JP2005023502A - Oil agent composition, carbon fiber precursor acrylic fiber and method for producing the same - Google Patents

Oil agent composition, carbon fiber precursor acrylic fiber and method for producing the same Download PDF

Info

Publication number
JP2005023502A
JP2005023502A JP2003270639A JP2003270639A JP2005023502A JP 2005023502 A JP2005023502 A JP 2005023502A JP 2003270639 A JP2003270639 A JP 2003270639A JP 2003270639 A JP2003270639 A JP 2003270639A JP 2005023502 A JP2005023502 A JP 2005023502A
Authority
JP
Japan
Prior art keywords
mass
fiber
carbon fiber
oil
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003270639A
Other languages
Japanese (ja)
Other versions
JP4446699B2 (en
Inventor
Nobuyuki Shimozawa
信之 下澤
Takayuki Kiriyama
孝之 桐山
Naoki Sugiura
直樹 杉浦
Takahiro Okuya
孝浩 奥屋
Kozo Mise
興造 三瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003270639A priority Critical patent/JP4446699B2/en
Publication of JP2005023502A publication Critical patent/JP2005023502A/en
Application granted granted Critical
Publication of JP4446699B2 publication Critical patent/JP4446699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acrylonitrile-based precursor for a carbon fiber, capable of preventing the reduction of operating property and heat resistance, exhibiting a good process-passing property in its burning process and capable of improving the productivity of the carbon fiber, a method for producing the same and a suitable oil agent composition for the same. <P>SOLUTION: This oil agent composition for a carbon fiber precursor acrylic fiber consists of 60-80 mass % compound having a specific structure, 12-37 mass % nonionic surfactant showing ≤1.0 % residual rate after heating in air at 250°C for 2 hr, 2-4 mass % antistatic agent and 1-3 mass % antioxidant, and the carbon fiber precursor acrylic fiber imparted with 0.1-5.0 mass % oil agent composition are provided. The method for producing the acrylonitrile-based precursor for the carbon fiber is provided by ejecting the solution of the acrylonitrile-based polymer into a coagulation bath for making fibers, washing the fiber yarns with water for removing a solvent, stretching in the bath at the same time with washing or separately to obtain the fiber being a water-swollen state, imparting the emulsion of the oil agent composition and drying to densify the fiber. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭素繊維前駆体アクリル繊維を耐炎化繊維に転換する耐炎化工程において単繊維間融着が発生することを防止するために用いられる油剤組成物に関し、また、品質および物性の優れた炭素繊維を製造するのに好適で、炭素繊維の製造に際して工程通過性が改善された炭素繊維前駆体アクリル繊維とその製造方法に関する。   The present invention relates to an oil agent composition used for preventing the occurrence of fusion between single fibers in a flameproofing process in which a carbon fiber precursor acrylic fiber is converted to a flameproofed fiber, and has excellent quality and physical properties. The present invention relates to a carbon fiber precursor acrylic fiber that is suitable for producing carbon fiber and has improved process passability in the production of carbon fiber, and a method for producing the same.

従来、炭素繊維の製造方法として、炭素繊維用アクリロニトリル系前駆体繊維(以下、前駆体繊維ともいう。)を200〜400℃の酸化性雰囲気中で加熱処理することにより耐炎化繊維に転換し、引き続いて少なくとも1000℃の不活性雰囲気中で炭素化する方法が知られている。この方法で得られた炭素繊維は、優れた物性により、特に複合材料の強化繊維として広く利用されている。   Conventionally, as a method for producing carbon fibers, acrylonitrile-based precursor fibers for carbon fibers (hereinafter also referred to as precursor fibers) are converted into flame-resistant fibers by heat treatment in an oxidizing atmosphere at 200 to 400 ° C., Subsequent carbonization is known in an inert atmosphere of at least 1000 ° C. The carbon fiber obtained by this method is widely used particularly as a reinforcing fiber for composite materials due to its excellent physical properties.

しかしこの製造方法においては、前記前駆体繊維を耐炎化繊維に転換する耐炎化工程において、単繊維間の固着や融着が発生し、焼成が不均一になったり、毛羽や束切れといった障害が発生する場合がある。この固着や融着を回避するためには、前駆体繊維に付与する油剤の選択が重要である事が知られており、多くの油剤が検討されている。   However, in this production method, in the flameproofing step of converting the precursor fibers into flameproofed fibers, sticking or fusion between single fibers occurs, and firing is not uniform, and there are obstacles such as fluff and bundle breakage. May occur. In order to avoid this sticking and fusion, it is known that selection of an oil agent to be applied to the precursor fiber is important, and many oil agents have been studied.

例えば高い耐熱性を有し、単繊維間の固着や融着を効果的に抑えることから、シリコーン系油剤は前駆体繊維用油剤としてよく使用されている(例えば、特許文献1〜4など)。しかし、シリコーン系油剤を使用すると、耐炎化および炭素化工程(以下、耐炎化および炭素化工程を一括して焼成工程ともいう。)において、シリコーン由来の酸化珪素などの珪素化合物が発生し、焼成炉壁や排ガス処理ラインに付着・堆積して操業性の低下をもたらす場合がある。また、珪素化合物が、焼成工程のガイド・ローラー類に付着して工程通過性を低下させたり、工程糸に付着して炭素繊維の品質を低下させる場合がある。また、焼成工程で単繊維内部に残存する珪素は、炭素繊維に転換する際にボイドや欠陥になる場合がある。   For example, since it has high heat resistance and effectively suppresses sticking and fusion between single fibers, silicone-based oils are often used as precursor fiber oils (for example, Patent Documents 1 to 4). However, when a silicone-based oil is used, a silicon compound such as silicon oxide derived from silicone is generated in the flameproofing and carbonizing process (hereinafter, the flameproofing and carbonizing process is also collectively referred to as a firing process) and fired. It may adhere to and accumulate on the furnace wall or exhaust gas treatment line, resulting in reduced operability. In addition, the silicon compound may adhere to the guides and rollers in the firing process and reduce process passability, or may adhere to the process yarn and reduce the quality of the carbon fiber. In addition, silicon remaining inside the single fiber in the firing process may become a void or a defect when converted into carbon fiber.

これに対して、シリコーンを配合しない前駆体繊維用油剤は、焼成時に珪素化合物の発生がない点、原料が安価な点などから有利であり、種々検討されている。   On the other hand, precursor fiber oils that do not contain silicone are advantageous because they do not generate silicon compounds during firing, are inexpensive in terms of raw materials, and have been studied in various ways.

例えば、特許文献5〜8では、水膨潤状態のアクリロニトリル系繊維に、ビスフェノールAのアルキレンオキサイド付加物をモノアルキルエステル化し、さらに飽和脂肪族ジカルボン酸を反応させて得られた反応生成物(E)や、二塩基酸とオキシアルキレン単位を有するポリオールの縮合物に脂肪族アルカノールアミドを反応して得られる末端アミド基を有する付加物(F)、ポリアミンと脂肪酸を反応して得られるアミド化合物のアルキレンオキサイド付加物などを含有する油剤組成物(G)を付与することで、焼成工程での単繊維の固着または融着を防止し、高強度のアクリロニトリル系炭素繊維が製造できることが述べられている。   For example, in Patent Documents 5 to 8, a reaction product (E) obtained by monoalkylesterifying an alkylene oxide adduct of bisphenol A into a water-swollen acrylonitrile fiber and further reacting with a saturated aliphatic dicarboxylic acid. Or an adduct (F) having a terminal amide group obtained by reacting a condensate of a dibasic acid and a polyol having an oxyalkylene unit with an aliphatic alkanolamide, an alkylene of an amide compound obtained by reacting a polyamine with a fatty acid It is stated that by applying an oil agent composition (G) containing an oxide adduct or the like, it is possible to prevent adhesion or fusion of single fibers in the firing step and to produce high-strength acrylonitrile-based carbon fibers.

