JP2007111709A - Solid state welding method of metallic member - Google Patents

Solid state welding method of metallic member Download PDF

Info

Publication number
JP2007111709A
JP2007111709A JP2005303356A JP2005303356A JP2007111709A JP 2007111709 A JP2007111709 A JP 2007111709A JP 2005303356 A JP2005303356 A JP 2005303356A JP 2005303356 A JP2005303356 A JP 2005303356A JP 2007111709 A JP2007111709 A JP 2007111709A
Authority
JP
Japan
Prior art keywords
metal
heated
metal members
members
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005303356A
Other languages
Japanese (ja)
Other versions
JP4616149B2 (en
Inventor
Yosuke Yamazaki
陽介 山崎
Tsutomu Ando
勤 安藤
Fumio Takeshima
史生 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2005303356A priority Critical patent/JP4616149B2/en
Publication of JP2007111709A publication Critical patent/JP2007111709A/en
Application granted granted Critical
Publication of JP4616149B2 publication Critical patent/JP4616149B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid state welding method of metallic members, a method in which a weld zone of metallic members is intensively heated using a millimeter wave and in which the metallic members are prepared for diffusion welding to each other without heating the entire metallic members at high temperature. <P>SOLUTION: Metallic members W, W' are covered with an heat insulating material 9. Also, a part within a prescribed range from a welding face between the metallic members W, W' is made a part Wa to be heated, and then, the part of the heat insulation material 9 deviated from the part Wa to be heated is covered with a metallic cover 10 of a high thermal conductivity. Thereafter, the metallic members W, W' are brought into pressurized contact with each other in a manner causing no plastic deformation, with the millimeter wave radiated in such a state to heat the part Wa to be heated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、鉄、チタン等の金属で形成された金属部材同士を固相状態で接合する金属部材の固相接合方法に関する。   The present invention relates to a solid-phase joining method for metal members in which metal members formed of metal such as iron or titanium are joined in a solid-phase state.

金属部材同士を固相状態で接合するには、金属部材の接合面の酸化皮膜を除去する必要がある。そして、金属部材同士を固相状態で接合する方法の代表的なものとして、鍛接、摩擦圧接、拡散接合が知られている。   In order to join the metal members in a solid phase, it is necessary to remove the oxide film on the joint surfaces of the metal members. As a representative method for joining metal members in a solid phase, forging, friction welding, and diffusion joining are known.

鍛接は、加熱した金属部材同士を大荷重で加圧し、塑性変形で金属部材の接合面の酸化皮膜を破壊すると同時に接合面を密着させて接合する方法であり、熱圧着とも呼ばれている。鍛接では、接合部の変形が非常に大きくなり、また、金属部材全体が加熱されるため、金属部材の元の材料特性が損なわれると共に、異種金属の接合が困難になる不具合がある。   Forged welding is a method in which heated metal members are pressed together with a large load, and the oxide film on the joint surface of the metal member is destroyed by plastic deformation and at the same time the joint surface is brought into close contact, and is also called thermocompression bonding. In forged welding, the deformation of the joint becomes very large, and the entire metal member is heated, so that the original material properties of the metal member are impaired and it is difficult to join dissimilar metals.

摩擦接合は、金属部材同士の相対回転による摩擦を利用して接合面の酸化被膜を取り除き、同時に摩擦熱と加圧力によって接合面を密着させて接合する方法である。摩擦接合では、金属部材の接合部が部分的に加熱されるだけであるため、金属部材の元の材料特性が維持されると共に、異種金属の接合も可能になる利点があるが、接合部の変形が大きく、また、金属部材同士を相対回転させる関係で金属部材の形状が丸物に限定される不具合がある。   Friction welding is a method of removing the oxide film on the joint surface using friction caused by relative rotation between metal members and simultaneously bringing the joint surface into close contact with each other by frictional heat and pressure. Friction welding has the advantage that the original material properties of the metal member are maintained and the dissimilar metal can be joined because the joint of the metal member is only partially heated. There is a problem that the deformation of the metal member is large and the shape of the metal member is limited to a round object due to the relative rotation of the metal members.

拡散接合は、融点以下の高温の温度条件下で、金属部材同士を塑性変形が生じない程度に加圧接触させ、接合面の酸化皮膜を熱で消失させ、接合面間に生ずる原子の拡散を利用して接合する方法である。拡散接合では、接合部の変形を生じず、また、金属部材の形状が限定されない利点がある。然し、従来の拡散接合では、金属部材全体を炉内で高温に加熱しており、鍛接と同様に、金属部材の元の材料特性が損なわれると共に、異種金属の接合が困難になる不具合がある。   In diffusion bonding, metal members are brought into pressure contact with each other under high temperature conditions below the melting point so that plastic deformation does not occur, the oxide film on the bonding surface disappears with heat, and diffusion of atoms occurring between the bonding surfaces is prevented. It is the method of joining using. In diffusion bonding, there is an advantage that the deformation of the bonded portion does not occur and the shape of the metal member is not limited. However, in the conventional diffusion bonding, the entire metal member is heated to a high temperature in the furnace, so that the original material properties of the metal member are impaired and the dissimilar metal is difficult to be bonded as in the forging welding. .

ところで、最近は、マイクロ波により金属を加熱できることが判明している(例えば、特許文献1参照)。マイクロ波は、周波数が300MHz〜300GHz(波長1m〜1mm)の電磁波の総称であり、そのうち周波数が20GHz〜300GHz(波長15mm〜1mm)の電磁波は特にミリ波と呼ばれる。電子レンジ等で使用する2.45GHzのマイクロ波を金属に照射するとアーク放電が発生するが、28GHzのミリ波を金属に照射すると、アーク放電を生ずることなく金属が加熱される。   Recently, it has been found that metals can be heated by microwaves (see, for example, Patent Document 1). Microwave is a general term for electromagnetic waves having a frequency of 300 MHz to 300 GHz (wavelength 1 m to 1 mm), and electromagnetic waves having a frequency of 20 GHz to 300 GHz (wavelength 15 mm to 1 mm) are particularly referred to as millimeter waves. When a metal is irradiated with a 2.45 GHz microwave used in a microwave oven or the like, an arc discharge is generated. However, when a metal is irradiated with a 28 GHz millimeter wave, the metal is heated without causing an arc discharge.

ここで、マイクロ波による単位体積当たりの発熱量Pは、マイクロ波の周波数をf、真空の誘電率をε、被加熱物の比誘電率、誘電損失角を夫々ε、δ、マイクロ波電界の強さをEとして、
P=2πfεεtanδE [W/m]
で表され、マイクロ波エネルギーが半分に減衰する距離(電力の半減深度)Dは、
D=3.32×10/(f・ε 1/2・tanδ) [m]
で表される。Pの式中のεεtanδは材料の誘電損率と呼ばれ、温度と周波数に比例して増加する。そして、発熱量はマイクロ波の周波数に大きく依存し、ミリ波のような高周波数のマイクロ波を用いると、金属の表層部を加熱することが可能になる。
特表平8−503263号公報(第10,12頁)
Here, the heat generation amount P per unit volume due to microwaves is f, the microwave frequency is ε 0 , the vacuum dielectric constant is ε 0 , the relative dielectric constant of the object to be heated, and the dielectric loss angle are ε r , δ, microwave Let E be the strength of the electric field.
P = 2πfε 0 ε r tan δE 2 [W / m 3 ]
The distance (the half depth of power) D at which the microwave energy is attenuated in half is
D = 3.32 × 10 7 / (f · ε r 1/2 · tan δ) [m]
It is represented by Ε 0 ε r tan δ in the formula of P is called a dielectric loss factor of the material, and increases in proportion to temperature and frequency. The calorific value greatly depends on the frequency of the microwave. When a microwave having a high frequency such as a millimeter wave is used, the metal surface layer can be heated.
JP-T-8-503263 (pages 10, 12)

本発明は、以上の点に鑑み、マイクロ波を用いて金属部材の接合部分を集中的に加熱し、金属部材全体を高温に加熱せずに金属部材同士を拡散接合できるようにした金属部材の固相接合方法を提供することをその課題としている。   In view of the above points, the present invention provides a metal member in which a joining portion of metal members is intensively heated using a microwave so that the metal members can be diffusion-bonded to each other without heating the entire metal member to a high temperature. The object is to provide a solid-phase bonding method.

上記課題を解決するため、本発明は、金属部材同士を固相状態で接合する金属部材の固相接合方法において、金属部材同士を塑性変形を生じないように加圧接触させると共に、金属部材を断熱材で覆い、更に、金属部材同士の接合面から所定範囲内の部分を加熱対象部分として、加熱対象部分から外れた断熱材の部分を金属製のカバーにより覆い、この状態でマイクロ波を照射して加熱対象部分を加熱することを特徴とする。   In order to solve the above-described problems, the present invention provides a metal member solid-phase joining method in which metal members are joined in a solid-phase state. Cover with a heat insulating material, further cover the part within the specified range from the joint surface between the metal members as the part to be heated, cover the part of the heat insulating material removed from the part to be heated with the metal cover, and irradiate microwaves in this state Then, the heating target portion is heated.

金属部材にマイクロ波(特にミリ波)を照射すると、金属部材がマイクロ波を吸収して発熱するものの、このままでは金属部材からの放熱により然程昇温しない。然し、本発明では、金属部材が断熱材で覆われるため、金属部材からの放熱が抑制され、金属部材が断熱材を透過したマイクロ波の吸収による発熱で昇温する。但し、断熱材を覆う金属製カバーもマイクロ波を吸収するため、加熱対象部分以外の金属部材の部分でのマイクロ波の吸収による発熱が抑制される。従って、マイクロ波の吸収による発熱は加熱対象部分で集中的に行われ、断熱材による放熱防止作用と相俟って、加熱対象部分が効果的に加熱される。そして、マイクロ波は温度が高くなるにつれて吸収されやすくなるため、加熱対象部分たる金属部材の接合面近傍の接合部分の加熱が加速度的に進行する。その結果、金属部材の接合面の酸化皮膜が熱で消失し、金属部材の塑性変形を生じない低荷重下で金属部材同士が拡散接合される。   When a metal member is irradiated with microwaves (especially millimeter waves), the metal member absorbs the microwaves and generates heat, but the temperature does not increase so much due to heat dissipation from the metal member. However, in the present invention, since the metal member is covered with the heat insulating material, heat dissipation from the metal member is suppressed, and the metal member heats up due to heat generated by absorption of microwaves that have passed through the heat insulating material. However, since the metal cover that covers the heat insulating material also absorbs the microwave, heat generation due to the absorption of the microwave in the portion of the metal member other than the portion to be heated is suppressed. Therefore, heat generation due to absorption of microwaves is concentrated in the heating target portion, and the heating target portion is effectively heated in combination with the heat radiation preventing action by the heat insulating material. And since a microwave becomes easy to be absorbed as temperature rises, the heating of the joining part near the joining surface of the metal member which is a heating object part progresses at an accelerated speed. As a result, the oxide film on the joint surface of the metal member disappears by heat, and the metal members are diffusion-bonded under a low load that does not cause plastic deformation of the metal member.

このようにして鉄、チタン、銅といった金属部材同士を接合部分の変形を生ずることなく固相接合でき、変形を修正する後加工が不要になる。また、金属部材全体を加熱するものと異なり、金属部材の元の材料特性が維持されると共に、鉄とチタンのような異種金属の接合も可能になり、更に、摩擦接合と異なり金属部材の形状も限定されない。従って、金属部材同士を接合して形成される種々の製品の製造に本発明を適用できる。   In this manner, metal members such as iron, titanium, and copper can be solid-phase bonded without causing deformation of the bonded portion, and post-processing for correcting the deformation is not necessary. Also, unlike the case of heating the entire metal member, the original material properties of the metal member are maintained, and dissimilar metals such as iron and titanium can be joined. Is not limited. Therefore, the present invention can be applied to the manufacture of various products formed by joining metal members.

尚、上記カバーがマイクロ波の吸収による発熱で昇温すると、カバーがマイクロ波を吸収しやすくなり、効率が悪くなると共に、加熱対象部分以外の金属部材の部分の温度が不必要に上昇してしまう。ここで、カバーの材質を高熱伝導率の金属とすれば、カバーからの放熱量が大きくなり、マイクロ波の吸収による発熱量と同等の熱量が放熱されて、カバーの昇温が防止される。特に、銅やアルミニウムは、熱伝導率が高く、しかも成形が容易で且つ低コストであり、カバーの材質として最適である。   In addition, when the temperature of the cover rises due to heat generated by absorption of microwaves, the cover easily absorbs microwaves, the efficiency is deteriorated, and the temperature of the metal member portion other than the heating target portion is unnecessarily increased. End up. Here, if the cover is made of a metal having a high thermal conductivity, the amount of heat released from the cover is increased, and the amount of heat equivalent to the amount of heat generated by the absorption of microwaves is radiated, thereby preventing the temperature rise of the cover. In particular, copper and aluminum have high thermal conductivity, are easy to mold and are low in cost, and are optimal as a cover material.

図1を参照して、1はマイクロ波加熱炉を示している。加熱炉1内には、別置きのマイクロ波発生器2からのマイクロ波が導波管3を介して照射される。また、加熱炉1内には、ワーク置き台4が設けられると共に、ワーク置き台4の上方にシリンダ5により昇降されるワークプッシャ6が設けられている。尚、加熱炉1は扉7を備えており、扉7を閉じた状態で内部を真空引きできるようになっている。   Referring to FIG. 1, reference numeral 1 denotes a microwave heating furnace. In the heating furnace 1, microwaves from a separate microwave generator 2 are irradiated through a waveguide 3. In the heating furnace 1, a work table 4 is provided, and a work pusher 6 that is moved up and down by a cylinder 5 is provided above the work table 4. The heating furnace 1 is provided with a door 7 so that the inside can be evacuated with the door 7 closed.

図2を参照して、金属部材W,W´の接合に際しては、金属部材W,W´を上下に重ね合わせた状態でワーク置き台4に載置し、ワークプッシャ6を下降させて、金属部材W,W´同士を塑性変形を生じないように加圧接触させる。具体的には、金属部材W,W´同士を、後述するマイクロ波による加熱温度下での金属部材W,W´の降伏応力以下の圧力で加圧接触させる。   Referring to FIG. 2, when joining metal members W and W ′, metal members W and W ′ are placed on work placing table 4 in a state where the metal members W and W ′ are superposed on each other, and work pusher 6 is lowered to form metal. The members W and W ′ are brought into pressure contact so as not to cause plastic deformation. Specifically, the metal members W and W ′ are brought into pressure contact with each other at a pressure equal to or lower than the yield stress of the metal members W and W ′ under a heating temperature by a microwave described later.

尚、下側の金属部材W´とワーク置き台4との間及び上側の金属部材Wとワークプッシャ6との間には、夫々アルミナ製のワークセッタ8を介挿する。これにより、金属部材W,W´からワーク置き台4やワークプッシャ6に熱が逃げることを防止できる。   A work setter 8 made of alumina is inserted between the lower metal member W ′ and the work placing table 4 and between the upper metal member W and the work pusher 6. Accordingly, it is possible to prevent heat from escaping from the metal members W and W ′ to the work table 4 and the work pusher 6.

また、金属部材W,W´を断熱材9で覆うと共に、金属部材W,W´同士の接合面から所定範囲内の部分を加熱対象部分Waとして、加熱対象部分Waから外れた断熱材9の部分を金属製のカバー10により覆う。   Further, the metal members W and W ′ are covered with the heat insulating material 9, and a portion within a predetermined range from the joint surface between the metal members W and W ′ is set as the heating target portion Wa, and the heat insulating material 9 removed from the heating target portion Wa. The portion is covered with a metal cover 10.

ここで、本実施形態では、断熱材9を、加熱対象部分Waを覆うブロック9aと、加熱対象部分9aから外れた上側の金属部材Wの部分を覆うカバー10付きのブロック9bと、加熱対象部分Waから外れた下側の金属部材W´の部分を覆うカバー10付きのブロック9cとに3分割しているが、断熱材9を分割せずに、加熱対象部分Waから外れた断熱材9の部分の外周にカバー10を装着しても良い。   Here, in the present embodiment, the heat insulating material 9 includes a block 9a that covers the heating target portion Wa, a block 9b with a cover 10 that covers a portion of the upper metal member W that is removed from the heating target portion 9a, and a heating target portion. Although it divides into 3 with the block 9c with the cover 10 which covers the part of the lower metal member W 'which remove | deviated from Wa, without dividing | segmenting the heat insulating material 9, the heat insulating material 9 removed from the heating object part Wa You may attach the cover 10 to the outer periphery of a part.

尚、断熱材9としては一般的にセラミックスが用いられるが、不純物が含まれていると、不純物がマイクロ波を吸収して発熱し、断熱材9が高温に加熱されてしまう。そのため、断熱材9の材質は高純度セラミックス、例えば97%以上のアルミナであることが望ましい。   In general, ceramics are used as the heat insulating material 9, but if impurities are included, the impurities absorb microwaves and generate heat, and the heat insulating material 9 is heated to a high temperature. Therefore, the material of the heat insulating material 9 is desirably high-purity ceramics, for example, 97% or more alumina.

次に、加熱炉1内を真空引きした後、マイクロ波発生器2からのマイクロ波、例えば、28GHzのミリ波を加熱炉1内に照射する。これによれば、金属部材W,W´が断熱材9を透過したミリ波を吸収して発熱する。ここで、断熱材9が無いと、金属部材W,W´はそれ自体からの放熱で然程昇温しないが、本実施形態では、金属部材W,W´が断熱材9で覆われるため、金属部材W,W´からの放熱が抑制され、金属部材W,W´の温度が上昇する。   Next, after evacuating the inside of the heating furnace 1, the microwave from the microwave generator 2, for example, a millimeter wave of 28 GHz is irradiated into the heating furnace 1. According to this, the metal members W and W ′ absorb the millimeter wave transmitted through the heat insulating material 9 and generate heat. Here, if the heat insulating material 9 is not provided, the metal members W and W ′ are not heated so much by heat radiation from themselves, but in the present embodiment, the metal members W and W ′ are covered with the heat insulating material 9, so that the metal members Heat dissipation from W and W ′ is suppressed, and the temperature of the metal members W and W ′ increases.

また、本実施形態では、加熱対象部分Waから外れた断熱材9の部分(ブロック9b,9c)が金属製カバー10で覆われるため、金属製カバー10がミリ波を吸収し、加熱対象部分Wa以外の金属部材W,W´の部分でのミリ波の吸収による発熱が抑制される。従って、マイクロ波の吸収による発熱は加熱対象部分Waで集中的に行われ、断熱材9による放熱防止作用と相俟って、加熱対象部分Waが効果的に加熱される。そして、マイクロ波は温度が高くなるにつれて吸収されやすくなるため、加熱対象部分Waたる金属部材W,W´の接合面近傍の接合部分の加熱が加速度的に進行する。   Moreover, in this embodiment, since the part (block 9b, 9c) of the heat insulating material 9 removed from the heating object part Wa is covered with the metal cover 10, the metal cover 10 absorbs millimeter waves, and the heating object part Wa. Heat generation due to absorption of millimeter waves at the metal members W and W ′ other than the above is suppressed. Therefore, heat generation due to absorption of microwaves is concentrated in the heating target portion Wa, and the heating target portion Wa is effectively heated in combination with the heat radiation preventing action by the heat insulating material 9. And since a microwave becomes easy to be absorbed as temperature rises, the heating of the joined part near the joined surface of metal members W and W 'which are heating object parts Wa progresses at an accelerated speed.

尚、カバー10がミリ波の吸収による発熱で昇温すると、カバー10がマイクロ波を吸収しやすくなり、効率が悪くなると共に、加熱対象部分Wa以外の金属部材W,W´の部分の温度が不必要に上昇してしまう。従って、カバー10の材質は、その昇温を防止する上で、高熱伝導率の金属であることが望ましく、特に、成形が容易で且つ低コストの銅またはアルミニウムが最適である。以下の実験及び実施例では銅製のカバー10を用いている。   When the temperature of the cover 10 is increased by heat generated by absorption of millimeter waves, the cover 10 is likely to absorb microwaves, the efficiency is deteriorated, and the temperatures of the metal members W and W ′ other than the heating target portion Wa are increased. It will rise unnecessarily. Accordingly, the material of the cover 10 is desirably a metal having a high thermal conductivity in order to prevent the temperature rise, and particularly, copper or aluminum that is easy to mold and low in cost is optimal. In the following experiments and examples, the copper cover 10 is used.

上記の如く加熱対象部分Waが集中的に加熱されることを実証するため、金属部材W,W´を夫々鉄製とし、図2に示す状態で28GHzのミリ波を照射して金属部材W,W´を加熱する実験を行った。実験では、ミリ波の出力を変化させながら接合面近傍のa点(接合面からの距離1mm)と接合面から30mm離れたb点の温度を夫々熱電対で計測した。実験結果は図3に示す通りであり、a点の温度がb点の温度に比し著しく高くなった。これにより、金属部材W、W´の加熱対象部分Waを集中的に加熱できることが分かる。尚、断熱材9のブロック9b,9cのカバー10を取外した場合には、b点がa点と同様の温度まで昇温した。   In order to verify that the heating target portion Wa is heated intensively as described above, the metal members W and W ′ are made of iron, and the metal members W and W ′ are irradiated with 28 GHz millimeter waves in the state shown in FIG. An experiment for heating 'was conducted. In the experiment, while changing the output of the millimeter wave, the temperatures at point a near the joint surface (distance 1 mm from the joint surface) and point b 30 mm away from the joint surface were measured with thermocouples. The experimental result is as shown in FIG. 3, and the temperature at the point a is remarkably higher than the temperature at the point b. Thereby, it turns out that the heating object part Wa of metal member W, W 'can be heated intensively. In addition, when the cover 10 of the blocks 9b and 9c of the heat insulating material 9 was removed, the temperature of the point b was raised to the same temperature as the point a.

また、一方の金属部材Wをチタン(Ti)製、他方の金属部材W´を鉄(Fe)製とし、図2に示す状態で28GHzのミリ波を照射して金属部材W,W´を加熱する実験を行った。実験では、ミリ波の出力を変化させながらTi製部材Wの接合面近傍の温度とFe製部材W´の接合面近傍の温度を夫々熱電対で計測した。実験結果は図4に示す通りであり、接合面近傍の温度がTi製部材WとFe製部材W´の何れにおいても十分に高くなることが分かる。尚、Feの方がTiよりミリ波の吸収性が良いため、温度の立上りはFe製部材W´の方が早くなっている。また、Tiは熱伝導率が低く放熱量が小さいため、Ti製部材Wの温度が途中でFe製部材W´よりも高くなり、最終的に両部材W,W´が共に所要の高温度まで加熱される。   Further, one metal member W is made of titanium (Ti) and the other metal member W ′ is made of iron (Fe), and the metal members W and W ′ are heated by irradiating with 28 GHz millimeter wave in the state shown in FIG. An experiment was conducted. In the experiment, the temperature in the vicinity of the joint surface of the Ti member W and the temperature in the vicinity of the joint surface of the Fe member W ′ were measured with thermocouples while changing the output of the millimeter wave. The experimental result is as shown in FIG. 4, and it can be seen that the temperature in the vicinity of the joint surface is sufficiently high in both the Ti member W and the Fe member W ′. Since Fe absorbs more millimeter waves than Ti, the temperature rise is faster in the Fe member W ′. Further, since Ti has a low thermal conductivity and a small amount of heat release, the temperature of the Ti member W becomes higher than that of the Fe member W ′ in the middle, and both the members W and W ′ finally reach the required high temperature. Heated.

以上の如く金属部材W,W´の加熱対象部分Waが集中的に加熱される結果、金属部材W,W´同士の接合面の酸化皮膜が熱で消失し、金属部材W,W´同士を塑性変形を生ずるような加圧力で強く加圧接触させなくても、拡散接合により金属部材W,W´同士が固相状態で接合される。   As described above, the heating target portion Wa of the metal members W and W ′ is intensively heated. As a result, the oxide film on the joint surface between the metal members W and W ′ disappears due to heat, and the metal members W and W ′ are The metal members W and W ′ are bonded in a solid phase state by diffusion bonding even if they are not brought into strong pressure contact with a pressure that causes plastic deformation.

かくして、金属部材W,W´同士を接合部分の変形を生ずることなく固相接合でき、接合部分の変形を修正するための後加工が不要になる。また、高温に加熱されるのは金属部材W,W´の加熱対象部分Waだけになるため、金属部材W,W´全体を加熱するものと異なり、金属部材W,W´の元の材料特性が維持されると共に、異種金属の接合も可能になる。更に、摩擦接合と異なり金属部材W,W´の形状も限定されない。   Thus, the metal members W and W ′ can be solid-phase bonded without causing deformation of the bonded portion, and post-processing for correcting the deformation of the bonded portion is not necessary. Further, since only the heating target portion Wa of the metal members W and W ′ is heated to a high temperature, the original material characteristics of the metal members W and W ′ are different from those for heating the entire metal members W and W ′. Is maintained, and dissimilar metals can be joined. Further, unlike the friction bonding, the shapes of the metal members W and W ′ are not limited.

尚、アルミニウムのように酸素が殆ど溶解しない金属製の部材を上述した本実施形態の方法で接合することは困難であるが、鉄、チタン、銅のように酸化皮膜中の酸素をある程度溶解できる金属製の部材は、本実施形態の方法で良好に接合できる。また、鉄鋼材やステンレスのように炭素を含有する金属製の部材は、炭素による還元反応で酸化皮膜中の酸素がCO,COに変化して酸化皮膜が消失するため、本実施形態の方法で接合できる。 Although it is difficult to join a metal member that hardly dissolves oxygen, such as aluminum, by the method of this embodiment described above, oxygen in the oxide film such as iron, titanium, and copper can be dissolved to some extent. Metal members can be joined well by the method of this embodiment. In addition, since a metal member containing carbon such as steel and stainless steel changes the oxygen in the oxide film to CO and CO 2 due to the reduction reaction by carbon, the oxide film disappears. Can be joined.

上述したように本実施形態の接合方法では、接合部分の変形を生じず、形状も限定されないため、種々の製品を製造することが可能になる。例えば、図5に示す如く、一対の金属製側板W1,W1間に中空部を有する形状に打ち抜き成形された金属製中板W2を挟んだ状態でこれらを拡散接合して、中空部を有する軽量且つ高剛性のコンロッドを低コストで製造することができる。また、金型等の部分的に高荷重が作用する製品において、高荷重が作用する部分をハイス鋼等の耐摩耗性に優れた金属で形成し、他の部分をダイス鋼等の廉価な金属で形成して、両者を本実施形態の方法で拡散接合することにより、耐久性に優れた製品を低コストで製造することが可能になる。   As described above, in the joining method according to the present embodiment, deformation of the joined portion is not caused and the shape is not limited, so that various products can be manufactured. For example, as shown in FIG. 5, a lightweight metal plate having a hollow portion is formed by diffusion bonding with a metal intermediate plate W2 punched and formed in a shape having a hollow portion between a pair of metal side plates W1 and W1. And a highly rigid connecting rod can be manufactured at low cost. Also, in products such as molds that are subject to high loads, parts where high loads are applied are made of metal with excellent wear resistance such as high-speed steel, and other parts are inexpensive metal such as die steel. By forming them together and diffusion-bonding them by the method of this embodiment, it becomes possible to manufacture a product with excellent durability at a low cost.

尚、上記実施形態では、金属部材W,W´をその全体に亘って断熱材9により覆っているが、金属部材がある程度が大きく、接合面から離れた端部での放熱量が少なくなる場合には、金属部材の端部を断熱材で覆わなくても良い。また、加熱対象部分Waとする範囲は一義的に決定されるものではなく、金属部材の大きさ形状等に応じて適切な範囲を実験的に求めれば良い。   In the above embodiment, the metal members W and W ′ are covered with the heat insulating material 9 over the whole, but the metal member is large to some extent, and the amount of heat radiation at the end away from the joint surface is reduced. In this case, the end of the metal member may not be covered with the heat insulating material. Further, the range to be the heating target portion Wa is not uniquely determined, and an appropriate range may be obtained experimentally according to the size and shape of the metal member.

金属部材W,W´を共に直径15mmの鉄製とし、1000℃での鉄の降伏応力以下の3kgf/mmの圧力で金属部材W,W´同士を加圧接触させ、図2に示す状態で28GHzのミリ波を照射した。そして、加熱対象部分Waを900℃まで加熱し、金属部材W,W´の接合品を得た。尚、加熱対象部Waは接合面から2mmまでの範囲とした。 The metal members W and W ′ are both made of iron with a diameter of 15 mm, and the metal members W and W ′ are brought into pressure contact with each other at a pressure of 3 kgf / mm 2 which is lower than the yield stress of iron at 1000 ° C. A 28 GHz millimeter wave was irradiated. And the heating object part Wa was heated to 900 degreeC, and the joined product of metal member W, W 'was obtained. In addition, the heating object part Wa was made into the range from a joining surface to 2 mm.

この接合品は、金属部材W,W´同士の接合面に隙間が全く存在せずに連続した組織になっており、接合部分での変形も全く生じなかった。また、この接合品の引張試験を行ったところ、降伏応力が36.3kgf/mm、引張強さが64.3kgf/mm、破断伸びが13.5mmであった。鉄製の一体品の降伏応力、引張強さ、破断伸びは、夫々、36.3kgf/mm、62.0kgf/mm、23mmであり、接合品は伸びが減少するものの機械的強度は一体品と同等になることが確認された。 This joined product has a continuous structure without any gaps between the joining surfaces of the metal members W and W ′, and no deformation occurred at the joined portion. Moreover, when the tensile test of this bonded product was performed, the yield stress was 36.3 kgf / mm 2 , the tensile strength was 64.3 kgf / mm 2 , and the elongation at break was 13.5 mm. The yield strength, tensile strength, and elongation at break of the steel integrated product are 36.3 kgf / mm 2 , 62.0 kgf / mm 2 , and 23 mm, respectively. It was confirmed that it becomes equivalent.

尚、鉄製の金属部材W,W´は加熱対象部分Waを400℃程度に加熱すると接合し始める。但し、鉄製の金属部材W,W´を900℃より低い温度で接合した接合品は、金属部材W,W´同士の接合面に隙間が残り、塑性変形が始まると隙間を起点にして破断し、引張強さが36.3kgf/mm程度になる。 The iron metal members W and W ′ start to be joined when the heating target portion Wa is heated to about 400 ° C. However, in a joined product in which iron metal members W and W ′ are joined at a temperature lower than 900 ° C., a gap remains on the joint surface between the metal members W and W ′, and when plastic deformation starts, it breaks starting from the gap. The tensile strength is about 36.3 kgf / mm 2 .

一方の金属部材Wを直径15mmのチタン製部材、他方の金属部材W´を直径15mmの鉄製部材とし、3kgf/mmの圧力で両部材W,W´同士を加圧接触させ、図2に示す状態で28GHzのミリ波を照射して、加熱対象部分Waを700℃まで加熱した。尚、加熱対象部分Waは接合面から2mmまでの範囲とした。 One metal member W is made of a titanium member having a diameter of 15 mm, and the other metal member W ′ is made of an iron member having a diameter of 15 mm, and both members W and W ′ are brought into pressure contact with each other at a pressure of 3 kgf / mm 2 . In the state shown, a 28 GHz millimeter wave was irradiated to heat the portion to be heated Wa to 700 ° C. The heating target portion Wa was in a range of 2 mm from the joint surface.

これにより、チタン製部材Wと鉄製部材W´が接合部分の変形を生ずることなく接合した。この接合品は、接合面に隙間が若干残るが、チタン製部材Wに接合面から18μの深さまで鉄が拡散し、鉄製部材W´に接合面から30μの深さまでチタンが拡散していることが確認された。   Thereby, the titanium member W and the iron member W ′ were joined without causing deformation of the joined portion. In this joined product, a gap remains slightly on the joining surface, but iron diffuses to a titanium member W to a depth of 18 μm from the joining surface, and titanium diffuses to a steel member W ′ to a depth of 30 μm from the joining surface. Was confirmed.

また、この接合品の引張強さは33.2kgf/mmであった。ここで、チタン製の一体品の降伏応力、引張強さは、夫々、33.0kgf/mm、58.0kgf/mmであり、接合品の引張強さはチタン製一体品の降伏応力と同程度になる。これは、接合品がチタンの塑性変形と同時に接合面の隙間を起点にして破断したためであると考えられる。 Moreover, the tensile strength of this joined product was 33.2 kgf / mm 2 . Here, the yield stress of the titanium of one piece, tensile strength, respectively, 33.0kgf / mm 2, is a 58.0kgf / mm 2, the tensile strength of the bonding products and the yield stress of the titanium one piece It becomes the same level. This is presumably because the bonded product fractured starting from the gap between the bonded surfaces simultaneously with the plastic deformation of titanium.

本発明方法の実施に使用する設備の一例を示す断面図。Sectional drawing which shows an example of the equipment used for implementation of the method of this invention. 本発明方法に従った金属部材及び断熱材の配置の一例を示す断面図。Sectional drawing which shows an example of arrangement | positioning of the metal member and heat insulating material according to this invention method. マイクロ波で加熱したときの鉄製部材の各部の温度変化を示すグラフ。The graph which shows the temperature change of each part of an iron member when it heats with a microwave. マイクロ波で加熱したときのチタン製部材と鉄製部材の温度変化を示すグラフ。The graph which shows the temperature change of the titanium member and iron member when it heats with a microwave. 本発明方法で製造されるコンロッドの分解斜視図。The disassembled perspective view of the connecting rod manufactured by the method of this invention.

符号の説明Explanation of symbols

W,W´…金属部材、Wa…加熱対象部分、1…マイクロ波加熱炉、2…マイクロ波発生器、9…断熱材、10…金属製カバー。   W, W '... metal member, Wa ... heating target part, 1 ... microwave heating furnace, 2 ... microwave generator, 9 ... heat insulating material, 10 ... metal cover.

Claims (2)

金属部材同士を固相状態で接合する金属部材の固相接合方法において、
金属部材同士を塑性変形を生じないように加圧接触させると共に、金属部材を断熱材で覆い、更に、金属部材同士の接合面から所定範囲内の部分を加熱対象部分として、加熱対象部分から外れた断熱材の部分を金属製のカバーにより覆い、この状態でマイクロ波を照射して加熱対象部分を加熱することを特徴とする金属部材の固相接合方法。
In the solid-phase joining method of metal members that join metal members in a solid-phase state,
The metal members are brought into pressure contact with each other so as not to cause plastic deformation, and the metal members are covered with a heat insulating material. A method for solid-phase joining of metal members, wherein a portion of the heat insulating material is covered with a metal cover, and in this state, the portion to be heated is heated by irradiation with microwaves.
前記カバーは、銅またはアルミニウムで形成されることを特徴とする請求項1記載の金属部材の固相接合方法。   The method for solid-phase joining of metal members according to claim 1, wherein the cover is made of copper or aluminum.
JP2005303356A 2005-10-18 2005-10-18 Solid phase bonding method for metal parts Expired - Fee Related JP4616149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303356A JP4616149B2 (en) 2005-10-18 2005-10-18 Solid phase bonding method for metal parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303356A JP4616149B2 (en) 2005-10-18 2005-10-18 Solid phase bonding method for metal parts

Publications (2)

Publication Number Publication Date
JP2007111709A true JP2007111709A (en) 2007-05-10
JP4616149B2 JP4616149B2 (en) 2011-01-19

Family

ID=38094362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303356A Expired - Fee Related JP4616149B2 (en) 2005-10-18 2005-10-18 Solid phase bonding method for metal parts

Country Status (1)

Country Link
JP (1) JP4616149B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296260A (en) * 2007-06-01 2008-12-11 Tatsuhiko Yajima Welding apparatus and welding method
JP2011121096A (en) * 2009-12-11 2011-06-23 Nissan Motor Co Ltd Method of and apparatus for welding metal member, and method for manufacturing welded metal member using the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187409A (en) * 1975-01-31 1976-07-31 Mitsubishi Chem Ind Kinzokuno kanetsuho
JPS62186938A (en) * 1986-02-13 1987-08-15 Okazaki Seisakusho:Kk Method for bonding solids
JPH08313497A (en) * 1995-05-16 1996-11-29 Chubu Electric Power Co Inc Joint device
JPH103986A (en) * 1996-06-13 1998-01-06 Maruwa Ceramic:Kk Microwave heating device
JPH11135252A (en) * 1997-08-12 1999-05-21 Matsushita Electric Ind Co Ltd Heating device with microwave and joining method of joining object using thereof
JP2000094155A (en) * 1998-09-18 2000-04-04 Daido Steel Co Ltd Deciding method of heating width in diffusion bonding of metallic tube and diffusion bonding method of metallic tube
JP2005055162A (en) * 2003-07-22 2005-03-03 Takasago Ind Co Ltd Operation method of microwave oven, and microwave oven
JP2005230823A (en) * 2004-02-17 2005-09-02 Suwa Netsukogyo Kk Joining apparatus and joining method with pulse energization
JP2005254244A (en) * 2004-03-09 2005-09-22 High Energy Accelerator Research Organization Method for manufacturing accelerating tube of electron/positron collider
JP2005262244A (en) * 2004-03-17 2005-09-29 Suwa Netsukogyo Kk Method for joining metallic member by pulse energization

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187409A (en) * 1975-01-31 1976-07-31 Mitsubishi Chem Ind Kinzokuno kanetsuho
JPS62186938A (en) * 1986-02-13 1987-08-15 Okazaki Seisakusho:Kk Method for bonding solids
JPH08313497A (en) * 1995-05-16 1996-11-29 Chubu Electric Power Co Inc Joint device
JPH103986A (en) * 1996-06-13 1998-01-06 Maruwa Ceramic:Kk Microwave heating device
JPH11135252A (en) * 1997-08-12 1999-05-21 Matsushita Electric Ind Co Ltd Heating device with microwave and joining method of joining object using thereof
JP2000094155A (en) * 1998-09-18 2000-04-04 Daido Steel Co Ltd Deciding method of heating width in diffusion bonding of metallic tube and diffusion bonding method of metallic tube
JP2005055162A (en) * 2003-07-22 2005-03-03 Takasago Ind Co Ltd Operation method of microwave oven, and microwave oven
JP2005230823A (en) * 2004-02-17 2005-09-02 Suwa Netsukogyo Kk Joining apparatus and joining method with pulse energization
JP2005254244A (en) * 2004-03-09 2005-09-22 High Energy Accelerator Research Organization Method for manufacturing accelerating tube of electron/positron collider
JP2005262244A (en) * 2004-03-17 2005-09-29 Suwa Netsukogyo Kk Method for joining metallic member by pulse energization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296260A (en) * 2007-06-01 2008-12-11 Tatsuhiko Yajima Welding apparatus and welding method
JP2011121096A (en) * 2009-12-11 2011-06-23 Nissan Motor Co Ltd Method of and apparatus for welding metal member, and method for manufacturing welded metal member using the same

Also Published As

Publication number Publication date
JP4616149B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
Chen et al. Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel
Zeng et al. Numerical and experiment analysis of residual stress on magnesium alloy and steel butt joint by hybrid laser-TIG welding
Pal et al. Optimization of elemental weight% in microwave-processed joints of SS304/SS316 using Taguchi philosophy
CN108000057A (en) The manufacture method of target material assembly
JP4616149B2 (en) Solid phase bonding method for metal parts
JP2011214111A (en) Aluminum porous body and fabrication method of the same
US20110031301A1 (en) Joining of Electrical Generator Components
CN114206535B (en) Method for solid phase bonding of dissimilar materials and solid phase bonded structure of dissimilar materials
Salot et al. Microwave joining of metals: a review
JP2009226454A (en) Method and apparatus of joining metallic member
JP2010075967A (en) Method for welding different kind of metal
CN102140036B (en) Ceramic and metal dual-laser beam partial transient liquid-phase welding method
Naik et al. Joining of dissimilar metals using microwave hybrid heating and Tungsten Inert Gas welding-A review
JP2019000883A (en) Joining method
JP2001105158A (en) Induction heating coil for diffusion welding of railroad rail, and diffussion welding method of railroad rail using the method
Saxena et al. Joining of bulk metallic pipes by microwave hybrid heating processunder parametrical regulations
JP5686582B2 (en) Axle case manufacturing method
JP2005238249A (en) Method and apparatus for bonding dissimilar materials by irradiating laser beam
US20150360329A1 (en) Crack repair method for turbine components using spark plasma sintering
George et al. A feasibility study on drilling of metals through microwave heating
RU2434726C2 (en) Method of electron beam welding of ceramic parts
Gupta et al. Investigation and characterization of brass joint fabricated by microwave hybrid heating process
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
Goswami et al. Review of Microstructural and Mechanical Properties of Microwave Welding of Lightweight Alloys
Bansal et al. Application of electromagnetic energy for joining inconel 718 plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees