えることを特徴とする。   In order to achieve the second object, the invention relating to the microwave heating furnace of claim 9 includes a heating chamber partitioned by a furnace wall, and a microwave generator for introducing microwaves into the heating chamber. A microwave heating furnace having a heating element container that generates heat by irradiating a microwave containing an object to be heated in the heating chamber.

本発明のマイクロ波加熱炉においては、加熱室内に備えられた発熱体容器内に被加熱物を収容してマイクロ波を照射することができるので、加熱炉の炉壁の熱負荷を減少させることができる。従って、加熱炉の消費電力量を低減することができるとともに、加熱炉の炉材を安価なものとすることができる。さらに、炉殻の熱によるひずみが少なくなり、マイクロ波の漏洩の危険を防止することができる。   In the microwave heating furnace of the present invention, the object to be heated can be stored in a heating element container provided in the heating chamber and irradiated with microwaves, so that the heat load on the furnace wall of the heating furnace is reduced. Can do. Therefore, the power consumption of the heating furnace can be reduced, and the furnace material of the heating furnace can be made inexpensive. Furthermore, the distortion of the furnace shell due to heat is reduced, and the risk of microwave leakage can be prevented.

請求項10のマイクロ波加熱炉に係わる発明は、上記の第2の目的を達成するために、請求項9に記載の発明において、マイクロ波加熱炉は、一端に被加熱物の入口を他端に被加熱物の出口を有する炉体と、該炉体の内部へマイクロ波を導入するマイクロ波発生装置と、該炉体を貫通して該被加熱物を載置搬送する搬送手段と、を有する連続式マイクロ波加熱炉であることを要旨とする。   In order to achieve the above second object, the microwave heating furnace according to claim 9 is the invention according to claim 9, wherein the microwave heating furnace has an inlet of an object to be heated at one end. A furnace body having an outlet for the object to be heated, a microwave generator for introducing a microwave into the furnace body, and a transport means for placing and transporting the object to be heated through the furnace body The gist is that it is a continuous microwave heating furnace.

本発明の連続式マイクロ波加熱炉を用いて被加熱物に加熱処理を施すことにより、上記の第1の目的を達成することができる。   The first object can be achieved by subjecting the object to be heated to heat treatment using the continuous microwave heating furnace of the present invention.

本発明のマイクロ波加熱炉の操業方法は、被加熱物をマイクロ波により加熱するマイクロ波加熱炉の操業方法であって、マイクロ波を照射することによって発熱するサセプタ内に被加熱物を収容してサセプタとともに被加熱物を加熱することを特徴とする。   The microwave heating furnace operating method of the present invention is a microwave heating furnace operating method in which the object to be heated is heated by microwaves, and the object to be heated is contained in a susceptor that generates heat when irradiated with microwaves. The object to be heated is heated together with the susceptor.

本発明はマイクロ波を用いて加熱する加熱炉に関するものであるり、マイクロ波加熱が可能であれば加熱炉の形式には特に限定はない。例えば、加熱炉の一側面の開口部から被加熱物を出し入れするシャトル型などのバッチ式加熱炉でも、一端から被加熱物を装入し他端から取り出すトンネル型などの連続式加熱炉でも好適に用いることができる。   The present invention relates to a heating furnace that uses microwaves, and the type of the heating furnace is not particularly limited as long as microwave heating is possible. For example, a batch type heating furnace such as a shuttle type in which an object to be heated is taken in and out from an opening on one side of the heating furnace, or a continuous type heating furnace such as a tunnel type in which an object is charged from one end and taken out from the other end is suitable. Can be used.

本発明の実施形態を連続式マイクロ波加熱炉の場合を例として、図面を参照しながら説明する。   Embodiments of the present invention will be described with reference to the drawings, taking the case of a continuous microwave heating furnace as an example.

本発明の第1発明はマイクロ波加熱炉の操業方法の発明である。   1st invention of this invention is invention of the operating method of a microwave heating furnace.

図1と図2とは本発明の第1の形態を説明する要部概略図である。図2は連続式マイクロ波加熱炉の一例を示した概略側面図であり、図1は、図2のA−A断面の模式図である。   FIG. 1 and FIG. 2 are main part schematic diagrams for explaining the first embodiment of the present invention. FIG. 2 is a schematic side view showing an example of a continuous microwave heating furnace, and FIG. 1 is a schematic view of the AA cross section of FIG.

本第1の形態のマイクロ波加熱炉1は、被加熱物の入口51と出口52とを有する炉体2と、加熱源であるマイクロ波発生装置4と、炉体2を貫通して被加熱物を載置搬送する搬送手段3とから構成されている。   The microwave heating furnace 1 according to the first embodiment includes a furnace body 2 having an inlet 51 and an outlet 52 for an object to be heated, a microwave generator 4 as a heating source, and the furnace body 2 to be heated. It is comprised from the conveyance means 3 which mounts and conveys an object.

炉体2は、加熱帯Hと冷却帯Cとからなり、加熱帯Hは鋼材からなる炉殻6と、この炉殻6の内側に設けられた炉壁7とからなる。炉殻6はステンレス鋼などの耐熱性の鋼材をマイクロ波の漏洩を防止するために溶接などによって密閉構造となるように形成したものである。また、炉壁7としてはマイクロ波吸収率の低い断熱材を用いるのが望ましく、例えばセラミックファイバ製のボードやフェルトなどを用いることが好ましい。   The furnace body 2 includes a heating zone H and a cooling zone C, and the heating zone H includes a furnace shell 6 made of steel and a furnace wall 7 provided inside the furnace shell 6. The furnace shell 6 is formed of a heat-resistant steel material such as stainless steel so as to have a sealed structure by welding or the like in order to prevent microwave leakage. Further, it is desirable to use a heat insulating material having a low microwave absorption rate as the furnace wall 7, and for example, a ceramic fiber board or felt is preferably used.

マイクロ波発生装置4は、マイクロ波を発生するマグネトロン8とマイクロ波を加熱炉本体2へ導入する導波管9とからなり、本形態においては、炉体2の炉床部からマイクロ波を導入して、スターラ10でマイクロ波を拡散させて被加熱物Mに照射する構成となっている。加熱炉の形式によっては、炉頂部または炉体側部などにマイクロ波発生装置を配設してマイクロ波を照射してもよい。   The microwave generator 4 includes a magnetron 8 that generates a microwave and a waveguide 9 that introduces the microwave to the heating furnace body 2. In this embodiment, the microwave is introduced from the hearth of the furnace body 2. And it is the structure which diffuses a microwave with the stirrer 10 and irradiates the to-be-heated material M. FIG. Depending on the type of the heating furnace, a microwave generator may be disposed on the top of the furnace or the side of the furnace body to irradiate the microwave.

被加熱物Mは、容器状の発熱体(以後、サセプタ容器と称する。)11に収容されている。サセプタ容器11はマイクロ波を吸収して発熱するサセプタで形成されており、被加熱物を収容することができる。サセプタ容器の形状は被加熱物を三次元的に囲繞できれば特に限定するものではなく、直方体、円筒形、立方体などの形状を例示することができる。また、サセプタ容器11の材質は、マイクロ波吸収率が被加熱物Mと同等もしくは僅かに高いものであることが望ましく、ムライト、溶融アルミナ、炭化珪素、ジルコニア、あるいはそれらの混合物などを好適に使用することができる。マイクロ波吸収率を調整するために、所望に応じて、これらの各成分の混合比率を変化させて用いるとよい。例えば、高いマイクロ波吸収率を所望する場合には、炭化珪素を使用し、これにアルミナを配合してマイクロ波吸収率を低下させることができる。つまりこの場合には、アルミナの配合率を調製することで所望のマイクロ波吸収率のサセプタを調製することができる。   The object to be heated M is accommodated in a container-shaped heating element (hereinafter referred to as a susceptor container) 11. The susceptor container 11 is formed of a susceptor that generates heat by absorbing microwaves, and can accommodate an object to be heated. The shape of the susceptor container is not particularly limited as long as the object to be heated can be surrounded three-dimensionally, and examples thereof include a rectangular parallelepiped shape, a cylindrical shape, and a cube shape. The material of the susceptor container 11 is preferably a material having a microwave absorption rate that is equivalent to or slightly higher than that of the object to be heated M, and preferably uses mullite, fused alumina, silicon carbide, zirconia, or a mixture thereof. can do. In order to adjust the microwave absorption rate, the mixing ratio of these components may be changed as desired. For example, when a high microwave absorptivity is desired, silicon carbide can be used, and alumina can be added to this to reduce the microwave absorptivity. That is, in this case, a susceptor having a desired microwave absorption rate can be prepared by adjusting the mixing ratio of alumina.

