JP2005054492A - Reuse method for sludge in soil-improvement method and its reuse device - Google Patents

Reuse method for sludge in soil-improvement method and its reuse device Download PDF

Info

Publication number
JP2005054492A
JP2005054492A JP2003287608A JP2003287608A JP2005054492A JP 2005054492 A JP2005054492 A JP 2005054492A JP 2003287608 A JP2003287608 A JP 2003287608A JP 2003287608 A JP2003287608 A JP 2003287608A JP 2005054492 A JP2005054492 A JP 2005054492A
Authority
JP
Japan
Prior art keywords
liquid
reuse
ground improvement
viscosity
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003287608A
Other languages
Japanese (ja)
Other versions
JP2005054492A5 (en
JP4488403B2 (en
Inventor
Susumu Araki
進 荒木
Koichi Sogo
浩一 十河
Koji Sugiyama
好司 杉山
Arihito Nishimura
有人 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raito Kogyo Co Ltd
Original Assignee
Raito Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raito Kogyo Co Ltd filed Critical Raito Kogyo Co Ltd
Priority to JP2003287608A priority Critical patent/JP4488403B2/en
Publication of JP2005054492A publication Critical patent/JP2005054492A/en
Publication of JP2005054492A5 publication Critical patent/JP2005054492A5/ja
Application granted granted Critical
Publication of JP4488403B2 publication Critical patent/JP4488403B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge reuse technique, which is simplified, results in a space saving and conducts a treatment with a high efficiency. <P>SOLUTION: Sludge is reused through a reuse-liquid manufacturing step, when grains having a grain size larger than 4.5 mm are removed from sludge discharged by soil-improvement works and a reuse liquid in which the dry content of residual grains reaches 5 wt.% or less is obtained, and an injection step, when the manufactured reuse liquid is mixed as it is or with other materials as a part or the whole of water used for a soil improvement and injected at a pressure of 1 MPa or more into a ground from a nozzle in which a nozzle bore is set in 1.0 mm or more, the tensile strength of a section forming an internal surface in 370 N/mm<SP>2</SP>or more, a strength in 305 N/mm<SP>2</SP>or more and a Rockwell hardness in 40 or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地盤改良工事において発生する排泥を再利用する方法及び装置に関するものである。   The present invention relates to a method and an apparatus for reusing waste mud generated in ground improvement work.

地盤改良工事は、大別して連続壁工法、機械撹拌工法及び高圧噴射工法の3工法に分類される。しかし、いずれの工法においても地盤改良工事で発生する排泥は、産業廃棄物として処理されているのが実情である。具体的には、排泥はバキューム車で処理したり、セメントが含有しているため数日程度放置させて固化させたり、各種固化材を追加投入して固化させたり、吸水性材料を使用して排泥の含水比を低減させたりした後、ダンプ搬出により廃棄物処分場に投棄されることが多い。また、凝集剤を添加した後に廃棄している例もある。これらの従来方法は、いずれも排泥を産業廃棄物として処分場へ投棄することを前提としたものであり、このため近年では、処分場が数年で飽和状態となったり、周辺環境への悪影響を懸念する住民の反対により新規の処分場の新設が困難になったりしている。このような状況を考えると、地盤改良工法の排泥の減量化、再利用化は21世紀になった現在、必要不可欠な事である。   Ground improvement works are roughly classified into three methods: continuous wall method, mechanical stirring method, and high-pressure injection method. However, in any construction method, the waste mud generated by the ground improvement work is actually treated as industrial waste. Specifically, the waste mud is treated with a vacuum vehicle, and since it contains cement, it is left to solidify for a few days, or it is solidified by adding various solidifying materials, or using water-absorbing materials. In many cases, the water content of the mud is reduced and then dumped to a waste disposal site. There is also an example of discarding after adding the flocculant. All of these conventional methods are based on the premise that the sludge is dumped into the disposal site as industrial waste. Therefore, in recent years, the disposal site has become saturated in several years, The establishment of a new disposal site has become difficult due to opposition from residents who are concerned about adverse effects. Considering such a situation, the reduction and reuse of waste mud in the ground improvement method is indispensable now in the 21st century.

そして、このような観点から、排泥の減量化、再利用化を図る技術が種々提案されており、その多くは水としての再利用を図るべく、排泥中に含まれる粒子を可能な限り除去し、残留粒子の粒径を可能な限り小粒径(例えば粒径75μm以下)にした後、そのまま又は固化材と混合して地盤内へ噴射するものである(例えば、特許文献1参照)。   From this point of view, various technologies for reducing and reusing waste mud have been proposed, and most of them contain particles contained in the waste as much as possible in order to reuse them as water. After removing and reducing the particle size of the residual particles as small as possible (for example, particle size of 75 μm or less), it is injected into the ground as it is or mixed with a solidified material (for example, see Patent Document 1). .

しかしながら、いくら粒子を除去しようとしてもそこには限界があり、また精度を高めようとすればするほど、再利用のための設備が複雑・過大・低効率になり易く、工事スペースの確保が困難になったり、施工コストの高騰を招いたりしかねない。
特開平11−152741号公報
However, no matter how much particles are removed, there is a limit, and the more accuracy is required, the more complicated, excessive, and low-efficiency equipment for reuse becomes, and it is difficult to secure construction space. Or increase the construction cost.
Japanese Patent Laid-Open No. 11-152741

そこで、本発明が解決しようとする課題は、簡素・省スペース・高効率での処理を可能にする排泥再利用技術を提供することにある。   Therefore, a problem to be solved by the present invention is to provide a waste mud recycling technique that enables processing with simple, space-saving and high efficiency.

上記課題を解決した本発明は、次記のとおりである。
<請求項1記載の発明>
地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とした再利用液を得る再利用液製造ステップと、
前記再利用液を、地盤改良に使用する水の一部若しくは全部としてそのまま若しくは他の材料と混合した後に、ノズル口径が1.0mm以上とされ、内面を形成する部分の引張強さが370N/mm2以上、耐力が305N/mm2以上かつロックウェル硬さが40以上とされたノズルから地盤内に対して1MPa以上の圧力で噴射する噴射ステップとを含む、
ことを特徴とする地盤改良工法における排泥の再利用方法。
The present invention that has solved the above problems is as follows.
<Invention of Claim 1>
A reuse liquid manufacturing step for obtaining a reuse liquid by removing particles having a particle size of more than 4.5 mm from the mud discharged by the ground improvement work, and having a dry content of residual particles of 5% by weight or less;
After reusing the reused liquid as part or all of the water used for ground improvement or after mixing with other materials, the nozzle diameter is 1.0 mm or more, and the tensile strength of the part forming the inner surface is 370 N / an injection step of injecting at a pressure of 1 MPa or more into the ground from a nozzle having a mm 2 or more, a proof stress of 305 N / mm 2 or more and a Rockwell hardness of 40 or more,
Reuse method of waste mud in ground improvement method characterized by this.

<請求項2記載の発明>
前記再利用液製造ステップにて、地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とした後、粘度調整を行いPロートフロー値が20秒未満の粘性を有する再利用液を得るとともに、
前記噴射ステップにて、前記再利用液を1〜10MPaの低圧噴射により地盤内に圧送供給するようにする、請求項1記載の地盤改良工法における排泥の再利用方法。
<Invention of Claim 2>
In the reuse liquid production step, after removing particles with a particle size of more than 4.5 mm from the waste mud discharged by the ground improvement work and setting the dry content of residual particles to 5% by weight or less, the viscosity is adjusted. To obtain a recycle liquid having a viscosity with a P funnel flow value of less than 20 seconds,
The method for recycling waste mud in the ground improvement method according to claim 1, wherein, in the spraying step, the reused liquid is pumped and supplied into the ground by low-pressure jetting of 1 to 10 MPa.

<請求項3記載の発明>
前記再利用液製造ステップにて、地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とした後、粘度調整を行いPロートフロー値が15秒未満の粘性を有する再利用液を得るとともに、
前記噴射ステップにて、前記再利用液を20〜50MPaの高圧噴射により地盤内に圧送供給するようにする、請求項1記載の地盤改良工法における排泥の再利用方法。
<Invention of Claim 3>
In the reuse liquid production step, after removing particles with a particle size of more than 4.5 mm from the waste mud discharged by the ground improvement work and setting the dry content of residual particles to 5% by weight or less, the viscosity is adjusted. To obtain a recycle liquid having a viscosity of P funnel flow value of less than 15 seconds,
The method for recycling waste mud in the ground improvement method according to claim 1, wherein, in the spraying step, the reuse liquid is pumped and supplied into the ground by high-pressure spray of 20 to 50 MPa.

<請求項4記載の発明>
前記粘度調整を、土壌分散剤、セメント用減水剤、AE剤およびクエン酸の少なくとも一種を添加することにより行う、請求項2または3記載の地盤改良工法における排泥の再利用方法。
<Invention of Claim 4>
The method for recycling waste mud in the ground improvement method according to claim 2 or 3, wherein the viscosity adjustment is performed by adding at least one of a soil dispersant, a water reducing agent for cement, an AE agent, and citric acid.

<請求項5記載の発明>
地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とした再利用液を得る再利用液製造手段と、
前記再利用液を、地盤改良に使用する水の一部若しくは全部としてそのまま若しくは他の材料と混合した後に、ノズル口径が1.0mm以上とされ、内面を形成する部分の引張強さが370N/mm2以上、耐力が305N/mm2以上かつロックウェル硬さが40以上とされたノズルから地盤内に対して1MPa以上の圧力で噴射する噴射手段とを備えた、
ことを特徴とする地盤改良工法における排泥の再利用設備。
<Invention of Claim 5>
Reusable liquid production means for removing particles having a particle size of more than 4.5 mm from the waste mud discharged by ground improvement work and obtaining a recycle liquid having a dry content of residual particles of 5% by weight or less;
After reusing the reused liquid as part or all of the water used for ground improvement or after mixing with other materials, the nozzle diameter is 1.0 mm or more, and the tensile strength of the part forming the inner surface is 370 N / Injecting means for injecting at a pressure of 1 MPa or more into the ground from a nozzle having a mm 2 or more, a proof stress of 305 N / mm 2 or more and a Rockwell hardness of 40 or more,
Wastewater reuse equipment in the ground improvement method characterized by this.

<請求項6記載の発明>
前記再利用液製造手段は、地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とする固液分離手段と、固液分離手段により処理した液の粘度測定を行う粘度測定手段と、粘度測定手段による測定粘度が所定値以上であるか否かを判定し、所定値以上であるときに粘度調整剤を前記固液分離手段により処理した液に添加し、粘度調整した再利用液を得る粘度調整手段とを備えたものである、請求項5記載の地盤改良工法における排泥の再利用設備。
<Invention of Claim 6>
The recycle liquid production means is a solid-liquid separation means for removing particles with a particle size of more than 4.5 mm from the waste mud discharged by ground improvement work, and making the dry content of residual particles 5% by weight or less, A viscosity measuring means for measuring the viscosity of the liquid treated by the solid-liquid separation means, and determining whether or not the measured viscosity by the viscosity measuring means is a predetermined value or more. The facility for reusing waste mud in the ground improvement method according to claim 5, further comprising a viscosity adjusting unit that is added to the liquid processed by the liquid separating unit to obtain a recycled liquid whose viscosity is adjusted.

本発明は、粒子を可能な限り除去しようとする従来の考え方から脱して、粒子を除去しきれないとの前提に立ち、そのような場合であっても、再利用液を確実に地盤内に供給できるように、再利用液の噴射ノズルの強度や口径を定めたところに特徴を有するものである。したがって、本発明によれば、ノズルの閉塞や機器の損耗のおそれを低減しつつも、簡素・省スペースな設備を用いることができ、また除去効率を重視する必要がないため高効率での再利用液の製造が可能となる。   The present invention is based on the premise that particles cannot be removed from the conventional idea of removing particles as much as possible, and even in such a case, the recycled liquid is surely put in the ground. It is characterized in that the strength and the diameter of the reusable liquid spray nozzle are determined so that they can be supplied. Therefore, according to the present invention, it is possible to use simple and space-saving equipment while reducing the possibility of nozzle clogging and equipment wear, and it is not necessary to place importance on removal efficiency. The use liquid can be manufactured.

本発明では、再利用液を地盤内への供給圧力に応じた粘度に調整することが望ましく、この場合、再利用液の地盤内への供給をより確実なものとすることができる。その他の細かな点については後述する。   In the present invention, it is desirable to adjust the reuse liquid to a viscosity corresponding to the supply pressure into the ground. In this case, the supply of the reuse liquid into the ground can be made more reliable. Other details will be described later.

以下、本発明の実施形態について詳説する。
図1には、本発明を応用した地盤改良方法の設備概要が示されている。符号1は水貯留槽を示し、符号2はセメント等の固化材貯留サイロを示しており、これらの注入材料は、必要に応じて図示しないポンプにより改良液製造装置3にそれぞれ導入される。改良液製造装置3では水と固化材とが混合され改良液が製造され、製造された改良液は注入ポンプP2により圧送ホース32を介して送出され、地盤に挿入された注入管10に供給され、さらに注入管10を介して地盤G内に供給される。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 shows a facility outline of a ground improvement method to which the present invention is applied. Reference numeral 1 denotes a water storage tank, and reference numeral 2 denotes a solidification material storage silo such as cement. These injection materials are introduced into the improved liquid production apparatus 3 by a pump (not shown) as required. In the improved liquid production apparatus 3, water and a solidifying material are mixed to produce an improved liquid, and the produced improved liquid is sent out by the injection pump P2 via the pressure feed hose 32 and supplied to the injection pipe 10 inserted in the ground. Further, it is supplied into the ground G through the injection pipe 10.

また、ある種の地盤改良工法では、地盤G内への改良液の供給に先立って或いは供給とともに、地盤G内に挿入した注入管10を介して地盤改良予定部分に水を噴射し、地盤を切削もしくは弛緩したりすることがある。図示形態は、この場合を想定したものであり、水貯留槽1の貯留水をポンプP1により圧送ホース31を介して直接注入管10に供給できるようになっている。   Further, in a certain ground improvement method, prior to or together with the supply of the improvement liquid into the ground G, water is injected to the planned ground improvement portion through the injection pipe 10 inserted into the ground G, May cut or relax. The illustrated form assumes this case, and the stored water in the water storage tank 1 can be directly supplied to the injection pipe 10 via the pumping hose 31 by the pump P1.

さらに、地盤改良工法の中には、改良径を増大するべく高圧エアと改良液とを注入する手法や、地盤改良予定部分に水を噴射し地盤を切削する場合において切削能力の向上を図るべく、水と高圧エアとを噴射する方法もある。図示形態は、この場合を想定しており、コンプレッサ23から高圧エアをエアホース33を介して注入管10に供給できるようになっている。   Furthermore, in the ground improvement method, in order to increase the cutting ability when injecting water into the ground improvement planned part and injecting water into the ground improvement planned part in order to increase the improved diameter There is also a method of injecting water and high-pressure air. The illustrated form assumes this case, and high-pressure air can be supplied from the compressor 23 to the injection pipe 10 via the air hose 33.

これらのような地盤改良工法においては、地盤G内への削孔水、切削水若しくは弛緩水の供給に伴い、または改良液の地盤内への供給に伴い、孔口から泥土が排出される。このため、通常は孔口に排泥ピット41が設けられ、ここに排出される排泥が回収される。   In such ground improvement methods, mud is discharged from the hole opening with the supply of drilling water, cutting water or relaxation water into the ground G, or with the supply of the improvement liquid into the ground. For this reason, usually, a mud pit 41 is provided at the hole, and the mud discharged here is collected.

本発明は、この回収した排泥を再利用する。このため、図示形態では排泥ピット41内の排泥が吸引ポンプP3により吸引され、再利用液製造装置4に供給される。再利用液製造装置4の例は図2に示されている。排泥は排泥貯留槽4Aに投入され、一時的に貯留された後、ポンプにより固液分離手段4Sに供給され、粒径4.5mm超の粒子が除去されるとともに、残留粒子の乾燥含有量が5重量%以下の再利用液とされる。除去された固形分は従来と同様に廃棄処分される。   In the present invention, the recovered sludge is reused. For this reason, in the illustrated form, the mud in the mud pit 41 is sucked by the suction pump P <b> 3 and supplied to the reuse liquid manufacturing apparatus 4. An example of the reuse liquid production apparatus 4 is shown in FIG. The waste mud is put into the waste mud storage tank 4A and temporarily stored, and then supplied to the solid-liquid separation means 4S by a pump to remove particles with a particle size of more than 4.5 mm and dry residual particles. The amount of recycled liquid is 5% by weight or less. The removed solid content is disposed of in the same manner as before.

固液分離手段4Sは、上記再利用液を製造しうる限り特に限定されないが、設置面積やコストの観点から、篩目孔径が4mm〜0.088mmの振動篩等のスクリーニング装置4Bを1〜4基前段に備え、またサイクロン式分離装置4Cを後段に備え、前段4Bで粗粒分をある程度まで除去した後に、後段4Cで細粒分を含めて仕上げ除去する形態のものが好適である。   The solid-liquid separation means 4S is not particularly limited as long as the reusable liquid can be produced, but from the viewpoint of installation area and cost, the screening device 4B such as a vibration sieve having a sieve hole diameter of 4 mm to 0.088 mm is used for 1-4. It is preferable that the first stage is equipped with the cyclone type separation device 4C in the latter stage, and after removing the coarse particles to some extent in the first stage 4B, the latter stage 4C is used to finish and remove the fine particles.

固液分離により得られた再利用液は、そのまま使用しても良いが、シルト分や粘土分の含有量によっては粘度が高くなり、噴射ノズルの閉塞を誘発するおそれがある。したがってこのような場合、好適には、図示形態のように再利用液を一時的に調整槽4Dに貯留し粘度調整を行うのが好ましい。具体的には、調整槽4D内にB型粘度計等の粘度測定手段4Eを設け、粘度測定手段4Eによる測定粘度が所定値以上であるか否かを判定し、所定値以上であるときに、土壌分散剤、セメント用減水剤、AE剤、クエン酸等の粘度調整剤を一種または複数種組み合わせて調整槽4D内の液に添加し、粘度調整を行うことができる。調整槽4D内には攪拌装置を設けるのが好ましい。土壌分散剤としては、ポリカルボン酸系のものを公的に用いることができ、セメント用減水剤としては通常の減水剤の他、AE減水剤、高性能AE減水剤(遅延型含む)も用いることができる。   The recycle liquid obtained by solid-liquid separation may be used as it is, but depending on the content of silt or clay, the viscosity becomes high and there is a risk of injecting the injection nozzle. Therefore, in such a case, it is preferable to adjust the viscosity by temporarily storing the reuse liquid in the adjustment tank 4D as illustrated. Specifically, when a viscosity measuring means 4E such as a B-type viscometer is provided in the adjustment tank 4D, it is determined whether or not the viscosity measured by the viscosity measuring means 4E is a predetermined value or more. Viscosity can be adjusted by adding one or a plurality of viscosity modifiers such as a soil dispersant, a cement water reducing agent, an AE agent, and citric acid to the liquid in the adjustment tank 4D. A stirring device is preferably provided in the adjustment tank 4D. As the soil dispersant, a polycarboxylic acid-based one can be used publicly, and as a water reducing agent for cement, an AE water reducing agent and a high performance AE water reducing agent (including a delay type) are used in addition to a normal water reducing agent. be able to.

具体的に、再利用液の利用に際して再利用液を1〜10MPaの低圧で地盤G内に噴射する場合には、Pロートフロー値が20秒未満となるように、また再利用液を20〜50MPaの高圧で地盤内に噴射する場合には、Pロートフロー値が15秒未満となるように、それぞれ粘度調整するのが好ましい。なおこの場合、粘度測定手段としてB型粘度計を用いる場合には、測定値をPロートフロー値に換算することで対応することができる。この換算のための相関グラフを図13に示した。なお、本発明におけるPロートフロー値(秒)とは、土木学会基準によるモルタルの流動性試験(Pロート法)に準じて測定される値を意味する。   Specifically, when the reuse liquid is injected into the ground G at a low pressure of 1 to 10 MPa when the reuse liquid is used, the reuse liquid is 20 to 20 so that the P funnel flow value is less than 20 seconds. When spraying into the ground at a high pressure of 50 MPa, it is preferable to adjust the viscosity so that the P funnel flow value is less than 15 seconds. In this case, when a B-type viscometer is used as the viscosity measuring means, it can be dealt with by converting the measured value into a P funnel flow value. The correlation graph for this conversion is shown in FIG. The P funnel flow value (seconds) in the present invention means a value measured according to a mortar fluidity test (P funnel method) according to the Japan Society of Civil Engineers standards.

本発明では、かくして得られた再利用液が、地盤改良に使用する水の一部若しくは全部としてそのまま若しくは他の材料と混合された後に、ノズル口径が1.0mm以上とされ、内面を形成する部分の引張強さが370N/mm2以上、耐力が305N/mm2以上かつロックウェル硬さが40以上とされたノズルを介して、1MPa以上の圧力で地盤内に圧送供給される。好適なノズル内径は3〜10mmである。機械構造用炭素鋼鋼管(STKM)でいうと、STKM13B以上(すなわち、13C、14A等)がこれに該当する。 In the present invention, the reused liquid thus obtained is used as part or all of the water used for ground improvement as it is or after being mixed with other materials, and then the nozzle diameter is set to 1.0 mm or more to form the inner surface. It is pumped and supplied into the ground at a pressure of 1 MPa or more through a nozzle having a tensile strength of 370 N / mm 2 or more, a proof stress of 305 N / mm 2 or more, and a Rockwell hardness of 40 or more. A suitable nozzle inner diameter is 3 to 10 mm. In the case of a carbon steel pipe for machine structure (STKM), STKM13B or higher (that is, 13C, 14A, etc.) corresponds to this.

以下、具体的な注入管例を示して説明する。図3は、注入管の先端に装着される噴射ノズルを有する部分、すなわち一般にモニターと称される部分の例を示しており、三重管により構成される三流路管とされている。モニター10は、基端部においては、中心部に削孔水WO及び改良液Mの流路11、中間に高圧水Wの流路12、外側に圧縮エアAの流路13の三つの流路を有する。この基端部の先端側には、内管部20、21、22及び先端体23が設けられている。また、注入管10は自穿孔型となっており、その先端部には、削孔ビット14が取り付けられている。この削孔ビット14には、削孔水W流路11を通して送られてきた削孔水WOを吐出させる吐出口が形成されている。   Hereinafter, a specific example of an injection tube will be described. FIG. 3 shows an example of a portion having an injection nozzle attached to the tip of the injection tube, that is, a portion generally called a monitor, and is a three-channel tube constituted by a triple tube. At the base end, the monitor 10 has three flow paths: a drilled water WO and a flow path 11 for improved liquid M at the center, a flow path 12 for high-pressure water W in the middle, and a flow path 13 for compressed air A on the outside. Have Inner tube portions 20, 21, 22 and a distal end body 23 are provided on the distal end side of the proximal end portion. Moreover, the injection tube 10 is a self-drilling type, and a drilling bit 14 is attached to the tip thereof. In the drill bit 14, a discharge port for discharging the drill water WO sent through the drill water W channel 11 is formed.

また、内管部20には、高圧水Wのみを噴射する高圧水噴射ノズル15,15が取り付けられ、高圧水流路12,12と連通されており、注入管10の上下方向に関して同じ位置に、かつ相反する位置に2ヶ所設けられている。高圧水Wの噴射方向は、いずれも水平方向になっている。図示例の水噴射ノズル15は、注入管に対する取付部を構成する外殻部材と、基端側に対して先端側の内径(ノズル口径)が縮径された内面構成部材とから構成とから構成されており、このような二重構造においては、内面構成部材の先端側の内径を1.0mm以上となし、また内面構成部材を引張強さが370N/mm2以上、耐力が305N/mm2以上かつロックウェル硬さが40以上の材料により形成することで、本発明のノズルとすることが可能である。 Moreover, high pressure water injection nozzles 15, 15 that inject only high pressure water W are attached to the inner pipe portion 20, and are communicated with the high pressure water flow paths 12, 12. At the same position in the vertical direction of the injection pipe 10, Two places are provided at opposite positions. The injection directions of the high-pressure water W are all horizontal. The water injection nozzle 15 in the illustrated example is composed of an outer shell member that constitutes an attachment portion for the injection pipe, and an inner surface constituent member having a reduced inner diameter (nozzle diameter) on the distal end side with respect to the proximal end side. In such a double structure, the inner diameter of the inner surface component member is 1.0 mm or more, and the inner surface member has a tensile strength of 370 N / mm 2 or more and a proof stress of 305 N / mm 2. By forming the material with a Rockwell hardness of 40 or more, the nozzle of the present invention can be obtained.

さらに、注入管10の高圧水噴射ノズル15,15の設けられた位置よりも下方には、二側方に改良液M及び圧縮エアAを高圧噴射する改良液噴射ノズル16,16が設けられている。この改良液噴射ノズル16は、図3中に拡大して示すように、改良液Mを噴射する核ノズル16Aと、この核ノズル16Aの周囲を包囲し圧縮エアAを噴射する包囲ノズル16Bとで構成されており、それぞれが、改良液流路11又は圧縮エア流路13と連通されている(なお、圧縮エア流路13と包囲ノズル16Bとの連通は、圧縮エア流路13と直交する連絡流路13Aを介して連通されている)。改良液噴射ノズル16は、注入管10の上下方向に関して異なる位置に、かつ相反する位置に2ヶ所設けられている。改良液M及び圧縮エアAの噴射方向は、上側の改良液噴射ノズル16は斜め下方向に、下側の改良液噴射ノズル16は水平方向になっている。本実施形態のように改良液に再利用液を使用する場合、核ノズル(改良液噴射ノズル)16Aの口径を1.0mm以上となし、また核ノズル16A全体を引張強さが370N/mm2以上、耐力が305N/mm2以上かつロックウェル硬さが40以上の材料により形成することで、本発明のノズルとすることが可能である。 Further, below the position of the injection pipe 10 where the high pressure water injection nozzles 15 and 15 are provided, the improvement liquid injection nozzles 16 and 16 for high pressure injection of the improvement liquid M and the compressed air A are provided on the two sides. Yes. As shown in an enlarged view in FIG. 3, the improved liquid injection nozzle 16 is composed of a core nozzle 16A for injecting the improved liquid M and an surrounding nozzle 16B that surrounds the periphery of the core nozzle 16A and injects compressed air A. Each of which is in communication with the improvement liquid flow path 11 or the compressed air flow path 13 (Note that the communication between the compressed air flow path 13 and the surrounding nozzle 16B is orthogonal to the compressed air flow path 13) It is communicated via the flow path 13A). The improved liquid jet nozzles 16 are provided at two different positions in the vertical direction of the injection tube 10 and at opposite positions. Regarding the injection direction of the improvement liquid M and the compressed air A, the upper improvement liquid injection nozzle 16 is obliquely downward, and the lower improvement liquid injection nozzle 16 is horizontal. When the reuse liquid is used as the improvement liquid as in this embodiment, the diameter of the core nozzle (improvement liquid injection nozzle) 16A is 1.0 mm or more, and the whole core nozzle 16A has a tensile strength of 370 N / mm 2. As described above, the nozzle of the present invention can be formed by forming the material with a proof stress of 305 N / mm 2 or more and a Rockwell hardness of 40 or more.

削孔水及び改良液流路11から削孔水Wを図示しない削孔水吐出孔に送り、又は改良液Mをセメントミルク噴射ノズル16に送るという流路方向の切り替えは、注入管10の先端に内蔵させた切替バルブ17によって行うようになっている。この切替バルブ17は、弁座17Aとこの弁座17Aに向かって投入されるボール17Bとによって構成される。削孔水Wの供給に際しては、ボール17Bを投入せず、削孔水WOを、弁座17Aを通る流路18を通して削孔水吐出孔に送る。改良液Mの供給に際しては、ボール17Bを投入することにより流路18を封止し、改良液Mをセメントミルク噴射ノズル16に送る。   The switching of the flow path direction in which the drilling water W is sent from the drilling water and improvement liquid channel 11 to a drilling water discharge hole (not shown) or the improvement liquid M is sent to the cement milk injection nozzle 16 is performed at the tip of the injection pipe 10. The switching valve 17 is built in. The switching valve 17 includes a valve seat 17A and a ball 17B thrown toward the valve seat 17A. When supplying the drilling water W, the balls 17B are not introduced, and the drilling water WO is sent to the drilling water discharge hole through the flow path 18 passing through the valve seat 17A. When supplying the improved liquid M, the flow path 18 is sealed by introducing the ball 17B, and the improved liquid M is sent to the cement milk injection nozzle 16.

かかる注入管10を用いて地盤Gを改良するにあたっては、図1に示すように、まず、ボーリングマシン等の削孔装置40を用い、注入管10先端の図示しない吐出孔から削孔水Wを吐出させながら地盤改良予定下限位置に、注入管10の先端部が到達するまで地盤を削孔し、注入管10を所定位置に配置する。そして、注入管10を軸回りに回転させながら引き上げるにあたり、水噴射ノズル15から高圧水のみを噴射し、これよりも下側位置に設けた改良液噴射ノズル16から改良液を圧縮エアを同伴させながら高圧噴射することによって、地盤G中に改良体が造成される。そして、かかる造成処理により排泥ピット41に排出された排泥は、前述のとおりポンプP3により回収され再利用液製造装置4に供給され、再利用されることになる。   In order to improve the ground G using the injection pipe 10, as shown in FIG. 1, first, the drilling water W is discharged from a discharge hole (not shown) at the tip of the injection pipe 10 using a drilling device 40 such as a boring machine. While discharging, the ground is drilled until the tip of the injection tube 10 reaches the ground improvement planned lower limit position, and the injection tube 10 is arranged at a predetermined position. Then, when pulling up the injection tube 10 while rotating around the axis, only high-pressure water is injected from the water injection nozzle 15, and the improved solution is accompanied by compressed air from the improved solution injection nozzle 16 provided at a position lower than this. However, an improved body is created in the ground G by high-pressure injection. And the waste mud discharged | emitted by the creation process to the waste mud pit 41 is collect | recovered by the pump P3 as above-mentioned, is supplied to the reuse liquid manufacturing apparatus 4, and will be reused.

なお、本発明の適用対象は、この注入管例に限られるものではなく、再利用液を地盤内に対して送出するものであれば、どのような工法の、どのようなノズルであっても適用可能であることはもちろんである。   The application target of the present invention is not limited to this injection pipe example, and any nozzle of any construction method can be used as long as the reuse liquid is sent out to the ground. Of course, it is applicable.

かくして、粒子の除去を極限まで追及するのではなく、4.5mm以下の粒子を5重量%以下(乾燥含有量)含むレベルに止めるとともに、再利用液の噴射ノズルの口径や強度、噴射圧力を特定範囲とすることにより、簡素・省スペースな設備であっても、ノズルの閉塞や損耗のおそれが低減され、確実に地盤への供給が可能となり、また除去効率を重視する必要がないため高効率での再利用液の製造が可能となるのである。   Thus, instead of pursuing the removal of particles to the utmost limit, the particle size of 4.5 mm or less is stopped at a level containing 5 wt% or less (dry content), and the diameter, strength, and injection pressure of the injection nozzle for the reuse liquid are controlled. By using a specific range, even with simple and space-saving equipment, the possibility of nozzle clogging and wear is reduced, and the supply to the ground can be made reliably, and there is no need to place importance on removal efficiency. This makes it possible to produce a reusable liquid with efficiency.

(その他)
(イ)本発明を応用できる地盤改良工法としては、例えば連続壁工法、機械撹拌工法及び高圧噴射工等を挙げることができる。本発明では、これらのいずれの工法による排泥も利用でき、またいずれの工法でも再利用可能である。また本発明では、ある施工箇所で回収した排泥を本発明により処理した後、他の施工箇所において再利用することもできる。したがって、例えばある種類の地盤改良工法で回収した排泥を本発明に従って再利用液とした後、他の種類の地盤改良工法で利用することもできる。
(Other)
(A) Examples of the ground improvement method to which the present invention can be applied include a continuous wall method, a mechanical stirring method, and a high-pressure jet method. In the present invention, waste mud by any of these methods can be used, and any method can be reused. Moreover, in this invention, after processing the sludge collect | recovered in a certain construction location by this invention, it can also be reused in another construction location. Therefore, for example, the waste mud collected by a certain kind of ground improvement method can be used as a reuse liquid according to the present invention and then used by another kind of ground improvement method.

(ロ)また、本発明の再利用液は、固化材等の他の材料との混合なくして、削孔や地盤改良予定部分の切削(若しくは弛緩)にのみ再利用することもできる。なお、本発明の再利用液は従来のものと比べると顕著に大粒径の粒子が含まれているため、これを地盤改良予定部分の切削に使用すると、僅かではあるが、切削能力が高まるという副次的な効果がある。 (B) Further, the reuse liquid of the present invention can be reused only for cutting (or relaxation) of a hole or a ground improvement scheduled portion without mixing with other materials such as a solidified material. In addition, since the reusable liquid of the present invention contains particles having a remarkably large particle size as compared with the conventional one, if this is used for cutting the ground improvement planned portion, the cutting ability is increased, although it is slight. There is a side effect.

(ハ)再利用液を固化材と混合して改良液を製造するタイプの地盤改良工法においては、再利用液のセメント含有量を測定するセメント定量測定装置を、例えば再利用液製造装置4から改良液製造装置3までの間、さらに具体的には図2における調整槽4D等に設けておき、その測定結果に基づき、改良液製造装置3において予め設定された設計値に対する不足分のセメントを再利用液に供給するように構成するのも好ましい。なお、図2における符号4Fはセメント定量測定装置を示している。セメント定量測定装置4Fとしては、Caイオンの定量を基本とするタイプのものを用いることができる。 (C) In a ground improvement method in which a recycle liquid is mixed with a solidifying material to produce an improvement liquid, a cement quantitative measurement device that measures the cement content of the recycle liquid is used, for example, from the recycle liquid production apparatus 4 Until the improvement liquid production apparatus 3, more specifically, it is provided in the adjustment tank 4D in FIG. 2 and the like, and based on the measurement result, the insufficient cement with respect to the design value set in advance in the improvement liquid production apparatus 3 is provided. It is also preferable to be configured to supply to the reuse liquid. In addition, the code | symbol 4F in FIG. 2 has shown the cement quantitative measurement apparatus. As the cement quantitative measurement device 4F, a type based on the quantitative determination of Ca ions can be used.

(ニ)本発明では、少なくともノズル部分が特定の口径および強度を有していれば、そこまでの圧送管路の構成には限定されないが、好適には、圧送管路においても、エルボ管のように屈曲した部分や、湾曲した部分、ノズル以外の縮径部分(管内径が縮小する部分)のように、閉塞や磨耗のおそれがある部分についても、本発明のノズルと同様の特定の内径、強度を有するものとするのが好ましい。もちろん、圧送管路の全体を本発明のノズルと同様の特定の内径、強度を有するものとすることができる。 (D) In the present invention, as long as at least the nozzle portion has a specific diameter and strength, the configuration of the pressure feed line up to that point is not limited. The specific inner diameter similar to that of the nozzle of the present invention is also applied to a portion that may be clogged or worn, such as a bent portion, a curved portion, or a reduced diameter portion other than the nozzle (a portion where the inner diameter of the tube is reduced). It is preferable to have strength. Of course, the entire pressure feed line can have a specific inner diameter and strength similar to those of the nozzle of the present invention.

図4は、屈曲部分や縮径部分を有するモニターの例を示している。このモニター50は、先端部外周面に形成された流体噴射ノズル53と、モニター内にあって噴射ノズル53に流体を供給する供給管路とを備えている。噴射ノズル53は先細状に形成された流路を有する。特徴的には、モニター50外面をなす外管52a内に、基端側から長手方向に沿って噴射ノズル53近傍まで基端側内管52bが延在されており、この基端側内管52bの先端に圧力溜り部54をなす円筒状タンク部が外管52a長手方向に沿って接続され、この溜り部54の先端と噴射ノズル53とが外管長手方向と直交する方向に延在する先端側内管52cを介して接続されている。つまり、圧力溜り部54に対して基端側内管52bが上流側部分をなし、先端側内管2cが下流側部分をなす。   FIG. 4 shows an example of a monitor having a bent portion and a reduced diameter portion. The monitor 50 includes a fluid ejection nozzle 53 formed on the outer peripheral surface of the distal end portion, and a supply pipe that is in the monitor and supplies fluid to the ejection nozzle 53. The injection nozzle 53 has a flow path formed in a tapered shape. Characteristically, a base end side inner tube 52b extends from the base end side to the vicinity of the injection nozzle 53 in the outer tube 52a forming the outer surface of the monitor 50, and this base end side inner tube 52b. The cylindrical tank part which makes the pressure reservoir part 54 is connected to the front-end | tip of the outer pipe 52a along the longitudinal direction, and the front-end | tip of this reservoir part 54 and the injection nozzle 53 extend in the direction orthogonal to the outer pipe | tube longitudinal direction. It is connected via the side inner pipe 52c. That is, the proximal inner pipe 52b forms an upstream portion with respect to the pressure reservoir 54, and the distal inner pipe 2c forms a downstream portion.

圧力溜り部4は、図示例でいうと、基端側および先端側内管2b,2cと比べて流体の流通方向と直交する横断面の面積Sが大きいものであって、流体の一時的貯留によって整流作用を発揮するとともに噴射ノズル3側への供給圧の安定化作用を発揮するものである。したがって、ここにいう圧力溜り部4は単に管路2が屈曲しているだけの部分を含まない。圧力溜り部4は、例えば、圧力溜り部4における流体流通方向(外管長手方向)と直交する横断面の面積をSとし、圧力溜り部4の流体流通方向の長さをLとし、基端側内管2bにおける流体流通方向(外管長手方向)と直交する横断面の面積をS1とし、先端側内管2cにおける流体の流通方向と直交する横断面の面積をS2としたとき、
S > S1 > S2
の関係を満足するように、モニター1の直径に応じてS,S1およびS2をそれぞれ決定することで形成することができる。
In the illustrated example, the pressure reservoir 4 has a larger cross-sectional area S perpendicular to the fluid flow direction than the proximal and distal inner pipes 2b and 2c, and temporarily stores the fluid. As well as exerting a rectifying action, the action of stabilizing the supply pressure to the injection nozzle 3 side is exhibited. Therefore, the pressure reservoir 4 here does not include a portion where the pipe 2 is simply bent. For example, the pressure reservoir 4 has an area of a cross section perpendicular to the fluid flow direction (the outer pipe longitudinal direction) in the pressure reservoir 4 as S, and the length of the pressure reservoir 4 in the fluid flow direction as L. When the area of the cross section perpendicular to the fluid flow direction (outer pipe longitudinal direction) in the side inner pipe 2b is S1, and the area of the cross section perpendicular to the flow direction of the fluid in the tip side inner pipe 2c is S2,
S>S1> S2
It can be formed by determining S, S1 and S2 according to the diameter of the monitor 1 so as to satisfy the relationship.

かくして、流体の噴射に際しては、図示しないポンプから基端側内管52bを通じて供給された水等の流体は、圧力溜り部54で一時的に貯留され、整流および圧力安定化が図られた後に、先端側内管52cを通り噴射ノズル53から噴射される。その結果、圧力溜り部4を設けない場合と比べて約1.5倍以上の噴射力の増強が図られる。   Thus, when injecting the fluid, the fluid such as water supplied from the pump (not shown) through the proximal end side inner pipe 52b is temporarily stored in the pressure reservoir 54, and after rectification and pressure stabilization are achieved, It is injected from the injection nozzle 53 through the distal end side inner pipe 52c. As a result, the injection force can be increased by about 1.5 times or more compared with the case where the pressure reservoir 4 is not provided.

特に好適には、図示のように、圧力溜り部54における噴射ノズル53から遠い側の先端部に先端側内管52cへの流出口を形成し、先端側内管52cを、流出口部位から直角に屈曲した後、モニター50の横断方向に直線状に延在して噴射ノズル53に至るように形成する。また噴射ノズル53は、先端側内管52cの直線状部分に同軸的に連通接続された直線状の内部管路をもって挿入軸外に至るように形成する。これにより、圧力溜り部54から噴射ノズル53までの流路部分において噴射ノズル53側に直線状部分を最大限確保することができるようになり、圧力溜り部54から送り出される流体が最大限まで勢いづき、著しく噴射力を増強できる。つまりこの部分は増勢部分となる。ただし、この直線状増勢部分の長さがある一定のレベル、例えば後述する好適な寸法例に示される約80mmを超えると噴射力増強効果は飽和する。これは、圧力溜り部54が噴射ノズル53から遠くなりすぎ、その整流作用および安定化作用の効能が先端側内管52cの長さにより低減され、十分に発揮されなくなるためと考えられる。したがって、先端側内管52cを曲管として管路長を単にかせげば良いというものではない。   Particularly preferably, as shown in the figure, an outlet to the tip side inner pipe 52c is formed at the tip of the pressure reservoir 54 far from the injection nozzle 53, and the tip side inner pipe 52c is perpendicular to the outlet part. After being bent, the linearly extending in the transverse direction of the monitor 50 is formed so as to reach the injection nozzle 53. Further, the injection nozzle 53 is formed so as to reach the outside of the insertion axis with a linear internal pipe line coaxially connected to the linear part of the distal end side inner pipe 52c. As a result, it is possible to secure the maximum linear portion on the side of the injection nozzle 53 in the flow path portion from the pressure reservoir 54 to the injection nozzle 53, and the fluid delivered from the pressure reservoir 54 is maximally vigorous. Therefore, the injection power can be remarkably increased. In other words, this part becomes an increasing part. However, when the length of the linear energizing portion exceeds a certain level, for example, about 80 mm shown in a preferred dimension example described later, the injection force enhancing effect is saturated. This is presumably because the pressure reservoir 54 is too far from the injection nozzle 53, and the effectiveness of the rectifying and stabilizing action is reduced by the length of the distal end side inner pipe 52c and cannot be fully exhibited. Therefore, the length of the pipe line is not simply increased by using the distal side inner pipe 52c as a curved pipe.

さらに上記先端側内管52cおよびノズルの形状に加えて、次の各寸法条件を満足することにより従来と比べて約4倍以上の噴射力増強を図ることができる。
圧力溜り部54における基端側内管52bからの流入口および基端側内管52bの管路径d1:15〜35mm
圧力溜り部54の管路径φ2:50〜85mm
圧力溜り部54の管路長さL:20〜85mm
圧力溜り部54における先端側内管52cへの流出口および先端側内管の管路径d2:12〜28mm(かつ≦0.8×d1)
先端側内管52cにおける直線状部分の管路長と噴射ノズル内の管路長との和x:50〜80mm
噴射ノズル53の口径d3:1〜6mm
Further, in addition to the shape of the distal end side inner tube 52c and the nozzle, the injection force can be increased by about four times or more compared with the conventional case by satisfying the following dimensional conditions.
The inlet from the proximal end inner pipe 52b in the pressure reservoir 54 and the pipe diameter d1: 15 to 35 mm of the proximal end inner pipe 52b.
Pipe diameter φ2 of the pressure reservoir 54: 50 to 85 mm
Pipe length L of the pressure reservoir 54: 20 to 85 mm
Outflow port to the tip side inner pipe 52c in the pressure reservoir 54 and the pipe diameter d2 of the tip side inner pipe: 12 to 28 mm (and ≦ 0.8 × d1)
Sum x of the pipe length of the straight portion in the front end side inner pipe 52c and the pipe length in the injection nozzle: 50 to 80 mm
The diameter d3 of the injection nozzle 53: 1 to 6 mm

ちなみに、この寸法例で想定しているモニターは、内径φ1が110mm程度のものである。したがって、この範囲外のモニターに対しては、そのモニターの内径に応じて適宜スケールダウンまたはスケールアップした寸法を好適に適用することができる。すなわち、上記寸法例をモニター内径1mmあたりの数値(mm/φ1(mm))で表すと次のようになり、モニターの内径にこれらの係数を乗ずれば各寸法値を得ることができる。
d1=0.14〜0.32
φ2=0.45〜0.77
L=0.18〜0.77
d2=0.11〜0.25(かつ≦0.8×d1)
x=0.45〜0.73
d3=0.01〜0.05
さて、かくして構成されるモニターにおいては、圧力溜り部における先端側内管52cへの流出口がノズル53同様の縮径部であり、また先端側内管52cは屈曲部を有するものであり、これらの部分は他の部分と比べて閉塞や磨耗のおそれが高くなる。したがって、このような場合、ノズル53のみならず、縮径部や屈曲部についても、本発明の特定の強度および内径を有するように構成するのが望ましい。
Incidentally, the monitor assumed in this dimension example has an inner diameter φ1 of about 110 mm. Therefore, for a monitor outside this range, a dimension appropriately scaled down or scaled up according to the inner diameter of the monitor can be suitably applied. That is, the above dimension example is expressed as a numerical value (mm / φ1 (mm)) per 1 mm of the monitor inner diameter, and each dimension value can be obtained by multiplying the monitor inner diameter by these coefficients.
d1 = 0.14 to 0.32
φ2 = 0.45-0.77
L = 0.18-0.77
d2 = 0.11 to 0.25 (and ≦ 0.8 × d1)
x = 0.45-0.73
d3 = 0.01-0.05
In the monitor constructed in this way, the outlet to the tip side inner tube 52c in the pressure reservoir is a reduced diameter portion similar to the nozzle 53, and the tip side inner tube 52c has a bent portion. This part is more likely to be clogged or worn than other parts. Therefore, in such a case, it is desirable that not only the nozzle 53 but also the reduced diameter portion and the bent portion have the specific strength and inner diameter of the present invention.

STKM13Bの機械構造用炭素鋼鋼管で形成したノズルを、口径別でφ4.5mm、φ3.1mmの二種類用意するとともに、4.5mm以下の砂分を0重量%、2重量%、4重量%および6重量%(全て乾燥含有量)含む四種類の試験水を用意し、吐出圧力を30MPaに管理する条件の下で噴射試験を行い、吐出圧力と砂分混入量との関係を調べた。なお、試験水のPロートフロート値は全て10秒未満であった。試験結果を図5および図6に示した。本結果から、再利用液における残留粒子の含有量が5重量%以下のものでは、安定した吐出が可能になっており、一方6重量%のものは噴射開始から約15分でノズルが閉塞した。   Two types of nozzles made of STKM13B carbon steel pipes for mechanical structures are available, with diameters of φ4.5 mm and φ3.1 mm, and sand content of 4.5 mm or less is 0% by weight, 2% by weight, 4% by weight And 4 types of test water containing 6% by weight (all dry contents) were prepared, and an injection test was conducted under the condition of controlling the discharge pressure to 30 MPa, and the relationship between the discharge pressure and the amount of sand content was examined. The P funnel float values of the test water were all less than 10 seconds. The test results are shown in FIGS. From this result, when the content of residual particles in the recycle liquid is 5% by weight or less, stable discharge is possible, while in the case of 6% by weight, the nozzle is blocked in about 15 minutes from the start of injection. .

ノズルを、材質別でSTKM−13A、B、Cの三種類、口径別でφ4.5mm、φ3.1mmの二種類、計6種類用意するとともに、4.5mm以下の砂分を5重量%(乾燥含有量)含み、Pロートフロート値が10秒未満の試験水を用意し、吐出圧力を30MPaに管理する条件の下で噴射試験を行い、ノズルの材質と損傷時間との関係を調べた。試験結果を図7および図8に示した。本結果から、STKM−13B以上のノズルであれば従来と同程度の耐久性が確保できることが判明した。   There are 6 types of nozzles, STKM-13A, B, and C, 2 types, φ4.5mm and φ3.1mm, and 5% by weight of sand less than 4.5mm. Test water with a P funnel float value of less than 10 seconds was prepared, and an injection test was conducted under the condition of controlling the discharge pressure to 30 MPa, and the relationship between the nozzle material and the damage time was examined. The test results are shown in FIG. 7 and FIG. From this result, it was found that the same level of durability as that of the conventional nozzle can be secured if the nozzle is STKM-13B or higher.

STKM13Bの機械構造用炭素鋼鋼管で形成したノズルを、口径別でφ4.5mm、φ3.1mmの二種類用意するとともに、4.5mm以下の砂分を5重量%(乾燥含有量)含む試験水を、Pロートフロート値8秒、10秒、15秒、20秒の四種類用意し、吐出圧力を3MPaに管理する条件の下で噴射試験を行い、吐出圧力と粘性(Pロートフロート値)との関係を調べた。試験結果を図9および図10に示した。本結果から、低圧噴射を行う場合にPロートフロート値を20秒未満とすることにより、ノズルの閉塞を防止できることが判明した。   Two types of nozzles made of STKM13B mechanical structure carbon steel pipes, φ4.5 mm and φ3.1 mm, are prepared according to the diameter, and test water containing 5% by weight (dry content) of sand less than 4.5 mm 4 types of P funnel float values of 8 seconds, 10 seconds, 15 seconds, and 20 seconds are prepared, and an injection test is performed under the condition that the discharge pressure is controlled to 3 MPa, and the discharge pressure and viscosity (P funnel float value) I investigated the relationship. The test results are shown in FIG. 9 and FIG. From this result, it was found that the nozzle clogging can be prevented by setting the P funnel float value to less than 20 seconds when performing low pressure injection.

STKM13Bの機械構造用炭素鋼鋼管で形成したノズルを、口径別でφ4.5mm、φ3.1mmの二種類用意するとともに、4.5mm以下の砂分を5重量%(乾燥含有量)含む試験水を、Pロートフロート値8秒、10秒、15秒の三種類用意し、吐出圧力を30MPaに管理する条件の下で噴射試験を行い、吐出圧力と粘性(Pロートフロート値)との関係を調べた。試験結果を図11および図12に示した。本結果から、高圧噴射を行う場合にPロートフロート値を15秒未満とすることにより、ノズルの閉塞を防止できることが判明した。   Two types of nozzles made of STKM13B mechanical structure carbon steel pipes, φ4.5 mm and φ3.1 mm, are prepared according to the diameter, and test water containing 5% by weight (dry content) of sand less than 4.5 mm Are prepared in three types with a P funnel float value of 8 seconds, 10 seconds, and 15 seconds, and an injection test is conducted under the condition that the discharge pressure is controlled to 30 MPa, and the relationship between the discharge pressure and viscosity (P funnel float value) Examined. The test results are shown in FIG. 11 and FIG. From this result, it was found that when the high pressure injection is performed, the nozzle clogging can be prevented by setting the P funnel float value to less than 15 seconds.

例えば連続壁工法、機械撹拌工法及び高圧噴射工法等の各種の地盤改良工事において排出される排泥を、簡素な設備で再利用できる。   For example, waste mud discharged in various ground improvement works such as a continuous wall method, a mechanical stirring method, and a high-pressure injection method can be reused with simple equipment.

本発明を適用した地盤改良設備例を示したブロック図である。It is a block diagram showing an example of ground improvement equipment to which the present invention is applied. 再利用液製造装置例のブロック図である。It is a block diagram of the example of a reuse liquid manufacturing apparatus. モニター例の縦断面図である。It is a longitudinal cross-sectional view of a monitor example. 別のモニター例の概要図である。It is a schematic diagram of another example of a monitor. 実施例1の試験結果を表したグラフである。2 is a graph showing test results of Example 1. FIG. 実施例1の試験結果を表したグラフである。2 is a graph showing test results of Example 1. FIG. 実施例2の試験結果を表したグラフである。6 is a graph showing the test results of Example 2. 実施例2の試験結果を表したグラフである。6 is a graph showing the test results of Example 2. 実施例3の試験結果を表したグラフである。6 is a graph showing the test results of Example 3. 実施例3の試験結果を表したグラフである。6 is a graph showing the test results of Example 3. 実施例4の試験結果を表したグラフである。6 is a graph showing the test results of Example 4. 実施例4の試験結果を表したグラフである。6 is a graph showing the test results of Example 4. B型粘度とPロートフロー値との相関を示すグラフである。It is a graph which shows the correlation with a B-type viscosity and a P funnel flow value.

符号の説明Explanation of symbols

1…水貯留槽、2…固化材貯留サイロ、3…改良液製造装置、4…再利用液製造装置、10…注入管。   DESCRIPTION OF SYMBOLS 1 ... Water storage tank, 2 ... Solidification material storage silo, 3 ... Improvement liquid manufacturing apparatus, 4 ... Reuse liquid manufacturing apparatus, 10 ... Injection pipe.

Claims (6)

地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とした再利用液を得る再利用液製造ステップと、
前記再利用液を、地盤改良に使用する水の一部若しくは全部としてそのまま若しくは他の材料と混合した後に、ノズル口径が1.0mm以上とされ、内面を形成する部分の引張強さが370N/mm2以上、耐力が305N/mm2以上かつロックウェル硬さが40以上とされたノズルから地盤内に対して1MPa以上の圧力で噴射する噴射ステップとを含む、
ことを特徴とする地盤改良工法における排泥の再利用方法。
A reuse liquid manufacturing step for obtaining a reuse liquid by removing particles having a particle size of more than 4.5 mm from the mud discharged by the ground improvement work, and having a dry content of residual particles of 5% by weight or less;
After reusing the reused liquid as part or all of the water used for ground improvement or after mixing with other materials, the nozzle diameter is 1.0 mm or more, and the tensile strength of the part forming the inner surface is 370 N / an injection step of injecting at a pressure of 1 MPa or more into the ground from a nozzle having a mm 2 or more, a proof stress of 305 N / mm 2 or more and a Rockwell hardness of 40 or more,
Reuse method of waste mud in ground improvement method characterized by this.
前記再利用液製造ステップにて、地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とした後、粘度調整を行いPロートフロー値が20秒未満の粘性を有する再利用液を得るとともに、
前記噴射ステップにて、前記再利用液を1〜10MPaの低圧噴射により地盤内に圧送供給するようにする、請求項1記載の地盤改良工法における排泥の再利用方法。
In the reuse liquid production step, after removing particles with a particle size of more than 4.5 mm from the waste mud discharged by the ground improvement work and setting the dry content of residual particles to 5% by weight or less, the viscosity is adjusted. To obtain a recycle liquid having a viscosity with a P funnel flow value of less than 20 seconds,
The method for recycling waste mud in the ground improvement method according to claim 1, wherein, in the spraying step, the reused liquid is pumped and supplied into the ground by low-pressure jetting of 1 to 10 MPa.
前記再利用液製造ステップにて、地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とした後、粘度調整を行いPロートフロー値が15秒未満の粘性を有する再利用液を得るとともに、
前記噴射ステップにて、前記再利用液を20〜50MPaの高圧噴射により地盤内に圧送供給するようにする、請求項1記載の地盤改良工法における排泥の再利用方法。
In the reuse liquid production step, after removing particles with a particle size of more than 4.5 mm from the waste mud discharged by the ground improvement work and setting the dry content of residual particles to 5% by weight or less, the viscosity is adjusted. To obtain a recycle liquid having a viscosity of P funnel flow value of less than 15 seconds,
The method for recycling waste mud in the ground improvement method according to claim 1, wherein, in the spraying step, the reuse liquid is pumped and supplied into the ground by high-pressure spray of 20 to 50 MPa.
前記粘度調整を、土壌分散剤、セメント用減水剤、AE剤およびクエン酸の少なくとも一種を添加することにより行う、請求項2または3記載の地盤改良工法における排泥の再利用方法。 The method for recycling waste mud in the ground improvement method according to claim 2 or 3, wherein the viscosity adjustment is performed by adding at least one of a soil dispersant, a water reducing agent for cement, an AE agent, and citric acid. 地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とした再利用液を得る再利用液製造手段と、
前記再利用液を、地盤改良に使用する水の一部若しくは全部としてそのまま若しくは他の材料と混合した後に、ノズル口径が1.0mm以上とされ、内面を形成する部分の引張強さが370N/mm2以上、耐力が305N/mm2以上かつロックウェル硬さが40以上とされたノズルから地盤内に対して1MPa以上の圧力で噴射する噴射手段とを備えた、
ことを特徴とする地盤改良工法における排泥の再利用設備。
Reusable liquid production means for removing particles having a particle size of more than 4.5 mm from the waste mud discharged by ground improvement work and obtaining a recycle liquid having a dry content of residual particles of 5% by weight or less;
After reusing the reused liquid as part or all of the water used for ground improvement or after mixing with other materials, the nozzle diameter is 1.0 mm or more, and the tensile strength of the part forming the inner surface is 370 N / Injecting means for injecting at a pressure of 1 MPa or more into the ground from a nozzle having a mm 2 or more, a proof stress of 305 N / mm 2 or more and a Rockwell hardness of 40 or more,
Wastewater reuse equipment in the ground improvement method characterized by this.
前記再利用液製造手段は、地盤改良工事により排出される排泥から粒径4.5mm超の粒子を除去し、かつ残留粒子の乾燥含有量を5重量%以下とする固液分離手段と、固液分離手段により処理した液の粘度測定を行う粘度測定手段と、粘度測定手段による測定粘度が所定値以上であるか否かを判定し、所定値以上であるときに粘度調整剤を前記固液分離手段により処理した液に添加し、粘度調整した再利用液を得る粘度調整手段とを備えたものである、請求項5記載の地盤改良工法における排泥の再利用設備。 The recycle liquid production means is a solid-liquid separation means for removing particles with a particle size of more than 4.5 mm from the waste mud discharged by ground improvement work, and making the dry content of residual particles 5% by weight or less, A viscosity measuring means for measuring the viscosity of the liquid treated by the solid-liquid separation means, and determining whether or not the measured viscosity by the viscosity measuring means is a predetermined value or more. The facility for reusing waste mud in the ground improvement method according to claim 5, further comprising a viscosity adjusting unit that is added to the liquid processed by the liquid separating unit to obtain a recycled liquid whose viscosity is adjusted.
JP2003287608A 2003-08-06 2003-08-06 Waste mud recycling method and equipment for ground improvement method Expired - Fee Related JP4488403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287608A JP4488403B2 (en) 2003-08-06 2003-08-06 Waste mud recycling method and equipment for ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287608A JP4488403B2 (en) 2003-08-06 2003-08-06 Waste mud recycling method and equipment for ground improvement method

Publications (3)

Publication Number Publication Date
JP2005054492A true JP2005054492A (en) 2005-03-03
JP2005054492A5 JP2005054492A5 (en) 2006-08-17
JP4488403B2 JP4488403B2 (en) 2010-06-23

Family

ID=34366545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287608A Expired - Fee Related JP4488403B2 (en) 2003-08-06 2003-08-06 Waste mud recycling method and equipment for ground improvement method

Country Status (1)

Country Link
JP (1) JP4488403B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132073A (en) * 2005-11-10 2007-05-31 Onoda Chemico Co Ltd High pressure injection agitating device
JP2014152515A (en) * 2013-02-08 2014-08-25 Chemical Grouting Co Ltd Ground improvement method and system
EP3822415A1 (en) * 2019-11-14 2021-05-19 Keller Holding GmbH Measuring assembly for a return cement suspension, construction site assembly comprising a measuring structure and method and use

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862212A (en) * 1982-04-05 1983-04-13 Nippon Sogo Bosui Kk Grout injector
JPS646408A (en) * 1987-06-29 1989-01-11 Furonto Eng Kk Measuring and recording of injection amount in superhigh pressure jet work
JPH0387411A (en) * 1989-08-30 1991-04-12 Kajima Corp Reclamation method for slurry in ground improvement works
JPH0452327A (en) * 1990-06-19 1992-02-20 Sumitomo Cement Co Ltd Stabilized soil and construction method using this soil
JPH06108455A (en) * 1992-09-24 1994-04-19 Nissan Chem Ind Ltd Soft ground reinforcing method
JPH08239255A (en) * 1995-03-02 1996-09-17 Nippon Zeon Co Ltd Bleeding reducer for cement-based grouting material
JPH08333741A (en) * 1995-06-06 1996-12-17 Kyowa Kaihatsu Kk Soil improving method by high pressure injection stirring process and device thereof
JPH0925626A (en) * 1995-07-11 1997-01-28 Chem Grouting Co Ltd Injection device
JPH10237859A (en) * 1997-02-28 1998-09-08 Toko Kensetsu Kk Construction method for soil improvement and device therefor
JPH116142A (en) * 1997-06-17 1999-01-12 Yuji Kaneko Soil improvement method
JPH1150443A (en) * 1997-08-04 1999-02-23 Chem Grouting Co Ltd Underground consolidated body construction device and construction method thereof
JPH1161799A (en) * 1997-08-08 1999-03-05 Kazuo Iki High pressure jet agitation pile method by two or more jet nozzles
JPH11152741A (en) * 1997-11-20 1999-06-08 Kajima Corp Method and device for reutilizing discharged muddy water
JPH11319822A (en) * 1998-05-11 1999-11-24 Sato Kogyo Co Ltd Muddy water treating apparatus and muddy water treatment using the same
JP2993924B2 (en) * 1997-12-26 1999-12-27 日産建設株式会社 Ground improvement method by high pressure jet stirring and monitor used in the method
JP2000017649A (en) * 1998-06-30 2000-01-18 Nit Co Ltd Soil improvement method
JP2000154528A (en) * 1998-11-20 2000-06-06 Nit Co Ltd Injection water circulating flow type hardening material pouring construction method and device therefor
JP2001172960A (en) * 1999-12-16 2001-06-26 Shohei Senda Ground improving or reinforcing method
JP2001295260A (en) * 2000-04-13 2001-10-26 Newtech Kenkyusha:Kk Construction method for mixing cylindrical hardening material

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862212A (en) * 1982-04-05 1983-04-13 Nippon Sogo Bosui Kk Grout injector
JPS646408A (en) * 1987-06-29 1989-01-11 Furonto Eng Kk Measuring and recording of injection amount in superhigh pressure jet work
JPH0387411A (en) * 1989-08-30 1991-04-12 Kajima Corp Reclamation method for slurry in ground improvement works
JPH0452327A (en) * 1990-06-19 1992-02-20 Sumitomo Cement Co Ltd Stabilized soil and construction method using this soil
JPH06108455A (en) * 1992-09-24 1994-04-19 Nissan Chem Ind Ltd Soft ground reinforcing method
JPH08239255A (en) * 1995-03-02 1996-09-17 Nippon Zeon Co Ltd Bleeding reducer for cement-based grouting material
JPH08333741A (en) * 1995-06-06 1996-12-17 Kyowa Kaihatsu Kk Soil improving method by high pressure injection stirring process and device thereof
JPH0925626A (en) * 1995-07-11 1997-01-28 Chem Grouting Co Ltd Injection device
JPH10237859A (en) * 1997-02-28 1998-09-08 Toko Kensetsu Kk Construction method for soil improvement and device therefor
JPH116142A (en) * 1997-06-17 1999-01-12 Yuji Kaneko Soil improvement method
JPH1150443A (en) * 1997-08-04 1999-02-23 Chem Grouting Co Ltd Underground consolidated body construction device and construction method thereof
JPH1161799A (en) * 1997-08-08 1999-03-05 Kazuo Iki High pressure jet agitation pile method by two or more jet nozzles
JPH11152741A (en) * 1997-11-20 1999-06-08 Kajima Corp Method and device for reutilizing discharged muddy water
JP2993924B2 (en) * 1997-12-26 1999-12-27 日産建設株式会社 Ground improvement method by high pressure jet stirring and monitor used in the method
JPH11319822A (en) * 1998-05-11 1999-11-24 Sato Kogyo Co Ltd Muddy water treating apparatus and muddy water treatment using the same
JP2000017649A (en) * 1998-06-30 2000-01-18 Nit Co Ltd Soil improvement method
JP2000154528A (en) * 1998-11-20 2000-06-06 Nit Co Ltd Injection water circulating flow type hardening material pouring construction method and device therefor
JP2001172960A (en) * 1999-12-16 2001-06-26 Shohei Senda Ground improving or reinforcing method
JP2001295260A (en) * 2000-04-13 2001-10-26 Newtech Kenkyusha:Kk Construction method for mixing cylindrical hardening material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132073A (en) * 2005-11-10 2007-05-31 Onoda Chemico Co Ltd High pressure injection agitating device
JP2014152515A (en) * 2013-02-08 2014-08-25 Chemical Grouting Co Ltd Ground improvement method and system
EP3822415A1 (en) * 2019-11-14 2021-05-19 Keller Holding GmbH Measuring assembly for a return cement suspension, construction site assembly comprising a measuring structure and method and use
US20210148883A1 (en) * 2019-11-14 2021-05-20 Keller Holding Gmbh Measurement set-up for a return cement suspension, construction site arrangement having a measurement set-up as well as method and use
US11774438B2 (en) 2019-11-14 2023-10-03 Keller Holding Gmbh Measurement set-up for a return cement suspension, construction site arrangement having a measurement set-up as well as method and use

Also Published As

Publication number Publication date
JP4488403B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
WO2006051865A1 (en) Jetting and agitating construction method and jetting and agitating device
JP4488403B2 (en) Waste mud recycling method and equipment for ground improvement method
JP3264887B2 (en) High-pressure injection mixing ground improvement method
JP2005054492A5 (en)
JP5191040B2 (en) Pile head surplus concrete processing equipment
JP2011226161A (en) Soil improving device and soil improving method
JP6023040B2 (en) Mouth pipe for high-pressure jet stirring method and high-pressure jet stirring method
JP2004257236A (en) Method and device for making foundation
JP6304730B1 (en) Mud discharge promotion device and ground improvement method
JP4790829B2 (en) Self-cutting hole monitor and high-pressure jet stirring method
JP2003286717A (en) High-pressure injection grouting soil-improvement method
JP2001303542A (en) Device for mixing process construction method high- pressure jet injection
JP3317902B2 (en) High pressure injection ground improvement method
JP2004049938A (en) Sludge treatment apparatus and method
JP2012036658A (en) Defoaming method and defoaming device
JP2003027899A (en) Method for eliminating dust and dust collector for use in the same
JP3242873B2 (en) Sludge recycling method and apparatus
JP4592016B2 (en) Powder body injection method
JP4895828B2 (en) Liquefaction prevention method
JPH11100837A (en) Ground improving body construction method and device therefor
JPH02101284A (en) Drilling method and device therefor
JP2004027796A (en) Self-drilling injection device for use in high-pressure injection/agitation pile construction method
JP6566157B2 (en) How to wash wells
JP6005455B2 (en) Method for constructing improved soil mixed with fiber and construction tube used therefor
JP2005161148A (en) Work and apparatus for cleaning contaminated soil

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100326

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees