JP4790829B2 - Self-cutting hole monitor and high-pressure jet stirring method - Google Patents

Self-cutting hole monitor and high-pressure jet stirring method Download PDF

Info

Publication number
JP4790829B2
JP4790829B2 JP2009130486A JP2009130486A JP4790829B2 JP 4790829 B2 JP4790829 B2 JP 4790829B2 JP 2009130486 A JP2009130486 A JP 2009130486A JP 2009130486 A JP2009130486 A JP 2009130486A JP 4790829 B2 JP4790829 B2 JP 4790829B2
Authority
JP
Japan
Prior art keywords
material liquid
nozzle
liquid
drilling
monitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009130486A
Other languages
Japanese (ja)
Other versions
JP2010275797A (en
Inventor
茂 所崎
亮之祐 小泉
康晴 中西
文男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hara Kougyou Co Ltd
Original Assignee
Hara Kougyou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hara Kougyou Co Ltd filed Critical Hara Kougyou Co Ltd
Priority to JP2009130486A priority Critical patent/JP4790829B2/en
Priority to TW99116664A priority patent/TWI404850B/en
Publication of JP2010275797A publication Critical patent/JP2010275797A/en
Application granted granted Critical
Publication of JP4790829B2 publication Critical patent/JP4790829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高圧噴射撹拌工法(ジェットグラウト工法)および本工法に用いられる自削孔モニターに関し、主に削孔時に固化材液噴射ノズルから削孔水が無駄に放出されるのを無くして、削孔能率の向上と削孔水のロスを低減することができる。   The present invention relates to a high-pressure jet agitation method (jet grouting method) and a self-cutting hole monitor used in the main method, mainly eliminating the wasteful discharge of drilling water from the solidified material liquid injection nozzle during drilling, It is possible to improve the drilling efficiency and reduce the loss of drilling water.

高圧噴射撹拌による地盤改良工法として、例えば、図3に図示するように、注入管ロッド1の先端から削孔水を噴射して地盤を切削しながら計画深度まで削孔した後、注入管ロッド1の先端から固化材液を噴射し、かつ注入管ロッド1をその軸周りに回転させながら徐々に引き上げて注入管ロッド1の周囲に切削土と固化材液とからなる柱状の地盤改良体Aを造成する方法が知られている。   As shown in FIG. 3, for example, as shown in FIG. 3, the ground improvement method by high-pressure jet agitation is used to inject the drilling water from the tip of the injection tube rod 1 and drill the ground to the planned depth while cutting the ground, and then the injection tube rod 1. A columnar ground improvement body A made of cutting soil and solidifying material liquid is formed around the injection tube rod 1 by gradually injecting the solidification material solution from the tip of the tube and rotating the injection tube rod 1 around its axis. A method of creating is known.

この場合、注入管ロッド1の先端部には、削孔の際は、削孔水を噴射して地盤を削孔し、地盤改良の際は地盤中に固化材液を高圧噴射して地盤改良体Aを造成するための自削孔モニター2が接続されている。   In this case, at the tip of the injection tube rod 1, when drilling, the ground water is sprayed to drill the ground, and when the ground is improved, the solidification material liquid is injected at high pressure into the ground to improve the ground. A self-cutting hole monitor 2 for creating the body A is connected.

自削孔モニター2は、例えば、図4に図示するようにモニター本体の下端部に掘削ビット3と削孔水噴射ノズル4を、側部に固化材液噴射ノズル5と圧縮エア噴射ノズル6をそれぞれ有し、さらにモニター本体内に削孔水と固化材液を圧送するための液体圧送流路7と圧縮エアを圧送するための圧縮エア圧送流路8が内蔵され、液体圧送流路7は削孔水圧送流路と固化材液圧送流路の両方を兼ねて内蔵されている。   For example, as shown in FIG. 4, the self-cutting hole monitor 2 has a drill bit 3 and a drilling water jet nozzle 4 at the lower end of the monitor body, and a solidified material jet nozzle 5 and a compressed air jet nozzle 6 at the side. Further, the monitor body has a built-in liquid pumping flow path 7 for pumping the drilling water and the solidified material liquid and a compressed air pumping flow path 8 for pumping the compressed air. It is built in as both a hole drilling water pressure feed channel and a solidifying material liquid pressure feed channel.

そして、削孔の際は、液体圧送流路7内に削孔水を圧送し、削孔水噴射ノズル4から削孔水を高圧噴射してモニター本体下方の地盤を切削することにより注入管ロッド1を計画深度まで挿入することができる。   In the case of drilling, the injection pipe rod is formed by pumping the drilling water into the liquid pumping flow path 7 and by high-pressure jetting the drilling water from the drilling water jet nozzle 4 to cut the ground below the monitor body. 1 can be inserted to the planned depth.

一方、地盤改良の際は、液体圧送流路7内に止水ボール9を投入して削孔水噴射ノズル4を内側ら塞いだ後、液体圧送流路7内に固化材液を圧送し、固化材液噴射ノズル5から地盤中に固化材液を高圧噴射し、同時に自削孔モニター2を注入管ロッド1と共にその軸回りに回転させながら徐々に引き上げることにより、注入管ロッド1の周囲に固化材液と切削土からなる柱状の地盤改良体Aを造成することができる。   On the other hand, when the ground is improved, a water stop ball 9 is inserted into the liquid pressure-feeding channel 7 to block the hole water injection nozzle 4 from the inside, and then the solidified material liquid is pressure-fed into the liquid pressure-feeding channel 7. By injecting the solidified material liquid into the ground from the solidified material liquid injection nozzle 5 at a high pressure, and simultaneously lifting the self-cutting hole monitor 2 together with the injection tube rod 1 while rotating around its axis, around the injection tube rod 1. A columnar ground improvement body A comprising a solidifying material liquid and cutting soil can be created.

この場合、固化材液のジェット噴流によって地盤が切削され、切削された土砂と固化材液が混合攪拌されることにより地盤改良体Aが造成される。また、圧縮エア噴射ノズル6から噴射された固化材液の周囲に圧縮空気を沿わせて噴射することにより、固化材液のジェットエネルギーが地下水によって衰えるのを低減することができる。   In this case, the ground is cut by the jet of the solidifying material liquid, and the ground improvement body A is formed by mixing and stirring the cut earth and sand and the solidifying material liquid. Moreover, it can reduce that the jet energy of a solidification material liquid falls by groundwater by injecting along with the compressed air around the solidification material liquid injected from the compressed air injection nozzle 6. FIG.

特開2008−95442号公報JP 2008-95442 A

しかし、モニター本体に内臓された液体圧送流路は、削孔水流路と固化材液流路の両方の流路を兼ねており、また削孔水噴射ノズルは特に塞がれているわけではないので、自削孔モニターによって削孔しながら注入管ロッドを計画深度まで挿入する間、液体圧送流路に圧送された削孔水は固化材液噴射ノズル4からも放出される。   However, the liquid pumping flow path built in the monitor body serves as both the drilling water flow path and the solidified material liquid flow path, and the drilling water jet nozzle is not particularly blocked. Therefore, while inserting the injection tube rod to the planned depth while drilling by the self-cutting hole monitor, the drilling water pumped to the liquid pumping flow path is also discharged from the solidifying material liquid jet nozzle 4.

このため、対象地盤が特に比較的硬質な地盤の場合は、削孔水の圧力が高くなり、その結果固化材液噴射ノズルから削孔水が多量に逸水されることとなって、削孔が困難に陥るだけでなく削孔水のロスが大きくなる等の課題があった。   For this reason, when the target ground is a relatively hard ground, the pressure of the drilling water becomes high, and as a result, a large amount of drilling water is discharged from the solidifying material liquid injection nozzle, so that In addition to difficulties, there are problems such as increased drilling water loss.

また、注入管ロッドを接続する際や削孔水から固化材に切り換える際に、液体圧送流路内が一時的に減圧状態になるため、地下水の静水圧によって固化材液噴射ノズル内に地中の地盤砂が入り込み、固化材液噴射ノズルが目詰まりを起こすおそれがあった。   Also, when connecting the injection tube rod or when switching from drilling water to solidified material, the pressure inside the liquid pressure-feeding channel is temporarily reduced, so the hydrostatic pressure of the groundwater causes underground injection into the solidified material liquid injection nozzle. There was a risk of clogging of the solidifying material liquid injection nozzle.

なお、固化材液噴射ノズルの目詰まりを防止する自削孔モニターとして、固化材液噴射ノズルの先端部にノズルの先端部を覆う封止部を設け、地盤改良の際に固化材液の噴射圧力で封止を解除するように構成された自削孔モニターが開示されている(特許文献1)。   In addition, as a self-cutting hole monitor that prevents clogging of the solidifying material liquid injection nozzle, a sealing portion that covers the tip of the solidifying material liquid injection nozzle is provided at the front end of the solidifying material liquid injection nozzle, and the solidifying material liquid is injected during ground improvement. A self-cutting hole monitor configured to release sealing by pressure is disclosed (Patent Document 1).

しかし、特許文献1に記載された自削孔モニターの場合は、封止部は固化材液噴射ノズルの外側に取り付けられているため、削孔中に周囲の地盤との摩擦で簡単に離脱してしまうおそれがあった。   However, in the case of the self-cutting hole monitor described in Patent Document 1, since the sealing portion is attached to the outside of the solidifying material liquid injection nozzle, it is easily detached by friction with the surrounding ground during the drilling. There was a risk of it.

本発明は、以上の課題を解決するためになされたもので、削孔の際に固化材液噴射ノズルから無駄に放出される削孔水を無くして、削孔能率の向上と削孔水のロスの低減を可能にした自削孔モニターおよび高圧噴射撹拌工法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and eliminates drilling water discharged wastefully from the solidification material liquid injection nozzle during drilling, improving drilling efficiency and drilling water. An object is to provide a self-cutting hole monitor and a high-pressure jet stirring method capable of reducing loss.

請求項1記載の自削孔モニターは、下端部に削孔水噴射ノズルを備え、側部に固化材液噴射ノズルを備え、かつ前記削孔水噴射ノズルに削孔水を圧送する液体流路と前記固化材液噴射ノズルに固化材液を圧送する液体流路を兼ねた液体流路を内蔵した自削孔モニターにおいて、前記固化材液噴射ノズル内に、削孔の際は固化材液噴射ノズルを塞ぎ、地盤改良の際は固化材液の噴射圧力によってノズルの外に押し出されるように形成されたモニター用プラグを備え、当該モニター用プラグは、内周面が先端方向に徐々に小径となるような円錐状に形成された固化材液噴射ノズルの内周面の形状に対応して、先端方向に徐々に小径に形成された円錐状部を備えていることを特徴とするものである。 The self-drilling hole monitor according to claim 1 is provided with a drilling water jet nozzle at the lower end, a solidified material jet nozzle at the side, and a liquid flow path for pumping the drilling water to the drilling water jet nozzle And a self-cutting hole monitor with a built-in liquid flow path that also serves as a liquid flow path for pumping the solidifying material liquid to the solidifying material liquid injection nozzle. When the ground is improved, it is equipped with a monitoring plug formed so that it is pushed out of the nozzle by the injection pressure of the solidifying material liquid, and the monitoring plug has a gradually decreasing inner diameter in the tip direction. Corresponding to the shape of the inner peripheral surface of the solidifying material liquid injection nozzle formed in a conical shape, it has a conical portion that is gradually formed in a small diameter in the tip direction. .

本発明によれば、削孔の際および削孔水から固化材液に切り替える際は、固化材液噴射ノズルがモニター用プラグによって塞がれていることにより、削孔の際に固化材液噴射ノズルから削孔水が無駄に放出されるのを防止することができ、また、削孔が完了して削孔水から固化材液に切り換える際には、地下水圧によって土などが固化材液噴射ノズル内に入り込むのを防止することができるため、削孔能率が向上し地盤改良を効率的に行うことができる等の効果を有する。   According to the present invention, when the hole is drilled and when the hole water is switched from the hole water to the solidified material liquid, the solidified material liquid injection nozzle is blocked by the monitoring plug, so that the solidified material liquid injection is performed at the time of drilling. It is possible to prevent the drilling water from being discharged from the nozzle, and when the drilling is completed and the water is switched from the drilling water to the solidifying material liquid, the ground water pressure causes the soil to eject the solidifying liquid. Since entering into the nozzle can be prevented, the hole drilling efficiency is improved and the ground can be improved efficiently.

通常、削孔時の削孔水の送水圧力は2MPa程度あり、また地盤改良時の固化材液の噴射圧力は10〜40MPa程度あるため、2MPa程度の送水圧力程度ではノズルの外に押し出されないで固化材液噴射ノズル内に留まり、10〜40MPa程度の固化材液の噴射圧力でノズルの外に押し出されるように自削孔用モニターの材質、硬さ、大きさ、形状等を設定すればよい。   Usually, the water supply pressure of the drilling water at the time of drilling is about 2 MPa, and the injection pressure of the solidified material liquid at the time of ground improvement is about 10 to 40 MPa, so the water supply pressure of about 2 MPa is not pushed out of the nozzle. If you set the material, hardness, size, shape, etc. of the self-cutting hole monitor so that it stays in the solidifying material liquid injection nozzle and is pushed out of the nozzle with the injection pressure of the solidifying material liquid of about 10-40 MPa Good.

また、モニター用プラグの円錐状部の外周面が固化材液噴射ノズルの先端方向に徐々に小径となるようなテーパ面をなしていることにより、削孔時の削孔水の送水圧力によって、モニター用プラグが固化材液噴射ノズルの外に簡単に押し出されるようなことはないので、固化材液噴射ノズルから削孔水が無駄に放出されるのを防止することができる。 In addition, the outer peripheral surface of the conical part of the monitor plug has a tapered surface that gradually decreases in diameter toward the tip of the solidifying material liquid injection nozzle, so that the water supply pressure of the drilling water at the time of drilling Since the monitoring plug is not easily pushed out of the solidifying material liquid injection nozzle, it is possible to prevent waste water from being discharged from the solidifying material liquid injection nozzle.

また、円錐状部の内側端面のほうが外側(先端側)端面よりも断面積が大きいので、モニター用プラグにノズルの外側から内向きに作用する力よりもノズルの内側から外向きに作用する力のほうが大きくなる。   In addition, since the inner end surface of the conical section has a larger cross-sectional area than the outer (front end) end surface, the force acting on the monitor plug from the inside of the nozzle to the outside rather than the force acting on the monitor plug from the outside of the nozzle. Is bigger.

このため、削孔水から固化材液に切り替える際などにノズル内が一時的に減圧状態になったとしても、モニター用プラグがノズルの内方に押込まれ、土などがノズル内に入ってノズルの目詰まりを引き起こすようなことはない。   For this reason, even when the inside of the nozzle is temporarily depressurized when switching from the drilling water to the solidifying material liquid, the monitoring plug is pushed inward of the nozzle, and dirt etc. enters the nozzle and enters the nozzle. It will not cause any clogging.

請求項記載の自削孔モニターは、請求項記載の自削孔モニターにおいて、モニター用プラグは、弾性材から形成されてなることを特徴とするものである。この場合の自削孔モニター用プラグの材質としては、例えばゴムやプラスチック等が調達および加工が容易で、しかも硬さも自由に調整できる等の理由により適している。 The self-cutting hole monitor according to claim 2 is the self-cutting hole monitor according to claim 1, wherein the monitor plug is made of an elastic material. As a material for the self-cutting hole monitoring plug in this case, for example, rubber or plastic is suitable because it is easy to procure and process, and the hardness can be freely adjusted.

請求項記載の高圧噴射撹拌工法は、下端部に削孔水噴射ノズルを備え、側部に固化材液噴射ノズルを備え、かつ前記削孔水噴射ノズルに削孔水を圧送する液体流路と前記固化材液噴射ノズルに固化材液を圧送する液体流路とを兼ねた液体流路を内蔵した自削孔モニターを用いて地盤改良体を造成する高圧噴射撹拌工法において、前記固化材液噴射ノズル内に、削孔の際は固化材液噴射ノズルを塞ぎ、地盤改良の際は固化材液の噴射圧力によってノズルの外に押し出されるように形成され、かつ内周面が先端方向に徐々に小径となるような円錐状に形成された固化材液噴射ノズルの内周面の形状に対応して、先端方向に徐々に小径に形成された円錐状部を備えた自削孔モニターを用い、当該自削孔モニターの固化材液噴射ノズル内にモニター用プラグを取り付けて固化材液噴射ノズルを塞ぐ工程と、前記液体流路に削孔水を圧送し、削孔水噴射ノズルから削孔水を噴射しながら地盤を削孔する工程と、前記液体流路に固化材液を圧送し、前記固化材液噴射ノズルから噴射される固化材液の噴射圧力によってモニター用プラグを固化材液噴射ノズルの外に押し出す工程と、固化材液噴射ノズルから地盤中に固化材液を噴射しながら自削孔用モニターを徐々に引き上げる工程とから構成されてなることを特徴とするものである。
請求項4記載の高圧噴射撹拌工法は、請求項3記載の高圧噴射撹拌工法において、モニター用プラグは、弾性材から形成されてなることを特徴とするものである。
The high-pressure jet agitation method according to claim 3 is provided with a drilled water jet nozzle at the lower end, a solidified material jet nozzle at the side, and a liquid flow path for pumping drilled water to the drilled water jet nozzle In the high-pressure jet agitation method for creating a ground improvement body using a self-cutting hole monitor having a built-in liquid flow path that also serves as a liquid flow path for feeding the solidified liquid to the solidified liquid spray nozzle, the solidified liquid In the injection nozzle, it is formed so as to close the solidification material liquid injection nozzle when drilling, and to be pushed out of the nozzle by the injection pressure of the solidification material liquid when improving the ground, and the inner peripheral surface gradually toward the tip A self-drilling hole monitor equipped with a conical portion gradually formed in a small diameter in the tip direction corresponding to the shape of the inner peripheral surface of the solidified material liquid injection nozzle formed in a conical shape having a small diameter. , Monitor in the solidification material liquid injection nozzle of the self-cutting hole monitor Attaching the plug to close the solidifying material liquid injection nozzle; pumping the drilling water into the liquid flow path; and drilling the ground while spraying the drilling water from the drilling water injection nozzle; and the liquid flow A step of pumping the solidifying material liquid to the road, and pushing the monitoring plug out of the solidifying material liquid injection nozzle by the injection pressure of the solidifying material liquid injected from the solidifying material liquid injection nozzle; And a step of gradually pulling up the monitor for self-cutting holes while injecting the solidifying material liquid.
The high-pressure jet stirring method according to claim 4 is the high-pressure jet stirring method according to claim 3, wherein the monitoring plug is made of an elastic material.

本発明は、削孔の際および削孔水から固化材液に切り替える際などは、固化材液噴射ノズルがモニター用プラグによって塞がれていることにより、削孔の際に固化材液噴射ノズルから削孔水が無駄に放出されるのを低減することができ、また、削孔が完了して削孔水から固化材液に切り換える際には、地下水圧によって土などが固化材液噴射ノズル内に入り込むのを防止することができるため、削孔能率が向上し地盤改良を効率的かつ経済的に行うことができる等の効果を有する。   In the present invention, the solidifying material liquid injection nozzle is closed at the time of drilling because the solidifying material liquid injection nozzle is closed by the monitoring plug when drilling and when switching from the drilling water to the solidifying material liquid. When the drilling is completed and the water is switched from the drilling water to the solidified material liquid, the ground material pressure causes the solid material liquid injection nozzle Since it can be prevented from entering the inside, the drilling efficiency is improved, and the ground can be improved efficiently and economically.

自削孔モニターの先端部分を示し、(a)はモニター用プラグが取り付けられ、削孔水が噴射する状態を示す縦断面図、(b)はモニター用プラグが外に押出され、固化材液が噴射する状態を示す縦断面図である。The front end part of a self-drilling hole monitor is shown, (a) is a longitudinal cross-sectional view showing a state in which a monitor plug is attached and the drilling water is sprayed, and (b) is a solidified liquid that is extruded outside the monitor plug. It is a longitudinal cross-sectional view which shows the state which injects. 固化材液噴射ノズルを示し、(a)はモニター用プラグが取り付けられた状態を示す縦断面、(b)はモニター用プラグが取り付けられる前の状態を示す縦断面である。The solidification material liquid injection nozzle is shown, (a) is a longitudinal section showing a state where a monitor plug is attached, and (b) is a longitudinal section showing a state before the monitor plug is attached. (a)〜(d)は、自削孔モニターによる高圧噴射撹拌工法の施工手順を図である。(A)-(d) is a figure of the construction procedure of the high-pressure jet stirring method by a self-cutting hole monitor. 自削孔モニターの先端部分を示し、(a)は削孔水が噴射する状態を示す縦断面図、(b)は固化材液が噴射する状態を示す縦断面図である。The front-end | tip part of a self-drilling hole monitor is shown, (a) is a longitudinal cross-sectional view which shows the state which drilling water sprays, (b) is a longitudinal cross-sectional view which shows the state which solidification material liquid injects.

図1(a),(b)は、注入管ロッドの先端部に接続された自削孔モニターの先端部分を示し、また、図2(a),(b)は自削孔モニターに取り付けられている固化材液噴射ノズルとモニター用プラグを示したものである。   FIGS. 1 (a) and 1 (b) show the tip portion of the self-cutting hole monitor connected to the tip of the injection tube rod, and FIGS. 2 (a) and 2 (b) are attached to the self-cutting hole monitor. The solidifying material liquid injection nozzle and the monitoring plug are shown.

図において、モニター本体の下端部に掘削ビット3と削孔水噴射ノズル4がそれぞれ設けられている。また、側部に固化材液噴射ノズル5と圧縮エア噴射ノズル6が設けられている。   In the figure, a drill bit 3 and a drill water nozzle 4 are provided at the lower end of the monitor body. Further, a solidified material spray nozzle 5 and a compressed air spray nozzle 6 are provided on the side portions.

さらに、モニター本体には削孔水と固化材液を圧送する液体圧送流路7と圧縮エアを圧送するエア圧送流路がそれぞれ内蔵され、液体圧送流路7は削孔水噴射ノズル4と固化材液噴射ノズル5に接続され、また削孔水を圧送する流路と固化材液を圧送する流路の両方を兼ねている。エア圧送流路8は圧縮エア噴射ノズル6に接続されている。   Further, the monitor main body includes a liquid pumping passage 7 for pumping the drilling water and the solidifying material liquid and an air pumping passage for pumping the compressed air. The liquid pumping passage 7 is solidified with the drilling water jet nozzle 4. It is connected to the material liquid injection nozzle 5 and also serves as both a flow path for pumping the drilling water and a flow path for pumping the solidified material liquid. The air pressure feed passage 8 is connected to the compressed air injection nozzle 6.

固化材液噴射ノズル5と圧縮エア噴射ノズル6は同心円状に設けられ、内側に固化材液噴射ノズル5が設けられ、その外周に圧縮エア噴射ノズル6が設けられている。   The solidifying material liquid injection nozzle 5 and the compressed air injection nozzle 6 are provided concentrically, the solidifying material liquid injection nozzle 5 is provided inside, and the compressed air injection nozzle 6 is provided on the outer periphery thereof.

さらに、固化材液噴射ノズル5は、モニター本体の直径方向に所定の長さに形成され、その先端はモニター本体の側面に開口している。また、固化材液噴射ノズル5の内径は、先端部分5aが一定長さに渡り一定で最も細く、基端部分5bが一定長さに渡り一定で先端部分5aより太く、かつ先端部分5aと基端部分5b間の中間部分5cは先端部分5a側から基端部分5b側方向に徐々に太くなるように形成されている。   Further, the solidifying material liquid injection nozzle 5 is formed to have a predetermined length in the diameter direction of the monitor main body, and the tip thereof opens to the side surface of the monitor main body. In addition, the inner diameter of the solidifying material liquid injection nozzle 5 is constant and narrowest at the distal end portion 5a over a certain length, the proximal end portion 5b is constant over a certain length and is thicker than the distal end portion 5a, and the base portion 5a and the base portion 5a. The intermediate portion 5c between the end portions 5b is formed so as to gradually become thicker from the distal end portion 5a side toward the proximal end portion 5b side.

そして、このように形成された固化材液噴射ノズル5内に、モニター用プラグ10が取り付けられている。モニター用プラグ10は、固化材液噴射ノズル5の先端部分5aおよび中間部分5cの内部の形状とそれぞれ対応する断面形状に形成された柱状部10aと円錐状部10bとから形成されている。   A monitoring plug 10 is attached in the solidified material liquid injection nozzle 5 formed in this way. The monitoring plug 10 is formed of a columnar portion 10a and a conical portion 10b formed in cross-sectional shapes corresponding to the shapes of the tip portion 5a and the intermediate portion 5c of the solidifying material liquid injection nozzle 5, respectively.

柱状部10aは、固化材液噴射ノズル5の先端部分5aに挿入可能な円柱状に形成され、円錐状部10bは固化材液噴射ノズル5の中間部分5bに挿入可能な円錐形状に形成され、かついずれの部分も固化材液噴射ノズル5の先端部分5aと中間部分5cに挿入された際に、固化材液噴射ノズル5の先端部分5aと中間部分5cの内周面に完全に密着するように形成されている。   The columnar portion 10a is formed in a cylindrical shape that can be inserted into the tip portion 5a of the solidifying material liquid jet nozzle 5, and the conical portion 10b is formed in a conical shape that can be inserted into the intermediate portion 5b of the solidified material liquid jet nozzle 5. And when any part is inserted in the front-end | tip part 5a and the intermediate part 5c of the solidification material liquid injection nozzle 5, it is made to contact | adhere closely to the internal peripheral surface of the front-end | tip part 5a of the solidification material liquid injection nozzle 5, and the intermediate part 5c. Is formed.

さらに、柱状部10aと円錐状部10bはゴムやプラスチック等の弾性材から一体に形成されている。   Further, the columnar portion 10a and the conical portion 10b are integrally formed from an elastic material such as rubber or plastic.

このような構成において、注入管ロッド1を所定の深度まで挿入する際、液体圧送流路7内に削孔水を圧送し、削孔水噴射ノズル4から地盤中に削孔水を高圧噴射することにより地盤を切削して注入管ロッド1を所定の深度まで挿入することができる。   In such a configuration, when the injection tube rod 1 is inserted to a predetermined depth, the drilling water is pumped into the liquid pumping flow path 7, and the drilling water is injected into the ground from the drilling water jet nozzle 4 at a high pressure. Thus, the ground can be cut and the injection tube rod 1 can be inserted to a predetermined depth.

その際、特にモニター用プラグ10によって固化材噴射ノズル5は完全に塞がれていることにより、固化材液噴射ノズル5から削孔水が無駄に放出されることはないため、削孔をきわめて効率的に行うことができ、削孔水が無駄に放出されることもない。   At this time, since the solidifying material injection nozzle 5 is completely blocked by the monitoring plug 10, the drilling water is not discharged from the solidifying material liquid injection nozzle 5. It can be carried out efficiently and the drilling water is not wasted.

この場合、モニター用プラグ10の内側には液体圧送流路7内に圧送された削孔水によって2MPa程度の送水圧力が作用するが、モニター用プラグ10の円錐状部10bの外周面が固化材液噴射ノズル5の先端方向に徐々に小径となるテーパ面に形成されていることにより、モニター用プラグ10が削孔水の送水圧によって固化材液噴射ノズル5の外に簡単に押し出されるようなことはない。   In this case, a water supply pressure of about 2 MPa is applied to the inside of the monitor plug 10 by the drilling water pumped into the liquid pumping flow path 7, but the outer peripheral surface of the conical portion 10b of the monitor plug 10 is a solidified material. By forming the taper surface having a gradually smaller diameter in the direction of the tip of the liquid injection nozzle 5, the monitor plug 10 can be easily pushed out of the solidifying material liquid injection nozzle 5 by the feed pressure of the drilling water. There is nothing.

また、モニター用プラグ10には、外部から地下水による静水圧P1が内向きに作用するが、円錐状部10bの内側端面の面積S1が柱状部10aの外側端面の面積S2より大きいので、ノズル5の外側からモニター用プラグ10に作用する内向きの力よりもノズル5の内側からモニター用プラグ10に作用する外向きの力のほうが大きい。   Further, although the hydrostatic pressure P1 due to groundwater acts inward on the monitoring plug 10 from the outside, the area S1 of the inner end surface of the conical portion 10b is larger than the area S2 of the outer end surface of the columnar portion 10a. The outward force acting on the monitor plug 10 from the inside of the nozzle 5 is larger than the inward force acting on the monitor plug 10 from the outside.

このため、削孔水から固化材液に切り替える際などにノズル5内が一時的に減圧状態になったとしても、モニター用プラグ10がノズル5の内方に押込まれ、土などがノズル5内に入ってノズル5の目詰まりを引き起こすようなことはない。   For this reason, even when the inside of the nozzle 5 is temporarily in a reduced pressure state when switching from the drilling water to the solidifying material liquid, the monitoring plug 10 is pushed inward of the nozzle 5 and dirt or the like is inside the nozzle 5. There is no such thing as to enter and cause clogging of the nozzle 5.

この場合、モニター用プラグ10の柱状部10aの外径を固化材液噴射ノズル5の先端部分5aの内径よりやや大きめに形成したり、あるいは柱状部10aの直径を適切に変えて柱状部10aの外周面と固化材液噴射ノズル5の先端部分5aの内周面との摩擦力を適切に調整して内向きの圧力P1に対する抵抗力を調整することもできる。   In this case, the outer diameter of the columnar portion 10a of the monitor plug 10 is formed to be slightly larger than the inner diameter of the tip portion 5a of the solidifying material liquid injection nozzle 5, or the diameter of the columnar portion 10a is appropriately changed. The resistance force against the inward pressure P1 can also be adjusted by appropriately adjusting the frictional force between the outer peripheral surface and the inner peripheral surface of the tip portion 5a of the solidifying material liquid injection nozzle 5.

一方、地盤中に固化材液を噴射して地盤改良を行う際は、液体圧送流路7内に止水ボール9を投入して削孔水噴射ノズル4を塞いだ後、液体圧送流路7内に削孔水に代えて固化材液を圧送し、固化材噴射ノズル5から固化材液を高圧噴射して、固化材液噴射ノズル5内に取り付けられたモニター用プラグ10を固化材液の噴射圧力によって外に押し出すことにより、固化材液を地盤中に噴射して地盤改良を行うことができる。   On the other hand, when the ground improvement is performed by injecting the solidified material liquid into the ground, the water stop ball 9 is introduced into the liquid pumping flow path 7 to block the drilling water spray nozzle 4, and then the liquid pumping flow path 7. The solidified material liquid is pumped in place of the drilling water, the solidified material liquid is injected from the solidified material injection nozzle 5 at a high pressure, and the monitor plug 10 mounted in the solidified material liquid injection nozzle 5 is inserted into the solidified material liquid. By pushing out by the injection pressure, the solidified material liquid can be injected into the ground to improve the ground.

この場合、モニター用プラグ10には液体圧送流路7内に圧送された固化材液によって10〜40MPaとかなり大きな噴射圧力が作用することにより、モニター用プラグ10は収縮変形して固化材液噴射ノズル4の外に押し出される。   In this case, the monitoring plug 10 is contracted and deformed by applying a considerably large injection pressure of 10 to 40 MPa to the monitoring plug 10 by the solidifying material liquid pumped into the liquid pumping flow path 7. It is pushed out of the nozzle 4.

なお、円錐状部10bの長さL1を変えて円錐状部10bの内側端面の面積S1を適切に調整することにより、固化材液の噴射圧力によって外に押し出される際のモニター用プラグ10の抵抗力を調整することができる。   It should be noted that the resistance of the monitoring plug 10 when it is pushed out by the injection pressure of the solidifying material liquid by appropriately adjusting the area S1 of the inner end face of the conical portion 10b by changing the length L1 of the conical portion 10b. The power can be adjusted.

次に、本発明に係るモニター用プラグを取り付けた自削孔モニターによる高圧噴射撹拌工法の施工手順を説明する。   Next, the construction procedure of the high-pressure jet stirring method using a self-cutting hole monitor equipped with the monitor plug according to the present invention will be described.

(1) 最初に、固化材液噴射ノズル5内にモニター用プラグ10を取り付ける。この場合、固化材液噴射ノズル5は通常、モニター本体にねじ込み式により脱着自在に取り付けられていることから、固化材液噴射ノズル5をモニター本体から取り外し、その後方からノズル5内にモニター用プラグ10を挿入することにより取り付けることができる。 (1) First, the monitoring plug 10 is installed in the solidifying material liquid injection nozzle 5. In this case, since the solidifying material liquid injection nozzle 5 is normally detachably attached to the monitor main body by screwing, the solidifying material liquid injection nozzle 5 is removed from the monitor main body, and a monitoring plug is inserted into the nozzle 5 from the rear. It can be attached by inserting 10.

(2) 次に、モニター用プラグ10を取り付けた自削孔モニター2を注入管ロッド1の先端部に接続する。そして、自削孔モニター2内の液体圧送流路7内に地上から注入管ロッド1を介して削孔水を圧送し、同時に自削孔モニター2を注入管ロッド1と共に回転させながら地盤中に押し込んで削孔する。 (2) Next, the self-cutting hole monitor 2 to which the monitor plug 10 is attached is connected to the tip of the injection tube rod 1. Then, the drilling water is pumped from the ground into the liquid pumping flow path 7 in the self-cutting hole monitor 2 through the injection tube rod 1, and at the same time, the self-cutting hole monitor 2 is rotated together with the injection tube rod 1 into the ground. Push to drill.

なお、圧縮エア噴射ノズル6は、削孔中に土などが入り込んで目詰まりを起さないようにノズル6から噴射される圧縮エアで除去できるようなシールやキャップ等で塞いでおくのが望ましい。   The compressed air injection nozzle 6 is preferably closed with a seal or cap that can be removed by the compressed air injected from the nozzle 6 so that dirt or the like does not enter the hole and cause clogging. .

また、この種のシールやキャップはモニター用プラグ10に後付けし、固化材液の噴射圧力によってモニター用プラグと一緒に除去できるようにしてもよい。   Further, this type of seal or cap may be retrofitted to the monitor plug 10 so that it can be removed together with the monitor plug by the injection pressure of the solidifying material liquid.

(3) 計画深度まで削孔したら、次に自削孔モニター2内の液体流路7内に止水ボール9を投入して削孔水噴射ノズル4を塞ぐ。 (3) After drilling to the planned depth, the water stop ball 9 is then introduced into the liquid flow path 7 in the self-drilling monitor 2 to close the drilling water jet nozzle 4.

(4) 次に、自削孔モニター2内の液体流路7に地上から注入管ロッド1を介して固化材液を圧送し、固化材液の噴射圧力によって固化材液噴射ノズル5内のモニター用プラグ10をノズル5の外に押出してノズル5を開放する。 (4) Next, the solidified material liquid is pumped from the ground to the liquid flow path 7 in the self-cutting hole monitor 2 through the injection tube rod 1, and the monitor in the solidified material liquid injection nozzle 5 is measured by the injection pressure of the solidified material liquid. The plug 10 is pushed out of the nozzle 5 to open the nozzle 5.

(5) 次に、自削孔モニター2内の液体圧送流路7内に固化材液を、圧縮エア流路8内に圧縮空気をそれぞれ圧送し、固化材液噴射ノズル5から固化材液を、圧縮エア噴射ノズル6から圧縮エアをそれぞれ高圧噴射する。 (5) Next, the solidified material liquid is pumped into the liquid pumping channel 7 in the self-cutting hole monitor 2 and the compressed air is pumped into the compressed air channel 8. The compressed air is injected from the compressed air injection nozzle 6 at a high pressure.

そして、同時に自削孔モニター2を注入管ロッド1と共にその軸回りに回転させながら徐々に引き上げることにより、注入管ロッド1の周囲に切削土と固化材液とからなる地盤改良体Aを造成する。   At the same time, the self-cutting hole monitor 2 is gradually lifted together with the injection tube rod 1 while rotating about its axis, thereby forming a ground improvement body A made of cutting soil and solidifying material liquid around the injection tube rod 1. .

本発明は、削孔時に固化材液噴射ノズルから削孔水が無駄に放出されるのを防止して、削孔能率の向上と削孔水のロスを低減できるようにした自削孔モニター用プラグおよび高圧噴射撹拌工法を提供する。   The present invention is for a self-drilling hole monitor that prevents the drilling water from being wastedly discharged from the solidifying material liquid jet nozzle during drilling, thereby improving the drilling efficiency and reducing the loss of drilling water. Provide plug and high-pressure jet stirring method.

1 注入管ロッド
2 自削孔モニター
3 掘削ビット
4 削孔水噴射ノズル
5 固化材液噴射ノズル
6 圧縮エア噴射ノズル
7 液体圧送流路
8 圧縮エア圧送流路
9 止水ボール
10 モニター用プラグ
10a 柱状部
10b 円錐状部
A 地盤改良体
DESCRIPTION OF SYMBOLS 1 Injection pipe rod 2 Self-drilling hole monitor 3 Drilling bit 4 Drilling water injection nozzle 5 Solidification material liquid injection nozzle 6 Compressed air injection nozzle 7 Liquid pressure feed flow path 8 Compressed air pressure feed flow path 9 Water stop ball 10 Monitor plug 10a Column shape Part 10b Conical part A Ground improvement body

Claims (4)

下端部に削孔水噴射ノズルを備え、側部に固化材液噴射ノズルを備え、かつ前記削孔水噴射ノズルに削孔水を圧送する液体流路と前記固化材液噴射ノズルに固化材液を圧送する液体流路を兼ねた液体流路を内蔵した自削孔モニターにおいて、前記固化材液噴射ノズル内に、削孔の際は固化材液噴射ノズルを塞ぎ、地盤改良の際は固化材液の噴射圧力によってノズルの外に押し出されるように形成されたモニター用プラグを備え、当該モニター用プラグは、内周面が先端方向に徐々に小径となるような円錐状に形成された固化材液噴射ノズルの内周面の形状に対応して、先端方向に徐々に小径に形成された円錐状部を備えていることを特徴とする自削孔モニター。 A lower end portion is provided with a drilling water jet nozzle, a side portion is provided with a solidified material liquid jet nozzle, and a liquid channel for pumping the drilled water to the drilled water jet nozzle and a solidified material liquid on the solidified material jet nozzle In a self-drilling hole monitor with a built-in liquid flow path that also serves as a liquid flow path for pressure feeding, the solidification material liquid injection nozzle is closed in the solidification material liquid injection nozzle when drilling, and the solidification material is used for ground improvement. A monitoring plug formed so as to be pushed out of the nozzle by the jetting pressure of the liquid, and the monitoring plug is a solidified material formed in a conical shape so that the inner peripheral surface gradually becomes a small diameter in the tip direction. A self-cutting hole monitor, comprising a conical portion that is gradually formed in a small diameter in the tip direction corresponding to the shape of the inner peripheral surface of the liquid jet nozzle . モニター用プラグは、弾性材から形成されてなることを特徴とする請求項1記載の自削孔モニター。   2. The self-cutting hole monitor according to claim 1, wherein the monitor plug is made of an elastic material. 下端部に削孔水噴射ノズルを備え、側部に固化材液噴射ノズルを備え、かつ前記削孔水噴射ノズルに削孔水を圧送する液体流路と前記固化材液噴射ノズルに固化材液を圧送する液体流路とを兼ねた液体流路を内蔵した自削孔モニターを用いて地盤改良体を造成する高圧噴射撹拌工法において、前記固化材液噴射ノズル内に、削孔の際は固化材液噴射ノズルを塞ぎ、地盤改良の際は固化材液の噴射圧力によってノズルの外に押し出されるように形成され、かつ内周面が先端方向に徐々に小径となるような円錐状に形成された固化材液噴射ノズルの内周面の形状に対応して、先端方向に徐々に小径に形成された円錐状部を備えた自削孔モニターを用い、当該自削孔モニターの固化材液噴射ノズル内にモニター用プラグを取り付けて固化材液噴射ノズルを塞ぐ工程と、前記液体流路に削孔水を圧送し、削孔水噴射ノズルから削孔水を噴射しながら地盤を削孔する工程と、前記液体流路に固化材液を圧送し、前記固化材液噴射ノズルから噴射される固化材液の噴射圧力によってモニター用プラグを固化材液噴射ノズルの外に押し出す工程と、固化材液噴射ノズルから地盤中に固化材液を噴射しながら自削孔用モニターを徐々に引き上げる工程とから構成されてなることを特徴とする高圧噴射撹拌工法。 A lower end portion is provided with a drilling water jet nozzle, a side portion is provided with a solidified material liquid jet nozzle, and a liquid channel for pumping the drilled water to the drilled water jet nozzle and a solidified material liquid on the solidified material jet nozzle In the high-pressure jet agitation method that creates a ground improvement body using a self-cutting hole monitor that has a built-in liquid flow path that also functions as a liquid flow path for pressure feeding, the solidified liquid injection nozzle is solidified when drilling. The material liquid injection nozzle is closed, and when the ground is improved, it is formed so that it is pushed out of the nozzle by the injection pressure of the solidified material liquid, and the inner peripheral surface is formed in a conical shape with a gradually decreasing diameter in the tip direction. Corresponding to the shape of the inner peripheral surface of the solidified liquid injection nozzle, using the self-cutting hole monitor provided with a conical portion gradually formed with a small diameter in the tip direction, the solidified liquid injection of the self-cutting hole monitor Install the plug for monitoring in the nozzle and inject the solidified material liquid A step of clogging the surface, a step of pumping the drilling water into the liquid channel, and drilling the ground while jetting the drilling water from the drilling water jet nozzle, and a step of pumping the solidified material liquid into the liquid channel. , A step of pushing the monitoring plug out of the solidification material liquid injection nozzle by the injection pressure of the solidification material liquid injected from the solidification material liquid injection nozzle, while injecting the solidification material liquid into the ground from the solidification material liquid injection nozzle A high-pressure jet stirring method characterized by comprising a step of gradually pulling up the self-cutting hole monitor. モニター用プラグは、弾性材から形成されてなることを特徴とする請求項3記載の高圧噴射撹拌工法。4. The high-pressure jet agitation method according to claim 3, wherein the monitor plug is made of an elastic material.
JP2009130486A 2009-05-29 2009-05-29 Self-cutting hole monitor and high-pressure jet stirring method Active JP4790829B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009130486A JP4790829B2 (en) 2009-05-29 2009-05-29 Self-cutting hole monitor and high-pressure jet stirring method
TW99116664A TWI404850B (en) 2009-05-29 2010-05-25 Self - drilling monitor and high - pressure jet mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130486A JP4790829B2 (en) 2009-05-29 2009-05-29 Self-cutting hole monitor and high-pressure jet stirring method

Publications (2)

Publication Number Publication Date
JP2010275797A JP2010275797A (en) 2010-12-09
JP4790829B2 true JP4790829B2 (en) 2011-10-12

Family

ID=43423007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130486A Active JP4790829B2 (en) 2009-05-29 2009-05-29 Self-cutting hole monitor and high-pressure jet stirring method

Country Status (2)

Country Link
JP (1) JP4790829B2 (en)
TW (1) TWI404850B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5953040B2 (en) * 2011-12-26 2016-07-13 株式会社日東テクノ・グループ High-pressure jet stirring method
CN103088827A (en) * 2013-01-22 2013-05-08 烟台三维岩土工程技术有限公司 Drilling and spraying integrated device
JP2018080513A (en) * 2016-11-17 2018-05-24 N.Jetエンジニアリング株式会社 Superhigh pressure injection nozzle, boring machine, cutting obstacle system and method of using superhigh pressure injection nozzle
JP7402739B2 (en) 2020-03-17 2023-12-21 株式会社エステック Ground improvement device and ground improvement method equipped with self-drilling hole type monitoring device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202318C (en) * 2003-01-15 2005-05-18 刘润郊 Method and apparatus for pile making by boring and pumping mass concrete and rotation jetting slurry
JP5216477B2 (en) * 2008-08-21 2013-06-19 株式会社不動テトラ Ground injection method

Also Published As

Publication number Publication date
JP2010275797A (en) 2010-12-09
TW201114986A (en) 2011-05-01
TWI404850B (en) 2013-08-11

Similar Documents

Publication Publication Date Title
JP4790829B2 (en) Self-cutting hole monitor and high-pressure jet stirring method
CN103362461B (en) Long-spiral drilling machine and drill bit thereof
JP4702893B2 (en) Self-drilling monitor
JP5953040B2 (en) High-pressure jet stirring method
CN210918889U (en) Reinforced cement anchor rod
JP4530378B2 (en) Seismic reinforcement method for masonry wall and masonry wall reinforcement used therefor
JP4887179B2 (en) Ground improvement method and ground improvement equipment
JP5717148B2 (en) Underground consolidated body construction method
CN203488115U (en) Long spiral drilling machine and drill bit
JP2007077739A (en) Jet grout type ground improvement construction method
JP5697025B2 (en) Drilling device for hole for embedding electrode material
JP4074831B2 (en) Auger drill fluid injection device
KR101065273B1 (en) Apparatus for pressing steel pipe
KR100959342B1 (en) Built-in nozzle for underground propulsion pipe
JP2007132091A (en) Steel pipe driving method and steel pipe driving tool
KR100746099B1 (en) Method of grouting and triple pipe grouting device which have function of synchronous injection of chemical solution and mortar
KR200228331Y1 (en) Soil improving apparatus
WO2023238415A1 (en) High-pressure jet nozzle device and foundation improving device comprising same
JP5186149B2 (en) Ground improvement monitor, ground improvement device, and ground improvement method using the ground improvement monitor
JP2009185579A (en) Discharge method of earth and sand in joint of steel pipe sheet pile
TW201927128A (en) Impact typed high-pressure hydraulic digging device for forming cylindrical holes in soil characterized in that the hollow portion is used to lead in sand-containing water and to mix it with a strong water jet so as to enhance impacting force and digging effect
JP4916395B2 (en) Drainage pipe set and drainage method
JP2023174444A (en) High-pressure injection nozzle device and foundation improvement device having the same
JP4429326B2 (en) Ground hardening material injection method and its equipment
JP2004027796A (en) Self-drilling injection device for use in high-pressure injection/agitation pile construction method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4790829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250