JP4782537B2 - Carbon material firing furnace and carbon material firing method - Google Patents

Carbon material firing furnace and carbon material firing method Download PDF

Info

Publication number
JP4782537B2
JP4782537B2 JP2005306713A JP2005306713A JP4782537B2 JP 4782537 B2 JP4782537 B2 JP 4782537B2 JP 2005306713 A JP2005306713 A JP 2005306713A JP 2005306713 A JP2005306713 A JP 2005306713A JP 4782537 B2 JP4782537 B2 JP 4782537B2
Authority
JP
Japan
Prior art keywords
carbon material
carbon
molded body
inert gas
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005306713A
Other languages
Japanese (ja)
Other versions
JP2006147553A (en
Inventor
巧 河野
初雄 平
文人 森川
健滋 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON TECHNO-CARBON CO., LTD.
Nippon Steel and Sumikin Chemical Co Ltd
Nippon Steel Corp
Original Assignee
NIPPON TECHNO-CARBON CO., LTD.
Nippon Steel and Sumikin Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON TECHNO-CARBON CO., LTD., Nippon Steel and Sumikin Chemical Co Ltd, Nippon Steel Corp filed Critical NIPPON TECHNO-CARBON CO., LTD.
Priority to JP2005306713A priority Critical patent/JP4782537B2/en
Publication of JP2006147553A publication Critical patent/JP2006147553A/en
Application granted granted Critical
Publication of JP4782537B2 publication Critical patent/JP4782537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フィラーとバインダーを捏合して成型した炭素材料素材成型体を焼成する炭素材料焼成炉および炭素材料の焼成方法に関する。   The present invention relates to a carbon material firing furnace and a carbon material firing method for firing a carbon material material molded body formed by combining a filler and a binder.

か焼コークス等のフィラーとコールタールピッチ等のバインダーを捏合して成型した炭素材料素材成型体(以下、これを単に成型体ということがある。)を焼成することで、バインダーが炭素化、固化され、フィラーと結合した炭素材料焼成品が得られる。
なお、この炭素材料焼成品は、そのまま還元材等に使用され、あるいは、さらに焼成、黒鉛化して黒鉛質製品として使用される。
上記2度にわたって行われる焼成は、前者を一次焼成、後者を二次焼成と呼び分けられている。
The binder is carbonized and solidified by firing a carbon material material molded body (hereinafter, simply referred to as a molded body) formed by combining a filler such as calcined coke and a binder such as coal tar pitch. Thus, a fired carbon material bonded to the filler is obtained.
The carbon material fired product is used as it is as a reducing material, or is further calcined and graphitized and used as a graphite product.
In the firing performed twice, the former is called primary firing and the latter is called secondary firing.

上記一次焼成(以下、本明細書では、これを単に焼成という。)は、従来、バーナ式加熱炉(焼成炉)で、酸素濃度を低減した雰囲気下において、700〜1000℃程度の温度で上記成型体を熱処理することにより実施されてきた。
この場合、成型体は、焼成過程におけるバインダーの溶融温度領域で塑性化する性質を持つため、塑性変形を防止する目的で、鉄製容器等の中に黒鉛粉や珪砂粉等のパッキング材中に埋め込んだ状態で取り扱われる。なお、パッキング材は、成型体を均一に加熱する役割も持つ。
The primary firing (hereinafter referred to simply as firing in the present specification) is conventionally performed by a burner type heating furnace (firing furnace) at a temperature of about 700 to 1000 ° C. in an atmosphere with a reduced oxygen concentration. It has been carried out by heat-treating the molded body.
In this case, since the molded body has the property of plasticizing in the melting temperature region of the binder in the firing process, it is embedded in a packing material such as graphite powder or silica sand powder in an iron container or the like for the purpose of preventing plastic deformation. It is handled in the state. The packing material also has a role of uniformly heating the molded body.

このバーナ式加熱炉の形式は、連続式のリードハンマー炉と単独式のシャトル炉に代表されるが、温度制御の自由度が大きい後者の単独式のシャトル炉の方が、特に大型成型体の焼成炉としては主流となっている(例えば、非特許文献1参照。)。
炭素材料学会編「新・炭素材料入門」株式会社リアライズ社発行、2000年11月10日、第107頁
This type of burner type furnace is typified by a continuous lead hammer furnace and a single type shuttle furnace, but the latter single type shuttle furnace, which has a large degree of freedom in temperature control, is particularly suitable for large molded bodies. It is the mainstream as a firing furnace (for example, refer nonpatent literature 1).
Edited by Carbon Society of Japan, “Introduction to New Carbon Materials” published by Realize Co., Ltd., November 10, 2000, p. 107

しかしながら、上記単独式のシャトル炉の場合、成型体を炉内に配置する都度、炉内全体を加熱することになるため、容器やパッキング材を加熱するために使用されるエネルギの損失が大きく、また、成型体の加熱は実質的にパッキング材を介しての熱伝導によって行われるため、その点においてもエネルギの損失を生じる。
また、成型体を電極等の人造黒鉛材料の用途に使用する場合は、炉の形式や成型体の寸法によっても異なるが、加熱昇温に10〜20日間、冷却に5〜10日間を要するため、生産性が抑えられる。
However, in the case of the above-mentioned single type shuttle furnace, every time the molded body is placed in the furnace, the entire furnace is heated, so the loss of energy used to heat the container and the packing material is large, In addition, since the molded body is heated by heat conduction through the packing material, energy is lost at this point as well.
In addition, when the molded body is used for an artificial graphite material such as an electrode, it takes 10 to 20 days for heating and 5 to 10 days for cooling although it depends on the type of furnace and the dimensions of the molded body. , Productivity is reduced.

本発明は、上記の課題に鑑みてなされたものであり、焼成時のエネルギ損失が小さい炭素材料焼成炉および炭素材料の焼成方法を提供することを目的とする。
また、本発明は、焼成サイクルタイムが短縮され、生産性の高い炭素材料焼成炉および炭素材料の焼成方法を提供することを目的とする。
This invention is made | formed in view of said subject, and it aims at providing the carbon material baking furnace and the baking method of a carbon material with small energy loss at the time of baking.
It is another object of the present invention to provide a carbon material firing furnace and a carbon material firing method with a reduced firing cycle time and high productivity.

上記目的を達成するために、本発明に係る炭素材料焼成炉は、
処理容器と、該処理容器に接続して設けられ、不活性ガスを該処理容器に導入する導入路と排出路を備える不活性ガス導入排出部と、
該処理容器内に配置され、フィラーとバインダーを捏合して成型した被処理用炭素材料素材成型体を覆うように設けられ、炭素系フェルトで形成されてなる箱体又は炭素系フェルトからなる内張りとセラミックファイバーフェルトからなる外張りの2層構造の箱体からなり、該箱体の各面にマイクロ波を通過させるスリットが形成された断熱部材と、
該処理容器の該断熱部材を臨む位置に設けられ、マイクロ波を照射するマイクロ波導波管を備えるマイクロ波照射装置とを有することを特徴とする。
In order to achieve the above object, a carbon material firing furnace according to the present invention comprises:
A treatment container, an inert gas introduction / exhaust section provided in connection with the treatment container, and having an introduction path and a discharge path for introducing an inert gas into the treatment container;
A box formed of carbon-based felt or a lining made of carbon-based felt , which is disposed in the processing vessel and is provided so as to cover a carbon material material molded body for processing which is molded by combining filler and binder ; A heat insulating member made of a two-layered box body made of ceramic fiber felt, and formed with slits that allow microwaves to pass through each face of the box;
And a microwave irradiation device provided with a microwave waveguide for irradiating microwaves. The microwave irradiation device is provided at a position facing the heat insulating member of the processing container.

また、本発明に係る炭素材料焼成炉は、前記炭素材料素材成型体と前記断熱部材との間にパッキング材を充填してなることを特徴とする。   Moreover, the carbon material firing furnace according to the present invention is characterized in that a packing material is filled between the carbon material blank molded body and the heat insulating member.

また、本発明に係る炭素材料焼成炉は、前記不活性ガス導入排出部とは別にパージ用の不活性ガス導入排出部をさらに有することを特徴とする。   In addition, the carbon material firing furnace according to the present invention is characterized by further having an inert gas introduction / discharge section for purging separately from the inert gas introduction / discharge section.

また、本発明に係る炭素材料焼成炉は、前記マイクロ波導波管が、異なる方向からマイクロ波を照射するように複数備えられてなることを特徴とする。   The carbon material firing furnace according to the present invention is characterized in that a plurality of the microwave waveguides are provided so as to irradiate microwaves from different directions.

また、本発明に係る炭素材料焼成炉は、前記処理容器の少なくとも内表面が金属材料で形成されてなることを特徴とする。   The carbon material firing furnace according to the present invention is characterized in that at least an inner surface of the processing vessel is formed of a metal material.

また、本発明に係る炭素材料の焼成方法は、
フィラーとバインダーを捏合して成型した被処理用炭素材料素材成型体を、処理容器内に配置した、炭素系フェルトで形成されてなる箱体又は炭素系フェルトからなる内張りとセラミックファイバーフェルトからなる外張りの2層構造の箱体からなり、該箱体の各面にスリットが形成された断熱部材で、覆う工程と、
不活性ガスを該処理容器に流通しながら、該スリットを介して、マイクロ波を該被処理用炭素材料素材成型体に照射する工程と、
を有することを特徴とする。
Moreover, the carbon material firing method according to the present invention includes:
A carbon material material molded body for processing, which is molded by combining filler and binder, is placed inside a processing container, and is a box made of carbon-based felt, or an outer lining made of carbon-based felt and ceramic fiber felt. A step of covering with a heat insulating member formed of a two-layered box body and having slits formed on each surface of the box;
Irradiating the carbon material material molded body for processing with microwaves through the slit while circulating an inert gas to the processing container;
It is characterized by having.

本発明に係る炭素材料焼成炉および炭素材料の焼成方法によれば、炭素材料素材成型体にマイクロ波を照射して焼成するため、焼成のための消費エネルギが少ない。
また、焼成サイクルタイムが短縮され、生産性が高い。
According to the carbon material firing furnace and the carbon material firing method according to the present invention, the carbon material blank molded body is irradiated with microwaves and fired, so that energy consumption for firing is small.
In addition, the firing cycle time is shortened and the productivity is high.

本発明の実施の形態について、以下に説明する。   Embodiments of the present invention will be described below.

まず、本発明に係る炭素材料焼成炉について、装置の概略構成を示す図1を参照して説明する。
炭素材料焼成炉10は、図1に示すように、処理容器12と、不活性ガス導入排出部14と、断熱箱(断熱部材)32と、マイクロ波照射装置18とを備える。また、炭素材料焼成炉10には、圧力調整用排気ライン20ならびにパージ用不活性ガス導入路38aおよびパージ用不活性ガス排出路38bからなるパージ用不活性ガス導入排出部が設けられる。
First, a carbon material firing furnace according to the present invention will be described with reference to FIG.
As shown in FIG. 1, the carbon material baking furnace 10 includes a processing container 12, an inert gas introduction / exhaust unit 14, a heat insulating box (heat insulating member) 32, and a microwave irradiation device 18. Further, the carbon material baking furnace 10 is provided with a purge inert gas introduction / discharge section including a pressure adjusting exhaust line 20 and a purge inert gas introduction path 38a and a purge inert gas discharge path 38b.

処理容器12は、例えば、使用温度に応じて、耐火煉瓦、キャスタブルあるいは黒鉛材料を内張りした金属製容器であってもよいが、好ましくは、外壁を冷却する機構を備えた金属壁で処理容器12を構成する。後者の場合、必要に応じて、処理容器12の最外壁に断熱材を配設する。
不活性ガス導入排出部14は、窒素等の不活性ガスを処理容器12に導入する導入路22と、炉内の雰囲気ガスを排出する排出路24を備える。
The processing container 12 may be, for example, a metal container lined with refractory bricks, castable or graphite material, depending on the operating temperature, but is preferably a metal wall having a mechanism for cooling the outer wall. Configure. In the latter case, a heat insulating material is disposed on the outermost wall of the processing container 12 as necessary.
The inert gas introduction / exhaust unit 14 includes an introduction path 22 for introducing an inert gas such as nitrogen into the processing container 12 and a discharge path 24 for discharging atmospheric gas in the furnace.

断熱箱32は、炭素材料素材成型体(被処理用炭素材料素材成型体)、すなわち、予めフィラーとバインダーを捏合して成型した炭素材料(図中、矢印Wで示す。)を覆って収容し、配置するためのものである。断熱箱32は、十分な断熱性と形状を維持しうる適度の剛性とを確保できる適宜の厚みに形成される。断熱箱32は、炭素系フェルトからなる内張り(内層)34aとセラミックファイバーフェルトからなる外張り(外層)34bの2層構造となっている。炭素系フェルトは、例えば、カーボンファイバーやC/Cコンポジット品を用いることができ、セラミックファイバーフェルトは例えば1500℃程度の温度で使用できるSi−Al系耐熱性品を用いることができる。
この場合、使用温度や炭素材料素材成型体W中の不純物含有量の許容値等の条件に応じて、断熱箱32を炭素系フェルトの単層で構成してもよく、あるいはまた、セラミックファイバーフェルトの単層で構成してもよい。前者では、炭素材料素材成型体W中に断熱箱32に起因する不純物が混入するおそれがなく、一方、後者では、断熱箱32を安価に得ることができる。
また、通常の焼成炉で行われているように、炭素材料素材成型体Wと断熱箱32との間に黒鉛粉やコークス粉等の炭素質材料からなるパッキング材を充填すると、言い換えると、断熱箱32に入れたパッキング材中に炭素材料素材成型体Wを詰めると、焼成時に炭素材料素材成型体Wから発生する揮発分等による断熱箱32の汚染が軽減され、また、炭素材料素材成型体Wをより均一に加熱することができる。
断熱箱32の各面には、それぞれ適度の数のスリット36が形成される。マイクロ波は、このスリット36を通過して炭素材料素材成型体Wに照射される。スリット36の数は、炭素材料素材成型体Wの各部にマイクロ波を均一に照射するのに必要な程度および焼成時に炭素材料素材成型体Wから発生する揮発分が容易に抜け出る程度であってかつこのスリット36を介して断熱箱32の外部に過剰に放熱しない程度に適宜設定される。スリット36の長さは、照射するマイクロ波の1波長分程度が適当であるが、これに限定するものではない。スリット36の幅は、上記した放熱等の不具合のない範囲で適宜設定される。
なお、断熱箱32は、例えば内部にパッキング材を入れて用いるときには、上部等を開放状態としてもよい。また、断熱箱32を設ける代わりに、炭素材料素材成型体Wをスリットを形成した断熱部材で巻いてもよい。
The heat insulation box 32 covers and accommodates a carbon material material molded body (a carbon material material molded body for processing), that is, a carbon material (indicated by an arrow W in the figure) that has been molded by combining filler and binder in advance. , For placement. The heat insulation box 32 is formed to have an appropriate thickness that can ensure sufficient heat insulation and appropriate rigidity capable of maintaining the shape. The heat insulation box 32 has a two-layer structure of a lining (inner layer) 34a made of carbon felt and an outer lining (outer layer) 34b made of ceramic fiber felt. For example, a carbon fiber or a C / C composite product can be used as the carbon felt, and a Si—Al heat resistant product that can be used at a temperature of about 1500 ° C. can be used as the ceramic fiber felt.
In this case, the heat insulation box 32 may be composed of a single layer of carbon-based felt depending on conditions such as the operating temperature and the allowable value of the impurity content in the carbon material blank W, or ceramic fiber felt. A single layer may be used. In the former, there is no possibility that impurities due to the heat insulation box 32 are mixed in the carbon material blank W, while in the latter, the heat insulation box 32 can be obtained at low cost.
Moreover, as is done in a normal firing furnace, when a packing material made of a carbonaceous material such as graphite powder or coke powder is filled between the carbon material blank W and the heat insulation box 32, in other words, heat insulation If the carbon material raw material W is packed in the packing material placed in the box 32, contamination of the heat insulating box 32 due to volatile matter generated from the carbon material raw material W during firing is reduced, and the carbon material raw material is also molded. W can be heated more uniformly.
An appropriate number of slits 36 are formed on each surface of the heat insulation box 32. The microwave passes through the slit 36 and is irradiated onto the carbon material blank W. The number of the slits 36 is such that it is necessary for uniformly irradiating each part of the carbon material material molded body W with microwaves and that volatile matter generated from the carbon material material molded body W during firing easily escapes. It is appropriately set so as not to excessively radiate heat to the outside of the heat insulating box 32 through the slit 36. The length of the slit 36 is suitably about one wavelength of the microwave to be irradiated, but is not limited to this. The width of the slit 36 is appropriately set within a range where there is no problem such as the above-described heat dissipation.
The heat insulating box 32 may be open at the top or the like, for example, when a packing material is used inside. Further, instead of providing the heat insulating box 32, the carbon material material molded body W may be wound with a heat insulating member in which a slit is formed.

マイクロ波照射装置18は、マイクロ波発信器26と、マイクロ波発信器26から発せられるマイクロ波を処理容器12に導く導波管28を備える。処理容器12内の断熱箱32の真上に位置するように設けられる導波管28の開口部の手前には、導波管28を保護するための耐熱ガラス板30が配置される。
なお、マイクロ波照射装置18は、マイクロ波発信器26を含めて2系統設け、2つの導波管28を処理容器12の上部に断熱箱32を挟んで並置したものであってもよい。
The microwave irradiation device 18 includes a microwave transmitter 26 and a waveguide 28 that guides the microwave emitted from the microwave transmitter 26 to the processing container 12. A heat-resistant glass plate 30 for protecting the waveguide 28 is disposed in front of the opening of the waveguide 28 provided so as to be positioned immediately above the heat insulation box 32 in the processing container 12.
Note that the microwave irradiation device 18 may include two systems including the microwave transmitter 26, and two waveguides 28 may be juxtaposed above the processing container 12 with the heat insulating box 32 interposed therebetween.

圧力調整用排気ライン20は、炭素材料素材成型体Wを加熱する前に処理容器12の内部に残存する空気を除去するためのものであり、図示しない真空源に接続される。
パージ用不活性ガス導入排出部は、焼成時に炭素材料素材成型体Wから発生する揮発分を強制的に炉外に排出させるためのものであるが、必要に応じてこれを省略し、不活性ガス導入排出部14にパージ機能を兼ねさせてもよい。また、パージ用不活性ガスを加熱した状態で処理容器12内に導入すると、炭素材料素材成型体Wからの放熱を軽減することができて好ましい。
The pressure adjusting exhaust line 20 is for removing air remaining inside the processing container 12 before heating the carbon material blank W, and is connected to a vacuum source (not shown).
The purge inert gas introduction / discharge unit is for forcibly discharging the volatile matter generated from the carbon material blank W during firing to the outside of the furnace, but this is omitted if necessary. The gas introduction / discharge unit 14 may also serve as a purge function. In addition, it is preferable to introduce the purge inert gas into the processing container 12 in a heated state because heat radiation from the carbon material blank W can be reduced.

つぎに、本発明に係る炭素材料の焼成方法について説明する。
本発明に係る炭素材料の焼成方法は、例えば上記のように構成される炭素材料焼成炉10を用い、フィラーとバインダーを捏合して成型した被処理用炭素材料素材成型体を、処理容器内に配置した、スリットが形成された断熱部材で覆い、不活性ガスを処理容器に流通しながら、スリットを介して、マイクロ波を被処理用炭素材料素材成型体に照射するする。
以下、炭素材料の焼成方法について、その具体例を説明する。
Next, the method for firing the carbon material according to the present invention will be described.
The carbon material firing method according to the present invention uses, for example, a carbon material firing furnace 10 configured as described above, and combines a filler and a binder into a carbon material material molded body for processing in a processing container. Covered with the arranged heat insulating member formed with the slit, the carbon material material molding for processing is irradiated with the microwave through the slit while circulating the inert gas to the processing container.
Hereinafter, the specific example is demonstrated about the baking method of a carbon material.

まず、処理容器12の図示しない装入口から炭素材料素材成型体Wを処理容器12内に装入し、断熱箱32の内部に配置する。
そして、予め炉内の残存空気を排気した後、不活性ガスとして例えば窒素ガスを導入路22から処理容器12の内部に導入するとともに、排出路24から排出して、処理容器12の内部を酸素濃度が例えば1容量%程度の窒素ガスの流通状態とする。また、パージ用ガスも断続的にあるいは連続的に流通状態とする。処理容器12は、内部圧力を所望の圧力に調整し、保持する。
First, the carbon material material molded body W is charged into the processing container 12 from an inlet (not shown) of the processing container 12 and placed inside the heat insulating box 32.
Then, after exhausting the residual air in the furnace in advance, for example, nitrogen gas as an inert gas is introduced into the processing container 12 from the introduction path 22 and discharged from the discharge path 24, and the inside of the processing container 12 is oxygenated. For example, a nitrogen gas circulation state having a concentration of about 1% by volume is assumed. Further, the purge gas is intermittently or continuously brought into a circulation state. The processing container 12 adjusts the internal pressure to a desired pressure and holds it.

ついで、マイクロ波発信器26からマイクロ波を発生させ、導波管28を介して処理容器12内にマイクロ波を照射する。
マイクロ波は、断熱箱32に形成されたスリット36を通過して炭素材料素材成型体Wに照射され、これにより、炭素材料素材成型体Wが加熱される。
所定時間マイクロ波を照射して、炭素材料素材成型体Wを焼成した後、冷却し、炭素材料素材成型体Wを炭素材料焼成炉10から取り出す。
Next, a microwave is generated from the microwave transmitter 26 and irradiated into the processing container 12 through the waveguide 28.
The microwave passes through the slit 36 formed in the heat insulating box 32 and is irradiated to the carbon material material molded body W, whereby the carbon material material molded body W is heated.
After irradiating with a microwave for a predetermined time to calcinate the carbon material material molded body W, it is cooled, and the carbon material material molded body W is taken out from the carbon material firing furnace 10.

以上説明した本発明の炭素材料焼成炉によれば、焼成のためのエネルギが少なくて済む。また、焼成サイクルタイムが短縮され、生産性が高い。   According to the carbon material firing furnace of the present invention described above, less energy is required for firing. In addition, the firing cycle time is shortened and the productivity is high.

つぎに、本発明の炭素材料焼成炉10の変形例について説明する。   Next, a modified example of the carbon material firing furnace 10 of the present invention will be described.

変形例の炭素材料焼成炉10aは、図2に示すように、断熱箱32を挟んで処理容器12の対向する側壁にそれぞれ導波管28a、28bが設けられる。なお、図2中、マイクロ波発信器や導波管の保護部材等は図示を省いている。また、2つの導波管は、必ずしも図2のように対向する位置に配置する必要はない。   As shown in FIG. 2, the modified carbon material baking furnace 10 a is provided with waveguides 28 a and 28 b on opposite side walls of the processing container 12 with the heat insulating box 32 interposed therebetween. In FIG. 2, a microwave transmitter, a protective member for the waveguide, and the like are not shown. Further, the two waveguides do not necessarily have to be arranged at opposing positions as shown in FIG.

変形例の炭素材料焼成炉10aによれば、炭素材料素材成型体Wに異なる方向からマイクロ波を照射することで、炭素材料素材成型体Wをより均一にかつ効率的に加熱することができる。また、このとき、2つのマイクロ波発信器は出力が小さいものとすることができ、あるいは、2つのマイクロ波発信器の出力を下げることなく全体の出力を大きくして炭素材料素材成型体Wをより効率的に加熱することができる。
このとき、処理容器12が金属壁であると、処理容器12内でマイクロ波が多方向に反射して、炭素材料素材成型体Wの各部に均一にマイクロ波を照射することができる。なお、上記炭素材料焼成炉10においても、処理容器12を金属壁としたものを用いることができる。
According to the carbon material baking furnace 10a of the modified example, the carbon material material molded body W can be more uniformly and efficiently heated by irradiating the carbon material material molded body W with microwaves from different directions. At this time, the output of the two microwave transmitters can be small, or the overall output can be increased without lowering the output of the two microwave transmitters, so that the carbon material blank W is formed. Heating can be performed more efficiently.
At this time, if the processing container 12 is a metal wall, the microwaves are reflected in multiple directions within the processing container 12, and each part of the carbon material raw material W can be uniformly irradiated with the microwaves. In the carbon material firing furnace 10 as well, a furnace having the processing vessel 12 as a metal wall can be used.

以下、実施例および参考例を挙げて、本発明をさらに説明する。なお、本発明は、以下に説明する実施例に限定されるものではない。   Hereinafter, the present invention will be further described with reference to Examples and Reference Examples. In addition, this invention is not limited to the Example demonstrated below.

(実施例1)
酸素濃度を1容積%以下に調整した窒素ガス雰囲気において、Φ100×200mmの等方性炭素材の成型体を、長さが12mmのスリット36が形成された厚みが100mmの断熱箱32に入れた。そして、出力1500Wのマグネトロンタイプのマイクロ波発信器26から周波数2.45GHzのマイクロ波を発生させ、スリット36を通過させて成型体に照射した。成型体の中心部にセットした熱電対によって計測した温度が850℃に達した時点でマイクロ波の照射を止め、400℃以下の温度になるまで成形体を冷却した。なお、成型体の温度が850℃のときの炉内の雰囲気温度は150℃であった。
処理に要した時間は、昇温時間が4時間、降温時間が2時間であり、1サイクル6時間であった。この間、マイクロ波照射に使用した電力量は、12kWHであった。
得られた焼成体(成型体)の嵩密度は1.62であった。
Example 1
In a nitrogen gas atmosphere in which the oxygen concentration was adjusted to 1% by volume or less, a molded body of isotropic carbon material of Φ100 × 200 mm was placed in a heat insulation box 32 having a thickness of 100 mm and formed with a slit 36 having a length of 12 mm. . Then, a microwave having a frequency of 2.45 GHz was generated from a magnetron type microwave transmitter 26 having an output of 1500 W, and passed through the slit 36 to irradiate the molded body. When the temperature measured by the thermocouple set at the center of the molded body reached 850 ° C., the microwave irradiation was stopped, and the molded body was cooled to a temperature of 400 ° C. or lower. Note that the atmospheric temperature in the furnace when the temperature of the molded body was 850 ° C. was 150 ° C.
The time required for the treatment was 4 hours for the temperature rising time, 2 hours for the temperature falling time, and 6 hours for one cycle. During this time, the amount of power used for microwave irradiation was 12 kWh.
The bulk density of the obtained fired body (molded body) was 1.62.

(実施例2)
等方性炭素材の成型体として330×600×800mmの直方体ブロックを用い、長さが30mmのスリット36が形成された厚みが100mmの断熱箱32に入れ、定格出力30kWのマグネトロンタイプのマイクロ波発信器26から周波数915GHzのマイクロ波を出力25kWで発生させたほかは実施例1と同様の条件で成型体を焼成した。
処理に要した時間は、昇温時間が38時間、降温時間が20時間であり、1サイクル58時間であった。この間、マイクロ波照射に使用した電力量は、1800kWHであった。
得られた焼成体(成型体)の嵩密度は1.62であった。
(Example 2)
Using a rectangular parallelepiped block of 330 × 600 × 800 mm as a molded body of isotropic carbon material, it is put in a heat insulating box 32 having a slit 36 having a length of 30 mm and a thickness of 100 mm, and a magnetron type microwave having a rated output of 30 kW. The molded body was fired under the same conditions as in Example 1 except that a microwave with a frequency of 915 GHz was generated from the transmitter 26 at an output of 25 kW.
The time required for the treatment was a heating time of 38 hours, a cooling time of 20 hours, and a cycle of 58 hours. During this time, the amount of power used for microwave irradiation was 1800 kWh.
The bulk density of the obtained fired body (molded body) was 1.62.

(参考例)
実施例1と同様の条件で作製した等方性炭素材の成型体を、内容積0.216mの電気加熱式単独炉に入れて、850℃まで昇温した後、400℃以下の温度になるまで成形体を冷却した。
処理に要した時間は、昇温時間が24時間、降温時間が24時間であり、1サイクル48時間であった。昇温に要した電力量は、28kWHであった。
得られた焼成体(成型体)の嵩密度は1.60であった。
(Reference example)
An isotropic carbon material molded body produced under the same conditions as in Example 1 was placed in an electric heating type single furnace having an internal volume of 0.216 m 3 , heated to 850 ° C., and then heated to a temperature of 400 ° C. or lower. The shaped body was cooled until
The time required for the treatment was 24 hours for the temperature rising time, 24 hours for the temperature falling time, and 48 hours for one cycle. The amount of power required for temperature increase was 28 kWh.
The bulk density of the obtained fired body (molded body) was 1.60.

本発明の炭素材料焼成炉の概略構成を示す図である。It is a figure which shows schematic structure of the carbon material baking furnace of this invention. 変形例の炭素材料焼成炉の概略構成を示す図である。It is a figure which shows schematic structure of the carbon material baking furnace of a modification.

符号の説明Explanation of symbols

10、10a 炭素材料焼成炉
12 処理容器
14 不活性ガス導入排出部
18 マイクロ波照射装置
20 圧力調整用排気ライン
22 導入路
24 排出路
26 マイクロ波発信器
28、28a、28b 導波管
30 耐熱ガラス板
32 断熱箱
34a 内張り
34b 外張り
38a パージ用不活性ガス導入路
38b パージ用不活性ガス排出路
DESCRIPTION OF SYMBOLS 10, 10a Carbon material baking furnace 12 Processing container 14 Inert gas introduction discharge part 18 Microwave irradiation apparatus 20 Exhaust line 22 for pressure adjustment 22 Introduction path 24 Discharge path 26 Microwave transmitter 28, 28a, 28b Waveguide 30 Heat-resistant glass Plate 32 Heat insulation box 34a Inner lining 34b Outer lining 38a Purge inert gas introduction path 38b Purge inert gas discharge path

Claims (6)

処理容器と、該処理容器に接続して設けられ、不活性ガスを該処理容器に導入する導入路と排出路を備える不活性ガス導入排出部と、
該処理容器内に配置され、フィラーとバインダーを捏合して成型した被処理用炭素材料素材成型体を覆うように設けられ、炭素系フェルトで形成されてなる箱体又は炭素系フェルトからなる内張りとセラミックファイバーフェルトからなる外張りの2層構造の箱体からなり、該箱体の各面にマイクロ波を通過させるスリットが形成された断熱部材と、
該処理容器の該断熱部材を臨む位置に設けられ、マイクロ波を照射するマイクロ波導波管を備えるマイクロ波照射装置とを有することを特徴とする炭素材料焼成炉。
A treatment container, an inert gas introduction / exhaust section provided in connection with the treatment container, and having an introduction path and a discharge path for introducing an inert gas into the treatment container;
Are disposed in the processing chamber is provided so as to cover the filler and the treated carbon material for material molded body binder and molded by kneading a consists box-or carbon-based felt formed by formed by a carbon-based felt lining A heat insulating member formed of a two-layer box of outer layers made of ceramic fiber felt, and formed with slits that allow microwaves to pass through each surface of the box ,
A carbon material firing furnace comprising: a microwave irradiation device provided with a microwave waveguide for irradiating microwaves, provided at a position facing the heat insulating member of the processing vessel.
前記炭素材料素材成型体と前記断熱部材との間にパッキング材を充填してなることを特徴とする請求項1に記載の炭素材料焼成炉。 The carbon material firing furnace according to claim 1, wherein a packing material is filled between the carbon material material molded body and the heat insulating member. 前記不活性ガス導入排出部とは別にパージ用の不活性ガス導入排出部をさらに有することを特徴とする請求項1又は2に記載の炭素材料焼成炉。 3. The carbon material firing furnace according to claim 1, further comprising an inert gas introduction / discharge section for purging separately from the inert gas introduction / discharge section. 4. 前記マイクロ波導波管が、異なる方向からマイクロ波を照射するように複数備えられてなることを特徴とする請求項1〜3のいずれか1項に記載の炭素材料焼成炉。   The carbon material firing furnace according to any one of claims 1 to 3, wherein a plurality of the microwave waveguides are provided so as to irradiate microwaves from different directions. 前記処理容器の少なくとも内表面が金属材料で形成されてなることを特徴とする請求項1〜のいずれか1項に記載の炭素材料焼成炉。 The carbon material firing furnace according to any one of claims 1 to 4 , wherein at least an inner surface of the processing vessel is formed of a metal material. フィラーとバインダーを捏合して成型した被処理用炭素材料素材成型体を、処理容器内に配置した、炭素系フェルトで形成されてなる箱体又は炭素系フェルトからなる内張りとセラミックファイバーフェルトからなる外張りの2層構造の箱体からなり、該箱体の各面にスリットが形成された断熱部材で覆う工程と、
不活性ガスを該処理容器に流通しながら、該スリットを介して、マイクロ波を該被処理用炭素材料素材成型体に照射する工程と、
を有することを特徴とする炭素材料の焼成方法。
A carbon material material molded body for processing, which is molded by combining filler and binder, is placed inside a processing container, and is a box made of carbon-based felt, or an outer lining made of carbon-based felt and ceramic fiber felt. consists box body having a two-layer structure of the tension, in the heat insulating member in which slits are formed on each side of the box body, and a step of covering,
Irradiating the carbon material material molded body for processing with microwaves through the slit while circulating an inert gas to the processing container;
A method for firing a carbon material, comprising:
JP2005306713A 2004-10-21 2005-10-21 Carbon material firing furnace and carbon material firing method Active JP4782537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306713A JP4782537B2 (en) 2004-10-21 2005-10-21 Carbon material firing furnace and carbon material firing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004307077 2004-10-21
JP2004307077 2004-10-21
JP2005306713A JP4782537B2 (en) 2004-10-21 2005-10-21 Carbon material firing furnace and carbon material firing method

Publications (2)

Publication Number Publication Date
JP2006147553A JP2006147553A (en) 2006-06-08
JP4782537B2 true JP4782537B2 (en) 2011-09-28

Family

ID=36626959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306713A Active JP4782537B2 (en) 2004-10-21 2005-10-21 Carbon material firing furnace and carbon material firing method

Country Status (1)

Country Link
JP (1) JP4782537B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926445B2 (en) * 2004-10-21 2012-05-09 新日鐵化学株式会社 Oxidation-resistant furnace for graphite material and oxidation-resistant method for graphite material
JP4926444B2 (en) * 2004-10-21 2012-05-09 新日鐵化学株式会社 Graphite material high purity treatment furnace and graphite material high purity treatment method
JP2014201455A (en) 2013-04-02 2014-10-27 イビデン株式会社 Method for producing graphite material
JP7178272B2 (en) * 2019-01-16 2022-11-25 四国計測工業株式会社 Communicating member for microwave irradiation device, microwave irradiation device, and microwave irradiation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822080Y2 (en) * 1979-02-07 1983-05-11 三菱電機株式会社 microwave heating furnace
JPS6111737U (en) * 1984-06-27 1986-01-23 東海カ−ボン株式会社 Firing furnace structure for carbon molded bodies
JP2734013B2 (en) * 1988-10-25 1998-03-30 三菱化学株式会社 Insulation method
JP3153666B2 (en) * 1993-01-14 2001-04-09 シャープ株式会社 Vapor phase growth apparatus and vapor phase growth method thereof
JPH0828881A (en) * 1994-07-12 1996-02-02 Hitachi Home Tec Ltd Heating and cooking device
JP2000272973A (en) * 1999-03-26 2000-10-03 Nippon Steel Corp Microwave heating furnace and baking of refractory containing organic binder
JP3845777B2 (en) * 2000-10-19 2006-11-15 大学共同利用機関法人自然科学研究機構 Firing furnace and method for producing fired body
JP4113755B2 (en) * 2002-10-03 2008-07-09 東京エレクトロン株式会社 Processing equipment
JP4926445B2 (en) * 2004-10-21 2012-05-09 新日鐵化学株式会社 Oxidation-resistant furnace for graphite material and oxidation-resistant method for graphite material
JP4926444B2 (en) * 2004-10-21 2012-05-09 新日鐵化学株式会社 Graphite material high purity treatment furnace and graphite material high purity treatment method
JP4740715B2 (en) * 2004-10-21 2011-08-03 新日鐵化学株式会社 Carbon material firing furnace and carbon material firing method

Also Published As

Publication number Publication date
JP2006147553A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US6512216B2 (en) Microwave processing using highly microwave absorbing powdered material layers
EP1333012B1 (en) Burning furnace, burnt body producing method, and burnt body
CA1058832A (en) Graphitization furnace
JP4740715B2 (en) Carbon material firing furnace and carbon material firing method
JP4782537B2 (en) Carbon material firing furnace and carbon material firing method
JP4214040B2 (en) Operation method of microwave heating furnace and microwave heating furnace
US20130142212A1 (en) Graphitization furnace and method for producing graphite
JP2000272973A (en) Microwave heating furnace and baking of refractory containing organic binder
JP4926444B2 (en) Graphite material high purity treatment furnace and graphite material high purity treatment method
JP4782068B2 (en) Heat treatment method for carbon-containing refractories
KR20120003235A (en) Furnace using microwave
KR101461787B1 (en) Heating unit and reduction furnace having thereof
JPS6332886B2 (en)
JP4730882B2 (en) Carbon material raw material drying method and carbon material raw material drying furnace
JP2011169504A (en) Solid-phase reaction baking method for powder, and solid-phase reaction baking furnace
JP4926445B2 (en) Oxidation-resistant furnace for graphite material and oxidation-resistant method for graphite material
EP1006080B1 (en) Method for continuously burning powder carbon
CN104233046B (en) A kind of production method of nitrided ferro-chromium
US20040115115A1 (en) Vertical conveyor apparatus for high temperature continuous processing of materials
CN112122304A (en) Electric and microwave composite thermal cracking device and method
JP2004257725A (en) Microwave baking furnace
JP2604094B2 (en) Degreasing and calcination method for ceramic molded body
US20150289323A1 (en) Thermal reactor
JPH04160060A (en) Burning method for molded carbon body
WO2020196971A1 (en) Microwave furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4782537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350