ここで、サセプタ容器11に直接被加熱物Mを載置すると、被加熱物Mのサセプタ容器11に接触する部分が接触しない部分に比べて高温となる。従って、被加熱物Mをサセプタ容器11に収容する場合には、被加熱物Mとサセプタ容器11との間に受け具12を設けることが望ましい。受け具12は、被加熱物Mとの接触面積ができるだけ少ない方が望ましく、従って、受け具12の断面形状は三角形または円形などであることが好ましい。また、被加熱物Mの形状によっては、球形(例えば、ビーズ状)の受け具も好適である。特に、被加熱物Mの加熱による収縮が大きい場合には、断面円形のコロ状またはビーズ状の受け具を用いることにより、被加熱物Mの加熱による収縮に伴って受け具12が回転移動するから、被加熱物Mに変形や切れといった欠陥が発生する危険性を低減することができる。また、強度が低く撓みや変形などを生じやすい被加熱物Mを加熱する場合には、受け具12の個数を増やして被加熱物Mを支持しながら加熱することが好ましい。なお、受け具12は、直接被加熱物やサセプタ容器11と接触することとなるので、被加熱物と同等のマイクロ波吸収率を有するセラミックで形成することが望ましい。   Here, when the object to be heated M is placed directly on the susceptor container 11, the part of the object to be heated M that contacts the susceptor container 11 becomes hotter than the part that does not contact. Therefore, when the object to be heated M is accommodated in the susceptor container 11, it is desirable to provide the receiving member 12 between the object to be heated M and the susceptor container 11. It is desirable for the receiving device 12 to have a contact area with the object to be heated M as small as possible. Therefore, the cross-sectional shape of the receiving device 12 is preferably triangular or circular. Depending on the shape of the object to be heated M, a spherical (for example, bead-shaped) receptacle is also suitable. In particular, when shrinkage due to heating of the object to be heated M is large, by using a roller-shaped or bead-shaped receiver having a circular cross section, the receiver 12 rotates and moves with contraction due to heating of the object to be heated M. Therefore, it is possible to reduce the risk of occurrence of defects such as deformation and cut in the article to be heated M. Moreover, when heating the to-be-heated object M with low intensity | strength which is easy to produce bending, a deformation | transformation, etc., it is preferable to increase the number of the receiving tools 12 and to heat the to-be-heated object M. In addition, since the receiving tool 12 will contact the to-be-heated object and the susceptor container 11 directly, it is desirable to form with the ceramic which has a microwave absorptivity equivalent to a to-be-heated object.

被加熱物Mの表面温度は、放射温度計13などで炉体2に穿設した表面温度測定孔14と、サセプタ容器11の側面に進行方向に平行に長いスリット状に開設した(図5)測温孔15を介して測定することができる。炉体2に所定間隔で複数個の表面温度測定孔14を設けることにより、被加熱物Mの表面温度を断続的に測定することができ、各炉内位置における被加熱物Mの温度変化を知ることができる。   The surface temperature of the object to be heated M was established in the form of a long slit parallel to the traveling direction on the side surface of the susceptor container 11 and the surface temperature measurement hole 14 drilled in the furnace body 2 with a radiation thermometer 13 or the like (FIG. 5). It can be measured through the temperature measuring hole 15. By providing a plurality of surface temperature measurement holes 14 at predetermined intervals in the furnace body 2, the surface temperature of the object to be heated M can be measured intermittently, and the temperature change of the object to be heated M at each furnace position can be measured. I can know.

搬送装置3は、被加熱物の進行方向に対して直角に所定の間隔で平行に配設されたローラ16と、図示しないチェーンなどで連結した駆動装置とからなる。搬送装置3は、ローラ16を回転駆動することにより、被加熱物Mを収容したサセプタ容器11を載置して炉体2の入口51から出口52に向かって搬送することができる。ローラ16は耐熱性が高く、かつ、高温においてサセプタ容器11と反応しない材質であれば特に制約はなく、ローラ16の材質としては、アルミナ質、ムライト質などを例示することができる。なお、ローラ16の材質としてはマイクロ波吸収率の低い材質であることが好ましい。ローラ16と炉体2との隙間17は、セラミックファイバ製のバルク(綿状)などの断熱材を充填して、加熱炉内の熱の炉外へ放散や、マイクロ波の外部への漏洩を防止することが望ましい。   The conveyance device 3 includes a roller 16 disposed in parallel at a predetermined interval perpendicular to the traveling direction of the object to be heated, and a drive device connected by a chain (not shown). The conveying device 3 can rotate the roller 16 to place the susceptor container 11 containing the object to be heated M and convey it from the inlet 51 to the outlet 52 of the furnace body 2. The roller 16 is not particularly limited as long as it has a high heat resistance and does not react with the susceptor container 11 at a high temperature. Examples of the material of the roller 16 include alumina and mullite. The material of the roller 16 is preferably a material having a low microwave absorption rate. The gap 17 between the roller 16 and the furnace body 2 is filled with a heat insulating material such as a ceramic fiber bulk (cotton-like) to dissipate the heat inside the heating furnace to the outside of the furnace or to leak the microwave to the outside. It is desirable to prevent.

また、サセプタ容器11の底面が平坦な場合は、被加熱物Mを収容したサセプタ容器11を直接ローラ16の上に載置して搬送しながら加熱することができる。しかし、サセプタ容器11の底面に凹凸がある場合には、搬送中に蛇行することがあり、また、サセプタ容器11の強度が低い場合や、サセプタ容器11が高温でローラ16と反応しやすい場合などには、サセプタ容器11とローラ16との間にセッタ18(図4)を介挿して搬送することが望ましい。セッタ18は、セラミックなどからなる板状の載置台であり、サセプタ容器11を載置して搬送加熱することにより、サセプタ容器11の蛇行による搬送不具合や、サセプタ容器11内での被加熱物Mの移動による加熱ムラなどの不都合を生じることがなく、安定した操業を確保することができる。   Further, when the bottom surface of the susceptor container 11 is flat, the susceptor container 11 containing the article to be heated M can be directly heated on the roller 16 while being conveyed. However, if the bottom surface of the susceptor container 11 is uneven, it may meander during transportation, the strength of the susceptor container 11 may be low, or the susceptor container 11 may easily react with the roller 16 at a high temperature. In this case, it is desirable that the setter 18 (FIG. 4) is interposed between the susceptor container 11 and the roller 16 for conveyance. The setter 18 is a plate-like mounting table made of ceramic or the like. By placing and heating the susceptor container 11, the setter 18 is transported and heated, and the susceptor container 11 has a problem of conveyance due to meandering or the object M to be heated in the susceptor container 11. Thus, there is no inconvenience such as heating unevenness due to the movement of, and stable operation can be ensured.

以上のように、本第1の形態のマイクロ波加熱炉の操業方法によれば、被加熱物をサセプタ容器に収容してマイクロ波で加熱するので、収容されている被加熱物は、サセプタ容器とともに昇温することができ、被加熱物に温度差が発生することがない。また、サセプタは被加熱物と同等もしくは僅かに高いマイクロ波吸収率を有しているので、サセプタ容器は被加熱物と同等もしくは僅かに高い温度にまで昇温され、炉内温度が低いことによるサセプタ容器表面から炉内へ熱の放散が生じても、サセプタ容器と被加熱物との間の温度差は僅かなものとすることができる。従って、被加熱物の温度差に起因するクラックなどの発生を防止することが可能となる。   As described above, according to the operation method of the microwave heating furnace of the first embodiment, the object to be heated is accommodated in the susceptor container and heated by the microwave. At the same time, the temperature can be raised, and a temperature difference does not occur in the heated object. Further, since the susceptor has a microwave absorption rate that is equal to or slightly higher than that of the object to be heated, the susceptor container is heated to a temperature that is equal to or slightly higher than that of the object to be heated, and the furnace temperature is low. Even if heat is dissipated from the surface of the susceptor container into the furnace, the temperature difference between the susceptor container and the object to be heated can be small. Therefore, it is possible to prevent the occurrence of cracks due to the temperature difference of the object to be heated.

また、本実施の形態においては、炉体の炉壁内周面にサセプタを使用していないので、マイクロ波による炉壁の温度上昇を抑制することができる。この結果、マイクロ波加熱炉の消費電力量を従来技術になるマイクロ波加熱炉に比べて大きく低減することができる。さらに、加熱炉本体の炉壁の昇温を抑制できるので、炉壁を構成する断熱材を従来技術の断熱材に比べて耐熱性の低い安価な材料で構成することができる。例えば、従来技術では耐熱性の高い、例えば1500℃まで耐熱性のあるアルミナ質ファイバを断熱材として用いていたが、本実施の形態では、例えば、サセプタ容器を、ムライトと溶融アルミナとを、Al23:80%、SiO2:20%、となるように配合して形成した場合には、1200℃程度に耐えるアルミナ−シリカ系のセラミックファイバ製品を使用して、同等以上の断熱効果を得ることができる。さらに、炉殻の熱によるひずみが少なくなり、炉殻の変形によるマイクロ波の漏洩の危険を大幅に低減することができる。 Moreover, in this Embodiment, since the susceptor is not used for the furnace wall inner peripheral surface of a furnace body, the temperature rise of the furnace wall by a microwave can be suppressed. As a result, the power consumption of the microwave heating furnace can be greatly reduced as compared with the microwave heating furnace according to the prior art. Furthermore, since the temperature rise of the furnace wall of the heating furnace main body can be suppressed, the heat insulating material constituting the furnace wall can be made of an inexpensive material having lower heat resistance than the heat insulating material of the prior art. For example, in the prior art, an alumina fiber having high heat resistance, for example, heat resistance up to 1500 ° C., is used as a heat insulating material. In this embodiment, for example, a susceptor container is made of mullite and molten alumina, Al When it is formed by blending so as to be 2 O 3 : 80% and SiO 2 : 20%, an alumina-silica-based ceramic fiber product that can withstand about 1200 ° C is used, and the heat insulation effect is equivalent or better. Can be obtained. Furthermore, distortion due to heat of the furnace shell is reduced, and the risk of microwave leakage due to deformation of the furnace shell can be greatly reduced.

本発明の第2の形態は、被加熱物を収容するサセプタよりも小さいマイクロ波吸収率を有するサセプタを、加熱炉の炉壁内側面に配設し、第1の形態と同様に被加熱物をサセプタ容器内に収容してマイクロ波加熱を施すマイクロ波加熱炉の操業方法である。   In the second embodiment of the present invention, a susceptor having a microwave absorption rate smaller than that of a susceptor that accommodates an object to be heated is disposed on the inner wall of the furnace wall, and the object to be heated is the same as in the first embodiment. Is a method of operating a microwave heating furnace in which a susceptor container is accommodated and microwave heating is performed.

すなわち、第2の形態は、図3に示すように、炉体2の炉壁7の内側面にサセプタ19(以後、サセプタBと称する。)を設け、このサセプタB19は被加熱物を収容するサセプタ容器11(以後、サセプタAと称する。)よりもマイクロ波吸収率が小さいものであることが望ましい。なお、マイクロ波加熱炉のその他の構成は第1の形態と同様である。   That is, in the second embodiment, as shown in FIG. 3, a susceptor 19 (hereinafter referred to as susceptor B) is provided on the inner surface of the furnace wall 7 of the furnace body 2, and the susceptor B19 accommodates an object to be heated. It is desirable that the microwave absorption rate is smaller than that of the susceptor container 11 (hereinafter referred to as susceptor A). The other configuration of the microwave heating furnace is the same as that of the first embodiment.

例えば、サセプタAを、ムライトと溶融アルミナとを、Al23:80%、SiO2:20%、となるように配合して形成し、サセプタBは、サセプタAよりもマイクロ波吸収率が低くなるようにムライト分を低減して、ムライトと溶融アルミナとを、Al23:92%、SiO2:8%となるように配合して形成する。 For example, susceptor A is formed by blending mullite and molten alumina so that Al 2 O 3 : 80% and SiO 2 : 20%. Susceptor B has a higher microwave absorption rate than susceptor A. The mullite content is reduced so as to be low, and mullite and molten alumina are blended to form Al 2 O 3 : 92% and SiO 2 : 8%.

このような構成で第1の形態で用いた被加熱物と同様の被加熱物をマイクロ波加熱すると、被加熱物は第1の形態と同様にサセプタAとともに昇温する。また、同時にサセプタBも発熱して昇温する。しかし、サセプタBはサセプタAに比べてマイクロ波吸収率が低いのでサセプタAよりも低い温度までしか昇温しない。 ところが、サセプタBが昇温することによって、サセプタBを有しない第1の形態に比べ、炉内温度とサセプタAとの温度差は小さくなる。従って、サセプタAの表面から炉内へ放射される放射熱量は小さくなり、サセプタAと被加熱物との温度差は、第1の形態に比べてさらに小さくなる。つまり、サセプタA内に収容した被加熱物は一層安定した温度が得られるわけである。   When the object to be heated similar to the object to be heated used in the first embodiment is microwave-heated with such a configuration, the object to be heated is heated together with the susceptor A as in the first embodiment. At the same time, the susceptor B generates heat and rises in temperature. However, since the susceptor B has a lower microwave absorption rate than the susceptor A, the temperature rises only to a temperature lower than that of the susceptor A. However, when the temperature of the susceptor B rises, the temperature difference between the furnace temperature and the susceptor A becomes smaller than in the first embodiment without the susceptor B. Therefore, the amount of radiant heat radiated from the surface of the susceptor A into the furnace is reduced, and the temperature difference between the susceptor A and the object to be heated is further reduced as compared with the first embodiment. That is, the object to be heated accommodated in the susceptor A can obtain a more stable temperature.

サセプタBは、炉内をサセプタAや被加熱物の加熱温度より低い適当な温度にまで加熱できる材質であればよい。本実施の形態においては、消費電力量や炉殻の昇温などについては第1の形態に比べては若干劣るものとなる。しかし、サセプタBを好適に選定することによって、炉内温度を大きく抑制できるので、従来技術に比較すれば消費電力を大幅に低減することが可能である上に、炉壁を構成する断熱材を耐熱性の低い安価な材料で構成することができる。例えば、本実施の形態における断熱材としては、1350℃程度に耐えるセラミックファイバ製品を好適に用いることができる。   The susceptor B may be any material that can heat the inside of the furnace to an appropriate temperature lower than the heating temperature of the susceptor A and the object to be heated. In the present embodiment, the amount of power consumed and the temperature rise of the furnace shell are slightly inferior to those of the first embodiment. However, since the furnace temperature can be greatly suppressed by suitably selecting the susceptor B, the power consumption can be greatly reduced as compared with the prior art, and the heat insulating material constituting the furnace wall can be reduced. It can be made of an inexpensive material with low heat resistance. For example, as the heat insulating material in the present embodiment, a ceramic fiber product that can withstand about 1350 ° C. can be suitably used.

また、本第2の形態においては、サセプタBを有さない第1の形態に比べてサセプタ容器の熱負荷が軽減されるので、サセプタ容器の繰り返し使用回数を大幅に増大させることができ、操業の維持経費を節減することができる。   In the second embodiment, since the thermal load on the susceptor container is reduced compared to the first embodiment without the susceptor B, the number of repeated use of the susceptor container can be greatly increased. Maintenance costs can be reduced.

本発明の第3の形態は、被加熱物を収容するサセプタ容器の外周部にマイクロ波吸収率の小さい断熱材を設け、第1の形態と同様に被加熱物をサセプタ容器に収容してマイクロ波加熱を施すマイクロ波加熱炉の操業方法である。   In the third aspect of the present invention, a heat insulating material having a low microwave absorption rate is provided on the outer periphery of a susceptor container that accommodates an object to be heated. This is a method of operating a microwave heating furnace that performs wave heating.

すなわち、第3の形態は図4に示すように、サセプタ容器11の外周部にマイクロ波吸収率の小さい、例えば、ファイバセラミック製のボードやフェルトなどの断熱材を配設してサセプタ容器からの熱の放散を抑制しようとするものである。なお、マイクロ波加熱炉のその他の構成は第1の形態と同様である。   That is, in the third embodiment, as shown in FIG. 4, a heat insulating material such as a fiber ceramic board or felt is disposed on the outer periphery of the susceptor container 11, for example, from a susceptor container. It is intended to suppress heat dissipation. The other configuration of the microwave heating furnace is the same as that of the first embodiment.

例えば、被加熱物を収容するサセプタ容器11を第1の形態と同様にムライトと溶融アルミナとを、Al23:80%、SiO2:20%、となるように配合して形成し、被加熱物を収容する。さらに、適当な厚さの比較的密度の高いセラミックファイバ製の断熱材で断熱材容器20を形成して、この断熱材容器20に被加熱物を収容したサセプタ容器11を収容する。 For example, the susceptor container 11 that accommodates an object to be heated is formed by blending mullite and molten alumina in the same manner as in the first embodiment so that Al 2 O 3 : 80% and SiO 2 : 20%. Accommodates the object to be heated. Further, the heat insulating material container 20 is formed of a heat insulating material made of ceramic fiber having an appropriate thickness and having a relatively high density, and the susceptor container 11 containing an object to be heated is accommodated in the heat insulating material container 20.

このような構成で第1の形態で用いた被加熱物と同様の被加熱物にマイクロ波加熱を施すと、被加熱物は第1の形態と同様にサセプタ容器11とともに昇温する。また、サセプタ容器は断熱材容器20に収容されているのでサセプタ容器11の表面から炉内への熱の放散は抑制される。従って、被加熱物の温度をより一層安定させることができ、温度差に起因するクラックなどの発生を防止することができる。また、炉体の炉壁内周面にサセプタを使用していないので、マイクロ波による炉壁の温度上昇を大幅に抑制することができる。この結果、マイクロ波加熱炉の消費電力量を前記の第1の形態や第2の形態に比べて一層低減することができる。さらに、炉壁を構成する断熱材を前記の第1の形態や第2の形態に比べてなお一層耐熱性の低い安価な材料、例えば、1200℃程度に耐えるセラミックファイバ製品で構成することができ、炉殻の変形によるマイクロ波の漏洩の危険をも大幅に低減することができる。   When microwave heating is performed on an object to be heated similar to the object to be heated used in the first embodiment with such a configuration, the object to be heated is heated together with the susceptor container 11 as in the first embodiment. Moreover, since the susceptor container is accommodated in the heat insulating material container 20, heat dissipation from the surface of the susceptor container 11 into the furnace is suppressed. Therefore, the temperature of the object to be heated can be further stabilized, and the occurrence of cracks and the like due to the temperature difference can be prevented. Further, since no susceptor is used on the inner peripheral surface of the furnace wall of the furnace body, the temperature rise of the furnace wall due to microwaves can be significantly suppressed. As a result, the power consumption of the microwave heating furnace can be further reduced as compared with the first and second embodiments. Furthermore, the heat insulating material constituting the furnace wall can be made of an inexpensive material having a lower heat resistance than that of the first and second embodiments, for example, a ceramic fiber product that can withstand about 1200 ° C. Further, the risk of microwave leakage due to the deformation of the furnace shell can be greatly reduced.

本発明の第4の形態は、被加熱物を収容するサセプタ容器を、マイクロ波吸収率の異なる少なくとも2種以上のサセプタで形成し、サセプタ容器の外周部を形成する第1のサセプタが、その内周部を形成する第2のサセプタよりもマイクロ波吸収率が小さいもので構成するマイクロ波加熱炉の操業方法である。   According to a fourth aspect of the present invention, a susceptor container that accommodates an object to be heated is formed of at least two types of susceptors having different microwave absorption rates, and the first susceptor that forms the outer periphery of the susceptor container includes: This is a method for operating a microwave heating furnace configured with a microwave absorption rate smaller than that of the second susceptor forming the inner periphery.

すなわち、サセプタ容器11は、第1のサセプタ容器11aと、この第1のサセプタ容器11aの内側に収容される第2のサセプタ容器11bとの二重構造となっており、被加熱物Mは第2のサセプタ容器11b内に収容して加熱される。ここで、第2のサセプタ容器11bは第1のサセプタ容器11aよりもマイクロ波吸収率が大きいく、サセプタ容器11bのマイクロ波吸収率は前記と同様に被加熱物のマイクロ波吸収率よりも僅かに大きいことが好ましい。   That is, the susceptor container 11 has a double structure of a first susceptor container 11a and a second susceptor container 11b accommodated inside the first susceptor container 11a. It accommodates in the 2 susceptor container 11b, and is heated. Here, the second susceptor container 11b has a higher microwave absorption rate than the first susceptor container 11a, and the microwave absorption rate of the susceptor container 11b is slightly smaller than the microwave absorption rate of the object to be heated, as described above. Is preferably large.

このような構成で第1の形態で用いた被加熱物と同様の被加熱物にマイクロ波加熱を施すと、被加熱物は第1の形態と同様にサセプタ容器11とともに昇温する。また、サセプタ容器はマイクロ波吸収率の異なるサセプタの二重構造となっているので、被加熱物から第2のサセプタ容器への熱放射はほぼ完全に抑制される。また、第1のサセプタ表面から炉内への熱の放散も抑制されるため、被加熱物は均一に加熱冷却されることができ、クラックなどの品質的な不具合を生じることがない。また、第2のサセプタは被加熱物よりもマイクロ波吸収率が高く、かつ第1のサセプタによって熱の放散が抑えられるので被加熱物を効率よく高温まで加熱することができる。   When microwave heating is performed on an object to be heated similar to the object to be heated used in the first embodiment with such a configuration, the object to be heated is heated together with the susceptor container 11 as in the first embodiment. Further, since the susceptor container has a double structure of susceptors having different microwave absorption rates, heat radiation from the heated object to the second susceptor container is almost completely suppressed. In addition, since heat dissipation from the surface of the first susceptor into the furnace is also suppressed, the object to be heated can be heated and cooled uniformly, and quality defects such as cracks do not occur. In addition, the second susceptor has a higher microwave absorption rate than the object to be heated, and heat dissipation is suppressed by the first susceptor, so that the object to be heated can be efficiently heated to a high temperature.

例えば、第1のサセプタ容器11aを第1の形態と同様にムライトと溶融アルミナとを、Al23:80%、SiO2:20%、となるように配合して形成した場合には、第2のサセプタ容器11bをジルコニアとカルシアとがZrO3:88%、CaO:12%、となるように配合して形成することができる。なお、この場合の第2のサセプタ容器11bとしては、ジルコニアの他に炭化珪素やチタン酸アルミニウム等もマイクロ波吸収率を調整して好適に用いることができる。さらに、図6に示すように、前記の実施の形態と同様に適当な厚さの比較的密度の高いセラミックファイバ製の断熱材で断熱材容器20を形成して、この断熱材容器20に被加熱物を収容した上記のような二重構造のサセプタ容器11を収容することも好ましい。本実施の形態においては、サセプタ容器11は上記の二重構造容器に限定されることなく、所望に応じてマイクロ波吸収率が段階的に異なる複数のサセプタからなる複数層の容器構成とすることもできる。 For example, when the first susceptor container 11a is formed by blending mullite and molten alumina so as to be Al 2 O 3 : 80% and SiO 2 : 20% as in the first embodiment, The second susceptor container 11b can be formed by blending zirconia and calcia so that ZrO 3 : 88% and CaO: 12%. In addition, as the second susceptor container 11b in this case, silicon carbide, aluminum titanate, or the like can be suitably used in addition to zirconia with the microwave absorption rate adjusted. Further, as shown in FIG. 6, a heat insulating material container 20 is formed of a heat insulating material made of a relatively high density ceramic fiber having an appropriate thickness as in the above-described embodiment, and the heat insulating material container 20 is covered with the heat insulating material container 20. It is also preferable to accommodate the susceptor container 11 having a double structure as described above that accommodates a heated object. In the present embodiment, the susceptor container 11 is not limited to the above-described double structure container, and has a multi-layer container structure including a plurality of susceptors having stepwise different microwave absorption rates as desired. You can also.

本発明のマイクロ波加熱炉の操業方法によれば、以上の効果に加えて次のような効果を奏することができる。   According to the operation method of the microwave heating furnace of the present invention, the following effects can be obtained in addition to the above effects.

従来技術においては、炉壁内周面にサセプタを設けて被加熱物に生じる温度差を緩和するようにしていた。しかし、この構成では被加熱物の形状が複雑であったり、成形助剤として使用されるバインダなどの性状の違いに合わせて適正なサセプタを選択して交換することは極めて困難であった。   In the prior art, a susceptor is provided on the inner peripheral surface of the furnace wall to alleviate the temperature difference generated in the object to be heated. However, in this configuration, it is extremely difficult to select and replace an appropriate susceptor according to the difference in properties such as the binder used as a molding aid, or the shape of the object to be heated is complicated.

一方、本発明の操業方法によれば、サセプタ容器に被加熱物を収容してマイクロ波加熱を施す構成であるから、被加熱物の形状や性状に合わせて最適な材質のサセプタを容易に選択してサセプタ容器とすることができる。   On the other hand, according to the operation method of the present invention, the object to be heated is accommodated in the susceptor container and subjected to microwave heating, so it is possible to easily select the susceptor of the optimum material according to the shape and properties of the object to be heated. Thus, a susceptor container can be obtained.

例えば、被加熱物の形状が複雑であり、わずかな温度差でクラックなどのダメージを受けるような被加熱物の燒結の場合には、その被加熱物の最もダメージを受けやすい温度域で被加熱物と同程度のマイクロ波吸収率を有する材質のサセプタ容器を使用することによって、被加熱物の表面温度とサセプタ容器の温度とを略同一にすることができる。従って、被加熱物の表面温度と内部温度との温度差が縮小し、被加熱物のダメージを低減することができる。   For example, when the shape of the object to be heated is complicated and the object to be heated is damaged such as cracks with a slight temperature difference, the object to be heated is heated in the temperature range that is most susceptible to damage. By using a susceptor container made of a material having a microwave absorption rate comparable to that of the object, the surface temperature of the object to be heated and the temperature of the susceptor container can be made substantially the same. Therefore, the temperature difference between the surface temperature of the object to be heated and the internal temperature is reduced, and damage to the object to be heated can be reduced.

本発明の第2発明は、マイクロ波加熱炉の発明である。前述したように本発明においては加熱炉の形式は特に限定されるものではない。マイクロ波を照射できればバッチ式加熱炉でも連続式加熱炉でもよい。   The second invention of the present invention is an invention of a microwave heating furnace. As described above, the type of the heating furnace is not particularly limited in the present invention. A batch-type heating furnace or a continuous heating furnace may be used as long as microwave irradiation can be performed.

加熱炉の実施形態については、図1および図2に本発明を実施するための連続式マイクロ波加熱炉の最良の形態を示し、第1発明の第1の形態で詳細に説明したのでここでは説明を省略する。   As for the embodiment of the heating furnace, the best mode of the continuous microwave heating furnace for carrying out the present invention is shown in FIG. 1 and FIG. 2, and has been described in detail in the first embodiment of the first invention. Description is omitted.

本実施の形態においては、連続式マイクロ波加熱炉として、ローラハース式連続炉の場合を例示した。しかし、本発明の連続式マイクロ波加熱炉における連続式加熱炉は、ローラ式、ネットコンベア式、台車式、あるいはスラブプッシャー式など、連続式の加熱炉であれば特に限定するものではない。   In this Embodiment, the case of the roller hearth type | mold continuous furnace was illustrated as a continuous microwave heating furnace. However, the continuous heating furnace in the continuous microwave heating furnace of the present invention is not particularly limited as long as it is a continuous heating furnace such as a roller type, a net conveyor type, a cart type, or a slab pusher type.

また、本実施の形態においては、加熱源としてマイクロ波加熱のみを有するマイクロ波加熱炉について例示した。しかし、加熱源として、電気ヒータ、あるいはバーナによる燃焼などの対流加熱や輻射加熱を補助加熱手段として併用することも可能である。特に、サセプタや被加熱物のマイクロ波吸収率の低い低温域や、休止後の加熱炉の立ち上げ時などにこれらの補助加熱手段を併用することは効果的である。   Moreover, in this Embodiment, the microwave heating furnace which has only microwave heating as a heating source was illustrated. However, it is also possible to use convection heating such as combustion by an electric heater or burner or radiant heating as an auxiliary heating means as a heating source. In particular, it is effective to use these auxiliary heating means in combination at a low temperature range where the microwave absorption rate of the susceptor or the object to be heated is low or when the heating furnace is started up after the suspension.

以下、実施例により本発明のマイクロ波加熱炉の操業方法についてさらに詳しく説明する。
(実施例1)
図2に示す連続式マイクロ波加熱炉を使用して、アルミナ質の生素地(寸法:100×100×28mmのアルミナブロック)を被加熱物とした。このアルミナブロックをサセプタ容器内に収容しさらに、このサセプタ容器を図4に示すように断熱材容器に収容してマイクロ波加熱を施した。
Hereinafter, the operation method of the microwave heating furnace of the present invention will be described in more detail with reference to examples.
(Example 1)
Using the continuous microwave heating furnace shown in FIG. 2, an alumina base (dimension: 100 × 100 × 28 mm alumina block) was used as an object to be heated. The alumina block was accommodated in a susceptor container, and the susceptor container was accommodated in a heat insulating material container as shown in FIG. 4 and subjected to microwave heating.

サセプタ容器は、Al23:85.5%、SiO2:15.5%からなる厚さ15mmの板(アルミナ−ムライト質耐火物)を組み合わせて、縦150×横150×深さ80mmの容器としたものである。また、断熱材容器には、厚さ40mmのセラミックファイバーボードを用いた。 The susceptor container is a combination of a 15 mm thick plate (alumina-mullite refractory) made of Al 2 O 3 : 85.5% and SiO 2 : 15.5%, and has a length of 150 x 150 x depth of 80 mm. It is a container. Moreover, the ceramic fiber board of thickness 40mm was used for the heat insulating material container.

上記のように構成した被加熱物であるアルミナブロックを内蔵した被加熱容器を厚さ10mmのセッタ(ハイアルミナ質耐火物)上に載置し、連続式マイクロ波加熱炉中を1m/時間の速度で通過させた。アルミナブロックの最高温度が1520℃となるように10時間かけて加熱し、その後10時間かけて常温まで冷却した。   The heated container containing the alumina block, which is the heated object configured as described above, was placed on a setter (high alumina refractory) having a thickness of 10 mm, and the inside of the continuous microwave heating furnace was 1 m / hour. Passed at speed. It heated over 10 hours so that the maximum temperature of an alumina block might be set to 1520 degreeC, and it cooled to normal temperature over 10 hours after that.

炉内温度の変化を図7に示す。ここで横軸は、アルミナブロックを内蔵する被加熱容器を加熱炉へ装入してからの経過時間で、縦軸はその経過時間後の被加熱容器の通過位置における炉内温度(本実施例においては、例えば5時間後の温度は、炉の装入口から5m入った位置での炉内温度)を示す。   The change in the furnace temperature is shown in FIG. Here, the horizontal axis is the elapsed time since the heated container containing the alumina block was charged into the heating furnace, and the vertical axis is the furnace temperature at the passage position of the heated container after this elapsed time (this embodiment) For example, the temperature after 5 hours indicates the temperature in the furnace at a position 5 m from the furnace inlet.

図7からアルミナブロックが最高温度の1520℃で、その付近の炉内温度は1380℃であることが分かる。すなわち、被加熱物を1500〜1600℃に加熱する場合であっても炉壁内周面の断熱材は1400℃程度に耐える材質でよいことが分かった。従来は、被加熱物をこのような高温とする場合には、炉壁内周面の断熱材は1600℃以上に耐える極めて高価な材質のもが要求された。   It can be seen from FIG. 7 that the alumina block has a maximum temperature of 1520 ° C. and the furnace temperature in the vicinity thereof is 1380 ° C. That is, it was found that even when the object to be heated is heated to 1500 to 1600 ° C., the heat insulating material on the inner peripheral surface of the furnace wall may be a material that can withstand about 1400 ° C. Conventionally, when the object to be heated is set to such a high temperature, the heat insulating material on the inner peripheral surface of the furnace wall is required to be an extremely expensive material that can withstand 1600 ° C. or more.

さらに、マイクロ波加熱炉の炉壁の内面温度は、最高温度付近で1380℃であり、従来の1550℃に比べて大幅に低下することができた。また、消費電力も従来に比べて約20%節減することができた。
(実施例2)
図6に示すようにサセプタ容器をマイクロ波吸収率の異なる2種類のサセプタを用いて形成した以外は、実施例1と同様にして、実施例1と同様のアルミナブロックをマイクロ波加熱した。
Furthermore, the inner surface temperature of the furnace wall of the microwave heating furnace was 1380 ° C. in the vicinity of the maximum temperature, and was able to be significantly reduced as compared with the conventional 1550 ° C. In addition, power consumption can be reduced by about 20% compared to the prior art.
(Example 2)
As shown in FIG. 6, the same alumina block as in Example 1 was microwave-heated in the same manner as in Example 1 except that the susceptor container was formed using two types of susceptors having different microwave absorption rates.

サセプタ容器11は、Al23:80%、SiO2:20%からなる厚さが6mmで縦160×横160×深さ50mmの容器を第1のサセプタ容器11aとし、さらに、この第1のサセプタ容器11aの内周面にZrO2:88%、CaO:12%からなる厚さ3mmの板を当接させて配置し第2のサセプタ容器11bを形成して、マイクロ波吸収率の異なる2種類のサセプタの二重構造とした。 The susceptor container 11 is a first susceptor container 11a which is made of Al 2 O 3 : 80% and SiO 2 : 20% and has a thickness of 6 mm and a length of 160 × width of 160 × depth of 50 mm. A second susceptor container 11b is formed by placing a 3 mm thick plate made of ZrO 2 : 88% and CaO: 12% in contact with the inner peripheral surface of the susceptor container 11a. A double structure of two types of susceptors.

以上のように構成したサセプタ容器11にアルミナブロックを収容し、さらに実施例1と同様に断熱材容器に収容して被加熱容器としてセッタに載置し、連続式マイクロ波加熱炉中を1m/時間の速度で通過させた。ここで、炉内温度を図7の温度曲線となるように調整して、アルミナブロックを内蔵する被加熱容器にマイクロ波加熱を施した。   The alumina block is accommodated in the susceptor container 11 configured as described above, and further accommodated in a heat insulating material container and placed on a setter as a heated container in the same manner as in Example 1, and the inside of the continuous microwave heating furnace is 1 m / Passed at the speed of time. Here, the furnace temperature was adjusted to the temperature curve of FIG. 7, and microwave heating was performed on the heated container containing the alumina block.

被加熱物であるアルミナブロックは、炉内温度が1380℃の最高温度となる時点で、1656℃まで加熱された。なお、アルミナブロックの焼成温度は、サセプタ容器内のアルミナブロック近傍にリファサーモ((財)ファインセラミックセンター製)を配置してサセプタ容器内の最高温度を測定し、アルミナブロックの最高温度とした。   The alumina block as the object to be heated was heated to 1656 ° C. when the furnace temperature reached the highest temperature of 1380 ° C. The firing temperature of the alumina block was determined as the maximum temperature of the alumina block by measuring a maximum temperature in the susceptor container by placing a reference thermometer (manufactured by Fine Ceramic Center) near the alumina block in the susceptor container.

本実施例では、第1と第2のマイクロ波吸収率の異なるサセプタを組み合わせることによって、炉内温度を高めることなくアルミナブロックの焼成温度を炉内温度よりも276℃も高温とすることができた。   In this embodiment, by combining the susceptors having different first and second microwave absorption rates, the firing temperature of the alumina block can be made 276 ° C. higher than the furnace temperature without increasing the furnace temperature. It was.

すなわち、マイクロ波吸収率の異なる複数のサセプタを組み合わせることによりマイクロ波加熱の加熱効率を飛躍的に向上させうることが分かった。   That is, it was found that the heating efficiency of microwave heating can be dramatically improved by combining a plurality of susceptors having different microwave absorption rates.

本発明のマイクロ波加熱炉の操業方法と連続式マイクロ波加熱炉は、セラミックスなど誘電体の加熱処理、特に焼結処理などに好適に使用することができる。 本発明では被加熱物をサセプタ容器に収容してマイクロ波加熱を施すので、被加熱物の温度差によるクラックなどの不都合を生じる危険がない。従って、薄肉部と厚肉部とを有するような複雑な形状の被加熱物についても安定した品質を得ることができる。また、炉壁温度の上昇を抑制することができるので、炉壁内周部の断熱材を安価なものとすることができ、加熱炉の製造コストや消費電力を大幅に低減することができる。   The method for operating a microwave heating furnace and the continuous microwave heating furnace of the present invention can be suitably used for heat treatment of a dielectric material such as ceramics, in particular, sintering treatment. In the present invention, since the object to be heated is accommodated in the susceptor container and subjected to microwave heating, there is no risk of causing inconvenience such as cracks due to a temperature difference of the object to be heated. Therefore, stable quality can be obtained even for an object to be heated having a complicated shape having a thin portion and a thick portion. Moreover, since the rise in the furnace wall temperature can be suppressed, the heat insulating material in the furnace wall inner periphery can be made inexpensive, and the manufacturing cost and power consumption of the heating furnace can be greatly reduced.

さらに、被加熱物を収容するサセプタ容器を、マイクロ波吸収率の異なる複数のサセプタを組み合わせて形成することにより、マイクロ波加熱の加熱効率を飛躍的に向上させることができる。   Furthermore, the heating efficiency of microwave heating can be dramatically improved by forming a susceptor container that accommodates an object to be heated by combining a plurality of susceptors having different microwave absorption rates.

本発明の第1の形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 1st form of this invention. 本発明の第1の形態を説明する概略側面図である。It is a schematic side view explaining the 1st form of the present invention. 本発明の第2の形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the 2nd form of this invention. 本発明の第3の形態のサセプタ容器の構成を示す要部断面模式図である。It is a principal part cross-section schematic diagram which shows the structure of the susceptor container of the 3rd form of this invention. サセプタ容器を示す要部側面模式図である。It is a principal part side surface schematic diagram which shows a susceptor container. 本発明の第4の形態のサセプタ容器の構成を示す要部断面模式図である。It is a principal part cross-section schematic diagram which shows the structure of the susceptor container of the 4th form of this invention. 実施例1の加熱経過時間による炉内温度の変化を示す線図である。It is a diagram which shows the change of the furnace temperature by the heating elapsed time of Example 1. FIG.

符号の説明Explanation of symbols

1:連続式マイクロ波加熱炉 2:炉体 3:搬送手段 4:マイクロ波発生装置 6:炉殻 7:炉壁 10:スターラ 11:サセプタ容器 12:受け具 13:放射温度計 15:測温孔 16:ローラ 18:セッタ 19:サセプタB 20:断熱材(容器) M:被加熱物 H:加熱帯 C:冷却帯 1: Continuous microwave heating furnace 2: Furnace body 3: Conveying means 4: Microwave generator 6: Furnace shell 7: Furnace wall 10: Stirrer 11: Susceptor container 12: Receiver 13: Radiation thermometer 15: Temperature measurement Hole 16: Roller 18: Setter 19: Susceptor B 20: Heat insulating material (container) M: Object to be heated H: Heating zone C: Cooling zone

Claims (10)

被加熱物をマイクロ波により加熱するマイクロ波加熱炉の操業方法であって、
マイクロ波を照射することによって発熱する発熱体内に被加熱物を収容して該発熱体とともに該被加熱物を加熱することを特徴とするマイクロ波加熱炉の操業方法。
An operation method of a microwave heating furnace for heating an object to be heated by microwaves,
A method for operating a microwave heating furnace, wherein a heated object is accommodated in a heating element that generates heat when irradiated with microwaves, and the heated object is heated together with the heating element.
前記マイクロ波加熱炉は、該加熱炉の炉壁内側面に前記被加熱物を収容する発熱体よりも小さいマイクロ波吸収率を有する発熱体を備えた請求項1に記載のマイクロ波加熱炉の操業方法。   2. The microwave heating furnace according to claim 1, wherein the microwave heating furnace includes a heating element having a microwave absorption rate smaller than that of the heating element containing the object to be heated on an inner wall surface of the heating furnace. Operation method. 前記被加熱物を収容する発熱体は、該発熱体の外周部にマイクロ波吸収率の低い断熱材を設けた請求項1又は2に記載のマイクロ波加熱炉の操業方法。   The operation method of the microwave heating furnace according to claim 1 or 2, wherein the heating element that houses the object to be heated is provided with a heat insulating material having a low microwave absorption rate on an outer peripheral portion of the heating element. 前記被加熱物を収容する発熱体は、前記被加熱物の表面温度を測定する測温孔を有する請求項1〜3のいずれかに記載のマイクロ波加熱炉の操業方法。   The operating method of the microwave heating furnace in any one of Claims 1-3 with which the heat generating body which accommodates the said to-be-heated object has a temperature measuring hole which measures the surface temperature of the to-be-heated object. 前記被加熱物を収容する発熱体は、ムライトと溶融アルミナとを混合して形成した発熱体である請求項1〜4のいずれかに記載のマイクロ波加熱炉の操業方法。   The method for operating a microwave heating furnace according to any one of claims 1 to 4, wherein the heating element that accommodates the object to be heated is a heating element formed by mixing mullite and molten alumina. 前記被加熱物を収容する発熱体は、炭化珪素と溶融アルミナとを混合して形成した発熱体である請求項1〜4のいずれかに記載のマイクロ波加熱炉の操業方法。   The method for operating a microwave heating furnace according to any one of claims 1 to 4, wherein the heating element that accommodates the object to be heated is a heating element formed by mixing silicon carbide and molten alumina. 前記被加熱物を収容する発熱体は、マイクロ波吸収率の異なる少なくとも2種以上の発熱体からなり、前記発熱体の外周部を形成する第1の発熱体は、前記発熱体の内周部を形成する第2の発熱体よりもマイクロ波吸収率が小さい請求項1〜4のいずれかに記載のマイクロ波加熱炉の操業方法。   The heating element that accommodates the object to be heated includes at least two kinds of heating elements having different microwave absorption rates, and the first heating element that forms the outer peripheral part of the heating element is the inner peripheral part of the heating element. The operating method of the microwave heating furnace in any one of Claims 1-4 whose microwave absorptivity is smaller than the 2nd heat generating body which forms. 前記第1の発熱体はムライトと溶融アルミナとを混合して形成した発熱体であり、前記第2の発熱体はジルコニアとカルシアとを混合して形成した発熱体である請求項7に記載のマイクロ波加熱炉の操業方法。   8. The heating element according to claim 7, wherein the first heating element is a heating element formed by mixing mullite and molten alumina, and the second heating element is a heating element formed by mixing zirconia and calcia. Operation method of microwave heating furnace. 炉壁によって区画された加熱室と、
該加熱室内にマイクロ波を導入するマイクロ波発生装置とを有するマイクロ波加熱炉であって、
前記加熱室内に、被加熱物を収容するマイクロ波を照射することにより発熱する発熱体容器を備えることを特徴とするマイクロ波加熱炉。
A heating chamber partitioned by a furnace wall;
A microwave heating furnace having a microwave generator for introducing microwaves into the heating chamber,
A microwave heating furnace comprising a heating element container that generates heat by irradiating a microwave containing an object to be heated in the heating chamber.
前記マイクロ波加熱炉は、一端に被加熱物の入口を他端に被加熱物の出口を有し、少なくとも加熱帯と冷却帯とを備えた炉体と、
該炉体の前記加熱帯の内部へマイクロ波を導入するマイクロ波発生装置と、
該炉体を貫通して該被加熱物を載置搬送する搬送手段と、
を有する請求項9に記載のマイクロ波加熱炉。
The microwave heating furnace has an inlet of an object to be heated at one end and an outlet of the object to be heated at the other end, and a furnace body provided with at least a heating zone and a cooling zone,
A microwave generator for introducing microwaves into the heating zone of the furnace body;
Conveying means for placing and conveying the object to be heated through the furnace body;
The microwave heating furnace of Claim 9 which has these.
JP2003400335A 2003-07-22 2003-11-28 Operation method of microwave heating furnace and microwave heating furnace Expired - Fee Related JP4214040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400335A JP4214040B2 (en) 2003-07-22 2003-11-28 Operation method of microwave heating furnace and microwave heating furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003277813 2003-07-22
JP2003400335A JP4214040B2 (en) 2003-07-22 2003-11-28 Operation method of microwave heating furnace and microwave heating furnace

Publications (2)

Publication Number Publication Date
JP2005055162A true JP2005055162A (en) 2005-03-03
JP4214040B2 JP4214040B2 (en) 2009-01-28

Family

ID=34380022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400335A Expired - Fee Related JP4214040B2 (en) 2003-07-22 2003-11-28 Operation method of microwave heating furnace and microwave heating furnace

Country Status (1)

Country Link
JP (1) JP4214040B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327842A (en) * 2005-05-23 2006-12-07 Ohcera Co Ltd Insulating refractory material for microwave firing furnace
WO2007010607A1 (en) * 2005-07-21 2007-01-25 Koyo Thermo Systems Co., Ltd. Carburization method and carburization furnace
JP2007111709A (en) * 2005-10-18 2007-05-10 Honda Motor Co Ltd Solid state welding method of metallic member
JP2007147264A (en) * 2005-10-26 2007-06-14 Mino Ceramic Co Ltd Continuous type heat treatment method and continuous type heat treat furnace
JP2008535172A (en) * 2005-03-31 2008-08-28 バラット ヘビー エレクトリカルズ リミテッド Rapid and homogeneous heat treatment of large metal samples using high power microwaves
JP2010149080A (en) * 2008-12-26 2010-07-08 Kubota Matsushitadenko Exterior Works Ltd Detoxification treatment method of asbestos
CN101629781B (en) * 2009-06-30 2012-11-28 南京信息工程大学 Simple microwave sample sintering furnace
JP2013002767A (en) * 2011-06-20 2013-01-07 Micro Denshi Kk Heating device utilizing microwave
JP2014090058A (en) * 2012-10-30 2014-05-15 Tokyo Electron Ltd Microwave heat treatment apparatus and method
CN103868354A (en) * 2014-01-14 2014-06-18 南京理工大学 Heat insulation device for microwave sintering
CN103991225A (en) * 2014-05-06 2014-08-20 南京航空航天大学 Curing method of three-dimensional interval conjoined fabric reinforced resin-based composite material and microwave oven for curing
CN104149365A (en) * 2014-06-27 2014-11-19 南京航空航天大学 Microwave curing method and microwave curing device of composite shaft part
WO2015180543A1 (en) * 2014-05-26 2015-12-03 江苏华东锂电技术研究院有限公司 Apparatus for preparing active material of lithium ion battery electrode
JP2018518365A (en) * 2015-03-27 2018-07-12 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク A method for heat treatment of surface coatings on metal parts by microwaves
JP2019517932A (en) * 2016-03-30 2019-06-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Additional manufacturing methods for ceramics using microwaves
WO2019142578A1 (en) * 2018-01-18 2019-07-25 マイクロ波化学株式会社 Microwave processing device and carbon fiber production method
KR102026562B1 (en) * 2018-05-03 2019-09-27 주식회사 세지테크 Medium or Large size microwave heating furnace system applied high powered magnetron
CN111869321A (en) * 2018-01-18 2020-10-30 微波化学有限公司 Microwave processing device and method for producing carbon fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102384650B (en) * 2011-09-21 2012-11-07 苏州汇科机电设备有限公司 Heater structure of electronic powder firing furnace

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535172A (en) * 2005-03-31 2008-08-28 バラット ヘビー エレクトリカルズ リミテッド Rapid and homogeneous heat treatment of large metal samples using high power microwaves
JP2006327842A (en) * 2005-05-23 2006-12-07 Ohcera Co Ltd Insulating refractory material for microwave firing furnace
WO2007010607A1 (en) * 2005-07-21 2007-01-25 Koyo Thermo Systems Co., Ltd. Carburization method and carburization furnace
JP2007111709A (en) * 2005-10-18 2007-05-10 Honda Motor Co Ltd Solid state welding method of metallic member
JP4616149B2 (en) * 2005-10-18 2011-01-19 本田技研工業株式会社 Solid phase bonding method for metal parts
JP2007147264A (en) * 2005-10-26 2007-06-14 Mino Ceramic Co Ltd Continuous type heat treatment method and continuous type heat treat furnace
JP2010149080A (en) * 2008-12-26 2010-07-08 Kubota Matsushitadenko Exterior Works Ltd Detoxification treatment method of asbestos
CN101629781B (en) * 2009-06-30 2012-11-28 南京信息工程大学 Simple microwave sample sintering furnace
JP2013002767A (en) * 2011-06-20 2013-01-07 Micro Denshi Kk Heating device utilizing microwave
JP2014090058A (en) * 2012-10-30 2014-05-15 Tokyo Electron Ltd Microwave heat treatment apparatus and method
CN103868354A (en) * 2014-01-14 2014-06-18 南京理工大学 Heat insulation device for microwave sintering
CN103991225A (en) * 2014-05-06 2014-08-20 南京航空航天大学 Curing method of three-dimensional interval conjoined fabric reinforced resin-based composite material and microwave oven for curing
CN103991225B (en) * 2014-05-06 2016-04-27 南京航空航天大学 The curing of three dimensional separation disjunctor reinforced resin based composites and the micro-wave oven of solidification
WO2015180543A1 (en) * 2014-05-26 2015-12-03 江苏华东锂电技术研究院有限公司 Apparatus for preparing active material of lithium ion battery electrode
CN104149365A (en) * 2014-06-27 2014-11-19 南京航空航天大学 Microwave curing method and microwave curing device of composite shaft part
CN104149365B (en) * 2014-06-27 2016-08-31 南京航空航天大学 The microwave solidification method of composite axial workpiece and device
JP2018518365A (en) * 2015-03-27 2018-07-12 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク A method for heat treatment of surface coatings on metal parts by microwaves
JP2019517932A (en) * 2016-03-30 2019-06-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Additional manufacturing methods for ceramics using microwaves
WO2019142578A1 (en) * 2018-01-18 2019-07-25 マイクロ波化学株式会社 Microwave processing device and carbon fiber production method
CN111869321A (en) * 2018-01-18 2020-10-30 微波化学有限公司 Microwave processing device and method for producing carbon fiber
CN111869321B (en) * 2018-01-18 2023-02-17 微波化学有限公司 Microwave processing device and method for producing carbon fiber
KR102026562B1 (en) * 2018-05-03 2019-09-27 주식회사 세지테크 Medium or Large size microwave heating furnace system applied high powered magnetron

Also Published As

Publication number Publication date
JP4214040B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4214040B2 (en) Operation method of microwave heating furnace and microwave heating furnace
EP1333012B1 (en) Burning furnace, burnt body producing method, and burnt body
US6512216B2 (en) Microwave processing using highly microwave absorbing powdered material layers
US7217909B2 (en) Microwave baking furnace
JP4641372B2 (en) Apparatus and method for processing ceramics
US6706233B2 (en) Method for processing ceramics using electromagnetic energy
JP2004526649A5 (en)
JP2005268624A (en) Heating equipment
KR20170115551A (en) Components made of sintered material, in particular sintering furnace for dental parts
US20180306512A1 (en) Microwave Furnace For Thermal Processing
JP3845777B2 (en) Firing furnace and method for producing fired body
US7223950B2 (en) Microwave burning furnace including heating element having two types of materials
JP4782537B2 (en) Carbon material firing furnace and carbon material firing method
JP2002130955A (en) Continuous baking furance, burned product and method for manufacturing the same
JP4154606B2 (en) Microwave firing furnace
JP2011169504A (en) Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace
JPH07114188B2 (en) Heat treatment method for semiconductor substrate and heat treatment apparatus used therefor
JPH06345541A (en) Microwave sintering method and furnace therefor
JP2003277157A (en) Kiln
JP4926445B2 (en) Oxidation-resistant furnace for graphite material and oxidation-resistant method for graphite material
JPH04292782A (en) Baking furnace
JP2004352574A (en) Continuous baking method for baked body using electromagnetic wave, and tunnel type continuous baking furnace
US20170310088A1 (en) Spark Plug Insulator and Method of Making the Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4214040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees