JP2005024161A - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
JP2005024161A
JP2005024161A JP2003189780A JP2003189780A JP2005024161A JP 2005024161 A JP2005024161 A JP 2005024161A JP 2003189780 A JP2003189780 A JP 2003189780A JP 2003189780 A JP2003189780 A JP 2003189780A JP 2005024161 A JP2005024161 A JP 2005024161A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
hole
porous member
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003189780A
Other languages
Japanese (ja)
Other versions
JP4197470B2 (en
Inventor
Hitoshi Kibune
仁志 木船
Masayuki Imai
正幸 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2003189780A priority Critical patent/JP4197470B2/en
Publication of JP2005024161A publication Critical patent/JP2005024161A/en
Application granted granted Critical
Publication of JP4197470B2 publication Critical patent/JP4197470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce refrigerant passing noise in dehumidifying operation. <P>SOLUTION: This solenoid valve is formed such that a valve is opened/closed by moving a valve element 4 close to and apart from a valve seat part 6a by an electromagnetic coil 2. A hole 44 and passages 43c and 43b communicating with the hole 44 are formed in the valve element 4 on the refrigerant inflow side. A first porous member 51 breaking air bubbles into ppieces is installed on the inflow side of the hole 44 and a second porous member 52 breaking air bubbles into pieces is installed in the passage 43c. Also, a third porous member 53 breaking air bubbles into pieces is disposed on the downstream side of the refrigerant outflow side, and the first to third porous members 51, 52, and 53 are formed of a tubular or columnar body with uniform diameter. In addition, the density of the porous members is 3.094 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和機等に使用する電磁弁に関する。
【0002】
【従来の技術】
従来、弁本体に設けたプランジャチューブの周囲にソレノイドコイルを設け、プランジャチューブ内において弁本体側に可動吸引子、他側にプランジャを設け可動吸引子とプランジャ間に開弁ばねで付勢された状態で、プランジャと弁体をカシメにより結合して収納した通電時閉型電磁弁が知られている。
【0003】
かかる従来の電磁弁を冷凍サイクルで除湿運転を行う空気調和機に用いた場合に、除湿運転の絞りとして弁体に孔を設けることが行なわれる。しかしながら、弁体に孔を設けた場合には、絞り作用に伴ない冷媒流動音が発生する場合があり、発生した場合には騒音となるという問題点があった。
【0004】
そこで、この騒音を低減する技術が下記の特許文献1に開示されている。この特許文献1には、除湿モードを有する空気調和機で除湿用絞り弁として使用される絞り装置として、絞り通路における冷媒通過音を低減し、長期間の使用においても除湿運転性能を維持できる絞り装置が示されている。しかしながら、この装置においても冷媒通過音の低減について期待される効果をあげていないのが現状である。
【0005】
【特許文献1】特開2002−310540号公報
【0006】
【発明が解決しようとする課題】
そこで、本発明者らは、上記従来技術を考慮しつつ、更に冷媒通過音の低減を目的として技術の開発をおこなったもので、本発明は、弁体に気泡を細分化する部材を一体に組付けると共に、細分化された気泡が再び大きく成長しないようにして、冷媒流動音を一層低減し、騒音の発生を抑制した電磁弁を提供することを目的とする。また、本発明は、気泡を細分化する部材を高密度の多孔質部材により構成させることで、更に冷媒流動音を低減できる電磁弁を提供することを目的とする。
また、本発明は、上記多孔質部材内の冷媒の流路を長くすることで、更に冷媒流動音を低減できる電磁弁を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る電磁弁は下記の手段を講じた。即ち、
請求項1記載の電磁弁は、電磁コイルにより弁体を弁座部に対して接離させることにより弁の開閉を行う電磁弁において、上記弁体にはその冷媒流入側に孔とこの孔に連通する通路が設けられると共に、前記孔の流入側に気泡を細分化する第1の部材が設けられ、且つ、前記通路内に気泡を細分化する第2の部材が設けられ、更に、前記通路の冷媒流出側には、細分化された気泡の状態を保持させる流路が形成されると共に、該流路の下流側に気泡を細分化する第3の部材が配置され、上記第1乃至第3の部材はいずれも均一径の筒状体又は柱状体から構成されていることを特徴とする。
【0008】
かかる特徴により、気泡を細分化する部材により冷媒中の気泡を細分化でき、しかも、細分化された気泡の状態を保持させる流路が形成されているので、冷媒流動音を抑制し、騒音の発生を防止できる電磁弁を実現できる。また、細分化された気泡の状態を保持させたまま、冷媒の流速を下げることで、一層の冷媒流動音の抑制を図る。上記第1乃至第3の部材はいずれも均一径の筒状体から構成されていることで、第1乃至第3の部材の製造・メンテナンスが容易になる。
【0009】
請求項2記載の電磁弁は、請求項1記載の電磁弁において、第1乃至第3の各部材は、共に多孔質部材から構成され、該多孔質部材は略3g/cm、好ましくは3.094g/cmの密度とすることを特徴とする。
請求項3記載の電磁弁は、請求項2記載の電磁弁において、上記各多孔質部材が、発泡金属、多孔質プラスチック、金属の糸を編んだメッシュ、又は、複数の孔を穿設した金属板からなることを特徴とする。
かかる請求項2及び請求項3の特徴により、騒音の発生が一層抑制される。
【0010】
請求項4記載の電磁弁は、請求項2又は請求項3記載の電磁弁において、上記多孔質部材に対して、冷媒の流入部又は/及び流出部が多孔質部材の当該面の略全面となるように構成したことを特徴とする。
請求項5記載の電磁弁は、請求項2乃至請求項4記載のいずれかの電磁弁において、上記多孔質部材の冷媒の流入面から流出面までの流路を長くしたことを特徴とする。
【0011】
かかる請求項4及び請求項5の特徴により、冷媒の多孔質部材内での通過幅が広くなり、耐久性やろ過・消音効果が大きくなる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【実施形態1】
先ず、実施形態1について、図1乃至図4に従って説明する。図1はその電磁弁の開状態の縦断面図、図2はその弁部の拡大図、図3は図2の弁部の分解断面図で、図3に記載の矢印は、各構成要素の組付け方向を示す。また、図4は閉状態の縦断面図である。なお、下記の説明において、図面との関係で上下左右の表現を用いるが、実際の位置関係はこれに限るものではない。また、各図中、矢印は冷媒の流れ方向を示している。
【0013】
本発明の電磁弁は、図1に示すように、弁本体1の内部に弁室10を有すると共に、弁本体1の上部には吸引子3の係止部3aを介して、一端を閉塞したパイプ部3bが装着されており、上記パイプ部3bの外周には電磁コイル2が装備され、パイプ部3bの内部には、吸引子3に対してパイプ部3bの長手方向に摺動自在に棒状の弁体4が設けられている。また、この電磁弁は、パイプ部3b内に、弁体4に連結されたプランジャ5と、弁本体1の下部開口端に設けた弁シート6と、吸引子3とプランジャ5との間に配設されたコイルスプリング7と、を備えている。なお、コイルスプリング7は、弁体4を弁シート6と反対方向の開弁方向に向って付勢する開弁用付勢手段である。
【0014】
上記パイプ部3bの外側には、図1に示すように、ボビン2aが嵌合装着され、ボビン2aの周囲には電磁コイル2が巻回され、ボビン2aはコイルケース8の内部に収容されている。上記ボビン2aには、図1に示すように、リード線2cが接続され、電磁コイル2はリード線2cを介して通電される。
【0015】
更に、コイルケース8の互いに対向する水平な上壁8a及び下壁8bには垂直な同一中心軸線上に沿って貫通孔8c及び貫通孔8dがそれぞれ設けられ、パイプ部3bが挿通されている。また、コイルケース8の上壁8aの上部には、図1に示すように、板金製の押圧係止部材9が配設され、該押圧係止部材9の一端には上方に向って直角に折曲した立上り部が形成され、該立上り部に上記パイプ部3bの係止凹部3dに係合する突起9aが形成されている。また、コイルケース8の上壁8aは、図1に示すように、リベット2bを介して押圧係止部材9に支持されている。
【0016】
また、弁本体1のパイプ部3bの上端寄りの内部には、図1に示すように、円筒状のプランジャ5が移動自在に配設され、プランジャ5の端壁には垂直な中心軸線上に沿って弁体4の小径部46を固定するための固定用孔5aが設けられている。なお、符号5bは均圧孔である。該固定用孔5aには、図1に示すように、下方より弁体4の小径部46が嵌入され、弁体4の小径部46の先端にカシメ止め加工を施すことにより、プランジャ5は弁体4の小径部46に連結されている。上記弁体4の外側には、図1に示すように、吸引子3とプランジャ5との間に開弁用のコイルスプリング7が配設され、プランジャ5はコイルスプリング7の付勢力により吸引子3と離間する方向に常時付勢されている。
【0017】
弁シート6には、図1に示すように、弁本体1の弁室10の内部に臨んで弁体4の離接する弁座部6aが形成され、弁シート6は弁本体1に溶接・固着されている。なお、弁本体1と弁シート6はステンレススチールよりなり、弁本体1及び弁シート6はプレス加工により成形されている。
【0018】
上記パイプ部3bの外周には、図1に示すように、電磁コイル2を収容するコイルケース8が装備され、コイルケース8に固定された押圧係止部材9が弁本体1のパイプ部3bに形成した係止凹部3dに係止され、コイルケース8が押圧係止部材9を介して弁本体1のパイプ部3bに固定されている。
【0019】
弁本体1を構成する円筒状の周壁1aの内部には、図1に示すように、弁室10が形成され、上記周壁1aには垂直な弁体4に沿った中心軸線と直交する方向にパイプ嵌合孔1bが設けられ、入口側パイプ1cが溶着されている。
また、上記周壁1aの下端は、弁シート6が装着される。該弁シート6は、パイプ状の弁座部6aと、該弁座部6aの下部に形成されたパイプ嵌合部6bと、該パイプ嵌合部6bの外周部に形成されたフランジ6cと、からなり、該フランジ6cの外周部に周壁1aが溶着される。
【0020】
また、上記周壁1aの上端には吸引子3が装着される。該吸引子3はその下部に段部3cが形成され、該段部3cの下部には弁本体1の周壁1aの上端が装着されている。また、前記吸引子3の上部外周に形成されている係止部3aにはパイプ部3bの下部が装着されている。また、このパイプ部3bの上端は閉塞されている。
【0021】
更に、上記弁シート6下部に形成されたパイプ嵌合部6bには出口側パイプ1dが溶着され、また、パイプ部3bの外周面には係止凹部3dが形成されている。また、上記吸引子3の下部には下部の弁室10に連通する凹部が形成されて上部弁室11を構成している。
【0022】
吸引子3には、図1に示すように、これを貫通する例えば真鍮製の棒状の弁体4がパイプ部3bの長手方向に沿って摺動自在に設けられ、弁体4の下端部には弁シート6の弁座部6aに離接する弁部40が形成され、弁体4の上端部には小径部46が形成されている。この小径部46がプランジャ5下部の固定用孔5aに嵌合・固定されることになる。
【0023】
弁部40には、図2又は図3に示すように、その上方の弁棒部分より径大に形成され、その段部となる肩部41が形成されると共にこれを介して円筒状の側壁部42が形成され、また、該側壁部42の内部には冷媒の通路となる径大孔43b及び該径大孔43bに連通する径小孔43cが形成される。
【0024】
そして、該径小孔43cに連通して横断面積が小さい孔、即ち、ブリード孔44が横方向(したがって、径小孔43cの軸線方向と直角方向)に形成される。前記ブリード孔44は両端部に入口側径大部44aが形成され、該入口側径大部44aを介して上部弁室11に開口している(図1の開弁状態参照)。但し、図4に示す閉弁状態においては、弁室10で開口する。また、径大孔43bには後述の案内部材60が嵌合される。なお、前記入口側径大部44aは、その下方に径大延設部44fが形成される。
【0025】
上記弁部40の肩部41の上部でブリード孔44の開口に臨ませて冷媒中の気泡を細分化する部材として第1の多孔質部材51が保持される。この第1の多孔質部材51は、上下に所定長さで均一径の円筒状物からなり、肩部41の上部に載置され、上記側壁部42の外周部に、図3に示すように、嵌合され支持される。なお、多孔質部材51とブリード孔44との間には、上下幅の大きい隙間(径大延設部44f)が形成されていることから、多孔質部材51内での冷媒の流路範囲が広がり、気泡の細粒化が促進される。
【0026】
また、上記径小孔43c内には、図2及び図3に示すように、気泡を細分化する第2の部材として円柱状の多孔質部材52が配置される。そして、この多孔質部材52の下部(下流側)には、後述の小気泡保持流路Dが設けられ、この小気泡保持流路Dの下部(下流側)に、後述のフランジ部63を介して第3の多孔質部材53が矢印のように配置される。
【0027】
即ち、図2及び図3に示すように、気泡を細分化する第3の部材として円柱状の多孔質部材53が径大孔43b内に後述の案内部材60の円筒部63aを介して矢印のように配置されている。この多孔質部材53は円筒部63aの下端にカシメられて(カシメ部65)支持されている。
【0028】
上記各多孔質部材51,52,53は、例えば、アキュームメッシュ(商品名.東亜鉄鋼株式会社製)を用いた場合は、略3g/cm、好ましくは3.094g/cmの密度で構成されている。本発明者らが試験を行った結果、その密度が上記のように、3.094g/cm程度の場合が、冷媒の流動抵抗が増大せず消音効果が充分得られることがわかったからである。
その他、このような密度の条件を満たせば、プラスチックやステンレス、真鍮等の金属の糸を編んでメッシュ状に所定の厚さに成形した金網部材或いは発泡金属を用いてもよい。なお、これらの多孔質部材の素材は後述の実施形態2においても同様である。
【0029】
上記のように、弁部40における径大孔43b内には、細分化気泡の状態を保持させるための小気泡保持流路Dが、図1乃至図3に示すように、案内環部材47及び案内部材60によって形成される。上記案内環部材47は所定厚みの環状部材からなり、その内面は下方程狭くなる漏斗状の入口側傾斜部47a、該入口側傾斜部47aに連続する均一内径の均一径部47b、及び、下方程拡くなる逆漏斗状の出口側傾斜部47cと、が上方から下方に順次形成されている。また、この案内環部材47は図1に示すように、下方から案内部材60(後述)によって支持される。
【0030】
また、上記案内部材60は、円盤状のフランジ部63と、該フランジ部63の軸心位置に立設された柱状部61と、該フランジ部63の外周部から下垂状態で一体に形成される円筒部63aとからなる。本実施形態では、円盤状のフランジ部63と該フランジ部63の外周部から下垂状態で一体に形成される円筒部63aとは、倒立したカップ状となっている。そして、上記フランジ部63には、図2及び図3に示すように、通孔64が柱状部61の周縁部に複数個、例えば4個形成されており、弁部40内の冷媒はこの通孔64から多孔質部材53を通じて、出口側パイプ1dに直接流出することになる。なお、符号65は円筒部63aの下端を側壁部42によりカシメ固定したカシメ部である。また、前記案内部材60に配置される柱状部61は、上面が半球状の円柱体からなり、上記均一径部47bの内面とは隙間(オリフィス)を形成させるために、僅かに小さい径として形成されている。
【0031】
したがって、上記案内環部材47と案内部材60との間にインデューサ部(前記下方程狭くなる漏斗状の入口側傾斜部47aと柱状部61の間)、均一流路面積のオリフィス部(前記均一内径の均一径部47bと柱状部61の間)、及び、ディフューザ部(前記下方程拡くなる逆漏斗状の出口側傾斜部47cと柱状部61の間)が連続空間として形成されることになる。
【0032】
そして、これらの間を流動する冷媒は、そのエネルギが比較的緩やかに速度エネルギに変換され、急激な収縮・膨張が行われないことから、冷媒内に気泡が含まれている場合にも、気泡の急激な成長(膨張)は発生しない。即ち、冷媒中に細分化された気泡があっても、大きく成長させないことから、これらの部分を本発明では、「小気泡保持流路D」と称する。
【0033】
次に、本発明の実施形態1の作用について説明する。
先ず、除湿運転について説明する。この電磁弁は、電磁コイル2に通電すると、吸引子3に電磁コイル2の通電により磁力が発生し、吸引子3がプランジャ5を下方に向って吸引し、プランジャ5が弁本体1のパイプ部3bの内部を吸引子3の吸引によりコイルスプリング7の付勢力に抗しながら下方に向って移動すると同時に、弁体4が吸引子3に案内されながらプランジャ5と共に弁シート6の弁座部6aに向って下方に移動し、図4に示すように、弁体4の弁部40が弁シート6の弁座部6aに密接し、電磁弁は閉弁状態となる。
【0034】
かかる閉弁状態において、入口側パイプ1cと、出口側パイプ1dとは、弁室10、上部弁室11、入口側径大部44a、ブリード孔44、径小孔43c、及び径大孔43bを介して連通する。そこで、所定冷凍サイクルの除湿運転時において、冷媒を入口側パイプ1cから流すと、弁体4にはブリード孔44が設けてあるので、絞り作用を受ける上記冷媒は分散され、冷媒の流量及び運動エネルギーが小さくなり、冷媒の流動音は低減される。しかも、絞り作用を受けて径小孔43cから出口側パイプ1dに流出する冷媒に気泡が発生しても、冷媒は気泡を細分化する部材として第1乃至第3の多孔質部材51,52,53を通過する際に、冷媒中の気泡は細分化され、気泡による冷媒の流動音が低減される。
【0035】
更に、本発明は前記小気泡保持流路Dが設けられ、細分化後の冷媒を通過させることから、細分化された気泡は、再び気泡が成長して大きくなることなく、第3多孔質部材53を通過する。このとき、更に冷媒中の気泡は細分化され、気泡による冷媒の流動音が低減される。そして、冷媒は出口側パイプ1dに流出して、上記冷凍サイクルにおいて除湿を行う。
【0036】
また、電磁コイル2への通電を遮断すると、吸引子3に磁力が発生せず、吸引子3は吸引力を失い、プランジャ5が弁本体1のパイプ部3bの内部をコイルスプリング7の付勢力により吸引子3と反対方向の上方に向って移動すると同時に、弁体4が吸引子3に案内されながらプランジャ5と共に上方に向って移動し、図1に示すように、弁部40が弁シート6の弁座部6aから離間し、電磁弁は開弁状態となって、流体が入口側パイプ1cから弁室10及び弁シート6の内部を通って出口側パイプ1dへと流出する。
【0037】
【実施形態2】
次に、実施形態2について説明する。図5は実施形態2に係る電磁弁の開状態の縦断面図、図6はその弁部の拡大図、図7は図6の弁部の分解断面図で、図7に記載の矢印は、各構成要素の組付け方向を示す。また、図8は同電磁弁の閉状態の縦断面図である。なお、実施形態2においては、実施形態1とは多孔質部材53を設ける位置が異なるが、他の構成は同一であるので、図1と同一部分には同一の符号を付して説明を省略する。
図5乃至図8に示す実施形態2は、図1乃至図4に示す実施形態1において、フランジ部63の位置を第3多孔質部材53の底部(下流側)に配置したもので、小気泡保持流路Dにおける案内部材60’を構成し、柱状部61の下部外周と案内環部47’に一体に形成された下部延出筒部47g(図7参照)との間の位置に多孔質部材53に設けた場合で、フランジ部63’は多孔質部材53の下流側に配置されている。なお、実施形態2においては、フランジ部63’に実施形態1のように円筒部63aは設けられておらず、第3多孔質部材53の外周部は上記下部延出筒部47gにより支持させている。そして、この場合においても、冷媒流動音を低減させることができる。
【0038】
かかる電磁弁においても、実施形態1と同じく電磁コイル2に通電すると図8に示す如く電磁弁は閉弁操作となる。かかる閉弁状態において、入口側パイプ1cと出口側パイプ1dとは、弁室10、上部弁室11、ブリード孔44、径小孔43c及び径大孔43bを介して連通する。
そこで、所定冷凍サイクルの除湿運転時において、冷媒を入口側パイプ1cから流すと冷媒中の大きな気泡は、第1の多孔質部材51及び第2の多孔質部材52を通過する際に細分化され、その細分化された状態で小気泡保持流路Dに流入し、更に、第3の多孔質部材53を通過して、気泡が細分化された状態のまま通孔64を介して出口側パイプ1dに流出する。
【0039】
即ち、冷媒は弁部40’内のブリード孔44等により分散され、しかも冷媒中の気泡は細分化されているので冷媒の流動音は低減される。そして冷媒は径大孔43b内の多孔質部材53を通過する際に更に細分化され、出口側パイプ1dに流出するので、気泡による冷媒流動音は低減される。
【0040】
なお、実施形態2において、多孔質部材53として実施形態1と同様に発泡金属、多孔質プラスチック又はアキュームメッシュ等を用いることができるのは勿論である。さらには、真鍮、ステンレス材等の金属板に所定数の貫通穴を形成したものを用いることができる。
【0041】
かかる構成の実施形態2によれば、実施形態1と同様の作用効果が得られる。
【0042】
【発明の効果】
本発明によれば、冷媒中の気泡を細分化する密度の多孔質部材を弁体に設けたことにより、冷媒の流動音を低減し、騒音を抑制することができる。
【図面の簡単な説明】
【図1】実施形態1に係る電磁弁の開状態の縦断面図。
【図2】図1の電磁弁の弁部の拡大図。
【図3】図2の弁部の分解断面図。
【図4】実施形態1に係る電磁弁の閉状態の縦断面図。
【図5】実施形態2に係る電磁弁の開状態の縦断面図。
【図6】図5の電磁弁の弁部の拡大図。
【図7】図6の弁部の分解断面図。
【図8】実施形態2に係る電磁弁の閉状態の縦断面図。
【符号の説明】
D・・(細分化気泡の状態の)小気泡保持流路
1・・弁本体 1a・・周壁 1b・・パイプ嵌合孔
1c・・入口側パイプ 1d・・出口側パイプ
2・・電磁コイル 2a・・ボビン 2b・・リベット 2c・・リード線
3・・吸引子 3a・・係止部 3b・・パイプ部
3c・・段部 3d・・係止凹部 4・・弁体
5・・プランジャ 5a・・固定用孔 5b・・均圧孔
6・・弁シート 6a・・弁座部 6b・・パイプ嵌合部 6c・・フランジ
7・・コイルスプリング
8・・コイルケース 8a・・上壁 8b・・下壁
8c・・貫通孔 8d・・貫通孔
9・・押圧係止部材 9a・・突起
10・・弁室 11・・上部弁室
40,40’・・弁部 41・・肩部
42・・側壁部 42a・・カシメ部
43b・・径大孔(通路) 43c・・径小孔(通路)
44・・ブリード孔(孔) 44a・・入口側径大部 44f・・径大延設部
46・・小径部 47,47’・・案内環部材 47a・・入口側傾斜部
47b・・均一径部 47c・・出口側傾斜部 47d・・出口側径大部
47f・・入口側径大部 47g・・下部延出筒部
51・・多孔質部材(第1の部材)
52・・多孔質部材(第2の部材) 53・・多孔質部材(第3の部材)
60,60’・・案内部材 61・・柱状部 63,63’・・フランジ
部 63a・・円筒部 64・・通孔 65・・カシメ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic valve used for an air conditioner or the like.
[0002]
[Prior art]
Conventionally, a solenoid coil is provided around the plunger tube provided in the valve body, and a movable suction element is provided on the valve body side in the plunger tube, and a plunger is provided on the other side, and is energized by a valve opening spring between the movable suction element and the plunger. There is known a closed solenoid valve when energized in which a plunger and a valve body are connected by caulking in a state.
[0003]
When such a conventional solenoid valve is used in an air conditioner that performs a dehumidifying operation in a refrigeration cycle, a hole is provided in the valve body as a throttle for the dehumidifying operation. However, when a hole is provided in the valve body, there is a case where a refrigerant flow noise is generated due to the throttling action, and when it is generated, there is a problem that noise is generated.
[0004]
Therefore, a technique for reducing this noise is disclosed in Patent Document 1 below. This patent document 1 discloses a throttling device used as a throttling valve for dehumidification in an air conditioner having a dehumidifying mode, which can reduce the refrigerant passing sound in the throttling passage and maintain the dehumidifying operation performance even for a long period of use. The device is shown. However, even in this apparatus, the current situation is that the expected effect of reducing the refrigerant passing sound is not achieved.
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-310540
[Problems to be solved by the invention]
Accordingly, the present inventors have developed a technique for the purpose of further reducing the refrigerant passing sound while taking the above-mentioned conventional techniques into consideration, and the present invention integrates a member for subdividing bubbles into a valve body. It is an object to provide an electromagnetic valve that is assembled and further prevents the generation of noise by further reducing the refrigerant flow noise by preventing the fragmented bubbles from growing greatly again. It is another object of the present invention to provide an electromagnetic valve that can further reduce refrigerant flow noise by forming a member for subdividing bubbles with a high-density porous member.
Another object of the present invention is to provide an electromagnetic valve that can further reduce refrigerant flow noise by lengthening the refrigerant flow path in the porous member.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the solenoid valve according to the present invention has the following means. That is,
The electromagnetic valve according to claim 1 is an electromagnetic valve that opens and closes the valve body by bringing the valve body into and out of contact with the valve seat portion by means of an electromagnetic coil. A passage that communicates is provided, a first member that subdivides the bubbles is provided on the inflow side of the hole, and a second member that subdivides the bubbles is provided in the passage. A flow path for maintaining the state of the subdivided bubbles is formed on the refrigerant outflow side, and a third member for subdividing the bubbles is disposed on the downstream side of the flow path. Each of the members 3 is composed of a cylindrical body or a columnar body having a uniform diameter.
[0008]
Due to this feature, the bubbles in the refrigerant can be subdivided by the member that subdivides the bubbles, and the flow path that maintains the state of the subdivided bubbles is formed. An electromagnetic valve capable of preventing the occurrence can be realized. Further, the refrigerant flow noise is further suppressed by lowering the flow rate of the refrigerant while maintaining the state of the fragmented bubbles. Since the first to third members are all formed of a cylindrical body having a uniform diameter, manufacture and maintenance of the first to third members are facilitated.
[0009]
The electromagnetic valve according to claim 2 is the electromagnetic valve according to claim 1, wherein each of the first to third members is composed of a porous member, and the porous member is approximately 3 g / cm 3 , preferably 3 The density is 0.094 g / cm 3 .
The electromagnetic valve according to claim 3 is the electromagnetic valve according to claim 2, wherein each of the porous members is made of foam metal, porous plastic, a mesh knitted with metal thread, or a metal having a plurality of holes. It consists of a board.
Due to the features of the second and third aspects, the generation of noise is further suppressed.
[0010]
The solenoid valve according to claim 4 is the solenoid valve according to claim 2 or claim 3, wherein the inflow portion or / and the outflow portion of the refrigerant is substantially the entire surface of the porous member with respect to the porous member. It is characterized by comprising.
According to a fifth aspect of the present invention, in the electromagnetic valve according to any one of the second to fourth aspects, the flow path from the refrigerant inflow surface to the outflow surface of the porous member is lengthened.
[0011]
According to the features of the fourth and fifth aspects, the passage width of the refrigerant in the porous member is widened, and the durability and the filtering / silencing effect are increased.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1
First, the first embodiment will be described with reference to FIGS. 1 is a longitudinal sectional view of the solenoid valve in an open state, FIG. 2 is an enlarged view of the valve portion, FIG. 3 is an exploded sectional view of the valve portion of FIG. 2, and the arrows in FIG. Indicates the assembly direction. FIG. 4 is a longitudinal sectional view in a closed state. In the following description, vertical and horizontal expressions are used in relation to the drawings, but the actual positional relationship is not limited to this. Moreover, in each figure, the arrow has shown the flow direction of the refrigerant | coolant.
[0013]
As shown in FIG. 1, the solenoid valve of the present invention has a valve chamber 10 inside the valve body 1, and one end is closed on the upper part of the valve body 1 via a locking portion 3 a of the suction element 3. A pipe portion 3b is mounted, and an electromagnetic coil 2 is provided on the outer periphery of the pipe portion 3b. Inside the pipe portion 3b, a rod-like shape is slidable with respect to the attractor 3 in the longitudinal direction of the pipe portion 3b. The valve body 4 is provided. In addition, this electromagnetic valve is arranged in the pipe portion 3b between the plunger 5 connected to the valve body 4, the valve seat 6 provided at the lower opening end of the valve body 1, and the suction element 3 and the plunger 5. And a coil spring 7 provided. The coil spring 7 is valve opening urging means that urges the valve body 4 in the valve opening direction opposite to the valve seat 6.
[0014]
As shown in FIG. 1, a bobbin 2 a is fitted on the outside of the pipe portion 3 b, the electromagnetic coil 2 is wound around the bobbin 2 a, and the bobbin 2 a is accommodated inside the coil case 8. Yes. As shown in FIG. 1, a lead wire 2c is connected to the bobbin 2a, and the electromagnetic coil 2 is energized via the lead wire 2c.
[0015]
Further, the horizontal upper wall 8a and the lower wall 8b facing each other of the coil case 8 are respectively provided with a through hole 8c and a through hole 8d along the same vertical axis, and the pipe portion 3b is inserted therethrough. Further, as shown in FIG. 1, a press locking member 9 made of sheet metal is disposed on the upper portion of the upper wall 8 a of the coil case 8, and one end of the press locking member 9 is directed upward at a right angle. A bent rising portion is formed, and a protrusion 9a that engages with the locking recess 3d of the pipe portion 3b is formed on the rising portion. Further, as shown in FIG. 1, the upper wall 8a of the coil case 8 is supported by the press locking member 9 via the rivet 2b.
[0016]
As shown in FIG. 1, a cylindrical plunger 5 is movably disposed inside the pipe body 3b near the upper end of the valve body 1, and the end wall of the plunger 5 is on a vertical central axis. A fixing hole 5a for fixing the small diameter portion 46 of the valve body 4 is provided along the same. Reference numeral 5b is a pressure equalizing hole. As shown in FIG. 1, a small diameter portion 46 of the valve body 4 is fitted into the fixing hole 5 a from below, and the distal end of the small diameter portion 46 of the valve body 4 is subjected to crimping processing so that the plunger 5 The small diameter part 46 of the body 4 is connected. As shown in FIG. 1, a coil spring 7 for valve opening is disposed outside the valve body 4 between the suction element 3 and the plunger 5, and the plunger 5 is attracted by the biasing force of the coil spring 7. 3 is always energized in a direction away from 3.
[0017]
As shown in FIG. 1, the valve seat 6 is formed with a valve seat portion 6 a that faces the inside of the valve chamber 10 of the valve body 1 and contacts the valve body 4, and the valve seat 6 is welded and fixed to the valve body 1. Has been. The valve body 1 and the valve seat 6 are made of stainless steel, and the valve body 1 and the valve seat 6 are formed by pressing.
[0018]
As shown in FIG. 1, a coil case 8 that accommodates the electromagnetic coil 2 is provided on the outer periphery of the pipe portion 3 b, and a press locking member 9 fixed to the coil case 8 is attached to the pipe portion 3 b of the valve body 1. The coil case 8 is fixed to the pipe portion 3b of the valve main body 1 through the press locking member 9 by being locked in the formed locking recess 3d.
[0019]
As shown in FIG. 1, a valve chamber 10 is formed inside a cylindrical peripheral wall 1 a constituting the valve body 1, and the peripheral wall 1 a is perpendicular to a central axis along a vertical valve body 4. A pipe fitting hole 1b is provided, and the inlet side pipe 1c is welded.
A valve seat 6 is attached to the lower end of the peripheral wall 1a. The valve seat 6 includes a pipe-shaped valve seat portion 6a, a pipe fitting portion 6b formed at a lower portion of the valve seat portion 6a, a flange 6c formed at an outer peripheral portion of the pipe fitting portion 6b, The peripheral wall 1a is welded to the outer peripheral portion of the flange 6c.
[0020]
A suction element 3 is attached to the upper end of the peripheral wall 1a. The suction element 3 is formed with a step portion 3c at the lower portion thereof, and the upper end of the peripheral wall 1a of the valve body 1 is attached to the lower portion of the step portion 3c. A lower portion of the pipe portion 3b is attached to a locking portion 3a formed on the outer periphery of the upper portion of the suction element 3. Moreover, the upper end of this pipe part 3b is obstruct | occluded.
[0021]
Further, an outlet side pipe 1d is welded to the pipe fitting portion 6b formed at the lower part of the valve seat 6, and a locking recess 3d is formed on the outer peripheral surface of the pipe portion 3b. A concave portion communicating with the lower valve chamber 10 is formed in the lower portion of the suction element 3 to constitute an upper valve chamber 11.
[0022]
As shown in FIG. 1, the suction element 3 is provided with a rod-like valve body 4 made of, for example, brass that passes through the suction element 3 so as to be slidable along the longitudinal direction of the pipe portion 3 b. A valve portion 40 is formed so as to be separated from and in contact with the valve seat portion 6 a of the valve seat 6, and a small diameter portion 46 is formed at the upper end portion of the valve body 4. The small-diameter portion 46 is fitted and fixed in the fixing hole 5a below the plunger 5.
[0023]
As shown in FIG. 2 or FIG. 3, the valve portion 40 is formed with a diameter larger than the valve stem portion above it, and a shoulder portion 41 is formed as a step portion thereof, and a cylindrical side wall is formed therethrough. A portion 42 is formed, and a large-diameter hole 43b serving as a refrigerant passage and a small-diameter hole 43c communicating with the large-diameter hole 43b are formed in the side wall portion 42.
[0024]
Then, a hole having a small cross-sectional area communicating with the small-diameter hole 43c, that is, a bleed hole 44 is formed in the lateral direction (therefore, the direction perpendicular to the axial direction of the small-diameter hole 43c). The bleed hole 44 has an inlet side large diameter portion 44a formed at both ends, and opens into the upper valve chamber 11 via the inlet side large diameter portion 44a (see the valve opening state in FIG. 1). However, in the valve closing state shown in FIG. A guide member 60 described later is fitted into the large-diameter hole 43b. The inlet side large diameter portion 44a has a large diameter extending portion 44f formed therebelow.
[0025]
The first porous member 51 is held as a member that subdivides the bubbles in the refrigerant by facing the opening of the bleed hole 44 at the upper portion of the shoulder portion 41 of the valve portion 40. The first porous member 51 is made of a cylindrical material having a predetermined length in the vertical direction and a uniform diameter, is placed on the upper portion of the shoulder portion 41, and on the outer peripheral portion of the side wall portion 42 as shown in FIG. , Fitted and supported. In addition, since a gap with a large vertical width (large diameter extending portion 44f) is formed between the porous member 51 and the bleed hole 44, the refrigerant flow range in the porous member 51 is limited. Spreads and promotes finer bubbles.
[0026]
In addition, as shown in FIGS. 2 and 3, a cylindrical porous member 52 is disposed in the small-diameter hole 43c as a second member for subdividing the bubbles. A small bubble holding channel D, which will be described later, is provided at the lower part (downstream side) of the porous member 52, and a flange part 63, which will be described later, is provided at the lower part (downstream side) of the small bubble holding channel D. The third porous member 53 is arranged as shown by an arrow.
[0027]
That is, as shown in FIG. 2 and FIG. 3, a cylindrical porous member 53 as a third member for subdividing the bubbles is inserted into the large-diameter hole 43b through the cylindrical portion 63a of the guide member 60 described later. Are arranged as follows. The porous member 53 is supported by being caulked at the lower end of the cylindrical portion 63a (caulking portion 65).
[0028]
Each of the porous members 51, 52, and 53 is configured to have a density of about 3 g / cm 3 , preferably 3.094 g / cm 3 , for example, when an accumulating mesh (trade name, manufactured by Toa Iron & Steel Co., Ltd.) is used. Has been. As a result of the tests conducted by the present inventors, it was found that when the density was about 3.094 g / cm 3 as described above, the flow resistance of the refrigerant did not increase and a sufficient silencing effect was obtained. .
In addition, if the density condition is satisfied, a metal net member or a foam metal formed by knitting a metal thread such as plastic, stainless steel, brass or the like to have a predetermined thickness in a mesh shape may be used. In addition, the material of these porous members is the same also in Embodiment 2 described later.
[0029]
As described above, in the large-diameter hole 43b in the valve portion 40, the small bubble holding channel D for holding the state of the subdivided bubbles is formed as shown in FIGS. It is formed by the guide member 60. The guide ring member 47 is formed of an annular member having a predetermined thickness, and the inner surface of the guide ring member 47 has a funnel-like inlet-side inclined portion 47a that narrows downward, a uniform-diameter portion 47b having a uniform inner diameter continuous to the inlet-side inclined portion 47a, and A reverse funnel-shaped outlet-side inclined portion 47c that gradually expands is formed sequentially from the upper side to the lower side. The guide ring member 47 is supported by a guide member 60 (described later) from below as shown in FIG.
[0030]
The guide member 60 is integrally formed in a disk-like flange portion 63, a columnar portion 61 erected at the axial center position of the flange portion 63, and a suspended state from the outer peripheral portion of the flange portion 63. It consists of a cylindrical part 63a. In the present embodiment, the disc-shaped flange portion 63 and the cylindrical portion 63a integrally formed in a suspended state from the outer peripheral portion of the flange portion 63 are in an inverted cup shape. As shown in FIGS. 2 and 3, a plurality of, for example, four through holes 64 are formed in the peripheral portion of the columnar portion 61 in the flange portion 63, and the refrigerant in the valve portion 40 passes through this passage portion 64. From the hole 64, it flows directly to the outlet side pipe 1d through the porous member 53. Reference numeral 65 denotes a caulking portion in which the lower end of the cylindrical portion 63 a is caulked and fixed by the side wall portion 42. Further, the columnar portion 61 disposed on the guide member 60 is formed of a cylindrical body having a hemispherical upper surface, and has a slightly smaller diameter so as to form a gap (orifice) with the inner surface of the uniform diameter portion 47b. Has been.
[0031]
Therefore, between the guide ring member 47 and the guide member 60, an inducer (between the funnel-shaped inlet-side inclined part 47a and the columnar part 61 that narrows downward), an orifice having a uniform flow area (the uniform part). (Between the uniform diameter portion 47b of the inner diameter and the columnar portion 61) and the diffuser portion (between the reverse funnel-shaped outlet side inclined portion 47c and the columnar portion 61 expanding toward the lower side) are formed as continuous spaces. Become.
[0032]
The refrigerant flowing between them is converted into velocity energy relatively slowly and does not undergo rapid contraction / expansion. Therefore, even when bubbles are included in the refrigerant, Rapid growth (expansion) does not occur. That is, even if there are subdivided bubbles in the refrigerant, they do not grow greatly, so these portions are referred to as “small bubble holding channels D” in the present invention.
[0033]
Next, the operation of Embodiment 1 of the present invention will be described.
First, the dehumidifying operation will be described. When this electromagnetic valve is energized to the electromagnetic coil 2, a magnetic force is generated in the attractor 3 by energization of the electromagnetic coil 2, the attractor 3 attracts the plunger 5 downward, and the plunger 5 is a pipe portion of the valve body 1. 3b is moved downward while resisting the urging force of the coil spring 7 by suction of the suction element 3, and at the same time, the valve body 4 is guided by the suction element 3 and the valve seat portion 6a of the valve seat 6 together with the plunger 5. As shown in FIG. 4, the valve portion 40 of the valve body 4 is in close contact with the valve seat portion 6a of the valve seat 6, and the electromagnetic valve is closed.
[0034]
In such a closed state, the inlet side pipe 1c and the outlet side pipe 1d include the valve chamber 10, the upper valve chamber 11, the inlet side large diameter portion 44a, the bleed hole 44, the small diameter hole 43c, and the large diameter hole 43b. Communicate through. Therefore, during the dehumidifying operation of the predetermined refrigeration cycle, if the refrigerant is flowed from the inlet side pipe 1c, the bleed hole 44 is provided in the valve body 4, so that the refrigerant subjected to the throttling action is dispersed, and the flow rate and motion of the refrigerant Energy is reduced and the flow noise of the refrigerant is reduced. In addition, even if bubbles are generated in the refrigerant that flows out from the small-diameter hole 43c to the outlet-side pipe 1d due to the squeezing action, the refrigerant is the first to third porous members 51, 52, When passing through 53, the bubbles in the refrigerant are subdivided, and the flow noise of the refrigerant due to the bubbles is reduced.
[0035]
Further, in the present invention, since the small bubble holding channel D is provided and the subdivided refrigerant is allowed to pass therethrough, the subdivided bubble does not grow and become large again, and the third porous member Pass through 53. At this time, the bubbles in the refrigerant are further subdivided, and the flow noise of the refrigerant due to the bubbles is reduced. Then, the refrigerant flows out to the outlet side pipe 1d and performs dehumidification in the refrigeration cycle.
[0036]
Further, when the energization to the electromagnetic coil 2 is interrupted, no magnetic force is generated in the attractor 3, the attractor 3 loses the attracting force, and the plunger 5 urges the inside of the pipe portion 3 b of the valve body 1 by the coil spring 7. As a result, the valve body 4 moves upward together with the plunger 5 while being guided by the suction element 3, and as shown in FIG. 6, the solenoid valve is opened, and the fluid flows from the inlet side pipe 1 c through the valve chamber 10 and the valve seat 6 to the outlet side pipe 1 d.
[0037]
Embodiment 2
Next, Embodiment 2 will be described. 5 is a longitudinal sectional view of the electromagnetic valve according to the second embodiment in an open state, FIG. 6 is an enlarged view of the valve portion, FIG. 7 is an exploded sectional view of the valve portion of FIG. 6, and the arrows shown in FIG. The assembly direction of each component is shown. FIG. 8 is a longitudinal sectional view of the electromagnetic valve in a closed state. In the second embodiment, the position where the porous member 53 is provided is different from that in the first embodiment, but the other components are the same, so the same parts as those in FIG. To do.
The second embodiment shown in FIGS. 5 to 8 is the same as the first embodiment shown in FIGS. 1 to 4 except that the position of the flange 63 is arranged at the bottom (downstream side) of the third porous member 53. The guide member 60 ′ in the holding channel D is configured, and is porous at a position between the lower outer periphery of the columnar part 61 and the lower extension cylinder part 47g (see FIG. 7) formed integrally with the guide ring part 47 ′. When provided in the member 53, the flange portion 63 ′ is disposed on the downstream side of the porous member 53. In the second embodiment, the cylindrical portion 63a is not provided in the flange portion 63 ′ as in the first embodiment, and the outer peripheral portion of the third porous member 53 is supported by the lower extending cylindrical portion 47g. Yes. In this case also, the refrigerant flow noise can be reduced.
[0038]
Also in this solenoid valve, when the electromagnetic coil 2 is energized as in the first embodiment, the solenoid valve is closed as shown in FIG. In such a valve-closed state, the inlet side pipe 1c and the outlet side pipe 1d communicate with each other through the valve chamber 10, the upper valve chamber 11, the bleed hole 44, the small diameter hole 43c, and the large diameter hole 43b.
Therefore, during the dehumidifying operation of the predetermined refrigeration cycle, when the refrigerant is caused to flow from the inlet side pipe 1c, large bubbles in the refrigerant are subdivided when passing through the first porous member 51 and the second porous member 52. In the subdivided state, the gas flows into the small bubble holding flow path D, passes through the third porous member 53, and the outlet side pipe passes through the through hole 64 while the bubbles are subdivided. It flows out to 1d.
[0039]
That is, the refrigerant is dispersed by the bleed holes 44 in the valve portion 40 'and the bubbles in the refrigerant are subdivided, so that the flow noise of the refrigerant is reduced. And since a refrigerant | coolant is further subdivided when passing the porous member 53 in the large diameter hole 43b, and flows out into the exit side pipe 1d, the refrigerant | coolant flow noise by a bubble is reduced.
[0040]
In the second embodiment, it is needless to say that foamed metal, porous plastic, or accumulator mesh can be used as the porous member 53 as in the first embodiment. Furthermore, what formed the predetermined number of through-holes in metal plates, such as a brass and a stainless steel material, can be used.
[0041]
According to the second embodiment having such a configuration, the same effects as those of the first embodiment can be obtained.
[0042]
【The invention's effect】
According to the present invention, by providing the valve body with a porous member having a density for subdividing the bubbles in the refrigerant, the flow noise of the refrigerant can be reduced and noise can be suppressed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an electromagnetic valve according to a first embodiment in an open state.
FIG. 2 is an enlarged view of a valve portion of the solenoid valve of FIG.
3 is an exploded cross-sectional view of the valve portion of FIG.
FIG. 4 is a longitudinal sectional view of the electromagnetic valve according to the first embodiment in a closed state.
5 is a longitudinal sectional view of an electromagnetic valve according to a second embodiment in an open state. FIG.
6 is an enlarged view of a valve portion of the solenoid valve of FIG.
7 is an exploded cross-sectional view of the valve portion of FIG.
FIG. 8 is a longitudinal sectional view of a solenoid valve according to a second embodiment in a closed state.
[Explanation of symbols]
D ··· Small bubble holding channel 1 (in the form of subdivided bubbles) ·· Valve body 1a · · Peripheral wall 1b · · Pipe fitting hole 1c · · Inlet side pipe 1d · · Outlet side pipe 2 · · Electromagnetic coil 2a · · Bobbin 2b · · Rivet 2c · · Lead wire 3 · · Suction element 3a · · Locking portion 3b · · Pipe portion 3c · · Step portion 3d · · Locking recess 4 · · Valve body 5 · · Plunger 5a ·・ Fixing hole 5b ・ ・ Equal pressure hole 6 ・ ・ Valve seat 6a ・ ・ Valve seat 6b ・ ・ Pipe fitting part 6c ・ ・ Flange 7 ・ ・ Coil spring 8 ・ ・ Coil case 8a ・ ・ Upper wall 8b ・ ・Lower wall 8c ・ ・ Through hole 8d ・ ・ Through hole 9 ・ ・ Pressure locking member 9a ・ ・ Protrusion 10 ・ ・ Valve chamber 11 ・ ・ Upper valve chamber 40 and 40 '・ ・ Valve portion 41 ・ ・ Shoulder portion 42 ・ ・Side wall part 42a ·· Caulking part 43b · · Large diameter hole (passage) 43c · · Small diameter hole (passage)
44 ·· Bleed hole (hole) 44a ·· Inlet side large diameter portion 44f ·· Large diameter extended portion 46 ·· Small diameter portion 47, 47 '·· Guide ring member 47a ·· Inlet side inclined portion 47b ·· Uniform diameter Portion 47c ··· Outlet side inclined portion 47d · · · Outlet side diameter large portion 47f · · Entrance side large diameter portion 47g · · Lower extension tube portion 51 · · Porous member (first member)
52 .. Porous member (second member) 53 .. Porous member (third member)
60, 60 '... Guide member 61 ... Column 63, 63' ... Flange 63a ... Cylindrical part 64 ... Through hole 65 ... Caulking part

Claims (5)

電磁コイルにより弁体を弁座部に対して接離させることにより弁の開閉を行う電磁弁において、上記弁体にはその冷媒流入側に孔とこの孔に連通する通路が設けられると共に、前記孔の流入側に気泡を細分化する第1の部材が設けられ、且つ、前記通路内に気泡を細分化する第2の部材が設けられ、更に、前記通路の冷媒流出側には、細分化された気泡の状態を保持させる流路が形成されると共に、該流路の下流側に気泡を細分化する第3の部材が配置され、上記第1乃至第3の部材はいずれも均一径の筒状体又は柱状体から構成されていることを特徴とする電磁弁。In the solenoid valve that opens and closes the valve by moving the valve body toward and away from the valve seat by the electromagnetic coil, the valve body is provided with a hole on the refrigerant inflow side and a passage communicating with the hole, A first member for subdividing the bubbles is provided on the inflow side of the hole, and a second member for subdividing the bubbles is provided in the passage. Further, the subtraction is provided on the refrigerant outflow side of the passage. And a third member for subdividing the bubbles is disposed on the downstream side of the flow channel, and each of the first to third members has a uniform diameter. An electromagnetic valve comprising a cylindrical body or a columnar body. 第1乃至第3の各部材は、共に多孔質部材から構成され、該多孔質部材は略3g/cm、好ましくは3.094g/cmの密度とすることを特徴とする請求項1記載の電磁弁。The first to third members, both formed of a porous member, the porous member is substantially 3 g / cm 3, preferably claim 1, wherein that the density of 3.094g / cm 3 Solenoid valve. 上記各多孔質部材が、発泡金属、多孔質プラスチック、金属の糸を編んだメッシュ、又は、複数の孔を穿設した金属板からなることを特徴とする請求項2記載の電磁弁。3. The solenoid valve according to claim 2, wherein each of the porous members is made of foam metal, porous plastic, a mesh knitted from metal thread, or a metal plate having a plurality of holes. 上記多孔質部材に対して、冷媒の流入部又は/及び流出部が多孔質部材の当該面の略全面となるように構成したことを特徴とする請求項2又は請求項3記載の電磁弁。4. The solenoid valve according to claim 2, wherein the inflow portion and / or the outflow portion of the refrigerant is substantially the entire surface of the porous member with respect to the porous member. 上記多孔質部材の冷媒の流入面から流出面までの流路を長くしたことを特徴とする請求項2乃至請求項4記載のいずれかの電磁弁。5. The solenoid valve according to claim 2, wherein a flow path from the refrigerant inflow surface to the outflow surface of the porous member is elongated.
JP2003189780A 2003-07-01 2003-07-01 solenoid valve Expired - Fee Related JP4197470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189780A JP4197470B2 (en) 2003-07-01 2003-07-01 solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189780A JP4197470B2 (en) 2003-07-01 2003-07-01 solenoid valve

Publications (2)

Publication Number Publication Date
JP2005024161A true JP2005024161A (en) 2005-01-27
JP4197470B2 JP4197470B2 (en) 2008-12-17

Family

ID=34187885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189780A Expired - Fee Related JP4197470B2 (en) 2003-07-01 2003-07-01 solenoid valve

Country Status (1)

Country Link
JP (1) JP4197470B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061694A (en) * 2003-08-08 2005-03-10 Daikin Ind Ltd Refrigerant control valve
JP2012177470A (en) * 2011-01-31 2012-09-13 Saginomiya Seisakusho Inc Throttle valve device
EP2821737A1 (en) * 2013-07-01 2015-01-07 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
JP2019128001A (en) * 2018-01-25 2019-08-01 株式会社不二工機 Flow rate regulation valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310540A (en) * 2001-04-12 2002-10-23 Saginomiya Seisakusho Inc Restrictor and air conditioner
JP2002323273A (en) * 2001-04-26 2002-11-08 Daikin Ind Ltd Expansion valve and air conditioner
JP2004293797A (en) * 2003-02-06 2004-10-21 Saginomiya Seisakusho Inc Throttle valve device and air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310540A (en) * 2001-04-12 2002-10-23 Saginomiya Seisakusho Inc Restrictor and air conditioner
JP2002323273A (en) * 2001-04-26 2002-11-08 Daikin Ind Ltd Expansion valve and air conditioner
JP2004293797A (en) * 2003-02-06 2004-10-21 Saginomiya Seisakusho Inc Throttle valve device and air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061694A (en) * 2003-08-08 2005-03-10 Daikin Ind Ltd Refrigerant control valve
JP2012177470A (en) * 2011-01-31 2012-09-13 Saginomiya Seisakusho Inc Throttle valve device
EP2821737A1 (en) * 2013-07-01 2015-01-07 Liebherr-Hausgeräte Ochsenhausen GmbH Refrigeration and/or freezer device
JP2019128001A (en) * 2018-01-25 2019-08-01 株式会社不二工機 Flow rate regulation valve
WO2019146345A1 (en) * 2018-01-25 2019-08-01 株式会社不二工機 Flow regulating valve

Also Published As

Publication number Publication date
JP4197470B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
CN104653842A (en) On-off valve
JP2014059063A (en) Throttle valve device
JPS59147177A (en) Pilot operation type pressure operating valve
JP3490640B2 (en) Aperture device
JP4465128B2 (en) Expansion valve and air conditioner
JP4197470B2 (en) solenoid valve
JP2017129212A (en) Flow regulating valve
JP4071451B2 (en) Throttle device and air conditioner
JP2009144893A (en) Flow rate control valve
JP2003156269A (en) Solenoid valve
JP2018021717A (en) Expansion valve
JP2005003114A (en) Solenoid valve
JP4270952B2 (en) Flow control valve
JP2004360708A (en) Solenoid valve
JP4326903B2 (en) Flow control valve
JP4077340B2 (en) Throttle valve device and air conditioner
JP2005331153A (en) Throttle valve device and air conditioner
JP2005331154A (en) Throttle valve device and air conditioner
JP2004003793A (en) Throttle valve device and air conditioner
CN101865323A (en) Electromagnetic valve
JP2006242046A (en) Fuel injection valve
JP2006200552A (en) Check valve
JP2005024022A (en) Fluid pressure control valve
JP5627631B2 (en) Throttle valve device
JP4152209B2 (en) Solenoid valve for air conditioner

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees