JP2003086174A - Composite particle material for electrode, electrode plate, and method of manufacturing - Google Patents

Composite particle material for electrode, electrode plate, and method of manufacturing

Info

Publication number
JP2003086174A
JP2003086174A JP2001390056A JP2001390056A JP2003086174A JP 2003086174 A JP2003086174 A JP 2003086174A JP 2001390056 A JP2001390056 A JP 2001390056A JP 2001390056 A JP2001390056 A JP 2001390056A JP 2003086174 A JP2003086174 A JP 2003086174A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
carbon
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001390056A
Other languages
Japanese (ja)
Inventor
Masuo Hosokawa
益男 細川
Kazunori Ozawa
和典 小沢
Shujiro Kawana
修二郎 川名
Munehiro Kadowaki
宗広 門脇
Toyokazu Yokoyama
豊和 横山
Masahiro Inoki
雅裕 猪木
Ayuta Oishi
鮎太 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Micron Corp
Enax Inc
Original Assignee
Hosokawa Micron Corp
Enax Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Micron Corp, Enax Inc filed Critical Hosokawa Micron Corp
Priority to JP2001390056A priority Critical patent/JP2003086174A/en
Publication of JP2003086174A publication Critical patent/JP2003086174A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide techniques capable of enhancing battery performance by enhancing the characteristic of composite particle materials for electrodes, and improving electrode plates. SOLUTION: A positive electrode active material, which is composed chiefly of at least one kind of powder selected from the group consisting of lithium cobalt oxide, lithium manganate, lithium nickel oxide, and a solid solution composed chiefly of at least one kind of these oxides, is mixed with 0.5 to 6 wt.% carbonaceous material having a BET specific surface area of 29 m<2> /g or more, and a complexing process is carried out as the carbonaceous material is adhered to the surface of the positive electrode active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えばリチウムイ
オン単電池等の構成材料として用いられる電極用複合粒
子材料、電極板及びそれらの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite particle material for electrodes used as a constituent material of, for example, a lithium-ion cell, an electrode plate, and a method for producing them.

【0002】[0002]

【従来の技術】従来、例えばリチウムイオン単電池及び
組電池には、正極活物質としてコバルト酸リチウム、マ
ンガン酸リチウム、ニッケル酸リチウム等を用いたもの
が知られており、このような正極活物質は、導電材とし
ての炭素材や、結着剤、溶剤と混合されてペースト状に
形成するとともに集電用金属箔に塗布してシート状に成
形され、電極として用いられている。
2. Description of the Related Art Heretofore, for example, lithium-ion single batteries and assembled batteries have been known which use lithium cobalt oxide, lithium manganate, lithium nickel oxide or the like as a positive electrode active material. Is used as an electrode by being mixed with a carbon material as a conductive material, a binder, and a solvent to form a paste, and applied to a metal foil for current collection to be formed into a sheet.

【0003】具体的には、例えば、リチウムイオン単電
池及び組電池の正極を形成するための正極材料として
は、コバルト酸リチウム(LiCoO2)と、カーボン
ブラック、及び、ポリフッ化ビニリデン等の結着剤、さ
らには、これらの材料をスラリー状にするための1−メ
チル−2−ピロリドン等の溶剤を混練してスラリー状に
製造したものがある。尚、上述の材料のうち、コバルト
酸リチウムは半導体であり、それ自身でもある程度の導
電性を有しているが、電極の導電性をより向上させるた
めに前記カーボンブラックが添加される。このようにし
て得た正極材料を、アルミニウム箔の両面に塗付し、正
極を製造していた。
Specifically, for example, as a positive electrode material for forming a positive electrode of a lithium-ion single battery or an assembled battery, lithium cobalt oxide (LiCoO 2 ) and carbon black or polyvinylidene fluoride are bound. There are agents prepared by kneading a solvent such as 1-methyl-2-pyrrolidone for making these materials into a slurry, and further preparing a slurry. Note that among the above-mentioned materials, lithium cobalt oxide is a semiconductor and has conductivity to some extent by itself, but the carbon black is added to further improve the conductivity of the electrode. The positive electrode material thus obtained was applied to both sides of an aluminum foil to manufacture a positive electrode.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記正極活物
質と、導電剤、結着剤、溶剤とを混ぜ合わせてペースト
状としたものを、所定の時間に亘って混練するのである
が、その際には、それぞれの原料が部分的に凝集して、
原料の混合が充分に行われない場合があった。このよう
に原料に未混合の部分が残存し、正極活物質と導電剤と
が均一に混合されていないと電極の導電性が高まらず、
それだけ電池性能を損なうこととなる。
However, the positive electrode active material, a conductive agent, a binder and a solvent are mixed to form a paste, which is kneaded for a predetermined time. At that time, each raw material partially aggregates,
In some cases, the raw materials were not mixed sufficiently. In this way, the unmixed portion remains in the raw material, the conductivity of the electrode does not increase unless the positive electrode active material and the conductive agent are uniformly mixed,
This will impair the battery performance.

【0005】また、正極材料を製造する際、原料が凝集
していると混合物の見掛け密度が低いものとなるが、そ
の場合には電極の内部に多くの隙間が残存し、吸水性が
高まるという不都合があった。即ち、リチウムイオン単
電池では、電解液としてLiPF6やLiBF4を用いる
ことが多く、その場合には、水と電解質とが反応してフ
ッ化水素酸(HF)が遊離し、このフッ化水素酸がリチ
ウムや正極活物質と反応して電池容量を低下させたり、
サイクル劣化を生じさせたりするのである。
Further, when the positive electrode material is manufactured, if the raw materials are aggregated, the apparent density of the mixture becomes low, but in that case, many gaps remain inside the electrode, and the water absorption is increased. There was an inconvenience. That is, in a lithium-ion cell, LiPF 6 or LiBF 4 is often used as the electrolytic solution. In that case, water reacts with the electrolyte to release hydrofluoric acid (HF), and this hydrogen fluoride The acid reacts with lithium and the positive electrode active material to reduce the battery capacity,
It causes cycle deterioration.

【0006】また、一方、前記導電材としては、黒鉛が
用いられる場合が多く、導電材は、電極の導電性には寄
与するものの、電池の容量には寄与しないために、でき
るだけ少量の添加により所望の導電性を実現することが
望まれている。しかしながら、黒鉛の添加量を少なくす
ると、活物質に安定して高い導電性を付与することは困
難であることが知られており、このような場合、黒鉛に
替えて、粒子径が小さいカーボンブラックを用いること
が試行されている。しかし、粒子径の小さな炭素材は、
活物質粒子間に隅々まで行き渡り、高い導電性を付与す
るのに役立つものと一見考えられるが、粒径の小さな炭
素材は、比表面積が大きく、溶剤を吸収し易いために、
混練時の粘性を上げることになり、前記炭素材と前記活
物質とが良好に混練されにくくなって、逆に導電性が低
下してしまうという実状がある。
On the other hand, graphite is often used as the conductive material. The conductive material contributes to the conductivity of the electrode but does not contribute to the capacity of the battery. It is desired to achieve the desired conductivity. However, it is known that it is difficult to stably impart high conductivity to the active material when the amount of graphite added is small. In such a case, carbon black having a small particle size is used instead of graphite. Have been tried. However, a carbon material with a small particle size
It seems that it spreads to every corner between the active material particles, and seems to be useful for imparting high conductivity, but the carbon material having a small particle size has a large specific surface area and easily absorbs the solvent,
The viscosity at the time of kneading is increased, so that the carbon material and the active material are less likely to be well kneaded, and conversely the conductivity is lowered.

【0007】そこで、前記電極板を構成する活物質及び
導電材及び結着剤を加圧力およびせん断力を加えつつ混
練することにより複合化させ、電極用複合粒子材料を得
るとともに、得られた前記電極用複合粒子材料を溶剤と
混練してペースト状にすることにより、上述の問題を解
消する試みが成されている(特開2000−12387
6号公報参照)。
Therefore, the active material, the conductive material and the binder constituting the electrode plate are kneaded while kneading while applying a pressing force and a shearing force to obtain a composite, thereby obtaining a composite particle material for an electrode and the obtained composite particle material. Attempts have been made to solve the above problems by kneading the electrode composite particle material with a solvent to form a paste (Japanese Patent Laid-Open No. 2000-12387).
No. 6 publication).

【0008】しかし、上述の方法によって、十分混練さ
れた電極用複合粒子材料を得ることはできたものの、そ
の電極用複合粒子材料を用いて作製される電池は、まだ
容量や、導電性、初期電圧等の性能の面からさらに改善
の余地があった。
However, although a sufficiently kneaded composite particle material for an electrode could be obtained by the above-mentioned method, a battery produced using the composite particle material for an electrode still has a capacity, an electrical conductivity and an initial stage. There was room for improvement in terms of performance such as voltage.

【0009】従って、本発明の目的は、上記実状に鑑
み、電極用複合粒子材料の特性を向上させ、電極板を改
良することで、電池性能を向上し得る技術を提供するこ
とにある。
Therefore, in view of the above situation, an object of the present invention is to provide a technique capable of improving the battery performance by improving the characteristics of the composite particle material for electrodes and improving the electrode plate.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
の本発明の電極用複合粒子材料の特徴構成は、コバルト
酸リチウム、マンガン酸リチウム、ニッケル酸リチウ
ム、及び、それらの少なくとも一種を主成分とする固溶
体からなる群から選ばれる少なくとも一種の粉体を主成
分とする正極活物質に対して、BET比表面積が29m
2/g以上の炭素材0.5〜6wt%を混ぜ合わせ、前
記正極活物質の表面に前記炭素材を付着させて複合化処
理してある点にある。また、前記炭素材が、カーボンブ
ラック、カーボンナノチューブ、カーボンナノファイバ
ーから選ばれる少なくとも一種を主成分とするものであ
ることが好ましく、また、前記炭素材のBET比表面積
と前記正極活物質のBET比表面積との比表面積の比
が、1〜12であることが好ましい。
Means for Solving the Problems A characteristic constitution of a composite particle material for an electrode of the present invention for achieving this object is that lithium cobalt oxide, lithium manganate, lithium nickel oxide, and at least one of them as a main component. The BET specific surface area is 29 m with respect to the positive electrode active material whose main component is at least one kind of powder selected from the group consisting of
The point is that 0.5 to 6 wt% of a carbon material of 2 / g or more is mixed and the carbon material is adhered to the surface of the positive electrode active material to perform a composite treatment. Further, it is preferable that the carbon material contains at least one selected from carbon black, carbon nanotubes and carbon nanofibers as a main component, and the BET specific surface area of the carbon material and the BET ratio of the positive electrode active material. The ratio of the specific surface area to the surface area is preferably 1-12.

【0011】また、上記目的を達成するための本発明の
電極板の特徴構成は、上記電極用複合粒子材料を混練し
てペースト状にしてあるペースト材を、集電用金属箔に
塗布してシート状に形成してある点にある。
In order to achieve the above object, the electrode plate of the present invention is characterized in that a paste material prepared by kneading the above composite particle material for electrodes into a paste is applied to a metal foil for current collection. The point is that it is formed into a sheet.

【0012】また、上記目的を達成するための本発明の
リチウムイオン単電池もしくはリチウムイオン組電池の
特徴構成は、上記電極板を備えた点にある。
Further, a characteristic configuration of the lithium ion single battery or the lithium ion assembled battery of the present invention for achieving the above object is that the electrode plate is provided.

【0013】さらに、本発明の電極用複合粒子材料の製
造方法の特徴構成は、コバルト酸リチウム、マンガン酸
リチウム、ニッケル酸リチウム、及び、それらの少なく
とも一種を主成分とする固溶体からなる群から選ばれる
少なくとも一種の粉体を主成分とする正極活物質に対し
て、BET比表面積が29〜800m 2/gの炭素材
0.5〜6wt%を混ぜ合わせながら、加圧力およびせ
ん断力を加えて前記正極活物質の表面に前記炭素材を付
着させる複合化処理を行う点にある。
Further, the composite particle material for electrodes of the present invention is manufactured.
The features of the manufacturing method are lithium cobalt oxide and manganic acid.
Lithium, lithium nickelate, and less
Both are selected from the group consisting of solid solutions containing one type as a main component.
For positive electrode active material containing at least one type of powder as the main component
And the BET specific surface area is 29 to 800 m 2/ G carbon material
While mixing 0.5 to 6 wt%, apply pressure and
The carbon material is attached to the surface of the positive electrode active material by applying a breaking force.
The point is that the composite processing is performed.

【0014】また、本発明の電極板の製造方法の特徴構
成は、上述の電極用複合粒子材料を溶剤とともに混練
し、ペースト材を形成し、そのペースト材を集電用金属
箔に塗布してシート状に形成する点にある。
The characteristic structure of the method for producing an electrode plate of the present invention is that the above-mentioned composite particle material for electrodes is kneaded with a solvent to form a paste material, and the paste material is applied to a metal foil for current collection. The point is that it is formed into a sheet.

【0015】〔作用効果〕つまり、本発明の電極用複合
粒子材料は、正極活物質に対して混合される炭素材が、
BET比表面積が29m2/g以上のものであるから、
このような炭素材は、通常の電極板に用いられる活物質
に比べ極めて微細な綿状であるから、前記炭素材は極少
量でありながら前記正極活物質間に均等に介在させら
れ、その活物質間における電子の授受に寄与する。ここ
で、前記炭素材のBET比表面積が、29m2/g以上
であれば、極めて少量でありながら前記活物質間に均等
に介在させることができるので好ましく、BET比表面
積が大きいほど正極活物質間に分散した際の活物質間に
おける電子の授受を円滑に行わせられる。尚、前記炭素
材のBET比表面積は、800m2/g以下であれば、
混合する際に比較的作業性良く、均一な混合状態を実現
できるため、実用上好ましい。
[Operation and Effect] That is, in the composite particle material for an electrode of the present invention, the carbon material mixed with the positive electrode active material is
Since the BET specific surface area is 29 m 2 / g or more,
Since such a carbon material has a very fine cotton-like shape as compared with an active material used for a normal electrode plate, the carbon material is present in an even amount between the positive electrode active materials even though it is a very small amount. Contributes to the transfer of electrons between substances. Here, if the BET specific surface area of the carbon material is 29 m 2 / g or more, it is possible to evenly intervene between the active materials although it is a very small amount, which is preferable. The larger the BET specific surface area, the larger the positive electrode active material. Electrons can be smoothly transferred between the active materials when dispersed in the space. If the BET specific surface area of the carbon material is 800 m 2 / g or less,
It is practically preferable because the workability during mixing is relatively good and a uniform mixed state can be realized.

【0016】具体的には、前記正極活物質に対して炭素
材0.5〜6wt%を混ぜ合わせれば、もしくは、前記
炭素材の総表面積と前記正極活物質の総表面積との比
が、1〜12となるように混ぜ合わせれば、前記正極活
物質の表面に前記炭素材が均一に付着させられた状態
で、その正極活物質に導電性を付与することのできるよ
うに複合化された電極用複合粒子材料とすることができ
る。ここで、前記炭素材の含有量が少ないか或いはBE
T比表面積の比が小さいと、前記正極活物質に十分な導
電性を与えられず、通電初期電圧が低くなるという問題
が生じる。このため、炭素材の量は0.5wt%以上、
総表面積の比は1以上であることが好ましい。一方、あ
まり炭素材の割合を増やすと、相対的に正極活物質の含
有率が低くなり、電池容量を低下させることになる。よ
って、炭素材の量は6wt%以下であることが好まし
く、このような条件を満たす総表面積の比としては12
以下であることが好ましい。
Specifically, if 0.5 to 6 wt% of carbon material is mixed with the positive electrode active material, or the ratio of the total surface area of the carbon material to the total surface area of the positive electrode active material is 1. When mixed so as to be ~ 12, a composite electrode capable of imparting conductivity to the positive electrode active material with the carbon material uniformly attached to the surface of the positive electrode active material. Can be a composite particle material. Here, if the content of the carbonaceous material is low or if the BE
If the ratio of the T specific surface area is small, the positive electrode active material cannot be provided with sufficient conductivity and the initial voltage for energization becomes low. Therefore, the amount of carbon material is 0.5 wt% or more,
The ratio of the total surface areas is preferably 1 or more. On the other hand, if the proportion of the carbon material is increased too much, the content rate of the positive electrode active material becomes relatively low, and the battery capacity is reduced. Therefore, the amount of the carbon material is preferably 6 wt% or less, and the ratio of the total surface area satisfying such a condition is 12
The following is preferable.

【0017】前記正極活物質として、コバルト酸リチウ
ム、マンガン酸リチウム、ニッケル酸リチウム、及び、
それらの少なくとも一種を主成分とする固溶体からなる
群から選ばれる少なくとも一種の粉体を主成分とする正
極活物質を採用すると、リチウムイオン二次電池の正極
用として好適な電極用複合粒子材料が得られる。また、
前記炭素材が、カーボンブラック、カーボンナノチュー
ブ、カーボンナノファイバーから選ばれる少なくとも一
種を主成分とするものであれば、上述の比表面積のもの
が容易に得られるとともに、汎用性に富み、かつ、取り
扱い容易である。
As the positive electrode active material, lithium cobalt oxide, lithium manganate, lithium nickel oxide, and
When a positive electrode active material containing at least one powder selected from the group consisting of a solid solution containing at least one of them as a main component is adopted, a composite particle material for an electrode suitable for a positive electrode of a lithium ion secondary battery is obtained. can get. Also,
If the carbon material has at least one selected from carbon black, carbon nanotubes, and carbon nanofibers as a main component, the above-mentioned specific surface area can be easily obtained, and it is versatile and can be handled. It's easy.

【0018】さらに、正極活物質に対して、BET比表
面積が29〜800m2/gの炭素材0.5〜6wt%
を混ぜ合わせながら、加圧力およびせん断力を加えて前
記正極活物質の表面に前記炭素材を付着させる複合化処
理を行うと、正極活物質に対して無駄なく炭素材が付着
し、その炭素材が薄い層状にネットワークを形成し、正
極活物質間で電子の授受を容易にする複合粒子を形成す
る。
Furthermore, 0.5 to 6 wt% of a carbon material having a BET specific surface area of 29 to 800 m 2 / g with respect to the positive electrode active material.
When the compounding treatment for adhering the carbon material to the surface of the positive electrode active material by applying a pressing force and a shearing force while mixing is performed, the carbon material adheres to the positive electrode active material without waste, and the carbon material Form a network in a thin layer form to form composite particles that facilitate the transfer of electrons between the positive electrode active materials.

【0019】このようにして得られた電極用複合粒子材
料により電極板を製造するには、上述の電極用複合粒子
材料を溶剤とともに混練し、ペースト材を形成し、その
ペースト材を集電用金属箔に塗布してシート状に形成す
る。
In order to manufacture an electrode plate from the composite particle material for an electrode thus obtained, the above-mentioned composite particle material for an electrode is kneaded with a solvent to form a paste material, and the paste material is used for collecting current. It is applied to a metal foil to form a sheet.

【0020】こうしてシート状に形成された電極板は、
導電性が高くかつ活物質の利用率が高まる事から、単位
重量および体積あたりに取り出せる容量が大きくなる。
すなわち前記電極板を備えると、電池容量が高く、内
部抵抗の低いリチウムイオン単電池(一対の正極板と負
極板からなる単位電池)が得られる。さらに前記電極板
は、電極構成原料の分布が極めて均一であるため、場所
による導電性のバラツキが少なく塗工膜の機械的強度が
大きい。一般に、リチウムイオン単電池を複数個直列お
よび並列接続して組電池を構成した場合、単電池間に容
量および内部抵抗のバラツキがあると、容量が小さく内
部抵抗の大きい単電池において、過放電による活物質の
分解や過充電による金属リチウムの析出による選択的な
劣化が起こり得るため、組電池全体としての放電容量や
充放電サイクル特性が低下する原因となるが、前記電極
板から作製したリチウムイオン単電池にて組電池を構成
すると、各単電池の容量および内部抵抗値が均一にそろ
っているため、上記のような問題を回避する事ができ
る。
The electrode plate thus formed into a sheet is
Since the conductivity is high and the utilization rate of the active material is high, the capacity that can be taken out per unit weight and volume becomes large.
That is, when the electrode plate is provided, a lithium ion single battery (unit battery including a pair of positive electrode plate and negative electrode plate) having a high battery capacity and a low internal resistance can be obtained. Furthermore, since the electrode plate has an extremely uniform distribution of the electrode-constituting raw material, there is little variation in conductivity depending on the location, and the mechanical strength of the coating film is large. Generally, when a plurality of lithium-ion cells are connected in series and in parallel to form an assembled battery, if there are variations in capacity and internal resistance between the cells, the cells with small capacity and large internal resistance may cause over discharge. Since decomposition of the active material or selective deterioration due to precipitation of metallic lithium due to overcharge may occur, this may cause deterioration of the discharge capacity and charge / discharge cycle characteristics of the assembled battery as a whole. When the assembled battery is configured by the unit cells, the capacities and the internal resistance values of the unit cells are uniform, so that the above problems can be avoided.

【0021】[0021]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。本発明のリチウム電池は、コバル
ト酸リチウム、マンガン酸リチウム、ニッケル酸リチウ
ムの各粉体から選ばれる少なくとも一種を主成分とする
正極活物質に対して、BET比表面積が29〜800m
2/gのカーボンブラック、カーボンナノチューブ、カ
ーボンナノファイバーから選ばれる少なくとも一種を主
成分とする炭素材0.5〜6wt%を、例えば、図1に
示す精密混合用粉体処理装置により混ぜ合わせ、前記正
極活物質の表面に前記炭素材を付着させて複合化処理し
てある正極用の電極用複合材料を、混練してペースト状
のペースト材とし、電極用アルミニウム箔に塗布してシ
ート状に形成してある正極材料を設け、黒鉛系材料、無
定型炭素材料、コークスから選ばれる少なくとも一種を
主成分とする負極活物質に対して、BET比表面積が2
9〜800m2/gのカーボンブラック、カーボンナノ
チューブ、カーボンナノファイバーから選ばれる少なく
とも一種を主成分とする炭素材0.5〜6wt%を、同
様に、図1に示す精密混合用粉体処理装置により混ぜ合
わせ、前記負極活物質の表面に前記炭素材を付着させて
複合化処理してある負極用の電極用複合材料を、混練し
てペースト状のペースト材とし、電極用銅箔に塗布して
シート状に形成してある負極材料を設ける。そして、前
記正極材料及び負極材料を、絶縁膜を介して対向させ、
電池の核とする。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. The lithium battery of the present invention has a BET specific surface area of 29 to 800 m with respect to the positive electrode active material whose main component is at least one selected from powders of lithium cobalt oxide, lithium manganate, and lithium nickel oxide.
0.5 to 6 wt% of a carbon material containing at least one selected from 2 / g of carbon black, carbon nanotubes, and carbon nanofibers as a main component is mixed by, for example, a precision mixing powder processing apparatus shown in FIG. The composite material for the positive electrode for the positive electrode, which has been subjected to a composite treatment by adhering the carbon material to the surface of the positive electrode active material, is kneaded into a paste material, which is applied to an aluminum foil for an electrode to form a sheet. By providing the formed positive electrode material, the BET specific surface area is 2 with respect to the negative electrode active material whose main component is at least one selected from a graphite material, an amorphous carbon material, and coke.
A powder processing apparatus for precision mixing shown in FIG. 1 similarly containing 0.5 to 6 wt% of a carbon material containing 9 to 800 m 2 / g of carbon black, carbon nanotubes, and carbon nanofibers as a main component. The composite material for an electrode for the negative electrode, which has been subjected to a composite treatment by adhering the carbon material to the surface of the negative electrode active material, is kneaded into a paste material in paste form and applied to a copper foil for an electrode. And a negative electrode material formed into a sheet is provided. Then, the positive electrode material and the negative electrode material are opposed to each other via an insulating film,
The core of the battery.

【0022】前記精密混合用粉体処理装置を用いてこれ
らの粉体を処理すると、それぞれの粉体に加圧力および
せん断力を加えて前記正極活物質の表面に前記結着剤を
融合させることができ、所謂、複合化処理が行われる。
このような処理を行うことにより、これら混合物のBE
T比表面積が低下し、見掛け密度を高めることができ
る。この結果、負極材料の容積密度・体積エネルギー密
度が高まるうえに、電極板の吸湿性を小さくして電解液
の分解を抑制することができる。
When these powders are processed using the precision mixing powder processing device, a pressing force and a shearing force are applied to each powder to fuse the binder to the surface of the positive electrode active material. Then, so-called composite processing is performed.
By carrying out such a treatment, BE of these mixtures can be obtained.
The T specific surface area is reduced and the apparent density can be increased. As a result, not only the volume density and volume energy density of the negative electrode material are increased, but also the hygroscopicity of the electrode plate is reduced, and the decomposition of the electrolytic solution can be suppressed.

【0023】(粉体処理装置)本発明に用いる精密混合
用粉体処理装置の概略を図1に示す。当該装置は、主
に、基台1に設置した略円筒形状で内容積約1500m
lのケーシング2、および、当該ケーシング2の内部に
設けた同じく略円筒形状の筒状回転体3、当該筒状回転
体3との間に押圧力を発生させて被処理物4を処理すべ
く前記筒状回転体3の内部に配設したプレスヘッド5と
からなる。
(Powder Processing Apparatus) FIG. 1 schematically shows a powder processing apparatus for precision mixing used in the present invention. The device is mainly of a substantially cylindrical shape installed on the base 1 and has an inner volume of about 1500 m.
In order to process the object 4 to be processed by generating a pressing force between the casing 2 of 1 and the cylindrical rotating body 3 having the same substantially cylindrical shape provided inside the casing 2 and the cylindrical rotating body 3. The press head 5 is provided inside the cylindrical rotating body 3.

【0024】前記筒状回転体3は、軸心周りに1500
〜2400回転/分の速度で回転自在に設けられ、前記
筒状回転体3を回転させることで、当該筒状回転体3の
内周面に形成した受け面6と前記プレスヘッド5とを相
対回転させ、前記受け面6と前記プレスヘッド5との間
の空間7に存する被処理物4に押圧力およびせん断力を
付与して、前述のごとく原料どうしの複合化・混合・球
状化等を行うのである。尚、本発明においては、これら
の処理を総称してメカノフュージョン処理という。
The cylindrical rotary member 3 has 1500
It is rotatably provided at a speed of up to 2400 rotations / minute, and by rotating the cylindrical rotating body 3, the receiving surface 6 formed on the inner peripheral surface of the cylindrical rotating body 3 and the press head 5 are opposed to each other. By rotating and applying a pressing force and a shearing force to the object to be treated 4 existing in the space 7 between the receiving surface 6 and the press head 5, as described above, the raw materials are compounded, mixed, and spheroidized. Do it. In the present invention, these processes are generically called mechanofusion process.

【0025】前記プレスヘッド5によって押圧力等を付
与された前記被処理物4は、主に前記筒状回転体3の周
壁8に設けた孔部9を介して外方に排出され、前記周壁
8の外周部に形成した羽根部材10によって再び前記筒
状回転体3の内部に循環させる。本構成にすることで、
プレスヘッド5と受け面6との間に挟まれた被処理物4
を積極的に流動・循環させ、前記受け面6に対する被処
理物4の付着量を少なくすることができる。
The object 4 to which a pressing force or the like is applied by the press head 5 is discharged to the outside mainly through a hole 9 provided in the peripheral wall 8 of the cylindrical rotary member 3, and the peripheral wall is discharged. The blade member 10 formed on the outer peripheral portion of 8 again circulates it inside the cylindrical rotating body 3. With this configuration,
Object 4 to be processed sandwiched between press head 5 and receiving surface 6
Can be positively flowed and circulated to reduce the amount of the workpiece 4 adhered to the receiving surface 6.

【0026】尚、電池材料の種類によっては、過大な押
圧力あるいはせん断力を加えると物性を損ねたりする場
合がある。しかし、当該粉体処理装置のごとく、孔部9
を介して被処理物4を循環させる構成の装置を用いるこ
ととすれば、被処理物4に作用させる押圧力等を適宜加
減することができる。
Depending on the type of battery material, the physical properties may be impaired if an excessive pressing force or shearing force is applied. However, like the powder processing apparatus, the hole 9
If a device configured to circulate the object 4 to be processed is used, the pressing force or the like acting on the object 4 can be appropriately adjusted.

【0027】例えば、前記孔部9の開口面積を広く設定
しておけば、被処理物4は筒状回転体3の外部に容易に
排出されるから、被処理物4に対するプレスヘッド5の
作用時間が短かくなり、被処理物4に作用する押圧力が
結果的に弱まることとなる。逆に、前記孔部9の開口面
積を狭く設定しておけば、被処理物4に対するプレスヘ
ッド5の作用時間が長くなり、前記押圧力は強まること
となる。
For example, if the opening area of the hole 9 is set to be wide, the object 4 to be processed is easily discharged to the outside of the cylindrical rotary member 3, so that the press head 5 acts on the object 4 to be processed. The time becomes short, and the pressing force acting on the object 4 is weakened as a result. On the contrary, if the opening area of the hole 9 is set to be narrow, the operating time of the press head 5 with respect to the object 4 to be processed becomes long, and the pressing force becomes strong.

【0028】このように、本構成の粉体処理装置を用い
る場合には、被処理物4に作用させる押圧力等を任意に
変更して最適な粉体処理条件を得ることが可能であり、
優れた品質の製品を得ることができる。
As described above, in the case of using the powder processing apparatus of this structure, it is possible to arbitrarily change the pressing force applied to the object to be processed 4 and obtain the optimum powder processing condition.
It is possible to obtain products of excellent quality.

【0029】[0029]

【実施例】正極活物質及び負極用活物質及び導電付与炭
素材及び結着材として下表1に示す材料を用い、表2お
よび下記電極板および電池の製造の項に示すとおり、種
々の配合および混合方法によりリチウムイオン単電池を
製造しその特性を調べたところ、表3に示す結果が得ら
れた。 同一組成の電極板よりなるリチウムイオン単電
池を用いたリチウムイオン組電池を構成して特性評価を
行ない、表4に示す結果を得た。尚、下表中ナウタミキ
サとあるのは、図2に示すように、下すぼまりで容量約
2500mlの攪拌容器内11に、螺旋状の攪拌翼12
aを備えた攪拌棒12を前記攪拌容器11の内壁面に沿
って配置し、前記攪拌棒12を約100回転/分の速度
で自転させつつ前記攪拌容器11の軸心C周りに約4回
転/分の速度で公転させて、前記攪拌容器11内に収容
された粉粒体を、前記攪拌容器11内で対流循環させつ
つマクロ的な混合を行う混合装置により混合処理を行っ
たものである。
[Examples] The materials shown in Table 1 below were used as the positive electrode active material, the negative electrode active material, the conductivity-imparting carbon material, and the binder, and various formulations were used as shown in Table 2 and the section of the following electrode plate and battery production. When a lithium-ion single battery was manufactured by the mixing method and the characteristics thereof were examined, the results shown in Table 3 were obtained. A lithium-ion assembled battery using a lithium-ion single battery composed of electrode plates having the same composition was constructed and characteristics were evaluated, and the results shown in Table 4 were obtained. The Nauta mixer in the table below is, as shown in FIG. 2, a spiral stirring blade 12 inside a stirring container 11 having a capacity of about 2500 ml with a lower constriction.
The stirring rod 12 provided with a is arranged along the inner wall surface of the stirring container 11, and the stirring rod 12 is rotated at a speed of about 100 rotations / minute while rotating about 4 times around the axis C of the stirring container 11. The mixture is revolved at a speed of 1 / min, and the powder or granular material contained in the stirring container 11 is subjected to a mixing process by a mixing device that performs macroscopic mixing while convectively circulating in the stirring container 11. .

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】炭素材配合比:炭素材重量(g)/(炭素材重
量(g)+正極活物質重量(g)) 炭素材/活物質表面積比:炭素材表面積(m2)/正極活物
質表面積(m2) 結着剤配合比:結着剤重量(g)/(結着剤重量(g)+炭素材
重量(g)+正極活物質重量(g)) 処理時間 :メカノフュージョン;10分:ナウタミキ
サ;60分
Carbon material blending ratio: carbon material weight (g) / (carbon material weight (g) + cathode active material weight (g)) carbon material / active material surface area ratio: carbon material surface area (m 2 ) / cathode active material Surface area (m 2 ) Binder mixture ratio: Binder weight (g) / (Binder weight (g) + Carbon material weight (g) + Positive electrode active material weight (g)) Treatment time: Mechanofusion; 10 Minutes: Nauta Mixer; 60 minutes

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】〔電極板および電池の製造〕前記電極板及
び電池の構造を図3に示し、その製造について説明す
る。厚さ20μmの集電用アルミニウム箔101aの片
面に正極材料層101bを、厚さ10μmの集電用銅箔
102aの片面に負極材料層102bを、それぞれペー
スト法により形成し、両電極板101,102を得た。
上記電極板101,102を所定の大きさに切断し、そ
れぞれ集電用のタブリード101c,102cを金属箔
101a,102aに超音波溶接した後、ポリプロピレ
ン製の微多孔膜103を介して正/負両電極面を対向さ
せ電池の核とした。これを袋状のアルミラミネート包材
に挿入し、同体積のエチレンカーボネートとジエチルカ
ーボネートとを混合して得られた溶媒に、電解質として
LiPF 6を1モル/リットルの濃度で溶解した非水電
解液を加えた後密封し、シート状リチウムイオン単電池
を作製した。なお、上記電池組立操作はすべて、露点が
マイナス40℃の除湿環境下で行なった。リチウムイオ
ン組電池は、電極組成、処理法が同条件の下で得られた
電極板の任意の場所から5つの単電池用電極板を切り取
り、それぞれを単電池として仕上げた後、5つ並列に接
続して1つのリチウムイオン組電池とした。
[Production of Electrode Plate and Battery]
The structure of the battery and battery is shown in FIG.
It A piece of aluminum foil 101a for current collection having a thickness of 20 μm
The positive electrode material layer 101b on the surface, a copper foil for current collection having a thickness of 10 μm
The negative electrode material layer 102b is provided on one side of the surface 102a.
Both electrode plates 101 and 102 were obtained by the strike method.
Cut the electrode plates 101 and 102 into a predetermined size and
Metal foil is used for the tab leads 101c and 102c for collecting current, respectively.
After ultrasonic welding to 101a and 102a, polypropylene
Both the positive and negative electrode surfaces are opposed to each other through the microporous membrane 103 made of
It was the core of the battery. This is a bag-shaped aluminum laminate packaging material
Insert the same volume of ethylene carbonate and diethyl carbonate
The solvent obtained by mixing the carbonate with
LiPF 6Non-aqueous electrolyte containing 1 mol / l
Sheet-shaped lithium-ion single battery, sealed after adding lysate
Was produced. The dew point of all the above battery assembly operations is
It was performed under a dehumidifying environment of -40 ° C. Lithium Io
The battery assembly was obtained under the same conditions for electrode composition and treatment method.
Cut 5 cell electrode plates from any place on the electrode plate
After finishing each as a unit cell, connect five in parallel.
Then, one lithium-ion assembled battery was prepared.

【0036】表2,表3より、No.1,2,3を比較す
ると、ナウタミキサで混合した場合には、結着剤が十分
多い場合(No.1参照、以下単に(1)のように記載す
る)には、塗工剥離試験でも良好な結果を得られるのに
対し、結着剤を少なくすると(2)、塗工剥離試験結果
が優れず、比較的多量の結着剤を必要とする。しかし、
メカノフュージョン処理を行うと(3)、少ない結着剤
であっても塗工剥離試験が良好となることが読みとれ
る。従って、メカノフュージョン処理を行うと、ナウタ
ミキサによるマクロ的な混合処理を行うのに比べて少な
い結着材量で、抵抗が小さく、高い放電容量比を有する
リチウムイオン単電池が得られ、高い放電容量比が得ら
れていることが分かる。つまり、メカノフュージョン処
理による高いエネルギー(約1〜2kw/kgに相当)
で短時間で得られた電極用複合粒子材料は、マクロ的な
混合処理による低いエネルギー(約0.05kw/kg
に相当)で長時間かけて得られたものに比べ、使用状態
によらず高い電池容量を実現することができるものとな
っている。
Comparing Nos. 1, 2 and 3 from Tables 2 and 3, when mixed with Nauta Mixer, the amount of binder is sufficiently large (see No. 1, hereinafter simply as (1)). In addition), good results can be obtained in the coating peel test, but when the amount of the binder is reduced (2), the coating peel test results are not excellent and a relatively large amount of the binder is required. To do. But,
It can be seen that the mechanofusion treatment (3) improves the coating peeling test even with a small amount of binder. Therefore, when the mechanofusion process is performed, a lithium-ion cell with a small amount of binder and a small resistance and a high discharge capacity ratio can be obtained compared to when performing a macroscopic mixing process by a Nauta mixer, and a high discharge capacity is obtained. It can be seen that the ratio is obtained. In other words, high energy (corresponding to about 1-2 kw / kg) by mechanofusion treatment
The composite particle material for electrodes obtained in a short time at low energy (about 0.05 kw / kg)
It is possible to realize a high battery capacity regardless of the use condition, compared with the one obtained over a long period of time.

【0037】また、表2,表3より、No.5,7を比較
すると、炭素材として比表面積の大きなもの(5)を用
いると、比表面積の小さいものを用いた場合(7)に比
べ、低い内部抵抗と、高い放電容量が実現できているこ
とが分かる。さらに、No.3,4,5,6を比較する
と、表2,表3の結果より、炭素材の配合率は、3%程
度で最も高い放電容量比を実現できていることが分か
る。ただし、炭素材の配合率を高くし過ぎると、相対的
に正極活物質量が低下して放電容量自体が低下する傾向
がある。一方、炭素材の配合率を低くし過ぎると、十分
な放電容量が得られなくなる。よって、炭素材の配合率
は、0.5〜6wt%が好ましいといえる。また、表4
の結果より、No.1,3を比較すると、メカノフュー
ジョン処理によって得られた電極板(3)より作製した
リチウムイオン単電池群は、ナウタミキサによって得ら
れたもの(1)に比べ、内部抵抗にバラツキが少ない事
が分かる。これらの単電池群を並列に接続し容量を増や
したリチウムイオン組電池を作製し、充放電サイクル寿
命を評価したところ、メカノフュージョン処理によって
得られた電極板(3)より作製した組電池の方が1.5
倍以上の長寿命を実現する事ができた。
From Tables 2 and 3, comparing Nos. 5 and 7, when the carbon material having a large specific surface area (5) is used, it is compared with the case where a carbon material having a small specific surface area is used (7). It can be seen that low internal resistance and high discharge capacity are realized. Further, comparing Nos. 3, 4, 5 and 6, it can be seen from the results of Tables 2 and 3 that the highest discharge capacity ratio can be achieved when the carbon material content is about 3%. However, if the blending ratio of the carbon material is too high, the amount of the positive electrode active material relatively decreases, and the discharge capacity itself tends to decrease. On the other hand, if the blending ratio of the carbon material is too low, sufficient discharge capacity cannot be obtained. Therefore, it can be said that the mixing ratio of the carbon material is preferably 0.5 to 6 wt%. Also, Table 4
From the result of No. Comparing Nos. 1 and 3, it can be seen that the lithium-ion cell group produced from the electrode plate (3) obtained by the mechanofusion treatment has less variation in internal resistance than the one obtained by the Nauta mixer (1). . A lithium ion assembled battery in which these cell groups were connected in parallel to increase the capacity was produced, and the charge / discharge cycle life was evaluated. The assembled battery made from the electrode plate (3) obtained by the mechanofusion treatment was Is 1.5
We were able to achieve a longer life than double.

【図面の簡単な説明】[Brief description of drawings]

【図1】精密混合用粉体処理装置の概略図FIG. 1 is a schematic view of a powder processing apparatus for precision mixing.

【図2】ナウタミキサの概略図FIG. 2 is a schematic diagram of a Nauta mixer.

【図3】リチウムイオン単電池の概略図FIG. 3 is a schematic diagram of a lithium-ion cell.

【図4】塗工剥離試験結果を示す図(a)は表2,3中
の3、(b)は表2,3中の2の結果を示す
FIG. 4 is a diagram showing the results of the coating peeling test, (a) shows 3 in Tables 2 and 3, and (b) shows the result of 2 in Tables 2 and 3.

【符号の説明】[Explanation of symbols]

1 基台 2 ケーシング 3 筒状回転体 4 被処理物 5 プレスヘッド 6 受け面 7 空間 11 攪拌容器内 12 攪拌棒 12a 攪拌翼 C 軸心 1 base 2 casing 3 Cylindrical rotating body 4 Object to be processed 5 Press head 6 Receiving surface 7 space 11 inside the stirring container 12 Stir bar 12a Stirrer C axis

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小沢 和典 東京都文京区音羽2−11−19 オトワKS ビル8F エナックス株式会社内 (72)発明者 川名 修二郎 東京都文京区音羽2−11−19 オトワKS ビル8F エナックス株式会社内 (72)発明者 門脇 宗広 大阪府枚方市招堤田近1−9 ホソカワミ クロン株式会社内 (72)発明者 横山 豊和 大阪府枚方市招堤田近1−9 ホソカワミ クロン株式会社内 (72)発明者 猪木 雅裕 大阪府枚方市招堤田近1−9 ホソカワミ クロン株式会社内 (72)発明者 大石 鮎太 大阪府大阪市中央区瓦町2丁目5番14号 ホソカワミクロン株式会社内 Fターム(参考) 5H029 AJ01 AK03 AL07 AM05 AM07 BJ04 CJ08 DJ06 DJ16 EJ01 EJ04 HJ01 HJ07 5H040 AT04 5H050 AA02 BA17 CA08 CA09 CB08 DA10 EA09 EA10 EA24 GA10 GA22 HA01 HA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazunori Ozawa             2-11-19 Otowa, Bunkyo-ku, Tokyo Otowa KS             Building 8F Enax Co., Ltd. (72) Inventor Shujiro Kawana             2-11-19 Otowa, Bunkyo-ku, Tokyo Otowa KS             Building 8F Enax Co., Ltd. (72) Inventor Munehiro Kadowaki             Hosokata City, Osaka Prefecture             Clon Co., Ltd. (72) Inventor Toyokazu Yokoyama             Hosokata City, Osaka Prefecture             Clon Co., Ltd. (72) Inventor Masahiro Inoki             Hosokata City, Osaka Prefecture             Clon Co., Ltd. (72) Inventor Ayuta Oishi             2-5-14 Kawaramachi, Chuo-ku, Osaka-shi, Osaka             Hosokawa Micron Co., Ltd. F term (reference) 5H029 AJ01 AK03 AL07 AM05 AM07                       BJ04 CJ08 DJ06 DJ16 EJ01                       EJ04 HJ01 HJ07                 5H040 AT04                 5H050 AA02 BA17 CA08 CA09 CB08                       DA10 EA09 EA10 EA24 GA10                       GA22 HA01 HA07

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 コバルト酸リチウム、マンガン酸リチウ
ム、ニッケル酸リチウム、及び、それらの少なくとも一
種を主成分とする固溶体からなる群から選ばれる少なく
とも一種の粉体を主成分とする正極活物質に対して、B
ET比表面積が29m2/g以上の炭素材0.5〜6w
t%を混ぜ合わせ、前記正極活物質の表面に前記炭素材
を付着させて複合化処理してある電極用複合粒子材料。
1. A positive electrode active material containing, as a main component, at least one powder selected from the group consisting of lithium cobalt oxide, lithium manganate, lithium nickel oxide, and a solid solution containing at least one of them as a main component. B
Carbon material having an ET specific surface area of 29 m 2 / g or more 0.5 to 6 w
A composite particle material for an electrode in which t% is mixed, and the carbon material is adhered to the surface of the positive electrode active material to perform a composite treatment.
【請求項2】 前記炭素材が、カーボンブラック、カー
ボンナノチューブ、カーボンナノファイバーから選ばれ
る少なくとも一種を主成分とするものである請求項1に
記載の電極用複合粒子材料。
2. The composite particle material for electrodes according to claim 1, wherein the carbon material contains at least one selected from carbon black, carbon nanotubes, and carbon nanofibers as a main component.
【請求項3】 前記炭素材の総表面積と前記正極活物質
の総表面積との比が、1〜12である請求項1〜2のい
ずれかに記載の電極用複合粒子材料。
3. The composite particle material for electrodes according to claim 1, wherein the ratio of the total surface area of the carbon material to the total surface area of the positive electrode active material is 1 to 12.
【請求項4】 請求項1〜3のいずれかに記載の電極用
複合粒子材料を混練してペースト状にしてあるペースト
材を、集電用金属箔に塗布してシート状に形成してある
電極板。
4. A sheet material is formed by applying a paste material obtained by kneading the composite particle material for electrodes according to any one of claims 1 to 3 into a paste shape on a metal foil for current collection. Electrode plate.
【請求項5】 請求項4に記載の電極板を備えたリチウ
ムイオン単電池。
5. A lithium ion single battery provided with the electrode plate according to claim 4.
【請求項6】 請求項5に記載のリチウムイオン単電池
を、二つ以上直列または並列に電気的接続したリチウム
イオン組電池。
6. A lithium ion assembled battery in which two or more of the lithium ion cells according to claim 5 are electrically connected in series or in parallel.
【請求項7】 コバルト酸リチウム、マンガン酸リチウ
ム、ニッケル酸リチウム、及び、それらの少なくとも一
種を主成分とする固溶体からなる群から選ばれる少なく
とも一種の粉体を主成分とする正極活物質に対して、B
ET比表面積が29〜800m2/gの炭素材0.5〜
6wt%を混ぜ合わせながら、加圧力およびせん断力を
加えて前記正極活物質の表面に前記炭素材を付着させる
複合化処理を行う電極用複合粒子材料の製造方法。
7. A positive electrode active material containing, as a main component, at least one powder selected from the group consisting of lithium cobalt oxide, lithium manganate, lithium nickel oxide, and a solid solution containing at least one of them as a main component. B
Carbon material having an ET specific surface area of 29 to 800 m 2 / g 0.5 to
A method for producing a composite particle material for an electrode, which comprises performing a composite treatment of applying a pressing force and a shearing force while admixing 6 wt% to adhere the carbon material to the surface of the positive electrode active material.
【請求項8】 請求項1〜3のいずれかに記載の電極用
複合粒子材料を溶剤とともに混練し、ペースト材を形成
し、そのペースト材を集電用金属箔に塗布してシート状
に形成する電極板の製造方法。
8. The electrode composite particle material according to any one of claims 1 to 3 is kneaded together with a solvent to form a paste material, and the paste material is applied to a current collecting metal foil to form a sheet. Method for manufacturing an electrode plate.
JP2001390056A 2001-06-25 2001-12-21 Composite particle material for electrode, electrode plate, and method of manufacturing Pending JP2003086174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001390056A JP2003086174A (en) 2001-06-25 2001-12-21 Composite particle material for electrode, electrode plate, and method of manufacturing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001191509 2001-06-25
JP2001-191509 2001-06-25
JP2001390056A JP2003086174A (en) 2001-06-25 2001-12-21 Composite particle material for electrode, electrode plate, and method of manufacturing

Publications (1)

Publication Number Publication Date
JP2003086174A true JP2003086174A (en) 2003-03-20

Family

ID=26617506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390056A Pending JP2003086174A (en) 2001-06-25 2001-12-21 Composite particle material for electrode, electrode plate, and method of manufacturing

Country Status (1)

Country Link
JP (1) JP2003086174A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003103076A1 (en) * 2002-06-04 2003-12-11 伊藤忠商事株式会社 Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
WO2004040678A1 (en) * 2002-10-31 2004-05-13 Mitsubishi Chemical Corporation Additive to positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery and, prepared from the positive electrode material, positive electrode and lithium secondary battery
JP2005014201A (en) * 2003-06-03 2005-01-20 Hosokawa Funtai Gijutsu Kenkyusho:Kk Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method
WO2006033475A1 (en) * 2004-09-22 2006-03-30 Aoi Electronics Co., Ltd. Battery positive electrode material containing sulfur and/or sulfur compound having s-s bond, and process for producing the same
JP2006128119A (en) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd Conductive agent/positive electrode active material complex for lithium secondary battery, manufacturing method of conductive agent/positive electrode active material complex for lithium secondary batery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2007103134A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Lithium ion secondary battery and its manufacturing method
CN100364154C (en) * 2006-04-21 2008-01-23 北京工业大学 High-power nano ball shape lithium cobaltate material and producing method thereof
US7824807B2 (en) 2004-12-10 2010-11-02 Shin-Kobe Electric Machinery Co., Ltd. Positive electrode material for lithium secondary battery and lithium secondary battery
CN102083516A (en) * 2008-03-03 2011-06-01 英耐时有限公司 Powder treating apparatus
WO2011099503A1 (en) * 2010-02-09 2011-08-18 三菱重工業株式会社 Apparatus for production of electrode material
JP2013537358A (en) * 2010-09-20 2013-09-30 エルジー・ケム・リミテッド High capacity positive electrode active material with improved conductivity and non-aqueous electrolyte secondary battery including the same
US8709648B2 (en) 2002-06-04 2014-04-29 Ener1, Inc. Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
US9252429B2 (en) 2004-02-07 2016-02-02 Lg Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same
CN106025214A (en) * 2016-06-07 2016-10-12 山东齐星新材料科技有限公司 Post-processing process for aluminium oxide-coated lithium cobalt oxide
US9620777B2 (en) 2013-09-30 2017-04-11 Tdk Corporation Positive electrode and lithium ion secondary battery using thereof
JP2019032941A (en) * 2017-08-04 2019-02-28 日産自動車株式会社 Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709648B2 (en) 2002-06-04 2014-04-29 Ener1, Inc. Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
JPWO2003103076A1 (en) * 2002-06-04 2005-10-06 伊藤忠商事株式会社 Conductive material mixed electrode active material, electrode structure, secondary battery, and method of manufacturing conductive material mixed electrode active material
WO2003103076A1 (en) * 2002-06-04 2003-12-11 伊藤忠商事株式会社 Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
WO2004040678A1 (en) * 2002-10-31 2004-05-13 Mitsubishi Chemical Corporation Additive to positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery and, prepared from the positive electrode material, positive electrode and lithium secondary battery
JP2005014201A (en) * 2003-06-03 2005-01-20 Hosokawa Funtai Gijutsu Kenkyusho:Kk Method of manufacturing carbon composite particle and carbon composite particle manufactured by this method
US9252429B2 (en) 2004-02-07 2016-02-02 Lg Chem, Ltd. Electrode additives coated with electro conductive material and lithium secondary comprising the same
WO2006033475A1 (en) * 2004-09-22 2006-03-30 Aoi Electronics Co., Ltd. Battery positive electrode material containing sulfur and/or sulfur compound having s-s bond, and process for producing the same
JP2006128119A (en) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd Conductive agent/positive electrode active material complex for lithium secondary battery, manufacturing method of conductive agent/positive electrode active material complex for lithium secondary batery, positive electrode for lithium secondary battery, and lithium secondary battery
US7838152B2 (en) 2004-10-28 2010-11-23 Samsung Sdi Co., Ltd. Conductive agent-positive active material composite for lithium secondary battery, method of preparing the same, and positive electrode and lithium secondary battery comprising the same
US7824807B2 (en) 2004-12-10 2010-11-02 Shin-Kobe Electric Machinery Co., Ltd. Positive electrode material for lithium secondary battery and lithium secondary battery
JP2007103134A (en) * 2005-10-03 2007-04-19 Toyota Motor Corp Lithium ion secondary battery and its manufacturing method
CN100364154C (en) * 2006-04-21 2008-01-23 北京工业大学 High-power nano ball shape lithium cobaltate material and producing method thereof
CN102083516B (en) * 2008-03-03 2013-10-09 英耐时有限公司 Powder treating apparatus
CN102083516A (en) * 2008-03-03 2011-06-01 英耐时有限公司 Powder treating apparatus
JP2011165476A (en) * 2010-02-09 2011-08-25 Mitsubishi Heavy Ind Ltd Electrode material manufacturing device
WO2011099503A1 (en) * 2010-02-09 2011-08-18 三菱重工業株式会社 Apparatus for production of electrode material
JP2013537358A (en) * 2010-09-20 2013-09-30 エルジー・ケム・リミテッド High capacity positive electrode active material with improved conductivity and non-aqueous electrolyte secondary battery including the same
US9214664B2 (en) 2010-09-20 2015-12-15 Lg Chem, Ltd. Cathode active material with high capacity and improved conductivity and non-aqueous electrolyte secondary battery comprising the same
US9620777B2 (en) 2013-09-30 2017-04-11 Tdk Corporation Positive electrode and lithium ion secondary battery using thereof
CN106025214A (en) * 2016-06-07 2016-10-12 山东齐星新材料科技有限公司 Post-processing process for aluminium oxide-coated lithium cobalt oxide
CN106025214B (en) * 2016-06-07 2019-05-24 山东齐星新材料科技有限公司 The aftertreatment technology of alumina-coated cobalt acid lithium
JP2019032941A (en) * 2017-08-04 2019-02-28 日産自動車株式会社 Method of deciding manufacturing condition of composite particle for positive electrode and method of manufacturing composite particle for positive electrode

Similar Documents

Publication Publication Date Title
JP5839221B2 (en) Lithium secondary battery
JP3585122B2 (en) Non-aqueous secondary battery and its manufacturing method
JP2021508410A (en) Positive electrode material for rechargeable lithium-ion batteries
JP2003086174A (en) Composite particle material for electrode, electrode plate, and method of manufacturing
JP6183360B2 (en) Electrode of lithium ion secondary battery and lithium ion secondary battery using the same
JP6621664B2 (en) Method for producing conductive carbon, method for producing electrode material containing carbon, method for producing electrode using this electrode material, and method for producing electricity storage device provided with this electrode
JP6621663B2 (en) Method for producing conductive carbon, method for producing electrode material containing carbon, method for producing electrode using this electrode material, and method for producing electricity storage device provided with this electrode
JP2014044921A (en) Lithium ion secondary battery, and method for manufacturing the same
WO2015133586A1 (en) Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
CN113193199A (en) Graphene-lithium ion conductor material composite conductive slurry, and preparation method and application thereof
JP5483092B2 (en) Battery, battery electrode and method for producing the same
JP6436472B2 (en) Method for producing conductive carbon, method for producing electrode material containing conductive carbon, and method for producing electrode using electrode material
KR101170172B1 (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP2000123876A (en) Manufacture of lithium ion battery material
CN101369660A (en) Complex particle material for electrode, electrode plate and their production method
JP7269512B2 (en) METHOD FOR MANUFACTURING SHEET FOR SOLID SECONDARY BATTERY AND BINDER FOR SOLID SECONDARY BATTERY
JP2004039538A (en) Positive electrode active material for secondary battery
JP6621586B2 (en) Method for producing conductive carbon, method for producing electrode material containing conductive carbon, and method for producing electrode using this electrode material
JP2014143064A (en) Secondary battery and method for manufacturing the same
JP2004039539A (en) Positive electrode active material for secondary battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP2004179008A (en) Positive electrode material for lithium secondary battery and its manufacturing method
JP2020035671A (en) Positive electrode for non-aqueous electrolyte secondary battery
JP2015022913A (en) Method for producing composition for forming negative electrode active material layer
WO2022181151A1 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing cnt-si paste, method for manufacturing negative electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061214