しかし、これらの発明に使用されている(E)は、シリコーン系油剤に比べるとアクリロニトリル系前駆体繊維との親和性が低くいので、それを補うために(F)、(G)を併用して油剤組成物としている。しかし(F)及び(G)の耐熱性はシリコーン系油剤や(E)に比べ低く、焼成工程でタール化しやすい。タール化した部分は最終的に炭素繊維となった時点で欠陥点となり炭素繊維の性能発現性を阻害するので油剤組成物中の(F)及び(G)の含有比率を下げるか、前駆体繊維への付与量を炭素繊維の性能発現性に影響しない程度まで低下させなければならない場合がある。その結果乾燥緻密化工程や必要に応じ行う乾燥緻密化後の延伸工程、更にボビンへの巻き取り工程(や容器への収納工程)での集束性が低下し、焼成工程での毛羽の発生やローラーへの巻き付き、糸切れなど、工程通過性に劣る場合があった。このようにして得られた炭素繊維は、樹脂含浸ストランド強度では高い強度が得られても、炭素繊維トウの引っ張り強度に劣る場合があった。   However, (E) used in these inventions has a lower affinity with acrylonitrile-based precursor fibers than silicone-based oils. Therefore, (F) and (G) are used in combination to supplement it. The oil composition. However, the heat resistance of (F) and (G) is lower than that of the silicone-based oil or (E), and is easily tarred in the firing step. When the tarred portion finally becomes carbon fiber, it becomes a defect point and inhibits the performance expression of the carbon fiber, so the content ratio of (F) and (G) in the oil composition is lowered, or the precursor fiber In some cases, it is necessary to reduce the amount to be applied to the extent that it does not affect the performance of the carbon fiber. As a result, the convergence in the drying densification process and the stretching process after the drying densification performed as required, and further in the winding process on the bobbin (and in the container storage process) are reduced. There were cases where the processability was inferior, such as winding around a roller or thread breakage. The carbon fibers obtained in this way may be inferior in the tensile strength of the carbon fiber tow even when the resin impregnated strand strength is high.

特公昭52−24136号公報Japanese Patent Publication No.52-24136 特公平4−29766号公報Japanese Patent Publication No. 4-29766 特公平3−40152号公報Japanese Patent Publication No. 3-40152 特開平5−140821号公報Japanese Patent Laid-Open No. 5-140821 WO97/09474号公報WO97 / 09474 Publication 特開平9−78340号公報JP-A-9-78340 特開平9−78341号公報JP-A-9-78341 特開平11−36135号公報JP-A-11-36135

本発明の目的は、シリコーン系油剤組成物を使用するときに発生することのある操業性低下や、非シリコーン系油剤組成物を使用するときに発生することのある耐熱性低下を防止し、アクリロニトリル系前駆体繊維の品質を向上させ、乾燥緻密化工程や必要に応じ行う乾燥緻密化後の延伸工程、更にボビンへの巻き取り工程(や容器への収納工程)や炭素繊維に転換する際の焼成工程において工程通過性が良く、炭素繊維の工業的な生産性を高めることができる炭素繊維用アクリロニトリル系前駆体繊維及びその製造方法を提供することにある。またこのような繊維を得るために好適な油剤組成物を提供することにある。   An object of the present invention is to prevent deterioration in operability that may occur when using a silicone-based oil composition and heat resistance that may occur when a non-silicone-based oil composition is used. When improving the quality of the system precursor fiber, drying densification process, stretching process after drying densification performed as needed, further bobbin winding process (and container storage process) and when converting to carbon fiber An object of the present invention is to provide an acrylonitrile-based precursor fiber for carbon fiber, which has good process passability in the firing step and can enhance industrial productivity of carbon fiber, and a method for producing the same. Moreover, it is providing the oil agent composition suitable in order to obtain such a fiber.

本発明により、(A)式(1)で表される化合物が60質量%以上80質量%以下;   According to the present invention, (A) the compound represented by formula (1) is 60% by mass or more and 80% by mass or less;

Figure 2005023502
(式(1)中、R1は式(2)または(3)で表され、4つのR2はそれぞれ独立して炭素数5〜18のアルキル基を示す。)
Figure 2005023502
(In formula (1), R 1 is represented by formula (2) or (3), and four R 2 s each independently represent an alkyl group having 5 to 18 carbon atoms.)

Figure 2005023502
(B)空気中250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤が12質量%以上37質量%以下;
(C)帯電防止剤が2質量%以上4質量%以下;及び
(D)酸化防止剤が1質量%以上3質量%以下
からなることを特徴とする炭素繊維前駆体アクリル繊維用油剤組成物が提供される。
Figure 2005023502
(B) 12 to 37% by mass of a nonionic surfactant having a residue rate of 1.0% by mass or less after heating at 250 ° C. in air for 2 hours;
(C) An antistatic agent is 2 mass% or more and 4 mass% or less; and (D) An antioxidant is 1 mass% or more and 3 mass% or less, The carbon fiber precursor acrylic-oil oil composition characterized by the above-mentioned. Provided.

本発明により、(A)式(4)で表される化合物が60質量%以上80質量%以下;   According to the present invention, (A) the compound represented by formula (4) is 60% by mass or more and 80% by mass or less;

Figure 2005023502
(式(4)中、2つのR2はそれぞれ独立して炭素数5〜18のアルキル基を示す。)
(B)空気中250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤が12質量%以上37質量%以下;
(C)帯電防止剤が2質量%以上4質量%以下;及び
(D)酸化防止剤が1質量%以上3質量%以下
からなることを特徴とする炭素繊維前駆体アクリル繊維用油剤組成物が提供される。
Figure 2005023502
(In formula (4), two R 2 s each independently represent an alkyl group having 5 to 18 carbon atoms.)
(B) 12 to 37% by mass of a nonionic surfactant having a residue rate of 1.0% by mass or less after heating at 250 ° C. in air for 2 hours;
(C) An antistatic agent is 2 mass% or more and 4 mass% or less; and (D) An antioxidant is 1 mass% or more and 3 mass% or less, The carbon fiber precursor acrylic-oil oil composition characterized by the above-mentioned. Provided.

本発明により、上記二種の油剤組成物のうちいずれかの油剤組成物が0.1質量%以上5.0質量%以下付与されたことを特徴とする炭素繊維前駆体アクリル繊維が提供される。   According to the present invention, there is provided a carbon fiber precursor acrylic fiber characterized in that any one of the above two types of oil agent compositions is applied in an amount of 0.1% by mass or more and 5.0% by mass or less. .

本発明により、アクリロニトリル系重合体の溶液を凝固浴中に吐出して繊維化する工程、該繊維化された糸条を水洗し溶剤を除去し水洗と同時にまたは別に浴中延伸して水膨潤状態にある繊維を得る工程、該水膨潤状態にある繊維に上記二種の油剤組成物のうちいずれかの油剤組成物のエマルション液を付与する工程、および該エマルション液が付与された繊維を乾燥緻密化する工程を有することを特徴とする炭素繊維前駆体アクリル繊維の製造方法が提供される。   According to the present invention, a step of discharging a solution of an acrylonitrile polymer into a coagulation bath to form a fiber, washing the fiberized yarn with water to remove the solvent, and drawing in the bath simultaneously with the water washing or separately, and in a water swollen state A step of obtaining a fiber in a water-swelled state, a step of applying an emulsion liquid of any one of the two oil agent compositions to the fiber in a water-swollen state, and a fiber to which the emulsion liquid is applied There is provided a method for producing a carbon fiber precursor acrylic fiber characterized by comprising the step of:

本発明によれば、耐炎化工程、炭素化工程で前駆体アクリル繊維あるいは耐炎化繊維の融着を効果的に抑えことができ、工程通過性に優れ、かつ、シリコーン系油剤を使用する場合に発生することのある操業性の低下が発生しない炭素繊維前駆体アクリル繊維とその製造方法が得られる。またこのようなアクリル繊維を得るために好適に用いることのできる油剤組成物が得られる。   According to the present invention, it is possible to effectively suppress the fusion of the precursor acrylic fiber or the flameproof fiber in the flameproofing process and the carbonization process, and excellent in process passability and when using a silicone-based oil. A carbon fiber precursor acrylic fiber that does not cause a decrease in operability that may occur and a method for producing the same are obtained. Moreover, the oil agent composition which can be used suitably in order to obtain such an acrylic fiber is obtained.

まず炭素繊維前駆体アクリル繊維について詳細に説明する。本発明において、油剤付与前の炭素繊維前駆体用のアクリル繊維には公知のアクリル繊維を用いることができる。   First, the carbon fiber precursor acrylic fiber will be described in detail. In this invention, a well-known acrylic fiber can be used for the acrylic fiber for carbon fiber precursors before oil agent provision.

好ましいアクリル繊維の例として、アクリロニトリル系重合体を紡糸して得られるアクリル繊維が挙げられる。   Examples of preferred acrylic fibers include acrylic fibers obtained by spinning an acrylonitrile polymer.

アクリロニトリル系重合体は、アクリロニトリルを主なモノマーとして重合して得られる重合体であり、アクリロニトリルから得られるホモポリマーだけでなく、主成分であるアクリロニトリルに加えて他のモノマーも用いたアクリロニトリル系共重合体(以下、単に共重合体ともいう。)であってもよい。   The acrylonitrile polymer is a polymer obtained by polymerizing acrylonitrile as a main monomer, and is not only a homopolymer obtained from acrylonitrile but also an acrylonitrile copolymer using other monomers in addition to the main component acrylonitrile. It may be a combination (hereinafter also simply referred to as a copolymer).

上記アクリロニトリル系共重合体において、アクリロニトリル単位の含有量は96〜98.5質量%が、焼成工程での繊維の熱融着防止、共重合体の耐熱性、紡糸原液の安定性及び炭素繊維にした時の品質の観点でより好ましい。アクリロニトリル単位が96質量%以上の場合は、炭素繊維に転換する際の焼成工程で繊維の熱融着を招くことなく、炭素繊維の優れた品質および性能を維持できるので好ましい。また、共重合体自体の耐熱性が低くなることもなく、前駆体繊維を紡糸する際、繊維の乾燥あるいは加熱ローラーや加圧水蒸気による延伸のような工程において、単繊維間の接着を回避できる。一方、アクリロニトリル単位が98.5質量%以下の場合には、溶剤への溶解性が低下することもなく、紡糸原液の安定性を維持できると共に共重合体の析出凝固性が高くならず、前駆体繊維の安定した製造が可能となるので好ましい。   In the acrylonitrile-based copolymer, the content of acrylonitrile units is 96 to 98.5% by mass, which prevents heat fusion of the fiber in the firing process, heat resistance of the copolymer, stability of the spinning stock solution, and carbon fiber. It is more preferable from the viewpoint of quality at the time. When the acrylonitrile unit is 96% by mass or more, it is preferable because excellent quality and performance of the carbon fiber can be maintained without inducing the thermal fusion of the fiber in the firing step when converting to the carbon fiber. In addition, the heat resistance of the copolymer itself is not lowered, and adhesion between single fibers can be avoided in spinning the precursor fiber or in a process such as fiber drying or drawing with a heating roller or pressurized steam. On the other hand, when the acrylonitrile unit is 98.5% by mass or less, the solubility in the solvent is not lowered, the stability of the spinning stock solution can be maintained, and the precipitation solidification property of the copolymer is not increased. This is preferable because stable production of body fibers is possible.

上記アクリロニトリル系共重合体において、アクリロニトリルと共重合可能なビニル系単量体単位は4質量%以下が好ましく、ビニル系単量体としてはアクリロニトリルと共重合可能なビニル系単量体から適宣選択することができるが、耐炎化反応を促進する作用を有するアクリル酸、メタクリル酸、イタコン酸、または、これらのアルカリ金属塩もしくはアンモニウム塩およびアクリルアミド等の単量体群から選ばれる1種以上の単量体であることが耐炎化を促進する上で好ましい。さらに、上記アクリロニトリル系共重合体中に上記アクリロニトリルと共重合可能なビニル系単量体としてカルボキシル基含有ビニル系モノマー単位を0.5〜2.0質量%含有することが好ましい。このように選ぶと適切な耐炎化反応時間が得られるとともに断面二重構造が形成されにくく高性能の炭素繊維が得られ易い。カルボキシル基含有ビニル系モノマーとしては、例えばアクリル酸、メタクリル酸、イタコン酸等を挙げることができる。   In the acrylonitrile copolymer, the vinyl monomer unit copolymerizable with acrylonitrile is preferably 4% by mass or less, and the vinyl monomer is appropriately selected from vinyl monomers copolymerizable with acrylonitrile. However, acrylic acid, methacrylic acid, itaconic acid, or one or more monomers selected from the group of monomers such as alkali metal salts or ammonium salts and acrylamide, which have an action of promoting the flameproofing reaction, can be used. In order to promote flame resistance, a polymer is preferable. Furthermore, it is preferable to contain 0.5 to 2.0% by mass of a carboxyl group-containing vinyl monomer unit as a vinyl monomer copolymerizable with the acrylonitrile in the acrylonitrile copolymer. When such a selection is made, an appropriate flameproof reaction time can be obtained, and a double-structured cross-section is hardly formed, and high-performance carbon fibers are easily obtained. Examples of the carboxyl group-containing vinyl monomer include acrylic acid, methacrylic acid, itaconic acid and the like.

また前駆体繊維紡糸での延伸性や炭素繊維性能発現性、ボイドの防止及び紡糸安定性確保などの点から、共重合体の重合度は、極限粘度〔η〕として0.8以上3.5以下が好ましい。極限粘度は次のようにして求められる。   In addition, from the viewpoints of stretchability and carbon fiber performance expression in precursor fiber spinning, prevention of voids and securing of spinning stability, the degree of polymerization of the copolymer is 0.8 to 3.5 as the intrinsic viscosity [η]. The following is preferred. The intrinsic viscosity is determined as follows.

共重合体の溶液粘度をη、溶媒の粘度をη0とする時、ηrel=η/η0を相対粘度、ηsp=ηrel−1を比粘度として、ηsp/C(Cは溶液の濃度)を濃度0に外挿した時の値が極限粘度〔η〕として算出される。共重合体の溶液粘度は、例えば25℃の0.5g/100mlのジメチルホルムアミド溶液で、オストワルド型粘度計を用いることにより算出することができる。 When the solution viscosity of the copolymer is η and the viscosity of the solvent is η 0 , η rel = η / η 0 is the relative viscosity, η sp = η rel -1 is the specific viscosity, and η sp / C (C is the solution Value) is extrapolated to a concentration of 0, and the intrinsic viscosity [η] is calculated. The solution viscosity of the copolymer can be calculated by using, for example, a 0.5 g / 100 ml dimethylformamide solution at 25 ° C. and using an Ostwald viscometer.

アクリロニトリル単位と、アクリロニトリルと共重合可能なビニル系単量体とを共重合する方法には、溶液重合、スラリー重合等公知の重合法の何れでも用いることができるが、未反応モノマーや重合触媒残査、その他の不純物が最終的に炭素繊維となった時に欠陥点となり、炭素繊維の性能、特に引張強度を低下させることがあるためにこれらを極力除くことが好ましい。   As a method for copolymerizing an acrylonitrile unit and a vinyl monomer copolymerizable with acrylonitrile, any of known polymerization methods such as solution polymerization and slurry polymerization can be used. It is preferable to remove these impurities as much as possible because they may become defective when the other impurities finally become carbon fibers, and the performance of the carbon fibers, particularly the tensile strength, may be reduced.

紡糸の際には、アクリロニトリル系重合体、例えば前述のアクリロニトリル系共重合体を、溶剤に溶解し共重合体の溶液とする。このときの溶剤は、ジメチルアセトアミド、ジメチルスルホキシドおよびジメチルホルムアミド等の有機溶剤や塩化亜鉛、チオシアン酸ナトリウム等の無機化合物の水溶液等の公知のものから適宜選択して使用することができるが、生産性向上の観点から凝固速度が早いジメチルアセトアミド、ジメチルスルホキシドおよびジメチルホルムアミドが好ましく、ジメチルアセトアミドがより好ましい。   At the time of spinning, an acrylonitrile-based polymer, for example, the aforementioned acrylonitrile-based copolymer is dissolved in a solvent to form a copolymer solution. The solvent at this time can be appropriately selected from known solvents such as organic solvents such as dimethylacetamide, dimethylsulfoxide and dimethylformamide, and aqueous solutions of inorganic compounds such as zinc chloride and sodium thiocyanate. From the viewpoint of improvement, dimethylacetamide, dimethylsulfoxide and dimethylformamide having a high coagulation rate are preferable, and dimethylacetamide is more preferable.

またこの際、(共)重合体溶液中にゲル成分が発生することによるノズル孔の詰まりを防止するために、溶液中の(共)重合体の濃度を10〜30質量%に調整するのが好ましい。   At this time, in order to prevent clogging of the nozzle holes due to the generation of the gel component in the (co) polymer solution, the concentration of the (co) polymer in the solution is adjusted to 10 to 30% by mass. preferable.

紡糸方法は、前記(共)重合体の溶液を直接凝固浴中に紡出する湿式紡糸法、空気中で凝固する乾式紡糸法、および一旦空気中に紡出した後に浴中凝固させる乾湿式紡糸法など公知の紡糸方法を適宜採用できるが、より高い性能を有する炭素繊維を得るには湿式紡糸法または乾湿式紡糸法が好ましい。   The spinning method includes a wet spinning method in which the solution of the (co) polymer is directly spun into a coagulation bath, a dry spinning method in which the solution is coagulated in the air, and a dry wet spinning method in which the solution is once spun in the air and then coagulated in the bath. A known spinning method such as a method can be appropriately employed, but a wet spinning method or a dry-wet spinning method is preferable for obtaining carbon fibers having higher performance.

湿式紡糸法または乾湿式紡糸法による紡糸賦形は、上記(共)重合体溶液を円形断面を有するノズル孔より凝固浴中に紡出することで行うことができる。凝固浴としては、上記(共)重合体溶液に用いられる溶剤を含む水溶液を用いるのが溶剤回収の容易さの観点から好ましい。   The spinning shaping by the wet spinning method or the dry wet spinning method can be performed by spinning the (co) polymer solution into a coagulation bath through a nozzle hole having a circular cross section. As the coagulation bath, it is preferable to use an aqueous solution containing a solvent used in the (co) polymer solution from the viewpoint of easy solvent recovery.

凝固浴として溶剤を含む水溶液を用いる場合、水溶液中の溶剤濃度は、ボイドがなく緻密な構造を形成させ高性能な炭素繊維を得られ、かつ延伸性が確保でき生産性に優れる観点から、50〜85質量%が好ましく60〜80質量%がより好ましい。同様の観点から、凝固浴の温度は0〜50℃が好ましく、10〜40℃がより好ましい。   When an aqueous solution containing a solvent is used as the coagulation bath, the concentration of the solvent in the aqueous solution is 50 from the viewpoint of forming a dense structure without voids and obtaining high-performance carbon fibers, ensuring stretchability and excellent productivity. -85 mass% is preferable, and 60-80 mass% is more preferable. From the same viewpoint, the temperature of the coagulation bath is preferably 0 to 50 ° C, more preferably 10 to 40 ° C.

(共)重合体を溶剤に溶解し溶液として凝固浴中に吐出して繊維化した後に、凝固糸を凝固浴中または延伸浴中で延伸する浴中延伸を行うことができる。あるいは、一部空中延伸した後に、浴中延伸してもよく、延伸の前後あるいは延伸と同時に水洗を行って水膨潤状態にある繊維を得ることができる。浴中延伸は通常50〜98℃の水浴中で1回あるいは2回以上の多段に分割するなどして行い、空中延伸と浴中延伸の合計倍率が2〜6倍に延伸するのが得られる炭素繊維の性能の点から好ましい。前記水洗工程では、繊維トウの走行方向の下流側から上流側に向けて洗浄液を流してトウから溶媒を除去する、いわゆるカスケードを使って洗浄を行う方法や高圧液体を噴射して高速液流を貫通させるなど公知の方法を適宜採用できる。高品質の炭素繊維前駆体アクリル繊維を製造するには、繊維に含まれる無機・有機を問わず溶剤を極力除去することが好ましい。残存溶剤が炭素繊維に転換する際に欠陥点となることを防止する観点から、洗浄は前駆体繊維中の残存溶剤濃度が0.1質量%以下となるまで行うのが好ましく、0.05質量%以下まで行うのが更に好ましい。前駆体繊維中の残存溶剤濃度は次のようにして求めることができる。   After the (co) polymer is dissolved in a solvent and discharged into a coagulation bath as a solution to be fiberized, stretching in a bath in which the coagulated yarn is stretched in a coagulation bath or in a stretching bath can be performed. Alternatively, it may be partially stretched in the air and then stretched in a bath, and the fiber in a water-swollen state can be obtained by washing with water before or after stretching or simultaneously with stretching. Stretching in the bath is usually performed in a water bath at 50 to 98 ° C. by dividing it into multiple stages of one or more times, and the total ratio of in-air stretching and stretching in the bath can be stretched to 2 to 6 times. It is preferable from the viewpoint of the performance of carbon fiber. In the water washing step, the washing liquid is flowed from the downstream side to the upstream side in the traveling direction of the fiber tow to remove the solvent from the tow, a washing method using a so-called cascade, or a high-pressure liquid is jetted to generate a high-speed liquid flow. A known method such as penetration may be employed as appropriate. In order to produce a high-quality carbon fiber precursor acrylic fiber, it is preferable to remove the solvent as much as possible regardless of inorganic or organic contained in the fiber. From the viewpoint of preventing the residual solvent from becoming a defect point when converted to carbon fiber, the washing is preferably performed until the residual solvent concentration in the precursor fiber is 0.1% by mass or less, and 0.05% by mass. More preferably, it is performed up to%. The residual solvent concentration in the precursor fiber can be determined as follows.

前駆体繊維を7g精秤し、200gの沸水により30分間抽出した後の検液中の濃度を液クロマトグラフィーにより算出する。   7 g of the precursor fiber is precisely weighed, and the concentration in the test solution after extraction with 200 g of boiling water for 30 minutes is calculated by liquid chromatography.

油剤組成物のアクリル繊維への付与は、前述の浴中延伸の後の水膨潤状態にある繊維に油剤組成物のエマルション液を付与することにより行うことができる。浴中延伸の後に洗浄を行う場合は、浴中延伸および洗浄を行った後に得られる水膨潤状態にある繊維に油剤組成物のエマルション液を付与する。   Application of the oil composition to the acrylic fiber can be performed by applying an emulsion liquid of the oil composition to the fiber in a water-swollen state after stretching in the bath. When washing is performed after stretching in the bath, an emulsion solution of the oil composition is applied to the fibers in a water-swelled state obtained after stretching and washing in the bath.

水膨潤状態のアクリル繊維はポーラスな構造を有するため、水に分散された油剤組成物は繊維内部に浸透する。繊維内部への浸透の程度は、油剤組成物の水可溶性の程度や分散粒子の大きさ等にも依存するが、主としてポーラスの度合いに依存する。ポーラス構造の度合いは、水膨潤度を測定することによって判定することができる。水膨潤度の測定は、水膨潤繊維を延伸脱水機にて脱水し、表面あるいは繊維間に付着した水を取り除いた後の湿潤状態の重量と、これをさらに絶乾した後の繊維重量の差から繊維内部に浸透していた水量を求めることで行うことができる。炭素繊維の強度は油剤組成物の付着量だけではなく、油剤組成物を付着させるときのポーラス度、即ち油剤組成物を付着させる前の湿潤状態の水膨潤度によって大きく影響を受けることが知られている。水膨潤度の低い糸条は密な構造となっているために、繊維内部に油剤組成物が浸透し難く、炭素繊維前駆体アクリル繊維が炭素繊維に転換される際に欠陥点を作る原因を減少させると考えられるため好ましい。   Since the water-swelled acrylic fiber has a porous structure, the oil composition dispersed in water penetrates into the fiber. The degree of penetration into the fiber depends mainly on the degree of porosity, although it depends on the water solubility of the oil composition and the size of the dispersed particles. The degree of the porous structure can be determined by measuring the degree of water swelling. The degree of water swelling is measured by dehydrating the water-swelled fiber with a stretching dehydrator and removing the water adhering to the surface or between the fibers, and the difference between the wet weight and the fiber weight after further drying. Can be obtained by determining the amount of water that has penetrated into the fiber. It is known that the strength of carbon fiber is greatly influenced not only by the adhesion amount of the oil composition, but also by the degree of porosity when attaching the oil composition, that is, the degree of water swelling in a wet state before attaching the oil composition. ing. Since the yarn with low water swelling has a dense structure, it is difficult for the oil composition to penetrate into the inside of the fiber, which causes a defect point when the carbon fiber precursor acrylic fiber is converted to carbon fiber. Since it is thought that it reduces, it is preferable.

油剤組成物は下記の式(1)または式(4)で示される化合物を含む。   The oil agent composition contains a compound represented by the following formula (1) or (4).

Figure 2005023502
式(1)においてR1は式(2)で表されるもの、および式(3)で表されるもののいずれかであり、4つのR2はそれぞれ独立して炭素数5〜18のアルキル基である。
Figure 2005023502
In the formula (1), R 1 is either one represented by the formula (2) or one represented by the formula (3), and the four R 2 are each independently an alkyl group having 5 to 18 carbon atoms. It is.

Figure 2005023502
Figure 2005023502

Figure 2005023502
式(4)において、2つのR2はそれぞれ独立して炭素数5〜18のアルキル基である。
Figure 2005023502
In Formula (4), two R 2 are each independently an alkyl group having 5 to 18 carbon atoms.

式(1)および(4)中のアルキル基R2の炭素数は合成がしやすい点および価格が安価な点から、5〜18が好ましく、9〜13がより好ましい。 The number of carbon atoms of the alkyl group R 2 in the formulas (1) and (4) is preferably 5 to 18 and more preferably 9 to 13 because the synthesis is easy and the price is low.

