JP2005331153A - Throttle valve device and air conditioner - Google Patents

Throttle valve device and air conditioner Download PDF

Info

Publication number
JP2005331153A
JP2005331153A JP2004149242A JP2004149242A JP2005331153A JP 2005331153 A JP2005331153 A JP 2005331153A JP 2004149242 A JP2004149242 A JP 2004149242A JP 2004149242 A JP2004149242 A JP 2004149242A JP 2005331153 A JP2005331153 A JP 2005331153A
Authority
JP
Japan
Prior art keywords
valve
throttle
inlet
outlet port
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149242A
Other languages
Japanese (ja)
Inventor
Mitsuo Sugita
三男 杉田
Osamu Sugano
治 菅野
Takayuki Iriko
隆之 入子
Hisayuki Ashizawa
久幸 芦澤
Yoshio Maruyama
美穂 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2004149242A priority Critical patent/JP2005331153A/en
Priority to CN2005100727712A priority patent/CN100406791C/en
Publication of JP2005331153A publication Critical patent/JP2005331153A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Details Of Valves (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce noise, by reducing vibration itself generated in a throttle part in a throttle valve device. <P>SOLUTION: A shock absorbing member 26 and a throttle member 28 are arranged in series when viewing a fluid flow flowing in a passage, in the passage for communicating and connecting a first inlet-outlet port 12 with a second inlet-outlet port 13 in a state of closing a valve element 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、絞り弁装置および空気調和機に関し、特に、除湿モードを有する空気調和機で除湿用絞り弁として使用される絞り弁装置および空気調和機に関するものである。   The present invention relates to a throttle valve device and an air conditioner, and more particularly to a throttle valve device and an air conditioner used as a dehumidifying throttle valve in an air conditioner having a dehumidifying mode.

除湿運転を行える空気調和機として、室内熱交換器が2分割され、その2個の室内熱交換器間に、弁閉状態で絞り弁となる絞り弁装置(除湿用絞り弁、サイクルドライ弁)が設けられ、除湿運転時には、弁閉して絞り弁として作用する絞り弁装置の絞り通路を冷媒が流れることにより、2分割された室内熱交換器のうちの上流側の室内熱交換器を凝縮器、下流側の室内熱交換器を蒸発器とし、室内空気に対して下流側の室内熱交換器によって冷却・除湿を行い、上流側の室内熱交換器によって加熱を行い、空気温度を下げずに除湿を行うことができる除湿モード付きの空気調和機が知られている(例えば、特許文献1)。   As an air conditioner capable of dehumidifying operation, an indoor heat exchanger is divided into two, and a throttle valve device (dehumidifying throttle valve, cycle dry valve) that functions as a throttle valve when the valve is closed between the two indoor heat exchangers When the dehumidifying operation is performed, the refrigerant flows through the throttle passage of the throttle valve device that functions as a throttle valve by closing the valve, thereby condensing the indoor heat exchanger on the upstream side of the indoor heat exchanger divided into two The downstream indoor heat exchanger is an evaporator, and the indoor air is cooled and dehumidified by the downstream indoor heat exchanger, heated by the upstream indoor heat exchanger, and the air temperature is not lowered. An air conditioner with a dehumidifying mode capable of performing dehumidification is known (for example, Patent Document 1).

上述のような空気調和機では、除湿運転時に、サイクルドライ用の絞り弁装置が弁閉状態になり、絞り効果を得るために、絞り弁装置内の狭い絞り通路を冷媒が流れるため、冷媒流に乱れが生じる。   In the air conditioner as described above, during the dehumidifying operation, the throttle valve device for cycle drying is closed, and the refrigerant flows through a narrow throttle passage in the throttle valve device in order to obtain a throttling effect. Disturbance occurs.

このため、絞り弁装置が設置される室内機において、乱流に起因する振動が冷媒液中を伝播し、室内機の凝縮器、蒸発器が共鳴板として作用し、耳障りな冷媒流動音(冷媒擦過音)が発生する。つまり、サイクルドライ除湿運転時には、絞り部を液とガスの混合冷媒が通過し、間欠的な冷媒通過音が生じる。このことによって絞り部より上流側の室内機の熱交換器で共鳴が生じ、これが室内において耳障りな騒音になる。   For this reason, in an indoor unit in which a throttle valve device is installed, vibrations caused by turbulent flow propagate through the refrigerant liquid, and the condenser and evaporator of the indoor unit act as a resonance plate, which makes the refrigerant flow noise (refrigerant) (Abrasion noise) occurs. That is, during the cycle dry dehumidifying operation, the mixed refrigerant of liquid and gas passes through the throttle, and intermittent refrigerant passing sound is generated. As a result, resonance occurs in the heat exchanger of the indoor unit upstream from the throttle portion, which becomes annoying noise in the room.

このようなことは、圧縮機回転数の増加により冷媒循環流量が増加し、絞り弁装置内の絞り通路前後の圧力差が大きいほど顕著になり、不快騒音レベルが上昇する。   This increases as the compressor rotation speed increases and the refrigerant circulation flow rate increases. The greater the pressure difference before and after the throttle passage in the throttle valve device, the greater the unpleasant noise level.

このことに鑑みて、絞り弁装置の絞り通路に、焼結金属等による多孔質部材を設けたり、多孔質部材によって絞り通路を構成したり、絞り通路の前後に多孔質部材を設けたりし、冷媒が多孔質部材を流れることにより、乱流の通過を抑え、整流化作用を得て冷媒流動音の低減を図ることが、既に提案されている(例えば、特許文献2、3、4、5)。   In view of this, a porous member made of sintered metal or the like is provided in the throttle passage of the throttle valve device, a throttle passage is configured by the porous member, or a porous member is provided before and after the throttle passage, It has already been proposed that the refrigerant flow through the porous member to suppress the passage of turbulent flow and obtain a rectifying action to reduce the refrigerant flow noise (for example, Patent Documents 2, 3, 4, 5). ).

また、図4に示されているように、弁体50に絞り部材51を組み込み、絞り部材51の前後に冷媒流動音の伝播を防止する多孔質部材等によるフィルタ要素52、53を配置し、さらに、セレーション部材(ローレット部材)54を配置し、セレーション部材54の外周部の複数流路を冷媒が流れることによって絞り部材51より下流側における冷媒流の整流化を図り、さらに、ばね付勢の可動カラー部材55を設け、弁体50が弁室内において冷媒流によって振動することに対して振動減衰作用を得るようにしたものが提案されている。   Further, as shown in FIG. 4, a throttle member 51 is incorporated in the valve body 50, and filter elements 52, 53 made of a porous member or the like for preventing propagation of refrigerant flow noise are arranged before and after the throttle member 51, Further, a serration member (knurl member) 54 is arranged, and the refrigerant flows in a plurality of flow paths on the outer peripheral portion of the serration member 54 so as to rectify the refrigerant flow downstream from the throttle member 51. A movable collar member 55 is provided to obtain a vibration damping action against the vibration of the valve body 50 caused by the refrigerant flow in the valve chamber.

また、空気調和機に用いる除湿用減圧手段としては、複数段のオリフィスを用いたものがある(例えば、特許文献6)。   Moreover, as a dehumidification decompression means used in an air conditioner, there is one using a plurality of stages of orifices (for example, Patent Document 6).

ところで、サイクルドライ除湿運転時に、絞り部で間欠的な冷媒通過音が発生するのは、絞り部の上流側の流体が液とガスとが混合したスラグ流と呼ばれる状態の時であり、液冷媒とガス冷媒の流動抵抗の違いにより、ガスが絞り部に入る瞬間と、液が絞り部に入る瞬間とで、冷媒通路内の圧力が急激に変化する。このため、振動的な圧力変動が生じ、配管等が加振され、その結果、騒音が生じる。このことに対して、従来のものでは、絞り弁装置内の絞り部で生じる振動自体を低減する抜本的な対策がなされておらず、騒音低減に限界がある。
特開平11−51514号公報 特開2000−346495号公報 特開2001−311573号公報 特開2002−310540号公報 特開2002−323273号公報 特開2003−65632号公報
By the way, during the cycle dry dehumidifying operation, intermittent refrigerant passing sound is generated in the throttle part when the fluid upstream of the throttle part is in a state called slag flow in which liquid and gas are mixed. Due to the difference in flow resistance between the gas refrigerant and the gas refrigerant, the pressure in the refrigerant passage changes abruptly between the moment when the gas enters the throttle portion and the moment when the liquid enters the throttle portion. For this reason, an oscillating pressure fluctuation occurs, and the piping is vibrated, resulting in noise. On the other hand, in the conventional one, no drastic measures to reduce the vibration itself generated at the throttle portion in the throttle valve device are taken, and there is a limit to noise reduction.
Japanese Patent Laid-Open No. 11-51514 JP 2000-346495 A JP 2001-311573 A JP 2002-310540 A JP 2002-323273 A JP 2003-65632 A

この発明が解決しようとする課題は、絞り弁装置内の絞り部で生じる振動自体を低減し、効果的に騒音低減を図ることである。   The problem to be solved by the present invention is to reduce the vibration itself generated in the throttle portion in the throttle valve device and effectively reduce the noise.

この発明による絞り弁装置は、第1の入出口ポート、第2の入出口ポート、前記第1の入出口ポートと常時連通している弁室、前記弁室と前記第2の入出口ポートとの間に設けられた弁ポートを画定する弁ハウジングと、前記弁室内に設けられて前記弁ポートを開閉する弁体とを有する絞り弁装置において、前記弁体に弁閉状態において前記第1の入出口ポートと前記第2の入出口ポートとを連通接続する通路が形成され、前記通路に、緩衝部材と絞り部材とが、当該通路を流れる流体流で見て直列に配置されている。   The throttle valve device according to the present invention includes a first inlet / outlet port, a second inlet / outlet port, a valve chamber always in communication with the first inlet / outlet port, the valve chamber and the second inlet / outlet port. A throttle valve device having a valve housing that defines a valve port provided between the valve body and a valve body that is provided in the valve chamber and opens and closes the valve port. A passage that communicates and connects the inlet / outlet port and the second inlet / outlet port is formed, and the buffer member and the throttle member are arranged in series in the passage as seen in the fluid flow flowing through the passage.

この発明による絞り弁装置は、好ましくは、さらに、前記通路を流れる流体流で見て前記緩衝部材と前記絞り部材の各々の前後に多孔質体によるフィルタ要素が配置されている。   In the throttle valve device according to the present invention, preferably, a filter element made of a porous body is disposed before and after each of the buffer member and the throttle member as viewed in the fluid flow flowing through the passage.

この発明による空気調和機は、圧縮機と、室外熱交換器と、第1の室内熱交換器と、第2の室内熱交換器と、これらをループ接続する冷媒通路と、前記室外熱交換器と前記第1の室内熱交換器との間の冷媒通路に設けられた膨張弁とを有し、前記第1の室内熱交換器と前記第2の室内熱交換器との間に上述のいずれかの発明による絞り弁装置が接続されているものである。   An air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, a first indoor heat exchanger, a second indoor heat exchanger, a refrigerant passage connecting them in a loop, and the outdoor heat exchanger. And an expansion valve provided in a refrigerant passage between the first indoor heat exchanger and any of the above-mentioned between the first indoor heat exchanger and the second indoor heat exchanger. The throttle valve device according to the invention is connected.

この発明による絞り弁装置は、緩衝部材と絞り部材とが、通路を流れる流体流で見て直列に配置されているから、緩衝部材が絞り部材より上流側に位置する流体流において、絞り部材の手前で緩衝部材によって、流体の圧力変動、特に、相変化が緩やかになる。このことにより、絞り部材での振動的な圧力変動の振幅が小さくなり、絞り動作時の騒音発生が低減する。   In the throttle valve device according to the present invention, since the buffer member and the throttle member are arranged in series as viewed in the fluid flow flowing through the passage, in the fluid flow in which the buffer member is located upstream from the throttle member, The buffer member in front causes the pressure fluctuation of the fluid, particularly the phase change, to be moderate. As a result, the amplitude of the vibrational pressure fluctuation in the throttle member is reduced, and noise generation during the throttle operation is reduced.

さらに、通路を流れる流体流で見て緩衝部材と絞り部材の各々の前後に多孔質体によるフィルタ要素が配置されていることにより、冷媒流動音の伝播が防止される。   Furthermore, propagation of the refrigerant flow noise is prevented by arranging the filter element made of a porous body before and after each of the buffer member and the throttle member as viewed in the fluid flow flowing through the passage.

また、この発明による空気調和機では、絞り弁装置での絞り動作時に生じる振動的な圧力変動の振幅が小さくなり、絞り動作時の騒音発生が低減し、さらには、冷媒流動音の伝播が防止され、室内熱交換器での共鳴による騒音の発生が効果的に低減する。   Further, in the air conditioner according to the present invention, the amplitude of the vibrational pressure fluctuation generated during the throttle operation in the throttle valve device is reduced, noise generation during the throttle operation is reduced, and further, the propagation of the refrigerant flow noise is prevented. Thus, the generation of noise due to resonance in the indoor heat exchanger is effectively reduced.

以下に添付の図を参照してこの発明の実施の形態を詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1に示されているように、絞り弁装置10は弁ハウジング11を有している。弁ハウジング11は、第1の入出口ポート12と、第2の入出口ポート13と、第1の入出口ポート12と常時直接連通している弁室14と、弁室14と第2の入出口ポート13との間に設けられた弁ポート15とを画定している。弁ポート15の弁室14の側の開口端周りには弁座部16が画定されている。第1の入出口ポート12と、第2の入出口ポート13には、各々継手管17、18が接続されている。   As shown in FIG. 1, the throttle valve device 10 has a valve housing 11. The valve housing 11 includes a first inlet / outlet port 12, a second inlet / outlet port 13, a valve chamber 14 always in direct communication with the first inlet / outlet port 12, a valve chamber 14 and a second inlet / outlet. A valve port 15 provided between the outlet port 13 and the outlet port 13 is defined. A valve seat 16 is defined around the open end of the valve port 15 on the valve chamber 14 side. Joint pipes 17 and 18 are connected to the first inlet / outlet port 12 and the second inlet / outlet port 13, respectively.

弁室14には弁体20が図にて上下方向(弁リフト方向)に移動可能に設けられている。弁体20は、図2に示されているように、先端外周面20Aにて弁ポート15の周りに画定されている弁座部16に着座して弁ポート15を閉じる弁閉位置と、図1に示されているように、弁座部16より離れて弁ポート15を開く弁開位置との間に移動可能になっている。   A valve body 20 is provided in the valve chamber 14 so as to be movable in the vertical direction (valve lift direction) in the drawing. As shown in FIG. 2, the valve body 20 sits on a valve seat portion 16 defined around the valve port 15 on the outer peripheral surface 20 </ b> A and closes the valve port 15. As shown in FIG. 1, the valve can be moved between a valve open position that opens away from the valve seat portion 16 and opens the valve port 15.

弁ハウジング11には電磁ソレノイド装置40が取り付けられている。電磁ソレノイド装置40は、吸引子レスタイプのものであり、弁ハウジング11に固定された円筒状のプランジャチューブ41と、プランジャチューブ41内に画定されたプランジャ室42に軸線方向(上下方向)に移動可能に嵌合したカップ形状のプランジャ43と、プランジャチューブ41の先端部(上端部)に固定されたプラグ部材44と、プランジャチューブ41の外側にてボルト45によりプラグ部材44に連結されたコの字形の外凾46と、プランジャチューブ41の外周囲に固定されたボビン47A、巻線部47Bによる電磁コイル部47と、プランジャ43をプラグ部材44側に付勢する圧縮コイルばねによるプランジャばね(弁開ばね)48とにより構成されている。   An electromagnetic solenoid device 40 is attached to the valve housing 11. The electromagnetic solenoid device 40 is of an attractorless type, and moves in the axial direction (vertical direction) to a cylindrical plunger tube 41 fixed to the valve housing 11 and a plunger chamber 42 defined in the plunger tube 41. A cup-shaped plunger 43 fitted as possible, a plug member 44 fixed to the distal end (upper end) of the plunger tube 41, and a screw connected to the plug member 44 by a bolt 45 outside the plunger tube 41. A plunger spring (valve) including a letter-shaped outer flange 46, a bobbin 47A fixed to the outer periphery of the plunger tube 41, an electromagnetic coil portion 47 by a winding portion 47B, and a compression coil spring that biases the plunger 43 toward the plug member 44. Open spring) 48.

弁室14は弁ポート15とは反対側(上側)にてプランジャチューブ41の内側(プランジャ室42)と直接連続している。弁体20は、弁室14およびプランジャチューブ41の内側にあり、ステム部20Bをプランジャ43の底部にかしめ結合されている。これにより、弁体20とプランジャ43とが一体化連結され、弁体20はプランジャ43と一体的に上下方向(軸線方向)に移動する。   The valve chamber 14 is directly continuous with the inner side (plunger chamber 42) of the plunger tube 41 on the side (upper side) opposite to the valve port 15. The valve body 20 is inside the valve chamber 14 and the plunger tube 41, and the stem portion 20 </ b> B is caulked and joined to the bottom portion of the plunger 43. Thereby, the valve body 20 and the plunger 43 are integrally connected, and the valve body 20 moves integrally with the plunger 43 in the vertical direction (axial direction).

電磁ソレノイド装置40は、電磁コイル部47に通電が行われていない非通電時には、プランジャばね48のばね力によってプランジャ43と共に弁体20を上方(弁開方向)へ駆動する。これに対し、電磁ソレノイド装置40は、電磁コイル部47に通電が行われている通電時には、プランジャ43がプランジャばね48のばね力に抗して外凾46の下側片部46Aの側に磁気的に吸引されることにより、弁体20を下方(弁閉方向)へ駆動する。   The electromagnetic solenoid device 40 drives the valve body 20 upward (in the valve opening direction) together with the plunger 43 by the spring force of the plunger spring 48 when the electromagnetic coil unit 47 is not energized. On the other hand, in the electromagnetic solenoid device 40, when the electromagnetic coil portion 47 is energized, the plunger 43 resists the spring force of the plunger spring 48 and magnetizes the lower piece 46 </ b> A side of the outer casing 46. As a result, the valve body 20 is driven downward (in the valve closing direction).

すなわち、電磁ソレノイド装置40は、非通電時には、図1に示されているように、プランジャばね48のばね力により弁体20を弁座部16より引き離した弁開位置へ駆動し、通電時には、図2に示されているように、プランジャばね48のばね力に抗して弁体20を弁座部16に着座させる弁閉位置へ駆動し、絞り弁装置10は、常開型、通電閉型の電磁弁になっている。   That is, as shown in FIG. 1, the electromagnetic solenoid device 40 drives the valve body 20 to the valve open position separated from the valve seat portion 16 by the spring force of the plunger spring 48 when not energized, and when energized, As shown in FIG. 2, the valve element 20 is driven to the valve closed position against the spring force of the plunger spring 48, and the throttle valve device 10 is a normally open type, energized closed. It is a type solenoid valve.

図1に示されているように、弁体20は弁ポート15の真上位置にあり、弁体20には弁閉状態において第1の入出口ポート12と第2の入出口ポート13とを連通接続する内部通路が形成されている。この内部通路の大部分は、弁ポート15に向かい合う弁体20の先端面(下底面)に開口した中空開口部21によって与えられる。つまり、中空開口部21は、弁体20の先端面にて弁ポート15に向けて開口(下端開口)しており、上端閉の有底孔をなしている。また、図2によく示されているように、弁体20には中空開口部21の上部領域に連通する複数個の径方向通路23が穿設されている。   As shown in FIG. 1, the valve body 20 is located immediately above the valve port 15, and the valve body 20 has a first inlet / outlet port 12 and a second inlet / outlet port 13 in the valve closed state. An internal passage for communication connection is formed. Most of the internal passage is provided by a hollow opening 21 that opens at the distal end surface (lower bottom surface) of the valve body 20 facing the valve port 15. That is, the hollow opening 21 opens toward the valve port 15 at the distal end surface of the valve body 20 (lower end opening), and forms a bottomed hole with the upper end closed. As well shown in FIG. 2, the valve body 20 has a plurality of radial passages 23 communicating with the upper region of the hollow opening 21.

これにより、中空開口部21、径方向通路23が、弁体20に弁閉状態において第1の入出口ポート12と第2の入出口ポート13とを連通接続する内部通路をなす。   As a result, the hollow opening 21 and the radial passage 23 form an internal passage that connects the first inlet / outlet port 12 and the second inlet / outlet port 13 to the valve body 20 in a valve-closed state.

径方向通路23が穿設されている部分の弁体20の外周部には多孔質体による円筒状フィルタ要素24が嵌合装着されている。円筒状フィルタ要素24は、混入物捕捉と気液混合流体中のガス粒の細分化を行う。   A cylindrical filter element 24 made of a porous material is fitted and attached to the outer peripheral portion of the valve body 20 where the radial passage 23 is formed. The cylindrical filter element 24 performs trapping of contaminants and fragmentation of gas particles in the gas-liquid mixed fluid.

中空開口部21には、多孔質体による円盤状フィルタ要素25、流通孔26Aを有する緩衝部材26、多孔質体による円盤状フィルタ要素27、絞り孔28Aを有する絞り部材28、多孔質体による円盤状フィルタ要素29、リング状の座金30が順に挿入され、これらは、中空開口部21の先端部かしめによって弁体20に固定されている。   In the hollow opening 21, a disk-like filter element 25 made of a porous body, a buffer member 26 having a flow hole 26A, a disk-like filter element 27 made of a porous body, a throttle member 28 having a throttle hole 28A, and a disk made of a porous body A filter element 29 and a ring-shaped washer 30 are inserted in this order, and these are fixed to the valve body 20 by caulking the tip of the hollow opening 21.

上述の構成により、緩衝部材26と絞り部材28は、通路(中空開口部21、径方向通路23)を流れる流体流で見て縦方向に直列に配置されている。絞り部材28の絞り孔28Aの口径は、絞り弁装置10に要求される絞り度を得る大きさに設定されている。   With the above-described configuration, the buffer member 26 and the throttle member 28 are arranged in series in the vertical direction as viewed in the fluid flow flowing through the passage (the hollow opening 21 and the radial passage 23). The diameter of the throttle hole 28 </ b> A of the throttle member 28 is set to a size that obtains the degree of throttle required for the throttle valve device 10.

緩衝部材26は絞り部材28より上流側に位置し、中空開口部21の内径よりも小さい外径で形成されていて、中空開口部21の内周面との間に環状の隙間Aが形成されるように、中空開口部21と同心円上に配置されている。緩衝部材26の流通孔26Aの口径は、絞り弁装置10の絞り度に影響を与えない値に設定され、絞り部材28における流体の圧力変動を緩和させる。   The buffer member 26 is located upstream of the throttle member 28 and is formed with an outer diameter smaller than the inner diameter of the hollow opening 21, and an annular gap A is formed between the inner peripheral surface of the hollow opening 21. In this way, it is arranged concentrically with the hollow opening 21. The diameter of the flow hole 26 </ b> A of the buffer member 26 is set to a value that does not affect the throttle degree of the throttle valve device 10, and the pressure fluctuation of the fluid in the throttle member 28 is reduced.

つまり、図1に示されているように、緩衝部材26と絞り部材28とが、弁体20の内部通路(中空開口部21、径方向通路23)を流れる流体流で見て直列に配置されている。   That is, as shown in FIG. 1, the buffer member 26 and the throttle member 28 are arranged in series as viewed in the fluid flow flowing through the internal passage (hollow opening 21, radial passage 23) of the valve body 20. ing.

円盤状フィルタ要素25、27、29は、弁体20の内部通路(中空開口部21、径方向通路23)を流れる流体流で見て緩衝部材26と絞り部材28の前後にあり、専ら、ここを流れる気液混合流の整流化を行い、乱流の通過を抑える。   The disk-like filter elements 25, 27, and 29 are located before and after the buffer member 26 and the throttle member 28 as viewed from the fluid flow flowing through the internal passage (hollow opening 21 and radial passage 23) of the valve body 20, and are exclusively here. The gas-liquid mixed flow that flows through the rectifier is rectified to suppress the passage of turbulent flow.

円筒状フィルタ要素24、円盤状フィルタ要素25、27、29を構成する多孔質体としては、ステンレス鋼、真鍮等による連続気孔構造の多孔性焼結金属、ニッケル、ニッケル−銅合金による三次元網目状の発泡金属あるいは金属多孔質体、プラスチック粉末を原料として焼結成形した連続気孔構造のプラスチック焼結多孔質体、ステンレス鋼等による金網を数枚重ねて焼結した焼結多層金網等、ロングライフタイプの多孔質体が好ましく、これらフィルタ要素24、25、27、29は、混入物捕捉や気液混合流体中のガス粒の細分化作用、気液混合流の整流化作用を行うための適正な気孔径やメッシュに設定されている。   As the porous body constituting the cylindrical filter element 24 and the disk-like filter elements 25, 27, 29, a three-dimensional network made of a porous sintered metal having a continuous pore structure such as stainless steel or brass, nickel, or a nickel-copper alloy is used. Long foam metal or metal porous body, continuous porous plastic sintered body made of plastic powder as a raw material, sintered multi-layered metal mesh sintered with several layers of stainless steel, etc. A life-type porous body is preferable, and these filter elements 24, 25, 27 and 29 are used for trapping contaminants, subdividing the gas particles in the gas-liquid mixed fluid, and rectifying the gas-liquid mixed flow. Appropriate pore size and mesh are set.

図2に示されているように、弁ハウジング11には可動カラー部材31が軸線方向と径方向の各々に変位可能に設けられている。可動カラー部材31は、真鍮、非磁性材、樹脂等により構成され、円筒部31Aと、円筒部31Aの上端に一体形成された上部フランジ31Bとを有し、上部フランジ31Bの下底面が、中心軸線に直交する方向に延在する環状の可動側摩擦面をなしている。   As shown in FIG. 2, a movable collar member 31 is provided in the valve housing 11 so as to be displaceable in the axial direction and the radial direction. The movable collar member 31 is made of brass, non-magnetic material, resin, or the like, and has a cylindrical portion 31A and an upper flange 31B integrally formed on the upper end of the cylindrical portion 31A. The lower bottom surface of the upper flange 31B is the center. An annular movable friction surface extending in a direction perpendicular to the axis is formed.

弁ハウジング11は、プランジャチューブ41の付け根部(プランジャチューブ41の弁ハウジング11に対する固定端部)に段差部11Aを有し、段差部11Aの上面が、中心軸線に直交する方向に延在する環状の固定側摩擦面をなしている。この固定側摩擦面には、可動カラー部材31の上部フランジ31Bの下底面がなす可動側摩擦面が摺動可能に面接触している。   The valve housing 11 has a step portion 11A at a base portion of the plunger tube 41 (a fixed end portion of the plunger tube 41 with respect to the valve housing 11), and an upper surface of the step portion 11A extends in a direction perpendicular to the central axis. It has a fixed friction surface. The movable friction surface formed by the lower bottom surface of the upper flange 31B of the movable collar member 31 is in slidable surface contact with the fixed friction surface.

可動カラー部材31の円筒部31Aは、上部フランジ31Bと弁ハウジング11の段差部11Aとの係合によって吊り下げ状態で、弁室14内に位置し、弁開状態での弁体20の先端側の外周を、全周、取り囲んでいる。   The cylindrical portion 31A of the movable collar member 31 is located in the valve chamber 14 in a suspended state by the engagement between the upper flange 31B and the stepped portion 11A of the valve housing 11, and the distal end side of the valve body 20 in the valve open state. The outer periphery of the entire circumference is surrounded.

可動カラー部材31の上部フランジ31Bにはプランジャばね48の下端側の巻端が着座している。プランジャばね48の上端側の巻端はプランジャ43の段差部43Aに着座している。これにより、可動カラー部材31は、プランジャばね48のばね力を及ぼされ、上述の可動側摩擦面を弁ハウジング11の上述の固定側摩擦面に弾力的に付勢されている。すなわち、可動カラー部材31の可動側摩擦面が弁ハウジング11の固定側摩擦面に面接触状態で押し付けられている。   A winding end on the lower end side of the plunger spring 48 is seated on the upper flange 31 </ b> B of the movable collar member 31. The winding end on the upper end side of the plunger spring 48 is seated on the stepped portion 43 </ b> A of the plunger 43. Thereby, the movable collar member 31 is subjected to the spring force of the plunger spring 48 and elastically biases the above-described movable side friction surface to the above-described fixed side friction surface of the valve housing 11. That is, the movable friction surface of the movable collar member 31 is pressed against the fixed friction surface of the valve housing 11 in a surface contact state.

つぎに、上述の構成による絞り弁装置10の動作について説明する。   Next, the operation of the throttle valve device 10 configured as described above will be described.

電磁ソレノイド装置40に通電が行われていない状態では、図1に示されているように、プランジャばね48のばね力によってプランジャ43と共に弁体20が持ち上げられて弁体20が弁座部16より離れ、弁ポート15が完全に開かれた全開の実質的な絞り作用がない弁開状態が得られる。   In a state where the electromagnetic solenoid device 40 is not energized, the valve body 20 is lifted together with the plunger 43 by the spring force of the plunger spring 48 as shown in FIG. A valve open state is obtained in which the valve port 15 is fully open and there is no substantial throttling action when fully open.

この弁開状態時には、可動カラー部材31の円筒部31Aによって弁体20の先端側外周が取り囲まれるので、弁室14内を第1の入出口ポート12より、弁ポート15、第2の入出口ポート13へ流れる流体流(乱流)が弁体20に直接当たらないようになる。これにより、弁体20に作用する流体流による加振力が低減する。   When the valve is open, the outer periphery of the valve body 20 is surrounded by the cylindrical portion 31 </ b> A of the movable collar member 31, so that the inside of the valve chamber 14 is connected to the valve port 15, the second inlet / outlet from the first inlet / outlet port 12. The fluid flow (turbulent flow) flowing to the port 13 does not directly hit the valve body 20. Thereby, the excitation force by the fluid flow which acts on the valve body 20 reduces.

また、可動カラー部材31が弁体20の加振運動を受けて径方向に動くことにより、可動側摩擦面(上部フランジ31Bの下底面)と固定側摩擦面(弁ハウジング11の段差部11Aの上面)との摩擦によって、弁体20に作用している振動エネルギが熱エネルギに変換され、振動減衰作用、すなわちダンパ効果が得られる。これらのことにより、弁体20が弁室14内の流体流の影響を受け難くなり、弁体20が共振することが避けられ、弁鳴りを生じなくなる。   Further, the movable collar member 31 receives the excitation motion of the valve body 20 and moves in the radial direction, so that the movable side friction surface (the lower bottom surface of the upper flange 31B) and the fixed side friction surface (the step portion 11A of the valve housing 11). The vibration energy acting on the valve body 20 is converted into heat energy by friction with the upper surface), and a vibration damping action, that is, a damper effect is obtained. As a result, the valve body 20 is not easily affected by the fluid flow in the valve chamber 14, the resonance of the valve body 20 is avoided, and no ringing occurs.

電磁ソレノイド装置40に通電が行われると、プランジャばね48のばね力に抗してプランジャ43が外凾46の下側片部46Aの側に磁気的に吸引され、弁体20が弁閉方向へ駆動され、図2に示されているように、弁体20が先端外周面20Aをもって弁座部16に着座する。   When the electromagnetic solenoid device 40 is energized, the plunger 43 is magnetically attracted to the lower piece 46A side of the outer rod 46 against the spring force of the plunger spring 48, and the valve body 20 is moved in the valve closing direction. As shown in FIG. 2, the valve body 20 is driven and seated on the valve seat portion 16 with the outer peripheral surface 20A.

この弁閉状態では、円筒状フィルタ要素24、径方向通路23、円盤状フィルタ要素25、緩衝部材26の流通孔26A、円盤状フィルタ要素27、絞り部材28の絞り孔28A、円盤状フィルタ要素29をもって弁室14と第2の入出口ポート13とが連通し、第1の入出口ポート12が高圧側で、第2の入出口ポート13が低圧側である場合には、円筒状フィルタ要素24→径方向通路23→円盤状フィルタ要素25→緩衝部材26の流通孔26A、あるいは、弁体20の中空開口部21の内周面と緩衝部材26の外周面との間に形成される環状の隙間A→円盤状フィルタ要素27→絞り部材28の絞り孔28A→円盤状フィルタ要素29の順に、液とガスの混合冷媒等の流体が流れる。   In this valve closed state, the cylindrical filter element 24, the radial passage 23, the disk-shaped filter element 25, the flow hole 26 </ b> A of the buffer member 26, the disk-shaped filter element 27, the throttle hole 28 </ b> A of the throttle member 28, and the disk-shaped filter element 29. When the valve chamber 14 and the second inlet / outlet port 13 communicate with each other, the first inlet / outlet port 12 is on the high pressure side, and the second inlet / outlet port 13 is on the low pressure side, the cylindrical filter element 24 → radial passage 23 → disk-like filter element 25 → circulation hole 26A of the buffer member 26 or an annular shape formed between the inner peripheral surface of the hollow opening 21 of the valve body 20 and the outer peripheral surface of the buffer member 26 A fluid such as a mixed refrigerant of liquid and gas flows in the order of the gap A → the disk-shaped filter element 27 → the throttle hole 28A of the throttle member 28 → the disk-shaped filter element 29.

上述のように流体が流れることにより、まず、円筒状で表面積が大きい円筒状フィルタ要素24によって流体流れ中のコンタミネーションの捕捉が行われると共に液流中の気泡(ガス粒)の細分化が行われる。そして流体は、複数個の径方向通路23を通り、分散された流れで円盤状フィルタ要素25に流入し、円盤状フィルタ要素25より、まず、絞り弁装置10の絞り度に影響を与えない口径に設定された緩衝部材26の流通孔26A、あるいは、弁体20の中空開口部21の内周面と緩衝部材26の外周面との間に形成される環状の隙間Aを流れ、この流通孔26Aを流体が流れることによって、あるいは、緩衝部材26の外周を流体が流れることによって、流体の圧力変動、特に、相変化が緩やかになり、振動的な圧力変動の振幅が小さくなる。   When the fluid flows as described above, first, the cylindrical filter element 24 having a large cylindrical surface area captures contamination in the fluid flow and subdivides the bubbles (gas particles) in the liquid flow. Is called. Then, the fluid passes through the plurality of radial passages 23 and flows into the disc-like filter element 25 in a dispersed flow, and from the disc-like filter element 25, first, the aperture diameter that does not affect the degree of throttling of the throttle valve device 10. The flow hole 26 </ b> A of the buffer member 26, or the annular gap A formed between the inner peripheral surface of the hollow opening 21 of the valve body 20 and the outer peripheral surface of the buffer member 26, is set. When the fluid flows through 26A or when the fluid flows around the outer periphery of the buffer member 26, the pressure variation of the fluid, in particular, the phase change becomes gentle, and the amplitude of the oscillatory pressure variation decreases.

その後、流体は、円盤状フィルタ要素27を通過し、絞り部材28の絞り孔28Aを流れて絞られる。この絞り部材28の絞り孔28Aを流れる流体は、これより上流側の緩衝部材26によって振動的な圧力変動の振幅が小さくなっているから、絞り部材28における間欠的な冷媒通過音の発生が低減する。   Thereafter, the fluid passes through the disk-shaped filter element 27 and flows through the throttle hole 28A of the throttle member 28 and is throttled. Since the fluid flowing through the throttle hole 28A of the throttle member 28 has the amplitude of the vibrational pressure fluctuation reduced by the buffer member 26 on the upstream side, the generation of intermittent refrigerant passing sound in the throttle member 28 is reduced. To do.

その後、流体は、円盤状フィルタ要素29を通過して第2の入出口ポート13へ流れる。この流体流において、緩衝部材26と絞り部材28の各々の前後に多孔質体による円盤状フィルタ要素25、27、29が配置されていることにより、冷媒流動音の伝播も防止される。   Thereafter, the fluid flows through the disc-like filter element 29 to the second inlet / outlet port 13. In this fluid flow, the disk-like filter elements 25, 27, and 29 made of a porous material are disposed before and after each of the buffer member 26 and the throttle member 28, so that propagation of refrigerant flow noise is also prevented.

図3は上述した実施形態による絞り弁装置10をサイクルドライ弁として組み込まれたこの発明による空気調和機を示している。   FIG. 3 shows an air conditioner according to the present invention in which the throttle valve device 10 according to the above-described embodiment is incorporated as a cycle dry valve.

この空気調和機は、圧縮機100と、室外熱交換器101と、第1の室内熱交換器102と、第2の室内熱交換器103と、これらをループ接続する冷媒通路105〜113と、室外熱交換器101と第1の室内熱交換器102との間の冷媒通路(107〜109)に設けられた膨張弁104と、冷房モードと暖房モードとの切換のためにループ接続された冷媒通路105〜113における冷媒の流れ方向を反転する四方弁115とを有している。   This air conditioner includes a compressor 100, an outdoor heat exchanger 101, a first indoor heat exchanger 102, a second indoor heat exchanger 103, and refrigerant passages 105 to 113 that connect these in a loop, An expansion valve 104 provided in a refrigerant passage (107 to 109) between the outdoor heat exchanger 101 and the first indoor heat exchanger 102, and a refrigerant connected in a loop for switching between a cooling mode and a heating mode And a four-way valve 115 for reversing the flow direction of the refrigerant in the passages 105 to 113.

第1の室内熱交換器102と第2の室内熱交換器103との間の冷媒通路110には絞り弁装置(サイクルドライ弁)10が接続されている。   A throttle valve device (cycle dry valve) 10 is connected to the refrigerant passage 110 between the first indoor heat exchanger 102 and the second indoor heat exchanger 103.

冷房モードでは、図3にて実線の矢印で示されている方向に冷媒が循環し、絞り弁装置10が弁開している状態で、冷房モードが得られ、絞り弁装置10が弁閉している状態では、当該絞り弁装置10が絞り弁として作用し、冷媒が、第1の入出口ポート12より、円筒状フィルタ要素24→径方向通路23→円盤状フィルタ要素25→緩衝部材26の流通孔26A、あるいは、弁体20の中空開口部21の内周面と緩衝部材26の外周面との間に形成される環状の隙間A→円盤状フィルタ要素27→絞り部材28の絞り孔28A→円盤状フィルタ要素29の順路(図2参照)を経て第2の入出口ポート13へ流れ、冷房サイクルドライモード(冷房時除湿)が得られる。   In the cooling mode, the refrigerant circulates in the direction indicated by the solid line arrow in FIG. 3, and the cooling mode is obtained in a state where the throttle valve device 10 is opened, and the throttle valve device 10 is closed. In this state, the throttle valve device 10 acts as a throttle valve, and the refrigerant flows from the first inlet / outlet port 12 into the cylindrical filter element 24 → the radial passage 23 → the disk-like filter element 25 → the buffer member 26. An annular gap A formed between the flow hole 26A or the inner peripheral surface of the hollow opening 21 of the valve body 20 and the outer peripheral surface of the buffer member 26 → the disc-like filter element 27 → the throttle hole 28A of the throttle member 28. → The flow passes through the disc-like filter element 29 (see FIG. 2) to the second inlet / outlet port 13 to obtain the cooling cycle dry mode (dehumidification during cooling).

これにより、冷房サイクルドライモードでの絞り弁装置10における間欠的な冷媒通過音の発生が低く、絞り弁装置10より上流側の第1の室内熱交換器102での共鳴による騒音の発生が低減する。   Thereby, the generation of intermittent refrigerant passing sound in the throttle valve device 10 in the cooling cycle dry mode is low, and the generation of noise due to resonance in the first indoor heat exchanger 102 upstream of the throttle valve device 10 is reduced. To do.

なお、暖房モードでは、図3の矢印で示されている方向とは逆方向に冷媒が循環し、通常、絞り弁装置10は弁開状態を維持する。   In the heating mode, the refrigerant circulates in the direction opposite to the direction indicated by the arrow in FIG. 3, and the throttle valve device 10 normally maintains the valve open state.

この発明による絞り弁装置の一つの実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the throttle valve apparatus by this invention. 一つの実施形態による絞り弁装置の要部の拡大断面図である。It is an expanded sectional view of the important section of a throttle valve device by one embodiment. この発明による絞り弁装置が組み込まれた空気調和機を示すブロック図である。It is a block diagram which shows the air conditioner incorporating the throttle valve apparatus by this invention. 絞り弁装置の先行技術例を示す断面図であるIt is sectional drawing which shows the prior art example of a throttle valve apparatus.

符号の説明Explanation of symbols

10 絞り弁装置
11 弁ハウジング
12 第1の入出口ポート
13 第2の入出口ポート
14 弁室
15 弁ポート
16 弁座部
20 弁体
24 円筒状フィルタ要素
25 円盤状フィルタ要素
26 緩衝部材
27 円盤状フィルタ要素
28 絞り部材
29 円盤状フィルタ要素
31 可動カラー部材
40 電磁ソレノイド装置
DESCRIPTION OF SYMBOLS 10 Throttle valve apparatus 11 Valve housing 12 1st inlet / outlet port 13 2nd inlet / outlet port 14 Valve chamber 15 Valve port 16 Valve seat part 20 Valve body 24 Cylindrical filter element 25 Disc shaped filter element 26 Buffer member 27 Disc shape Filter element 28 Diaphragm member 29 Disc-shaped filter element 31 Movable collar member 40 Electromagnetic solenoid device

Claims (3)

第1の入出口ポート、第2の入出口ポート、前記第1の入出口ポートと常時連通している弁室、前記弁室と前記第2の入出口ポートとの間に設けられた弁ポートを画定する弁ハウジングと、前記弁室内に設けられて前記弁ポートを開閉する弁体とを有する絞り弁装置において、
前記弁体に弁閉状態において前記第1の入出口ポートと前記第2の入出口ポートとを連通接続する通路が形成され、前記通路に、緩衝部材と絞り部材とが、当該通路を流れる流体流で見て直列に配置されている絞り弁装置。
A first inlet / outlet port, a second inlet / outlet port, a valve chamber always in communication with the first inlet / outlet port, and a valve port provided between the valve chamber and the second inlet / outlet port A throttle valve device including: a valve housing that defines a valve body; and a valve body that is provided in the valve chamber and opens and closes the valve port.
A passage that connects the first inlet / outlet port and the second inlet / outlet port in a valve closed state is formed in the valve body, and a buffer member and a throttle member flow in the passage in the passage. Throttle valve device arranged in series when viewed in flow.
前記通路を流れる流体流で見て前記緩衝部材と前記絞り部材の各々の前後に多孔質体によるフィルタ要素が配置されている請求項1記載の絞り弁装置。   2. The throttle valve device according to claim 1, wherein a filter element made of a porous body is disposed before and after each of the buffer member and the throttle member as viewed in the fluid flow flowing through the passage. 圧縮機と、室外熱交換器と、第1の室内熱交換器と、第2の室内熱交換器と、これらをループ接続する冷媒通路と、前記室外熱交換器と前記第1の室内熱交換器との間の冷媒通路に設けられた膨張弁とを有し、前記第1の室内熱交換器と前記第2の室内熱交換器との間に、請求項1または2記載の絞り弁装置が接続されている空気調和機。   A compressor, an outdoor heat exchanger, a first indoor heat exchanger, a second indoor heat exchanger, a refrigerant passage connecting these in a loop, the outdoor heat exchanger, and the first indoor heat exchange The throttle valve device according to claim 1, further comprising an expansion valve provided in a refrigerant passage between the first indoor heat exchanger and the second indoor heat exchanger. Is connected to the air conditioner.
JP2004149242A 2004-05-19 2004-05-19 Throttle valve device and air conditioner Pending JP2005331153A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004149242A JP2005331153A (en) 2004-05-19 2004-05-19 Throttle valve device and air conditioner
CN2005100727712A CN100406791C (en) 2004-05-19 2005-05-19 throttle valve device and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149242A JP2005331153A (en) 2004-05-19 2004-05-19 Throttle valve device and air conditioner

Publications (1)

Publication Number Publication Date
JP2005331153A true JP2005331153A (en) 2005-12-02

Family

ID=35475993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149242A Pending JP2005331153A (en) 2004-05-19 2004-05-19 Throttle valve device and air conditioner

Country Status (2)

Country Link
JP (1) JP2005331153A (en)
CN (1) CN100406791C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087527A (en) * 2016-11-30 2019-07-24 쯔지앙 산화 인텔리전트 컨트롤스 씨오., 엘티디. Electronic expansion valve and refrigeration system having the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101358654B (en) * 2007-08-02 2011-08-03 浙江三花股份有限公司 Electrovalve, air conditioner and throttling device for electrovalve
CN101988584B (en) * 2009-07-29 2013-05-29 浙江三花股份有限公司 Magnetic valve
CN102052502B (en) * 2009-11-06 2013-06-05 浙江三花股份有限公司 Solenoid valve
CN102954272B (en) * 2011-08-31 2014-04-02 浙江三花股份有限公司 Electromagnetic valve
JP5690705B2 (en) * 2011-11-10 2015-03-25 株式会社鷺宮製作所 Dehumidifying valve
CN106895153A (en) * 2015-12-19 2017-06-27 浙江三花智能控制股份有限公司 Two-period form electric expansion valve
CN111981627B (en) * 2020-07-17 2021-07-13 珠海格力电器股份有限公司 Liquid flow noise control method and device and air conditioning system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738082B2 (en) * 1989-11-07 1998-04-08 株式会社デンソー Refrigeration expansion valve
JPH05306788A (en) * 1992-05-06 1993-11-19 Mitsubishi Heavy Ind Ltd Noise reduction valve and hydraulic device
JP4071451B2 (en) * 2001-04-12 2008-04-02 株式会社鷺宮製作所 Throttle device and air conditioner
JP4077205B2 (en) * 2002-01-28 2008-04-16 株式会社鷺宮製作所 Bidirectional solenoid valve and air conditioner
CN1453532B (en) * 2002-04-25 2010-04-28 株式会社鹭宫制作所 Throttle valve and air conditioner
CN2554540Y (en) * 2002-06-06 2003-06-04 海信集团有限公司 Air conditioner with throttling slicencer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087527A (en) * 2016-11-30 2019-07-24 쯔지앙 산화 인텔리전트 컨트롤스 씨오., 엘티디. Electronic expansion valve and refrigeration system having the same
KR102191738B1 (en) * 2016-11-30 2020-12-17 쯔지앙 산화 인텔리전트 컨트롤스 씨오., 엘티디. Electronic expansion valve and refrigeration system having the same

Also Published As

Publication number Publication date
CN1699803A (en) 2005-11-23
CN100406791C (en) 2008-07-30

Similar Documents

Publication Publication Date Title
AU2001230541B8 (en) Refrigerating cycle device, air conditioner, choke, and flow rate controller
JP4570473B2 (en) Valve device and refrigeration cycle device
JP5696093B2 (en) Motorized valve
JP6968768B2 (en) Electric valve and refrigeration cycle system
CN100406791C (en) throttle valve device and air conditioner
JP5690705B2 (en) Dehumidifying valve
JP4071451B2 (en) Throttle device and air conditioner
JP2005331154A (en) Throttle valve device and air conditioner
JP4465122B2 (en) Air conditioner
JP4077205B2 (en) Bidirectional solenoid valve and air conditioner
JP4152209B2 (en) Solenoid valve for air conditioner
JP4077340B2 (en) Throttle valve device and air conditioner
JP4535308B2 (en) Air conditioner
JP4043076B2 (en) Flow control valve
JP4064762B2 (en) Throttle valve device and air conditioner
JP2005098423A (en) Solenoid valve
JP2003202167A (en) Flow rate control valve, refrigerating air conditioning device and method for manufacturing flow rate control valve
JP2022022689A (en) Flow control valve and refrigeration cycle system
JP4270952B2 (en) Flow control valve
JP2005024161A (en) Solenoid valve
JP2005055119A (en) Refrigerant control valve
JP2002206821A (en) Solenoid vale with throttling mechanism and air conditioner
JP2002195696A (en) Air conditioner
JP2022015461A (en) Two-stage motor-operated valve and refrigeration cycle system
AU2004202567B2 (en) Refrigerating cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428