JP2005014108A - 多関節ロボットの干渉回避方法 - Google Patents

多関節ロボットの干渉回避方法 Download PDF

Info

Publication number
JP2005014108A
JP2005014108A JP2003178307A JP2003178307A JP2005014108A JP 2005014108 A JP2005014108 A JP 2005014108A JP 2003178307 A JP2003178307 A JP 2003178307A JP 2003178307 A JP2003178307 A JP 2003178307A JP 2005014108 A JP2005014108 A JP 2005014108A
Authority
JP
Japan
Prior art keywords
articulated robot
posture
workpiece
robot
interference avoidance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003178307A
Other languages
English (en)
Inventor
Toshiyuki Kondo
俊之 近藤
Kensaku Kaneyasu
健策 金安
Eisaku Hasegawa
栄作 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003178307A priority Critical patent/JP2005014108A/ja
Publication of JP2005014108A publication Critical patent/JP2005014108A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

【課題】7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットと、ワークとの干渉を効率的に回避する。
【解決手段】軸J1〜J7の7つの関節を備える多関節ロボット14の先端部36の位置及び姿勢を決定する。決定した先端部の位置及び姿勢を維持したまま、ワークWの縦方向軸24上に設けた所定の比較基準点P1から、多関節ロボット14の軸J4に設けた比較対象点Q1までの距離Mが最大となるように多関節ロボット14の軸J1〜J7の姿勢を決定する。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットの干渉回避方法に関し、特に、先端部をワークに対して適切な位置及び姿勢に保持したまま、肘関節等がワークに干渉することを防止する多関節ロボットの干渉回避方法に関する。
【0002】
【従来の技術】
先端に専用のエンドエフェクタを設けた多関節ロボットは、溶接作業、塗装作業等に広範に用いられている。多関節ロボットの姿勢は、先ずエンドエフェクタのワークに対する位置及び姿勢を決定した後に、この位置及び姿勢を維持したまま、他の関節の動きを求めることがある。
【0003】
エンドエフェクタをワークに対して自由な位置及び姿勢に設定するためには、いわゆる6自由度の動作が必要であり、これを実現するために多関節ロボットは6軸の関節が必要である。エンドエフェクタの位置及び姿勢を実現するために、6軸の多関節ロボットは有限個の姿勢をとり得ることから、このうち任意の姿勢を選択すればよい。しかしながら、6軸の多関節ロボットでは、エンドエフェクタの位置及び姿勢の条件以外に他の条件(例えば、干渉回避)を考慮すると適当な姿勢がない場合があり、姿勢の設定上の汎用性、融通性が劣るため、エンドエフェクタの位置及び姿勢を決定した状態で、多関節ロボットの姿勢を自由に設定する性能である冗長性を備えるために、7軸の多関節ロボットを用いることになる。
【0004】
ところが、7軸の多関節ロボットは、冗長性を備える一方、制御する方法はやや複雑になる。7軸の多関節ロボットを制御する方法として、マスタ・スレーブ構造を用い、マスタの肘関節にセンサを設けて制御する方法が提案されている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開2001−300871号公報
【0006】
【発明が解決しようとする課題】
7軸の多関節ロボットでは、冗長性を利用することにより、特異姿勢回避、障害物回避、機構的な制限の回避等の種々の動作が可能であるが、制御アルゴリズムが複雑になり、状況に応じてどのような姿勢を設定すればよいかが問題となる。
【0007】
特に、動作が予め決められてなく、ワークの形状等に応じてリアルタイムに姿勢を決定する必要がある場合において、ワークや障害物に対して効率的に干渉を回避する方法がない。
【0008】
前記特許文献1の技術は、マスタ・スレーブ構造であって、オペレータが介在する必要があることから半自動である。従って、スレーブである多関節ロボットを自動的に動作させることはできない。
【0009】
本発明はこのような課題を考慮してなされたものであり、多関節ロボットの先端位置及び姿勢を維持したまま、ワークに対して効率的に干渉を回避することを可能にする多関節ロボットの干渉回避方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る多関節ロボットの干渉回避方法は、7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットの先端位置及び姿勢を決定する第1ステップと、前記第1ステップで決定した先端位置及び姿勢を維持したまま、ワークに設けた所定の比較基準点から前記多関節ロボットの比較対象点までの距離が最大となるように前記多関節ロボットの姿勢を決定する第2ステップと、を実行することを特徴とする。ここで、ワークとは、多関節ロボットの作業対象物に限らず、その周辺障害物を含む。
【0011】
このように、多関節ロボットの先端位置及び姿勢を維持したまま、比較基準点と比較対象点との距離が最大となるように多関節ロボットの姿勢を決定することにより、多関節ロボットとワークとの干渉を効率的に回避することができる。
【0012】
この場合、前記比較対象点は、前記多関節ロボットの所定関節の中心に設定されていると、より効率的に干渉を回避することができる。
【0013】
また、前記比較対象点は、前記多関節ロボットの2つの関節を接続するアームの中点に設定されていると、2つの関節をそれぞれワークから離間させることができる。
【0014】
さらに、本発明に係る多関節ロボットの干渉回避方法は、7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットの先端位置及び姿勢を決定する第1ステップと、前記第1ステップで決定した先端位置及び姿勢を維持したまま、ワークに設けた複数の比較基準点から前記多関節ロボットの比較対象点までの各距離を求め、それぞれに重み付けをする第2ステップと、重み付けをした前記距離の和が最大となるように前記多関節ロボットの姿勢を決定する第3ステップと、を実行することを特徴とする。
【0015】
さらにまた、本発明に係る多関節ロボットの干渉回避方法は、7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットの先端位置及び姿勢を決定する第1ステップと、前記第1ステップで決定した先端位置及び姿勢を維持したまま、ワークに設けた所定の比較基準点から前記多関節ロボットの複数の比較対象点までの各距離を求め、それぞれに重み付けをする第2ステップと、重み付けをした前記距離の和が最大となるように前記多関節ロボットの姿勢を決定する第3ステップと、を実行することを特徴とする。
【0016】
このように、比較基準点又は比較対象点を複数設定し、比較基準点と比較対象点とのそれぞれの距離に重み付けをして加算した変数が最大となるように多関節ロボットの姿勢を決定することにより、ワークWが複雑な形状である場合や、多関節ロボットが多数の関節を備える場合に、干渉するおそれのある箇所同士をそれぞれバランスよく離間させることができる。
【0017】
前記多関節ロボットの先端部を前記ワークに倣わせて移動させながら、リアルタイムで前記多関節ロボットの姿勢を決定するようにしてもよい。
【0018】
前記多関節ロボットはベース部が移動可能であり、前記比較基準点は、前記多関節ロボットの移動に伴い、該多関節ロボットとの相対的な位置を保持するように移動設定してもよい。
【0019】
【発明の実施の形態】
以下、本発明に係る多関節ロボットの干渉回避方法について好適な実施の形態を挙げ、添付の図1〜図10を参照しながら説明する。
【0020】
図1に示すように、本実施の形態に係る多関節ロボットの干渉回避方法が適用される3次元形状測定システム10は、車両の形状をしたワークWの3次元形状を測定するシステムであって、ワークWの面形状を測定するレーザスキャナ12をエンドエフェクタとして備えた多関節ロボット14と、レーザスキャナ12の位置を検出する位置検出装置16と、多関節ロボット14及び位置検出装置16から供給されるデータを処理するデータ処理部18とを有する。多関節ロボット14は、移動台車22上に載置されており、該移動台車22の内部には、多関節ロボット14を制御する制御部19が設けられている。ワークWは形状がデータ化されていないクレーモデルであって、制御部19において形状が認識されていない。
【0021】
多関節ロボット14は7軸の関節を備え、姿勢の冗長性を有する。すなわち、多関節ロボット14は、レーザスキャナ12の位置及び姿勢を保持したまま様々な姿勢(理論上、無限大個の姿勢)をとり得る。図2に示すように、多関節ロボット14の先端部36には、支持部20aを介してワークW(図3参照)までの距離を測定するレーザ変位計20が設けられている。
【0022】
多関節ロボット14は、図1に示すように、矢印Aで示される基本のティーチングデータに基づきワークWの面に沿ってレーザスキャナ12を移動させる。このとき、レーザ変位計20のデータを参照しながら、レーザスキャナ12をワークWの表面から所定の距離であるL±εとなるように維持しながら移動させる。
【0023】
また、多関節ロボット14が載置される移動台車22上は自走可能であり、ワークWの縦方向軸24と平行に延在するレール26に沿って移動することができる。多関節ロボット14は移動可能であることから、ワークWの所定区域毎の測定を行った後に多関節ロボット14を移動させて次の区域の測定を行うことができる。縦方向軸24はワークWの位置を示すためにワークWの中心に設定される仮想の軸であり、該縦方向軸24における多関節ロボット14の略正面には比較基準点P1が設けられている。
【0024】
図2に示すように、多関節ロボット14は、ベース部30と、該ベース部30を基準にして、順に第1アーム32、第2アーム34を有し、第2アーム34の先の先端部36に前記レーザスキャナ12が設けられている。第1アーム32はベース部30に対して水平及び垂直に回動可能な軸J1、J2によって接続されている。また、第1アーム32は途中の軸J3によって捻り回転が可能である。
【0025】
第2アーム34は第1アーム32と軸J4で回動可能に連結されている。第2アーム34は途中の軸J5によって捻り回転が可能である。
【0026】
先端部36は第2アーム34と軸J6で回動可能に連結されており、軸J7により捻り回転が可能である。
【0027】
このように多関節ロボット14は7軸の関節を有することから、前記のとおり姿勢の冗長性を有し、人間の腕のように自由な動作が可能である。また、軸J4は、人間の腕における肘部とみなすことができ、上下左右に突出しやすい。従って、軸J4はワークWに対しても干渉を起こしやすいが、本実施の形態に係る多関節ロボット14の干渉回避方法を行うことにより、この干渉を効率的に回避することができる。軸J4の中心部には、比較基準点P1(図1参照)に対する仮想的な対象点である比較対象点Q1が設定されている。
【0028】
多関節ロボット14の軸J1〜J7は、全てが回転動作を行う軸である必要はなく、姿勢の冗長性を有する構成であれば、伸縮動作、平行リンク動作等の動作部を有するものであってもよい。関節の構成は8軸以上であってもよい。
【0029】
図3に示すように、レーザスキャナ12は、3つの突起部にそれぞれ赤外線LED40を備えている。位置検出装置16(図1参照)は、1次元CCDからなる3つの検出部42により赤外線LED40が発光する赤外線を検出して3次元空間上におけるレーザスキャナ12の位置を正確に検出することができる。検出部42は、2個以上の2次元CCDでもよい。
【0030】
具体的には、3つの赤外線LED40からのエネルギーを検出部42によってそれぞれ検出し、各検出部42から赤外線LED40の方向を認識する。これにより、レーザスキャナ12の空間的位置及び姿勢を求めることができる。この処理はリアルタイムで行われる。
【0031】
レーザスキャナ12は、投光部50からレーザを矢印B方向に走査しながらワークWに照射して幅Dの区間の形状を測定することができる。また、レーザスキャナ12は、ワークWの表面から投光部50までの距離がL±εの範囲に設定されている必要があり、レーザ変位計20によってこの距離を測定している。該レーザ変位計20による測定データは、制御部19に供給されて処理され、レーザスキャナ12が適切な位置となるように多関節ロボット14の姿勢を制御する。
【0032】
図4に示すように、制御部19はサーボドライバ52を介して多関節ロボット14を動作させる運動制御ボード54と、入出力インターフェース56と、コンピュータ58とを有する。コンピュータ58は、運動制御ボード54及び入出力インターフェース56と接続されており、制御部19全体の制御を行う。
【0033】
制御部19は、レーザスキャナインターフェース60を介してレーザスキャナ12の計測データを取得することができる。また、制御部19は、アンプ62を介して走行軸モータ64を動作させ、移動台車22を自走させることができる。さらに、制御部19は、矢印A(図1参照)で示される基本のティーチングデータを設定するためのティーチングボックス66及び操作ボックス68と接続されており、相互にデータ通信が可能である。移動台車22には無停電電源を搭載し、該無停電電源を介して制御部19等に電源を供給するようにすると、動作信頼性が向上する。
【0034】
次に、このように構成される3次元形状測定システム10を用いて、多関節ロボット14のワークWに対する干渉を回避する方法について図5に示すフローチャートを参照しながら説明する。
【0035】
先ず、ステップS1において、ティーチングボックス66(図4参照)を用いて、矢印A(図1参照)で示される基本のティーチングデータを設定する。このティーチングデータは、ワークWから適当な距離だけ離間したおおよその経路を示すものであればよく、ワークWの形状が正確に把握されていない状況でも設定可能である。
【0036】
次に、ティーチングデータに基づいて多関節ロボット14を動作させるとともに、位置検出装置16でレーザスキャナ12の位置を検出しながら該レーザスキャナ12によってワークWの形状を測定し、測定したデータをデータ処理部18に供給する。
【0037】
具体的には、先ず、ステップS2において、ティーチングデータで示される位置にレーザスキャナ12を配置させ、レーザ変位計20によりレーザスキャナ12とワークWの表面との距離を測定する。この距離がL±εの範囲内に入っていないときには、レーザスキャナ12をワークWに対して進退させてL±εとなるように設定する。
【0038】
このようにして先端部36及びレーザスキャナ12の位置及び姿勢が決定される。なお、このステップS2の処理は、先端部36及びレーザスキャナ12の位置及び姿勢が計算上で決定されればよく、この時点で多関節ロボット14を実際に動作させる必要はない。
【0039】
次に、ステップS3において、前記ステップS2(又はステップS5)で決定した先端部36の位置及び姿勢を維持したまま、多関節ロボット14の軸J1〜J7の姿勢を決定する。この際、多関節ロボット14は、7軸の関節を備え姿勢の冗長性を有することから、とり得る姿勢は理論上無限通り存在する。
【0040】
ところで、ワークWと多関節ロボット14との干渉は回避しなければならないが、ワークWはクレーモデルであって、正確な形状は制御部19で認識されていない。実際上、ワークWに対して干渉する可能性が大きい箇所は、人間の腕でいう肘部に相当する軸J4であることは明らかである。そこで、本実施の形態に係る多関節ロボット14の干渉回避方法では、ワークWの中心部に設けた比較基準点P1から、多関節ロボット14の軸J4に設けたの比較対象点Q1までの距離M(図6参照)が最大となるように多関節ロボット14の軸J1〜J7の姿勢を決定する。
【0041】
つまり、多関節ロボット14の姿勢を決定する条件は2つあり、1つは、ステップS2で求めた先端部36及びレーザスキャナ12の位置及び姿勢であり、もう1つは、比較基準点P1から比較対象点Q1までの距離Mが最大となることである。このステップS3の詳細な処理については後述する。
【0042】
次に、ステップS4において、前記ステップS3で求めた結果に基づいて多関節ロボット14を実際に動作させる。これにより、レーザスキャナ12はワークWに対してL±εの範囲となってワークWの形状を測定することができる。測定したデータは、レーザスキャナインターフェース60及び制御部19を介してデータ処理部18に供給される。該データ処理部18には、位置検出装置16からレーザスキャナ12の位置及び姿勢に関するデータが供給されることから、結果としてデータ処理部18においてワークWの表面形状を正確に測定することができる。
【0043】
次に、ステップS5において、先端部36及びレーザスキャナ12を移動させる位置を求める。この移動は、現在の先端部36及びレーザスキャナ12の位置及び姿勢に基づいて、矢印Aで示される方向と略同じ方向に設定すればよい。また、レーザ変位計20のデータを考慮し、レーザスキャナ12がワークWの表面に対してL±εの範囲を逸脱しないように適当な補正をかけて移動方向を決定すればよい。例えば、レーザスキャナ12とワークWとの距離がL+εに近い値であるときには先端部36及びレーザスキャナ12をワークWに接近させる方向に補正し、レーザスキャナ12とワークWとの距離がL−εに近い値であるときには先端部36及びレーザスキャナ12をワークWから離間させる方向に補正すればよい。
【0044】
なお、この移動方向は、現在の先端部36及びレーザスキャナ12の位置及び姿勢に基づいて決定すればよく、先端部36及びレーザスキャナ12を、矢印Aで示されるティーチングデータの位置まで戻す必要はない。これにより、レーザスキャナ12をワークWの表面に対してL±εの距離に保ったまま測定を連続的に続行することができる。
【0045】
この後、前記ステップS3に戻り、ステップS5で決定した先端部36の位置及び姿勢を維持したまま、多関節ロボット14の軸J1〜J7の姿勢を決定し、測定を続行する。このようにステップS3〜S5を連続的に実行することにより、レーザスキャナ12がワークWに対して距離L±εに保たれたまま倣い動作を行うことができ、リアルタイムにワークWの形状を測定することができる。
【0046】
換言すると、多関節ロボット14の先端部36をワークWに倣わせて移動させながらリアルタイムで多関節ロボット14の姿勢を決定することにより、正確な形状が不明である種々のワークWに対して、干渉を回避させながら形状の計測を行うことができる。
【0047】
矢印Aで示されるティーチングデータに基づいてワークWの測定を行った後、別のティーチングデータ(例えば、矢印Aに対して隣接し、略平行で反対方向のティーチングデータ)に基づいて同様の測定を行う。
【0048】
さらにまた、所定本数のティーチングデータに基づいて、ワークWの所定区域の測定が終了した後、走行軸モータ64(図4参照)を駆動させて移動台車22をレール26(図1参照)に沿って移動させ、隣接する区域について同様の測定を行う。この場合、移動台車22の移動量Y1に応じて、比較基準点P1も同方向に移動量Y1だけ距離を移動させるとよい。このようにすると、比較基準点P1は、多関節ロボット14の略正面の位置に保たれ、ワークWと多関節ロボット14との干渉を回避しやすい。
【0049】
また、移動台車22の移動に無関係に固定された比較基準点P10を比較基準点P1の代わりとして用いてもよい。特に、ワークWの形状が比較的単純である場合に、比較基準点P10をワークWの中心部に設けるとよい。実際上、車両の形状のワークWに対しては固定された比較基準点P10が有効である。比較基準点P10は、移動台車22の位置に応じて移動させる必要がないことから、制御手順が簡素化される。この固定された比較基準点P10を用いることにより、多関節ロボット14を任意の配置に設定可能であり、例えば、多関節ロボット14をワークWの正面に配置して、フロントウィンド及びボンネットの形状を測定することができる。
【0050】
次に、前記ステップS3の詳細な処理について図6を参照しながら説明する。
【0051】
7自由度を有する多関節ロボット14は、その第i関節(i=1、2、…7)の関節変数をqとしたとき、アームの姿勢を示すベクトルqは、q=[q、q、…qと表される。レーザスキャナ12の絶対位置を(x、y、z)、姿勢を(φ、θ、ψ)と表したとき、作業変数yはy=[x、y、z、φ、θ、ψ]と表される。このとき、多関節ロボット14の目標軌道y(t)が与えられたときの目標関節角度qの時間微分値である目標関節速度q’(=dq/dt)に関する一般解は(1)式で与えられる。
’=J’+(I−JJ)k …(1)
【0052】
ここでJはyのqに関するヤコビ行列J(q)=dy/dq、Iは適当なサイズの単位行列、JはJに関する一般化逆行列、kは7次元任意定数ベクトル、y’は目標軌跡yの時間微分値である。(1)式の第1項はyを実現するための1つの関節速度で、第2項は解の冗長性を表すことになる。
【0053】
目標軌跡yを実現し、その際に残った冗長性を利用するための評価関数pを(2)式で表す。
p=V(q) …(2)
【0054】
このような評価関数pをできるだけ大きくするような解の1つは、(1)式のkを次の(3)式、(4)式及び(5)式により求めればよい。
k=ξk …(3)
ξ=[ξ、ξ、…、ξ …(4)
ξ=∂V(q)/∂q …(5)
【0055】
ここでkは適当な正の定数である。
【0056】
つまり、評価関数p=V(q)を比較基準点P1と比較対象点Q1の距離Mとして記述して解けば多関節ロボット14の姿勢を求めることができる。
【0057】
具体的には、多関節ロボット14が図6のようにモデル化して表される場合、比較基準点P1と比較対象点Q1との距離Mの二乗Mは、
Figure 2005014108
として表される。ここで、X、Y、Zはそれぞれ比較基準点P1の絶対座標、l、lはベース部30及び第1アーム32の長さ、q、qは軸J1、J2の回動角度である。このようにして求められる距離Mの二乗Mを評価関数p=V(q)に適用して多関節ロボット14の姿勢を求めればよい。
【0058】
また、ステップS3の処理をブロック図として表わす場合、図7に示すように、フィードフォワードの作用を持つ干渉回避計算モジュール82と、該干渉回避計算モジュール82の出力値を積分する積分器84等で表される。これらの干渉回避計算モジュール82及び積分器84等は、多関節ロボット14からのフィードバック信号であるq(t)及びその時間微分値であるq’(t)(=dq(t)/dt)に基づいて出力信号を算出することができる。
【0059】
次に、本実施の形態に係る多関節ロボット14の干渉回避方法の第1〜3の変形例について説明する。
【0060】
図8に示すように、第1の変形例では、比較対象点Q1を軸J4と軸J6を接続する第2アーム34の中点に設定する。つまり、第2アーム34の長さlに対して、軸J4及び軸J6からの距離がそれぞれl/2となる位置に比較対象点Q1を設定し、その他の処理は、上記の実施の形態と同様に行う。
【0061】
この第1の変形例では、軸J6よりも先の部分である先端部36が長く、軸J4に加えて軸J6も肘部の1つとみなされ、ワークWに対して軸J4及び軸J6のいずれか一方の干渉を回避させても他方が干渉するおそれがあるような場合に有効である。つまり、干渉のおそれのある軸J4と軸J6の中点を比較対象点Q1とすることにより、軸J4及び軸J6の双方をワークWに対して干渉を回避させることができる。
【0062】
また、例えば、統計的手法等により、多関節ロボット14におけるワークWに対して干渉する確率の高い箇所が求められる場合には、その箇所に比較対象点Q1を設定してもよい。
【0063】
図9に示すように、第2の変形例では、ワークWにおいて、比較基準点P1に加えて別の箇所に比較基準点P2を設定し、比較基準点P1と比較対象点Q1との距離M1、及び比較基準点P1と比較対象点Q1との距離M2を求める。
【0064】
次に、上記の実施の形態における距離Mに相当する変数Nの二乗Nを、N=α1・M1+α2・M2として求め、前記(2)式の評価関数に対して適用すればよい。ここで、α1及びα2は、適当な重み付け係数である。α1及びα2はそれぞれ同値であってもよい。
【0065】
このように、比較基準点P1の他に比較基準点P2を設ける方法は、ワークWが複雑な形状である場合に有効である。例えば、比較基準点P2をバックミラー80のような突起部に設定することにより、このバックミラー80に対して軸J4を離間させることができる。
【0066】
また、ワークWの概略表面形状が既知である場合には、その表面形状に沿って比較基準点を3以上設定してもよい。この場合、各比較基準点から比較対象点Q1までの距離を求め、重み付けをして加算し(2)式の評価関数に適用すればよい。さらに、比較基準点P2は、ワークW以外の周辺の障害物に設定してもよい。
【0067】
図10に示すように、第3の変形例では、9つの軸J1〜J9を備える多関節ロボット14aとワークWとの干渉を回避させる。多関節ロボット14aは、9つの軸J1〜J9を備え、肘に相当する箇所が軸J4、J6及びJ8の3箇所存在する。これらの各軸J4、J6及びJ8にそれぞれ比較対象点Q1、Q2及びQ3を設定し、比較基準点P1と比較対象点Q1との距離M1、及び比較基準点P1と比較対象点Q1との距離M2、及び、比較基準点P1と比較対象点Q3との距離M3を求める。
【0068】
次に、上記の実施の形態における距離Mに相当する変数Nの二乗Nを、N=α1・M1+α2・M2+α3・M3として求め、前記(2)式の評価関数に対して適用すればよい。ここで、α1、α2及びα3は、適当な重み付け係数である。α1、α2及びα3はそれぞれ同値であってもよい。
【0069】
このように、多数の関節を備え、ワークWに干渉するおそれのある箇所が複数存在する多関節ロボット14aに対しては、干渉するおそれのある箇所それぞれに比較対象点Q1、Q2及びQ3を設けるとよい。これにより、比較対象点Q1〜Q3をバランスよくワークWから離間させることができ、干渉を回避させることができる。
【0070】
なお、本実施の形態に係る多関節ロボットの干渉回避方法は、3次元形状測定システム10に適用し、比較基準点P1をワークWに設定したが、該比較基準点P1は、ワークW以外の周辺の障害物に設定してもよい。
【0071】
本発明に係る多関節ロボットの干渉回避方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成乃至手順を採り得ることはもちろんである。
【0072】
【発明の効果】
以上説明したように、本発明に係る多関節ロボットの干渉回避方法では、7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットの先端位置及び姿勢を維持したまま、ワークの比較基準点と多関節ロボットの比較対象点との距離が最大となるように多関節ロボットの姿勢を決定する。従って、多関節ロボットとワークとの干渉を効率的に回避することができる。
【0073】
また、比較基準点又は比較対象点を複数設定し、比較基準点と比較対象点とのそれぞれの距離に重み付けをして加算した変数が最大となるように多関節ロボットの姿勢を決定してもよい。これにより、ワークWが複雑な形状である場合や、多関節ロボットが多数の関節を備える場合に、干渉するおそれのある箇所同士をそれぞれバランスよく離間させることができる。
【図面の簡単な説明】
【図1】本実施の形態に係る多関節ロボットの干渉回避方法が適用される3次元形状測定システムの概略斜視図である。
【図2】レーザスキャナを備える多関節ロボット及び該多関節ロボットが載置される移動台車を示す斜視図である。
【図3】レーザスキャナ及びレーザ変位計を用いてワークの形状を測定する様子を示す概略斜視図である。
【図4】本実施の形態に係る多関節ロボットの干渉回避方法が適用される3次元形状測定システムの概略ブロック図である。
【図5】本実施の形態に係る多関節ロボットの干渉回避方法の手順を示すフローチャートである。
【図6】ワークの比較基準点と多関節ロボットの肘部に設定された比較対象点との距離を示すモデル図である。
【図7】コンピュータの内部における多関節ロボットの姿勢を決定する部分の作用を示すブロック図である。
【図8】ワークの比較基準点と多関節ロボットのアームの中点に設定された比較対象点との距離を示すモデル図である。
【図9】ワークの複数の比較基準点と多関節ロボットの肘部に設定された比較対象点との各距離を示すモデル図である。
【図10】ワークの比較基準点と多関節ロボットの複数の比較対象点との各距離を示すモデル図である。
【符号の説明】
10…3次元形状測定システム 12…レーザスキャナ
14、14a…多関節ロボット 16…位置検出装置
18…データ処理部 19…制御部
20…レーザ変位計 22…移動台車
24…縦方向軸 32…第1アーム
34…第2アーム 36…先端部
40…赤外線LED 42…検出部
J1〜J7…軸 M、M1、M2、M3…距離
P1、P2、P10…比較基準点 Q1、Q2、Q3…比較対象点
W…ワーク

Claims (7)

  1. 7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットの先端位置及び姿勢を決定する第1ステップと、
    前記第1ステップで決定した先端位置及び姿勢を維持したまま、ワークに設けた所定の比較基準点から前記多関節ロボットの比較対象点までの距離が最大となるように前記多関節ロボットの姿勢を決定する第2ステップと、
    を実行することを特徴とする多関節ロボットの干渉回避方法。
  2. 請求項1記載の多関節ロボットの干渉回避方法において、
    前記比較対象点は、前記多関節ロボットの所定関節の中心に設定されていることを特徴とする多関節ロボットの干渉回避方法。
  3. 請求項1記載の多関節ロボットの干渉回避方法において、
    前記比較対象点は、前記多関節ロボットの2つの関節を接続するアームの中点に設定されていることを特徴とする多関節ロボットの干渉回避方法。
  4. 7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットの先端位置及び姿勢を決定する第1ステップと、
    前記第1ステップで決定した先端位置及び姿勢を維持したまま、ワークに設けた複数の比較基準点から前記多関節ロボットの比較対象点までの各距離を求め、それぞれに重み付けをする第2ステップと、
    重み付けをした前記距離の和が最大となるように前記多関節ロボットの姿勢を決定する第3ステップと、
    を実行することを特徴とする多関節ロボットの干渉回避方法。
  5. 7軸以上の関節を備え、姿勢の冗長性を有する多関節ロボットの先端位置及び姿勢を決定する第1ステップと、
    前記第1ステップで決定した先端位置及び姿勢を維持したまま、ワークに設けた所定の比較基準点から前記多関節ロボットの複数の比較対象点までの各距離を求め、それぞれに重み付けをする第2ステップと、
    重み付けをした前記距離の和が最大となるように前記多関節ロボットの姿勢を決定する第3ステップと、
    を実行することを特徴とする多関節ロボットの干渉回避方法。
  6. 請求項1〜5のいずれか1項に記載の多関節ロボットの干渉回避方法において、
    前記多関節ロボットの先端部を前記ワークに倣わせて移動させながら、リアルタイムで前記多関節ロボットの姿勢を決定することを特徴とする多関節ロボットの干渉回避方法。
  7. 請求項1〜6のいずれか1項に記載の多関節ロボットの干渉回避方法において、
    前記多関節ロボットはベース部が移動可能であり、前記比較基準点は、前記多関節ロボットの移動に伴い、該多関節ロボットとの相対的な位置を保持するように移動設定されることを特徴とする多関節ロボットの干渉回避方法。
JP2003178307A 2003-06-23 2003-06-23 多関節ロボットの干渉回避方法 Pending JP2005014108A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178307A JP2005014108A (ja) 2003-06-23 2003-06-23 多関節ロボットの干渉回避方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178307A JP2005014108A (ja) 2003-06-23 2003-06-23 多関節ロボットの干渉回避方法

Publications (1)

Publication Number Publication Date
JP2005014108A true JP2005014108A (ja) 2005-01-20

Family

ID=34179980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178307A Pending JP2005014108A (ja) 2003-06-23 2003-06-23 多関節ロボットの干渉回避方法

Country Status (1)

Country Link
JP (1) JP2005014108A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037131A1 (ja) * 2005-09-27 2007-04-05 Kabushiki Kaisha Yaskawa Denki 多関節マニピュレータ
JP2011131326A (ja) * 2009-12-24 2011-07-07 Ihi Aerospace Co Ltd ロボットアームの干渉回避方法
KR101291649B1 (ko) 2010-12-24 2013-08-01 삼성중공업 주식회사 작업 로봇의 제어 방법 및 작업 로봇 시스템
JP2014018912A (ja) * 2012-07-18 2014-02-03 Seiko Epson Corp ロボット制御装置、ロボット制御方法およびロボット制御プログラムならびにロボットシステム
JP2015529163A (ja) * 2012-09-17 2015-10-05 リシンク ロボティクス インコーポレイテッド 冗長自由度を伴うロボットマニピュレータの制約
JP5939364B1 (ja) * 2015-07-24 2016-06-22 株式会社安川電機 加工装置
CN105899334A (zh) * 2014-10-29 2016-08-24 株式会社安川电机 加工装置以及工件的生产方法
JP2017024160A (ja) * 2016-05-17 2017-02-02 株式会社安川電機 加工装置及びワークの生産方法
EP2698234A3 (de) * 2012-08-17 2018-08-08 LIEBHERR-VERZAHNTECHNIK GmbH Vorrichtung zum automatisierten Entnehmen von in einem Behälter angeordneten Werkstücken
CN109571939A (zh) * 2019-01-29 2019-04-05 浙江大学 一种多机器人协同三维打印方法
CN110539309A (zh) * 2019-07-23 2019-12-06 上海卫星装备研究所 基于激光找正和视觉测量的机械臂制孔定位***及方法
US11278369B2 (en) 2016-04-28 2022-03-22 Sony Corporation Control device, control method, and surgical system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037131A1 (ja) * 2005-09-27 2007-04-05 Kabushiki Kaisha Yaskawa Denki 多関節マニピュレータ
EP1930129A1 (en) * 2005-09-27 2008-06-11 Kabushiki Kaisha Yaskawa Denki Multi-joint manipulator
EP1930129A4 (en) * 2005-09-27 2008-11-19 Yaskawa Denki Seisakusho Kk MANIPULATOR WITH MULTIPLE RACES
EP2113343A3 (en) * 2005-09-27 2010-01-13 Kabushiki Kaisha Yaskawa Denki Multi-joint manipulator
US7971504B2 (en) 2005-09-27 2011-07-05 Kabushiki Kaisha Yaskawa Denki Articulated manipulator
JP2012056082A (ja) * 2005-09-27 2012-03-22 Yaskawa Electric Corp 多関節マニピュレータおよびロボットシステム
JP5004020B2 (ja) * 2005-09-27 2012-08-22 株式会社安川電機 多関節マニピュレータおよびロボットシステム
US8413538B2 (en) 2005-09-27 2013-04-09 Kabushiki Kaisha Yaskawa Denki Articulated manipulator
JP2011131326A (ja) * 2009-12-24 2011-07-07 Ihi Aerospace Co Ltd ロボットアームの干渉回避方法
KR101291649B1 (ko) 2010-12-24 2013-08-01 삼성중공업 주식회사 작업 로봇의 제어 방법 및 작업 로봇 시스템
JP2014018912A (ja) * 2012-07-18 2014-02-03 Seiko Epson Corp ロボット制御装置、ロボット制御方法およびロボット制御プログラムならびにロボットシステム
EP2698234A3 (de) * 2012-08-17 2018-08-08 LIEBHERR-VERZAHNTECHNIK GmbH Vorrichtung zum automatisierten Entnehmen von in einem Behälter angeordneten Werkstücken
EP4046755A1 (de) * 2012-08-17 2022-08-24 Liebherr-Verzahntechnik GmbH Vorrichtung zum automatisierten entnehmen von in einem behälter angeordneten werkstücken
JP2015529163A (ja) * 2012-09-17 2015-10-05 リシンク ロボティクス インコーポレイテッド 冗長自由度を伴うロボットマニピュレータの制約
CN105899334A (zh) * 2014-10-29 2016-08-24 株式会社安川电机 加工装置以及工件的生产方法
US10112299B2 (en) 2014-10-29 2018-10-30 Kabushiki Kaisha Yaskawa Denki Machining apparatus and method of producing workpiece
JP5939364B1 (ja) * 2015-07-24 2016-06-22 株式会社安川電機 加工装置
US11278369B2 (en) 2016-04-28 2022-03-22 Sony Corporation Control device, control method, and surgical system
JP2017024160A (ja) * 2016-05-17 2017-02-02 株式会社安川電機 加工装置及びワークの生産方法
CN109571939A (zh) * 2019-01-29 2019-04-05 浙江大学 一种多机器人协同三维打印方法
CN110539309A (zh) * 2019-07-23 2019-12-06 上海卫星装备研究所 基于激光找正和视觉测量的机械臂制孔定位***及方法

Similar Documents

Publication Publication Date Title
JP6963748B2 (ja) ロボットシステム及びロボットシステムの制御方法
US9120233B2 (en) Non-contact optical distance and tactile sensing system and method
US8306661B2 (en) Method and system for establishing no-entry zone for robot
JP6359756B2 (ja) マニプレータ、マニプレータの動作計画方法、および、マニプレータの制御システム
US9193072B2 (en) Robot and control method thereof
JP3817530B2 (ja) 3次元形状測定方法及びその測定装置
WO2018043525A1 (ja) ロボットシステム、ロボットシステム制御装置、およびロボットシステム制御方法
JP2005014108A (ja) 多関節ロボットの干渉回避方法
JP4302830B2 (ja) ロボットのキャリブレーション方法及び装置
US11433538B2 (en) Trajectory generation system and trajectory generating method
Chen et al. An integrated two-level self-calibration method for a cable-driven humanoid arm
WO2018230517A1 (ja) 作業システム
CN107363851A (zh) 控制装置以及机器人***
Bonilla et al. A vision-based, impedance control strategy for industrial robot manipulators
Mustafa et al. Kinematic calibration of a 7-DOF self-calibrated modular cable-driven robotic arm
JP5776486B2 (ja) ロボット制御装置、その制御方法及びプログラム
JP4512405B2 (ja) 3次元形状測定方法
JP2008264901A (ja) 移動ロボット及びその自動連結方法、並びにパラレルリンク機構の駆動制御方法
WO2023013740A1 (ja) ロボット制御装置、ロボット制御システム、及びロボット制御方法
WO2022264672A1 (ja) 自走装置
Deshmukh et al. Kinematic modeling of an automated laser line point cloud scanning system
Li et al. A SLAM-integrated kinematic calibration method for industrial manipulators with RGB-D cameras
Yunardi Marker-based motion capture for measuring joint kinematics in leg swing simulator
JP2014124734A (ja) ロボットおよび動作軌道制御システム
JP2003200377A (ja) ロボット,ロボットによる測距方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060213

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031