また本発明の油剤組成物における式(1)または式(4)の化合物の含有量は炭素繊維の性能、各工程における接着抑制の観点から60〜80質量%の範囲内にするのがよい。   The content of the compound of formula (1) or formula (4) in the oil composition of the present invention is preferably in the range of 60 to 80% by mass from the viewpoint of carbon fiber performance and adhesion suppression in each step.

上記油剤組成物は一種でまたは二種以上を組み合わせて用いることができる。   The said oil agent composition can be used individually or in combination of 2 or more types.

油剤組成物のエマルション液として、式(1)または(4)で示される化合物とノニオン系界面活性剤と帯電防止剤と酸化防止剤を混合し水に分散させて好ましくは乳化粒径0.05μm〜0.9μmの油剤乳化物を得ることができる。このとき、乳化する際の水の量に特に制限はない。乳化粒径が0.05μm以上の場合、水膨潤状態にある糸条の内部まで多量の油剤組成物が浸透することを優れて抑制でき、また油剤組成物の付着量を増やすことなく耐熱性や単繊維間の平滑性および離型性を優れて発揮させることができるので好ましい。乳化粒径が0.9μm以下の場合、優れた乳化安定性が得られるため好ましい。より好ましくは0.5μm以下である。乳化粒径は、乳化の方法や、界面活性剤の種類および界面活性剤の使用量などを変えることにより調節される。   As an emulsion liquid of the oil composition, a compound represented by the formula (1) or (4), a nonionic surfactant, an antistatic agent and an antioxidant are mixed and dispersed in water, preferably an emulsion particle size of 0.05 μm. An oil agent emulsion of ˜0.9 μm can be obtained. At this time, there is no restriction | limiting in particular in the quantity of the water at the time of emulsification. When the emulsified particle size is 0.05 μm or more, it can be excellently suppressed that a large amount of the oil composition penetrates into the inside of the yarn in the water-swollen state, and the heat resistance can be increased without increasing the adhesion amount of the oil composition. It is preferable because smoothness and releasability between single fibers can be exhibited. An emulsion particle size of 0.9 μm or less is preferable because excellent emulsion stability can be obtained. More preferably, it is 0.5 μm or less. The emulsified particle size is adjusted by changing the emulsification method, the type of surfactant, the amount of surfactant used, and the like.

前記油剤組成物中の式(1)または(4)で示される化合物とノニオン系界面活性剤との混合比は、質量比90:10〜60:40の範囲とすることが好ましい。式(1)または(4)で示される化合物とノニオン系界面活性剤との合計量に対し、ノニオン系界面活性剤の比率が10質量%以上であればエマルションの安定性が優れ繊維への均一付着性に優れる傾向があり、また、40質量%以下であれば炭素繊維の性能に優れる傾向がある。   The mixing ratio of the compound represented by the formula (1) or (4) and the nonionic surfactant in the oil composition is preferably in the range of 90:10 to 60:40 in mass ratio. If the ratio of the nonionic surfactant to the total amount of the compound represented by the formula (1) or (4) and the nonionic surfactant is 10% by mass or more, the stability of the emulsion is excellent and the fiber is uniform. There exists a tendency which is excellent in adhesiveness, and if it is 40 mass% or less, there exists a tendency which is excellent in the performance of carbon fiber.

本発明の油剤組成物の調製方法としては、公知の各種油剤調製法が適用でき、前記油剤組成物中の式(1)または(4)で示される化合物、帯電防止剤及び酸化防止剤を混合し、この混合物をノニオン系界面活性剤が混合した水に分散することができる。   As a method for preparing the oil agent composition of the present invention, various known oil agent preparation methods can be applied, and the compound represented by the formula (1) or (4), the antistatic agent and the antioxidant in the oil agent composition are mixed. The mixture can be dispersed in water mixed with a nonionic surfactant.

また、前記油剤組成物中の式(1)または(4)で示される化合物、帯電防止剤及び酸化防止剤、更にノニオン系界面活性剤を混合し、これを水中に分散することもできる。   Further, the compound represented by the formula (1) or (4), the antistatic agent and the antioxidant, and the nonionic surfactant in the oil composition can be mixed and dispersed in water.

例えば前記油剤組成物中の式(1)または(4)で示される化合物に攪拌しながら帯電防止剤及び酸化防止剤を必要に応じて加熱しつつ添加し、この混合物に乳化剤(ノニオン系界面活性剤)を加えて水中に分散させる事で油剤組成物の水系エマルションが得られる。各成分の混合または水中分散は、プロペラ攪拌、ホモミキサー、ホモジナイザー等を使って行うことができる。また、前記油剤組成物中の式(1)または(4)で示される化合物と帯電防止剤及び酸化防止剤を別々に乳化して、繊維付着前に混合することも可能である。   For example, an antistatic agent and an antioxidant are added to the compound represented by the formula (1) or (4) in the oil agent composition while stirring as necessary, and an emulsifier (nonionic surfactant) is added to the mixture. An aqueous emulsion of the oil composition is obtained by adding the agent) and dispersing in water. Each component can be mixed or dispersed in water using a propeller, a homomixer, a homogenizer or the like. It is also possible to separately emulsify the compound represented by the formula (1) or (4) in the oil agent composition, the antistatic agent and the antioxidant and mix them before attaching the fibers.

油剤組成物のエマルション液を水膨潤状態の糸条に付与させるには、糸条に含まれている水と油剤組成物のエマルション液を速やかにかつ均一に置換させることが好ましい。これは本発明のように油剤組成物の特性を変えたり、後述の油剤付着処理方法を変えたり、糸条の水膨潤状態の程度を変えたり、これらを組み合わせても良い。   In order to give the emulsion liquid of the oil composition to the yarn in the water-swollen state, it is preferable to quickly and uniformly replace the water contained in the yarn and the emulsion liquid of the oil composition. This may change the characteristics of the oil composition as in the present invention, change the oil agent adhesion treatment method described later, change the degree of water swelling of the yarn, or a combination thereof.

乳化に使用される界面活性剤は、高品質の炭素繊維を製造するには、炭素繊維前駆体アクリル繊維が炭素繊維に転換される際に欠陥点となるため極力残存しないことが好ましい。炭素繊維の性能発現の観点から、空気中250℃で2時間加熱後の残渣率が1.0質量%以下であることが好ましく、0.5%質量以下であることがさらに好ましく、分解する時に発熱を伴う金属を含まないノニオン系界面活性剤が更に好ましい。空気中250℃で2時間加熱後の残渣率は次のようにして求めることができる。   In order to produce a high-quality carbon fiber, it is preferable that the surfactant used for emulsification does not remain as much as possible because it becomes a defect point when the carbon fiber precursor acrylic fiber is converted to carbon fiber. From the viewpoint of expressing the performance of the carbon fiber, the residue ratio after heating at 250 ° C. in air for 2 hours is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and when decomposing. Nonionic surfactants containing no exothermic metal are more preferred. The residue ratio after heating for 2 hours at 250 ° C. in air can be determined as follows.

アルミシャーレ(直径60mm、深さ10mm)にノニオン系界面活性剤2.0gを精秤し、空気中250℃で2時間加熱した後の残分について残渣率を算出した。加熱残渣率が大きいほど、ノニオン系界面活性剤の熱劣化物が耐炎化糸や炭素化糸に残存する可能性が大きい事を意味する。   A nonionic surfactant (2.0 g) was precisely weighed in an aluminum petri dish (diameter 60 mm, depth 10 mm), and the residue rate was calculated for the residue after heating in air at 250 ° C. for 2 hours. The larger the heating residue rate, the greater the possibility that the nonionic surfactant thermally deteriorated material will remain in the flame-resistant yarn or carbonized yarn.

ノニオン系界面活性剤は水中でイオン解離しない水酸基−OHやエーテル結合−O−などを親水基としてもっている界面活性剤とことであり、ノニオン系界面活性剤の好適な例としてはポリオキシアルキレングリコール脂肪酸エステル、脂肪族アルコールのアルキレンオキシド付加物、アルキル置換フェノールのアルキレンオキシド付加物などが挙げられ、疎水部のアルキル鎖は直鎖状でも分岐していてもよい。ノニオン系界面活性剤は一種でまたは二種以上組み合わせて用いることができる。   Nonionic surfactant is a surfactant having a hydroxyl group -OH or ether bond -O-, etc., which does not ionically dissociate in water as a hydrophilic group, and a suitable example of a nonionic surfactant is polyoxyalkylene glycol. Examples thereof include fatty acid esters, alkylene oxide adducts of aliphatic alcohols, and alkylene oxide adducts of alkyl-substituted phenols. The alkyl chain in the hydrophobic portion may be linear or branched. Nonionic surfactants can be used singly or in combination of two or more.

油剤組成物中、油剤の付着均一性及び炭素繊維の性能発現の観点で、式(1)または式(4)で表される化合物を60〜80質量%、上記ノニオン系界面活性剤を12〜37質量%とすることが好ましい。   In the oil composition, 60-80% by mass of the compound represented by the formula (1) or formula (4) and 12 to 12% of the above nonionic surfactant from the viewpoint of the uniform adhesion of the oil and the performance of the carbon fiber. It is preferable to set it as 37 mass%.

油剤組成物中、帯電防止剤は乾燥緻密化工程や必要に応じ行う乾燥緻密化後の延伸工程及び巻き取り工程における静電気の発生を抑制する観点から2〜4質量%とすることが好ましい。   In the oil agent composition, the antistatic agent is preferably 2 to 4% by mass from the viewpoint of suppressing the generation of static electricity in the drying densification step and the stretching step and the winding step after the drying densification performed as necessary.

帯電防止剤は、イオン型と非イオン型に大別され、イオン型としてはアニオン系、カチオン系及び両性系があり、非イオン型ではポリエチレングリコール型、多価アルコール型がある。帯電防止の観点からイオン型が好ましく、中でも脂肪族スルホン酸塩、高級アルコール硫酸エステル塩、高級アルコールエチレンオキシド付加物硫酸エステル塩、高級アルコールリン酸エステル塩、高級アルコールエチレンオキシド付加物硫酸リン酸エステル塩、第4級アンモニウム塩型カチオン界面活性剤、ベタイン型両性界面活性剤、高級アルコールエチレンオキシド付加物ポリエチレングリコール脂肪酸エステル、多価アルコール脂肪酸エステルなどが好ましく用いられ、これらは単独でも組み合わせでも良い。   Antistatic agents are broadly classified into ionic types and nonionic types, and ionic types include anionic, cationic and amphoteric, and nonionic types include polyethylene glycol type and polyhydric alcohol type. From the viewpoint of antistatic, ionic type is preferable, among them aliphatic sulfonate, higher alcohol sulfate ester salt, higher alcohol ethylene oxide adduct sulfate ester, higher alcohol phosphate ester salt, higher alcohol ethylene oxide adduct sulfate phosphate ester salt, Quaternary ammonium salt type cationic surfactants, betaine type amphoteric surfactants, higher alcohol ethylene oxide adducts polyethylene glycol fatty acid esters, polyhydric alcohol fatty acid esters and the like are preferably used, and these may be used alone or in combination.

油剤組成物中、酸化防止剤は耐熱性の観点や炭素繊維の性能発現の観点から1〜3質量%とすることが好ましい。   In the oil composition, the antioxidant is preferably 1 to 3% by mass from the viewpoint of heat resistance and the expression of the performance of the carbon fiber.

本発明で用いる酸化防止剤(D)は、本発明の油剤組成物の熱酸化性の劣化を抑制する為に使用するものであり、酸化防止剤としては、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、1,3,5−トリス(4−t−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌル酸、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、4,4’−ブチリデンビス(3−メチル−6−t−ブチルフェニル−ジトリデシルホスファイト)などが好ましく用いられ、これらは単独でも組み合わせでも良い。   The antioxidant (D) used in the present invention is used for suppressing the thermal oxidative deterioration of the oil composition of the present invention. As the antioxidant, pentaerythrityl-tetrakis [3- ( 3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenyl) propionate], octadecyl-3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris (4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanuric acid, 2,2-thio -Diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) Cycloalkenyl - ditridecylphosphite) and the like are preferably used, these may be in combination alone.

油剤付与は、前記油剤組成物を繊維質量当たり0.1質量%以上5.0質量%となるように付着することが好ましい。油剤組成物の繊維質量当たりの付着量が、0.1質量%以上であると、乾燥緻密化工程や必要に応じ行う乾燥緻密化後の延伸工程、更にボビンへの巻き取り工程(や容器への収納工程)での集束性に優れる。5.0質量%以下であると、炭素繊維の性能が優れる。更に油剤組成物の斑付きによる炭素繊維の性能の変動を抑制する観点から付着量の下限値は0.4質量%以上が好ましく、0.5質量%以上が更に好ましく、上限値は2.0質量%以下が好ましく、1.5質量%以下が更に好ましい。繊維への油剤組成物の付着量はソックスレー抽出器でメチルエチルケトンを溶媒として1時間抽出した油剤の量を繊維の単位質量で除して算出することができる。   It is preferable that oil agent attachment adheres the said oil agent composition so that it may become 0.1 mass% or more and 5.0 mass% per fiber mass. When the adhesion amount per fiber mass of the oil composition is 0.1% by mass or more, a drying densification step, a stretching step after drying densification performed as necessary, and a winding step on a bobbin (and a container) Excellent in convergence in the storage process). The performance of carbon fiber is excellent in it being 5.0 mass% or less. Further, from the viewpoint of suppressing fluctuations in the performance of the carbon fiber due to the spots of the oil composition, the lower limit value of the adhesion amount is preferably 0.4% by mass or more, more preferably 0.5% by mass or more, and the upper limit value is 2.0. % By mass or less is preferable and 1.5% by mass or less is more preferable. The adhesion amount of the oil agent composition to the fiber can be calculated by dividing the amount of the oil agent extracted with a Soxhlet extractor for 1 hour using methyl ethyl ketone as a solvent by the unit mass of the fiber.

油剤組成物の繊維への好ましい付着状態は、繊維表層部に均一に付着していることが好ましい。   The preferable adhesion state of the oil composition to the fibers is preferably uniformly adhered to the fiber surface layer.

油剤成分が繊維表層部にあれば、炭素繊維前駆体アクリル繊維が炭素繊維に転換される際に繊維内部に浸透した油剤組成物が分解する時に表層部にミクロボイドを形成させ欠陥点となる程度が低くなることを優れて抑制できるので好ましい。また繊維表層部に付着できれば、繊維奥深く浸透する油剤組成物は繊維に対して離型性、平滑性に寄与しないため、その分過剰に油剤組成物を付着させずに済むために好ましい。   If the oil component is in the fiber surface layer part, when the carbon fiber precursor acrylic fiber is converted to carbon fiber, when the oil agent composition that has penetrated into the fiber decomposes, the surface layer part forms microvoids and becomes a defect point. It is preferable because lowering can be excellently suppressed. Moreover, if it can adhere to a fiber surface layer part, since the oil agent composition which osmose | permeates deeply in a fiber does not contribute to a mold release property and smoothness with respect to a fiber, it is preferable because it does not need to attach an oil agent composition excessively.

更に油剤組成物が均一に付着していると、油剤組成物の付着量が少ない部分の耐熱性が低下し融着が発生すること、および、油剤組成物の付着量が多い部分で油剤組成物そのものが膠着することを優れて抑制できるので好ましい。   Further, when the oil composition is uniformly adhered, the heat resistance of the portion where the amount of the oil composition is small is lowered and fusion occurs, and the oil composition is present in the portion where the amount of the oil composition is large. It is preferable because it can be excellently suppressed from sticking itself.

油剤付着処理の方法としては、公知の技術として、浸漬法、キスローラー法、ガイド給油法、油剤浴中の駆動・非駆動ローラーによる方法、又は固定・非固定ガイドバーへ走行する繊維を掛けて付与する方法、上方へ吹き出した油剤中に繊維を走行させて付与する方法、走行する耐炎化繊維に上方から油剤を滴下させて付与する方法、油剤液を噴霧した空間に繊維を走行させて付与する方法など、多様な付与方法が適用でき、これらの方法から1種あるいは複数組み合わせて選択することができる。   As a method of oil agent adhesion treatment, as a known technique, a dipping method, a kiss roller method, a guide oil supply method, a method using a driving / non-driving roller in an oil bath, or a fiber that travels to a fixed / non-fixed guide bar is applied. A method of applying, a method of applying the fiber by running the oil in the oil blown upward, a method of applying the oil by dropping the oil into the flame-resistant fiber to be applied, and applying by running the fiber in the space sprayed with the oil solution Various application methods such as a method for performing the above can be applied, and one or a combination of these methods can be selected.

次に、油剤付与を行った繊維は加熱ローラーなどによって乾燥緻密化を行う。乾燥温度、時間は適宜選択することができるが、120℃〜190℃の加熱ローラーにより乾燥緻密化することが好ましい。   Next, the fiber to which the oil agent is applied is dried and densified by a heating roller or the like. Although drying temperature and time can be selected as appropriate, it is preferable to dry and densify with a heating roller of 120 to 190 ° C.

得られる炭素繊維の性能の観点及び生産性の観点、すなわち高倍率の延伸が可能であること、より最終紡速を高くすることができること、得られる繊維の緻密性や配向度向上にも寄与することから、上記乾燥緻密化により得られた繊維を乾熱延伸またはスチーム延伸しても良い。乾熱延伸は2本の熱ロール間で行っても良いし、更にその熱ロール間に設置したホットプレートに繊維を接触させて行っても良い。スチーム延伸では加圧水蒸気延伸法により行うことが好ましい。加圧水蒸気延伸法は、加圧水蒸気雰囲気中で延伸を行う方法である。   From the viewpoint of the performance and productivity of the obtained carbon fiber, that is, it can be stretched at a high magnification, can further increase the final spinning speed, and contributes to improvement of the denseness and orientation degree of the obtained fiber. Therefore, the fiber obtained by the above-mentioned dry densification may be subjected to dry heat drawing or steam drawing. Dry heat drawing may be performed between two hot rolls, or may be performed by bringing the fibers into contact with a hot plate installed between the hot rolls. The steam stretching is preferably performed by a pressurized steam stretching method. The pressurized steam stretching method is a method of stretching in a pressurized steam atmosphere.

以下に本発明を実施例によりさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(油剤組成物の前駆体繊維との親和性)
炭素繊維前駆体アクリル繊維を蒸留水の入った槽に導き、10秒間浸漬した後のアクリロニトリル系前駆体繊維をソックスレー抽出器でメチルエチルケトンを溶媒として1時間抽出した量(質量)をW1、蒸留水の入った槽に導く前の繊維をソックスレー抽出器でメチルエチルケトンを溶媒として1時間抽出した量(質量)をW0とした時にR=(W0−W1)÷W0×100(%)を油剤組成物の前駆体繊維との親和性Rとする。親和性Rの値が小さいほど油剤組成物と前駆体繊維との親和性が高いことを意味し、前駆体繊維に付着した油剤組成物が蒸留水中に脱落する程度が小さいことを意味する。脱落する程度が小さいことは、油剤組成物が比較的均一かつ強固に繊維表面に付着していると考えられるため好ましい。
(Affinity with precursor fiber of oil composition)
Carbon fiber precursor acrylic fiber is introduced into a tank containing distilled water, and the amount (mass) of acrylonitrile-based precursor fiber that has been immersed for 10 seconds and extracted with a Soxhlet extractor using methyl ethyl ketone as a solvent for 1 hour is W 1 , distilled water. R = (W 0 −W 1 ) ÷ W 0 × 100 (%) where W 0 is the amount (mass) of the fiber (1) extracted with methyl ethyl ketone as a solvent for 1 hour using a Soxhlet extractor before introducing the fiber into the tank containing The affinity R with the precursor fiber of the oil composition is defined as R. The smaller the value of the affinity R, the higher the affinity between the oil composition and the precursor fiber, and the less the degree of the oil agent composition adhering to the precursor fiber falling off in distilled water. It is preferable that the degree of falling off is small because the oil agent composition is considered to be relatively uniformly and firmly attached to the fiber surface.

親和性Rは50%以下が好ましく、20%以下が更に好ましい。ここでは親和性Rが0〜20%のとき親和性が非常に良い(◎)、20〜50%のとき良い(○)、50〜100%のとき劣る(×)と評価した。   The affinity R is preferably 50% or less, and more preferably 20% or less. Here, when the affinity R was 0 to 20%, the affinity was very good (◎), when it was 20 to 50% (◯), and when it was 50 to 100%, it was evaluated as poor (×).

[実施例1]
アクリロニトリル単位97.1質量%、アクリルアミド単位2.0質量%、メタクリル酸単位0.9質量%からなり、極限粘度〔η〕が1.7の共重合体を、共重合体濃度21質量%となるようにジメチルアセトアミドに溶解して共重合体の溶液とした。この溶液を、12000ホールのノズルを用いて濃度70質量%、温度35℃のジメチルアセトアミド水溶液中に吐出して湿式紡糸した。
[Example 1]
A copolymer consisting of 97.1% by mass of acrylonitrile units, 2.0% by mass of acrylamide units and 0.9% by mass of methacrylic acid units, and having an intrinsic viscosity [η] of 1.7, is a copolymer concentration of 21% by mass. Thus, it was dissolved in dimethylacetamide to obtain a copolymer solution. This solution was wet-spun by discharging it into a dimethylacetamide aqueous solution having a concentration of 70% by mass and a temperature of 35 ° C. using a nozzle of 12,000 holes.

上記紡糸により得られた凝固繊維について、空中にて1.5倍の延伸を施したのち、98℃の熱水中で3.18倍に浴中延伸しながら洗浄・脱溶剤し、水膨潤状態のアクリル繊維とした。   The coagulated fiber obtained by spinning is stretched 1.5 times in the air, then washed and desolvated while being stretched 3.98 times in hot water at 98 ° C. Acrylic fiber.

この水膨潤状態にあるアクリル繊維に、表1に示した油剤付与条件で油剤付与を行い、140℃の加熱ローラーにて乾燥緻密化し、294kPa・G(Gはゲージ圧であることを示す)の加圧水蒸気中にて2.79倍延伸した。   The acrylic fiber in the water-swollen state is provided with an oil agent under the oil agent application conditions shown in Table 1, dried and densified with a heating roller at 140 ° C., and 294 kPa · G (G indicates gauge pressure) The film was stretched 2.79 times in pressurized steam.

なお、油剤付与においては、次の成分(A)〜(D)を表1に示した比率で混合して油剤組成物とし、この油剤組成物(1000g)にイオン交換水(3000g)を加え、二次乳化を行ってエマルションとした。
(A)油剤成分:テトラグリシジルジアミノジフェニルメタンとラウリン酸を1:4のモル比で四つ口フラスコに仕込み、130℃に加熱し攪拌し、7時間反応を継続して得られた化合物。この化合物は式(1)において、R1を式(2)の化合物とし、R2を炭素数11の直鎖アルキル基としたものである。
(B)乳化剤成分(ノニオン系界面活性剤):ラウリルアルコールエチレンオキシド9モル付加物。(空気中250℃で2時間加熱後の残渣率が0.2質量%)
(C)帯電防止剤:オレイルイミダゾルエトサルフェート。
(D)酸化防止剤:チバ(Ciba)社製、商品名:イルガノックス(Irganox)1010(ペンタエリスリチル‐テトラキス〔3‐(3,5‐ジ‐t‐ブチル‐4‐ヒドロキシフェニル)プロピオネート〕)。
In addition, in oil agent provision, the following components (A) to (D) are mixed at a ratio shown in Table 1 to obtain an oil agent composition, and ion exchange water (3000 g) is added to the oil agent composition (1000 g), Secondary emulsification was performed to obtain an emulsion.
(A) Oil agent component: A compound obtained by charging tetraglycidyldiaminodiphenylmethane and lauric acid into a four-necked flask at a molar ratio of 1: 4, heating to 130 ° C., stirring, and continuing the reaction for 7 hours. In this formula (1), R 1 is a compound of formula (2) and R 2 is a linear alkyl group having 11 carbon atoms.
(B) Emulsifier component (nonionic surfactant): 9 mol lauryl alcohol ethylene oxide adduct. (The residue rate after heating for 2 hours at 250 ° C. in air is 0.2% by mass)
(C) Antistatic agent: oleyl imidazole sulfate.
(D) Antioxidant: manufactured by Ciba, trade name: Irganox 1010 (pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] ).

乾燥緻密化工程や乾燥緻密化後の延伸工程、更にボビンへの巻き取り工程中、単繊維切れ・毛羽の発生はほとんど認められず、ローラーへの巻き付き、糸切れなどなく工程通過性は良好であった。油剤組成物の繊維への付与量は0.89質量%であった。油剤の親和性Rを表1に示した。   During the drying densification process, the stretching process after drying densification, and the winding process on the bobbin, almost no occurrence of single fiber breakage or fluff is observed, and there is no winding around the roller, thread breakage, etc. there were. The amount of the oil composition applied to the fiber was 0.89% by mass. The affinity R of the oil is shown in Table 1.

(比較例1)
油剤成分として式(5)のビスフェノールAのエチレンオキシド2モル付加物のジラウリルエステルを使用する以外は実施例1と同じ油剤付与条件で油剤付与を行い、同様に操作し炭素繊維用アクリロニトリル系前駆体繊維を得た。成分の繊維への付与量は0.95質量%であった。油剤の親和性Rを表1に示した。
(Comparative Example 1)
The acrylonitrile precursor for carbon fiber is operated in the same manner as in Example 1 except that the dilauryl ester of a 2-mol adduct of bisphenol A of bisphenol A of formula (5) is used as the oil agent, and the same operation is performed. Fiber was obtained. The amount of the component applied to the fiber was 0.95% by mass. The affinity R of the oil is shown in Table 1.

Figure 2005023502
Figure 2005023502

Figure 2005023502
(式(5)においてRは炭素数11のアルキル基を示す。)
Figure 2005023502
(In the formula (5), R represents an alkyl group having 11 carbon atoms.)

Claims (4)

(A)式(1)で表される化合物が60質量%以上80質量%以下;
Figure 2005023502
(式(1)中、R1は式(2)または(3)で表され、4つのR2はそれぞれ独立して炭素数5〜18のアルキル基を示す。)
Figure 2005023502
(B)空気中250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤が12質量%以上37質量%以下;
(C)帯電防止剤が2質量%以上4質量%以下;及び
(D)酸化防止剤が1質量%以上3質量%以下
からなることを特徴とする炭素繊維前駆体アクリル繊維用油剤組成物。
(A) 60 mass% or more and 80 mass% or less of the compound represented by Formula (1);
Figure 2005023502
(In formula (1), R 1 is represented by formula (2) or (3), and four R 2 s each independently represent an alkyl group having 5 to 18 carbon atoms.)
Figure 2005023502
(B) 12 to 37% by mass of a nonionic surfactant having a residue rate of 1.0% by mass or less after heating at 250 ° C. in air for 2 hours;
(C) Antistatic agent is 2 mass% or more and 4 mass% or less; and (D) Antioxidant consists of 1 mass% or more and 3 mass% or less, The carbon fiber precursor acrylic-oil oil composition characterized by the above-mentioned.
(A)式(4)で表される化合物が60質量%以上80質量%以下;
Figure 2005023502
(式(4)中、2つのR2はそれぞれ独立して炭素数5〜18のアルキル基を示す。)
(B)空気中250℃で2時間加熱後の残渣率が1.0質量%以下のノニオン系界面活性剤が12質量%以上37質量%以下;
(C)帯電防止剤が2質量%以上4質量%以下;及び
(D)酸化防止剤が1質量%以上3質量%以下
からなることを特徴とする炭素繊維前駆体アクリル繊維用油剤組成物。
(A) 60 mass% or more and 80 mass% or less of the compound represented by Formula (4);
Figure 2005023502
(In formula (4), two R 2 s each independently represent an alkyl group having 5 to 18 carbon atoms.)
(B) 12 to 37% by mass of a nonionic surfactant having a residue rate of 1.0% by mass or less after heating at 250 ° C. in air for 2 hours;
(C) Antistatic agent is 2 mass% or more and 4 mass% or less; and (D) Antioxidant consists of 1 mass% or more and 3 mass% or less, The carbon fiber precursor acrylic-oil oil composition characterized by the above-mentioned.
請求項1または2記載の油剤組成物が0.1質量%以上5.0質量%以下付与されたことを特徴とする炭素繊維前駆体アクリル繊維。 A carbon fiber precursor acrylic fiber, wherein the oil agent composition according to claim 1 or 2 is applied in an amount of 0.1% by mass or more and 5.0% by mass or less. アクリロニトリル系重合体の溶液を凝固浴中に吐出して繊維化する工程、該繊維化された糸条を水洗し溶剤を除去し水洗と同時にまたは別に浴中延伸して水膨潤状態にある繊維を得る工程、該水膨潤状態にある繊維に請求項1または2記載の油剤組成物のエマルション液を付与する工程、および該エマルション液が付与された繊維を乾燥緻密化する工程を有することを特徴とする炭素繊維前駆体アクリル繊維の製造方法。
A step of discharging an acrylonitrile-based polymer solution into a coagulation bath to form a fiber, washing the fiberized yarn with water to remove the solvent, and simultaneously or separately with the water washing and drawing in a water-swelled fiber And a step of applying the emulsion liquid of the oil composition according to claim 1 to the fibers in the water-swelled state, and a step of drying and densifying the fibers to which the emulsion liquid is applied. A method for producing a carbon fiber precursor acrylic fiber.
JP2003270639A 2003-07-03 2003-07-03 Oil composition, carbon fiber precursor acrylic fiber and method for producing the same Expired - Fee Related JP4446699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270639A JP4446699B2 (en) 2003-07-03 2003-07-03 Oil composition, carbon fiber precursor acrylic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270639A JP4446699B2 (en) 2003-07-03 2003-07-03 Oil composition, carbon fiber precursor acrylic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005023502A true JP2005023502A (en) 2005-01-27
JP4446699B2 JP4446699B2 (en) 2010-04-07

Family

ID=34190540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270639A Expired - Fee Related JP4446699B2 (en) 2003-07-03 2003-07-03 Oil composition, carbon fiber precursor acrylic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP4446699B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028835A2 (en) 2004-09-21 2009-02-25 Brother Kogyo Kabushiki Kaisha Image processing apparatus
JP2012122164A (en) * 2010-12-08 2012-06-28 Mitsubishi Rayon Co Ltd Carbon fiber excellent in exhibiting mechanical characteristics
JP2015221957A (en) * 2015-06-30 2015-12-10 三菱レイヨン株式会社 Carbon fiber precursor acrylic fiber bundle and manufacturing method therefor
JP2016128623A (en) * 2016-03-07 2016-07-14 三菱レイヨン株式会社 Carbon fiber excellent in mechanical property appearance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2028835A2 (en) 2004-09-21 2009-02-25 Brother Kogyo Kabushiki Kaisha Image processing apparatus
JP2012122164A (en) * 2010-12-08 2012-06-28 Mitsubishi Rayon Co Ltd Carbon fiber excellent in exhibiting mechanical characteristics
JP2015221957A (en) * 2015-06-30 2015-12-10 三菱レイヨン株式会社 Carbon fiber precursor acrylic fiber bundle and manufacturing method therefor
JP2016128623A (en) * 2016-03-07 2016-07-14 三菱レイヨン株式会社 Carbon fiber excellent in mechanical property appearance

Also Published As

Publication number Publication date
JP4446699B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
KR101210081B1 (en) Oil agent composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP4801546B2 (en) Oil agent for carbon fiber precursor acrylic fiber
JP5103068B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
JP5707690B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle and method for producing the same
JP5731908B2 (en) Oil agent for carbon fiber precursor acrylic fiber, oil agent composition for carbon fiber precursor acrylic fiber, and oil agent treatment liquid for carbon fiber precursor acrylic fiber
JP5112973B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, and method for producing the same
JP4917991B2 (en) Oil agent composition for carbon fiber precursor acrylic fiber
JP2005089884A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP4446699B2 (en) Oil composition, carbon fiber precursor acrylic fiber and method for producing the same
JP2018159138A (en) Oil solution composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle, carbon fiber, and method for producing carbon fiber precursor acrylic fiber bundle and carbon fiber
JP4400268B2 (en) Oil for carbon fiber precursor
WO2020090597A1 (en) Methods for producing carbon fiber precursor fiber and carbon fiber
JP4222886B2 (en) Oil composition, carbon fiber precursor acrylic fiber and method for producing the same
JP4698861B2 (en) Carbon fiber precursor acrylic fiber, method for producing the same, and oil composition
JP2007211359A (en) Method for producing carbon fiber bundle
JP5017211B2 (en) Oil composition for carbon fiber precursor acrylic fiber, carbon fiber precursor acrylic fiber bundle using the same, and method for producing the same
JP4942502B2 (en) Method for producing flame-resistant fiber bundle
JP3479576B2 (en) Carbon fiber precursor acrylic fiber
JP4543931B2 (en) Silicone oil agent for carbon fiber precursor fiber, carbon fiber precursor fiber, flame resistant fiber, carbon fiber and method for producing the same
KR101021881B1 (en) Apparatus and method for preparing carbon fiber precursor using vertical spinning
JP4048230B2 (en) Precursor fiber for carbon fiber and method for producing the same
JP4995754B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
JP4990195B2 (en) Carbon fiber precursor acrylic fiber bundle and method for producing the same
JP2005089883A (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2004143645A (en) Oil composition for acrylic fiber for carbon fiber precursor and acrylic fiber for carbon fiber precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4446699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees