JP2005003559A - 位置検出装置、光学装置および位置検出方法 - Google Patents

位置検出装置、光学装置および位置検出方法 Download PDF

Info

Publication number
JP2005003559A
JP2005003559A JP2003168384A JP2003168384A JP2005003559A JP 2005003559 A JP2005003559 A JP 2005003559A JP 2003168384 A JP2003168384 A JP 2003168384A JP 2003168384 A JP2003168384 A JP 2003168384A JP 2005003559 A JP2005003559 A JP 2005003559A
Authority
JP
Japan
Prior art keywords
gain
position detection
offset
adjustment data
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003168384A
Other languages
English (en)
Other versions
JP2005003559A5 (ja
Inventor
Yasusuke Morimoto
庸介 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003168384A priority Critical patent/JP2005003559A/ja
Priority to US10/600,766 priority patent/US6873148B2/en
Publication of JP2005003559A publication Critical patent/JP2005003559A/ja
Publication of JP2005003559A5 publication Critical patent/JP2005003559A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Transform (AREA)
  • Focusing (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】電源投入時又はシステムリセット時の直後において、迅速に対象物の制御を安定させる。
【解決手段】対象物1の移動に応じて少なくとも2相の周期的に変化する位置検出信号を出力する信号出力手段2aと、各位置検出信号について、調整データを用いてゲインおよびオフセット調整を行う信号調整手段6aと、ゲインおよびオフセット調整された位置検出信号に基づいて対象物の位置を求める演算手段7と、調整データを不揮発的に記憶可能な不揮発性記憶手段13とを有する。不揮発性記憶手段は、該位置検出装置の過去の動作時にゲインおよびオフセット調整に用いた調整データを少なくとも今回の動作時まで保持し、信号調整手段は、今回の該位置検出装置の動作開始に際して、不揮発性記憶手段に記憶された調整データを用いてゲインおよびオフセット調整を行う。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、磁気抵抗(MR)素子や光学センサを用いた位置検出技術およびこれを光学系の合焦などに適用したレンズ装置に関する。
【0002】
【従来の技術】
従来、磁気抵抗素子(以下、MR素子という)を用いた位置検出装置では、複数相のMR素子からの正弦波状の信号成分のうち直線性に優れた信号成分を持つ相を選択して、その信号成分を内挿する演算を行い位置を検出している。
【0003】
ここで、MR素子からの複数相の出力は、図12に示すように一般にその振幅、および振幅中心のレベルが異なっている。このままでは位置の検出に使用した場合に十分な精度が得られないため、図13に示すように振幅および振幅中心がそろうようにゲインおよびオフセットが調整される。
【0004】
ここで、MR素子の出力のゲインおよびオフセットは、個々の製品におけるセンサの組み付け誤差や回路の電気的特性の誤差、センサの温度による特性変化などにより変動する。レンズの位置検出精度を高く保つためには、これらに応じて適切にゲインおよびオフセットを調整する必要がある。
【0005】
この調整を行う方法として、以下の手段が提案されている。すなわち、電源投入時又はシステムのリセット時に測定対象物であるレンズをMRセンサの正弦波出力の1周期分以上動かし、そのときA/Dコンバータから所定周期でサンプリングしたセンサ出力の最大値と最小値よりゲイン・オフセット調整データを求める。
【0006】
そしてこの調整データを用いて、振幅および振幅中心がそろうようにA/Dコンバータから取り込まれたセンサ出力データを加工することでゲインおよびオフセットが調整される。
【0007】
具体的には、MRセンサ出力の最大値をMAX、最小値をMINとすると、調整データであるゲインGAIN、オフセットOFFSETは以下の式(1),(2)で計算される。ただし、RANGEは調整後のセンサ出力データのダイナミックレンジである。
【0008】
【数1】
Figure 2005003559
【0009】
【数2】
Figure 2005003559
【0010】
ここで得られたGAIN、OFFSETより、MRセンサ出力MRに対して式(3)の補正式を適用することにより、ゲインおよびオフセットが調整された出力OUTPUTが得られる。
【0011】
【数3】
Figure 2005003559
【0012】
このようなMRセンサからの出力のゲインおよびオフセット調整については、特許文献1等にて提案されている。
【0013】
【特許文献1】
特開平6−105206号公報(特許請求の範囲、図1等)
【0014】
【発明が解決しようとする課題】
上記従来例での調整データ(GAIN、OFFSET)を得るためには、電源投入時またはシステムのリセット時にレンズをMRセンサの正弦波出力の1周期分以上動かす必要がある。
【0015】
ここで、MRセンサ出力の1周期内の最大値MAXおよび最小値MINを正確に得るためには、図14に示すように、レンズを十分遅い速度で動かし、確実に最大値および最小値をサンプリングできるようにしなければならない。これは、レンズが高速で動いた場合には、図15に示すように、サンプリングが上記1周期に対して粗くなり、1周期内の最大値および最小値をサンプリングすることができないためである。
【0016】
一方、電源投入時又はシステムリセット時には、MRセンサ出力の1周期内の最大値および最小値が不明であるので、適当な所定の初期データを用いて位置演算を行う。但し、この初期データは、前述した誤差を加味したものではないので、正確な位置演算はできない。
【0017】
ここで、MR素子による位置検出を光学系のレンズ位置制御に用いた場合、レンズの制御はMR素子による位置検出結果をフィードバックしたサーボ制御で実現される。ところが、前記の理由により、電源投入時又はシステムリセット時には位置演算が不正確であるので、レンズ制御が不安定となり、レンズが機械的可動部端まで一気に高速で移動してしまう現象が発生する。
【0018】
このため、電源投入時又はシステムリセット時の直後はレンズの移動速度が速すぎて、サンプリングが粗くなり、正確なMRセンサ出力の最大値および最小値が得られない。
【0019】
従来は、レンズを複数回往復運動させる制御を行い、レンズ制御を徐々に安定させることで移動速度を制御可能にし、調整データ(GAIN、OFFSET)を得ていた。しかしながら、この手法では、正確な調整データは得られるものの、レンズを複数回往復させるためにレンズリセット時間が余計にかかってしまう。
【0020】
本発明は、電源投入時又はシステムリセット時の直後において、迅速に対象物の制御を安定させることができるようにした位置検出装置および位置検出方法を提供することを目的としている。
【0021】
【課題を解決するための手段】
上記の目的を達成するための本発明の位置検出装置は、対象物の移動に応じて少なくとも2相の周期的又は正弦波状に変化する位置検出信号を出力する信号出力手段と、各位置検出信号について、調整データを用いてゲインおよびオフセット調整を行う信号調整手段と、ゲインおよびオフセット調整された前記位置検出信号に基づいて対象物の位置を求める演算手段と、調整データを不揮発的に記憶可能な不揮発性記憶手段とを有する。そして、不揮発性記憶手段は、該位置検出装置の過去の動作時にゲインおよびオフセット調整に用いた調整データを少なくとも今回の動作時まで保持し、信号調整手段は、今回の該位置検出装置の動作開始に際して、不揮発性記憶手段に記憶された調整データを用いて上記ゲインおよびオフセット調整を行う。
【0022】
【発明の実施の形態】
(実施形態1)
図1には、本発明の実施形態1である位置検出装置を有するカメラ(光学装置)の構成を示している。なお、図1では、MRセンサの出力をサイン波とコサイン波の2相としているが、本発明はこれに限定されるものではなく、3相以上の出力を持っていてもよい。また、これらMRセンサの出力のように正弦波状に変化するものに限らず、周期的に変化するものであればよい。
【0023】
図1において、100はカメラであり、110は該カメラ100に設けられたレンズ鏡筒である。なお、本実施形態では、レンズ鏡筒一体型のカメラについて説明するが、本発明は交換型のレンズ装置にも適用することができる。
【0024】
120はレンズ鏡筒110内に設けられた撮影光学系であり、1は該撮影光学系120に含まれるフォーカスレンズ(光学素子)である。このフォーカスレンズ1はレンズ駆動モータ10からの駆動力が不図示の駆動機構を介して伝達されることにより、光軸方向(図1の左右方向)に移動する。
【0025】
また、20はCCD7やCMOSセンサなどの撮像素子であり、撮影光学系120により形成された被写体像を受け、これを光電変換する。撮像素子20から出力された信号は、不図示の処理回路で様々処理が施されて映像信号となり、不図示の記録媒体(テープ、半導体メモリ、光ディスク等)に記録されたり、不図示の電子ビューファインダー(LCD等)に表示されたりする。なお、本実施形態のカメラでは、撮像素子20からの出力信号から得られた映像信号を記録媒体に記録するカメラモードと、既に記録媒体に記録された映像を電子ビューファインダー(LCD等)に表示したり、出力したりする再生モードの設定が可能である。
【0026】
2aはフォーカスレンズ1と一体的に光軸方向に移動する検出マグネット(磁気部材)である。この検出マグネット2bには、光軸方向(位置検出装置における測定軸方向)にて交互に逆極性となるように所定パターンで着磁されている。
【0027】
2aはMRセンサ(磁気検出手段)であり、検出マグネット901に対して所定のギャップを介して対向配置されている。MRセンサ2aは、フォーカスレンズ1と連動した検出マグネット2bの移動に伴う磁界の変化に応じて、サイン波とコサイン波の2相の信号を出力する。
【0028】
MRセンサ2aからの2相の出力(アナログ信号)はそれぞれ、アナログアンプ3a,3bにより増幅され、サンプルホールド回路4a,4bを経てA/Dコンバータ5によりデジタル信号に変換される。
【0029】
デジタル変換されたMRセンサ出力は、ゲイン・オフセット調整部6にてゲインおよびオフセットが調整された後、位置演算部7に入力される。位置演算部7はこれらゲイン・オフセット調整後の2相の入力信号(位置検出信号)に基づいてフォーカスレンズ1の位置を示すレンズ位置データを演算する。
【0030】
こうして得られたレンズ位置データは、レンズ制御部8に送られる。レンズ制御部8は、焦点検出ユニット15によって位相差検出方式等によって検出された撮影光学系110の焦点状態に基づいて、撮影光学系110の合焦が得られるフォーカスレンズ1の位置を演算し、演算されたレンズ位置に上述したレンズ位置データが一致するようにフォーカスレンズ1を駆動するための制御信号を駆動回路9に出力する。そして、駆動回路9は、入力された制御信号に応じてレンズ駆動モータ10を駆動する。これにより、フォーカスレンズ1の位置が合焦位置に向けてサーボ制御される。なお、フォーカスレンズ1の制御方式については、上述したものに限られるものではない。
【0031】
12は揮発性調整データ記憶部であり、DRAMなどの揮発性メモリにより構成されている。この揮発性調整データ記憶部12には、カメラの動作中(位置検出装置による位置検出動作中)に、MRセンサ2aの出力のゲインおよびオフセット調整を行うための調整データなどが揮発的に、すなわち電源オフにより消去されるように記憶保持される。
【0032】
13は不揮発性調整データ記憶部であり、EEPROMなどの不揮発性メモリにより構成されている。この不揮発性調整データ記憶部13には、カメラの動作中(位置検出装置による位置検出動作中)か非動作中かにかかわらず、MRセンサ出力のゲイン・オフセット調整を行うための調整データの初期値(初期調整データ)が不揮発的に、すなわち電源オフによっても消去されないように保持される。
【0033】
なお、揮発性調整データ記憶部12および不揮発性調整データ記憶部13に記憶される調整データは、式(3)に示したGAIN,OFFSETの値でもよいし、式(1),(2)に示した最大値MAXおよび最小値MINでもよい。
【0034】
ゲイン・オフセット調整部6は、調整データを揮発性調整データ記憶部12又は不揮発性調整データ記憶部13から読み出し、これを上述した式(3)又は(1)〜(3)に適用してMRセンサ出力のゲイン・オフセット調整を行う。
【0035】
なお、図中に二点鎖線で囲んだ領域内に含まれる各構成要素は、カメラ100の各種機能の制御を司るカメラCPU105内にハードウエア又はソフトウエアとして構成されている。但し、上記構成要素を、交換レンズ装置の各種機能の制御を司るレンズCPU(図示せず)内に設けてもよい。
【0036】
本実施形態のカメラが工場で組み立てられた直後の状態では、不揮発性調整データ記憶部13には、ゲイン・オフセット調整データとして、所定の初期値が記憶されている。但し、この初期値は、個々の製品におけるセンサの組み付け誤差や回路の電気的特性の誤差などを反映していない仮の初期値であることから、組み立て後に初めて電源投入された際には、以下に説明するようにフォーカスレンズ1を駆動して正確な(真の)初期調整データを得る。
【0037】
すなわち、図2のフローチャートに示すように、電源が投入されると(ステップS1)、カメラCPU105は、不揮発性調整データ記憶部13に記憶された仮の初期調整データ(ゲイン・オフセット調整データ)をゲイン・オフセット調整部6に読み出させ、これをゲイン・オフセット調整部6における調整データとしてセットさせる(ステップS2)。
【0038】
次に、ステップS3では、カメラCPU105は、レンズ制御部8を介してフォーカスレンズ1を、電源オンにより自動的にセットされたワイド端位置からプラス方向(テレ端方向)に所定速度で駆動する。このときの駆動速度は正弦波周期の最大値MAXおよび最小値MINを確実にサンプリングできるように十分遅い速度に設定する。そして、MRセンサ2aからの出力(A/Dコンバータ5からの出力)を所定周期でサンプリングし(ステップS4)、該出力の最大値と最小値を検出する(ステップS5)。
【0039】
次に、ステップS6でフォーカスレンズ1がストローク端(ここで、テレ端)に到達したことが検出されると、カメラCPU105は、ステップ7に進み、ステップ5で検出したセンサ出力の最大値および最小値からゲイン・オフセット調整データ(ゲインGAIN、オフセットOFFSET)を計算する(ステップS7)。
【0040】
そして、カメラCPU105は、得られた調整データを真の初期調整データとして不揮発性調整データ記憶部13に記憶させる(ステップS8)。これにより、その製品個体に対応した正確な(真の)初期調整データが不揮発性調整データ記憶部13に記憶されたことになる。なお、調整データとして最大値MAXおよび最小値MINを用いる場合は、ステップS7を排し、ステップS8でそのままこれらの値を揮発性調整データ記憶部12に記憶させる。
【0041】
なお、この初期調整データの不揮発性調整データ記憶部13への記憶は、工場での組み立て直後の電源投入時の1回だけ行ってもよいし、その後、レンズシステムのリセット動作ごとに行い、初期調整データを更新記憶するようにしてもよい。ここにいうレンズシステムのリセットとは、カメラモードで電源投入された場合および再生モードからカメラモードに切り換えられたときのレンズ駆動に関連するシステムの初期化動作をいう。
【0042】
次に、既に不揮発性調整データ記憶部13に製品個体に対応した調整データが記憶保持された(すなわち、過去の動作時に得られた調整データが不揮発性調整データ記憶部13に保持された)状態で、今回の動作時におけるMRセンサ2aのゲイン・オフセット調整データ(ここでは、GAIN,OFFSETとする)を求めるゲイン・オフセット調整部6の処理について、図3に示すフローチャートに従って説明する。この処理は、電源投入時又はレンズシステムリセット時に実行される。なお、以下の処理は、MRセンサ2aからの複数相の出力それぞれについて行われる。
【0043】
はじめに、ステップS11において、カメラCPU105は、ゲイン・オフセット調整部6に、不揮発性調整データ記憶部13から、これに記憶されている製品個体に対応した初期調整データを読み出させる。
【0044】
次に、ステップS12では、カメラCPU105は、読み出された初期調整データをゲイン・オフセット調整部6に調整データとしてセットさせ、ゲイン・オフセット調整に適用する。ここでは、EEPROMにGAIN、OFFSETデータを読み込み、前述の式(3)の処理に適用する。なお、図2のステップS2
、および通常処理でも同様の処理を行っているが、ステップS2ではまだ個体別のデータが得られていないために仮に設定されたGAIN、OFFSETデータを用いる。一方で、ステップS12では前回調整時のGAIN、OFFSETデータがEEPROMに残っており、当該GAIN、OFFSETデータを用いる。
【0045】
次に、ステップS13において、カメラCPU105は、レンズ制御部8に、駆動回路9に対してフォーカスレンズ1をプラス方向に所定速度で駆動する信号を出力させる。前述したように、このときの駆動速度は正弦波周期の最大値MAXおよび最小値MINを確実にサンプリングできるように十分遅い速度に設定する。
【0046】
そして、ステップS14〜S15にて、カメラCPU105は、フォーカスレンズ1が移動している間にMRセンサ2aの出力の最大値および最小値を検出する。さらにステップS16では、フォーカスレンズ1がストローク端に達したかどうかを判定する。ここで、レンズがストローク端に達したかどうかは、光学センサなどで検出してもよいし、駆動開始から所定時間経過したかどうかで判定してもよい。ストローク端(テレ端)に達した場合には、ステップS17に進む。
【0047】
ステップS17では、カメラCPU105は、フォーカスレンズ1がMRセンサ2aの正弦波出力の1周期分以上動いたかどうかを判定する。動いた場合には、検出された最大値および最小値から、ステップS18にてゲイン・オフセット調整データを演算し、演算結果を揮発性調整データ記憶部12に記憶させる(調整データとして最大値MAXおよび最小値MINを用いる場合は、そのままこれらの値を揮発性調整データ記憶部12に記憶させる)。これ以後、ゲイン・オフセット調整部6は、ここで記憶された調整データを用いてゲイン・オフセット調整を行う。
【0048】
一方、ステップS17においてフォーカスレンズ1が1周期以上動いていない場合には、正弦波出力の最大値および最小値がまだ得られていないことになるため、ゲイン・オフセット調整データの演算は行わずにステップS19に進む。
【0049】
ステップS19では、フォーカスレンズ1を基準位置(例えば、ワイド端)に戻すために、レンズ制御部8に駆動回路9に対してフォーカスレンズをマイナス方向に所定速度で駆動する信号を送らせる。そして、このときのフォーカスレンズ1が移動している間にも、ステップS20〜S21にて、MRセンサ2aの出力の最大値および最小値を検出する。そして、ステップS22にてフォーカスレンズ1が基準位置であるストローク端(ワイド端)に達したかどうかを判定し、達していればステップS23に進み、ステップS21で検出された最大値および最小値からゲイン・オフセット調整データを演算し、演算結果を揮発性調整データ記憶部12に記憶させる。以後は、ゲイン・オフセット調整部6はここで記憶された調整データを用いてゲイン・オフセット調整を行う。
【0050】
フォーカスレンズ1が基準位置に達したかどうかは、光学センサなどで検出してもよいし、駆動開始から所定時間経過したかどうかで判定してもよい。以上でレンズリセット時のゲイン・オフセット処理が終了し、通常の制御モードに移行する。
【0051】
以上の処理により、揮発性調整データ記憶部12には、正確なゲイン・オフセット調整データが記憶され、ゲイン・オフセット調整部6によるMRセンサ2aの出力のゲイン・オフセット調整が精度よく実行される。
【0052】
なお、前述の説明においては、ゲイン・オフセット調整データの演算をフォーカスレンズ1がストローク端に達した時にのみ行っているが、別の実施形態として、フォーカスレンズ1を所定速度で駆動している間にMRセンサ2aの出力が1周期以上変化するごとにゲイン・オフセット調整データの演算を行い、演算された調整データで、既に揮発性調整データ記憶部12に記憶されている調整データを更新してもよい。このようにすれば、フォーカスレンズ1の移動中にも調整データが随時更新されるため、フォーカスレンズ1の制御をより早い段階で正確かつ安定したものとすることができる。
【0053】
(実施形態2)
図4には、本発明の実施形態2である位置検出装置を備えたカメラの構成を示している。本実施形態は、温度センサ14およびこれに関連した構成要素を備える点で実施形態1と異なる。実施形態1と共通する構成要素には実施形態1と同符号を付して説明に代える。
【0054】
温度センサ14は、MRセンサ2aおよび検出マグネット2bの近傍に設けられており、MRセンサ2aおよび検出マグネット2bの周辺の温度を検出する。温度センサ14の出力(アナログ信号)は、アナログアンプ3cにより増幅され、サンプルホールド回路4cを経てA/Dコンバータ5に入力され、ここでデジタル変換され、ゲイン・オフセット調整部6に入力される。
【0055】
なお、本実施形態のカメラ100において、温度によるピントずれ補正、すなわち焦点検出ユニット15からのデータに基づいて算出されたフォーカスレンズ1の合焦位置を温度に応じて補正し、温度変化により生ずる撮影光学系120やこれを保持する機構部材の変形等によるピント変動を抑制する機能を有する場合に、この温度センサ14を該ピントずれ補正のための温度センサとして併用することもできる。これにより、温度センサ14をピントずれ補正用の温度センサと別個に設ける場合に比べてコストを削減することができ、またカメラの小型化を図ることもできる。
【0056】
本実施形態のカメラが工場で組み立てられた後、初めて電源投入された際にゲイン・オフセット調整に用いられる初期調整データ(GAIN、OFFSET又はMAX、MIN)を得る処理は実施形態1と同じである。但し、本実施形態では、不揮発性調整データ記憶部13に、この初期調整データに加え、MRセンサ2aの温度変化に対するゲイン・オフセットの変動率データを保持させておく。この変動率データについては後述する。また、不揮発性調整データ記憶部13に、温度センサ14により検出された温度データも記憶させておく。
【0057】
なお、本実施形態においても、実施形態1と同様に、初期調整データの不揮発性調整データ記憶部13への記憶は、工場での組み立て直後の1回だけ行ってもよいし、その後、レンズシステムのリセット動作で新たな調整データが得られるごとに更新記憶するようにしてもよい。
【0058】
以下に、既に不揮発性調整データ記憶部13に前述した初期調整データが記憶された状態で、MRセンサ2aのゲイン・オフセット調整データ(ここでは、GAIN、OFFSETとする)を求める処理について、図5に示すフローチャートに従って説明する。この処理は、カメラモードでの電源投入時又はレンズシステムのリセット時に実行される。
【0059】
カメラCPU105’は、まずステップS31において、不揮発性調整データ記憶部13から、これに記憶されている製品個体に対応した初期調整データ(真の初期調整データ)と、初期調整データの算出時に温度センサ14によって検出された温度データおよびMRセンサ2aの温度変化に対するゲイン・オフセットの変動率データを読み出させる。次に、ステップS32では、カメラCPU105’は温度センサ14により検出された、現在の温度データを読み出させる。
【0060】
そして、ステップS33において、カメラCPU105’は、ゲイン・オフセット調整部6に、不揮発性調整データ記憶部13から読み出した初期調整データに対して温度補正処理(これについては後述する)を行わせる。次に、ステップS34では、カメラCPU105’は、ゲイン・オフセット調整部6にこの温度補正された初期調整データを用いた、ステップS35以下のゲイン・オフセット調整を行わせる。ステップS35以下については、実施形態1(図3)で説明したステップS13以下の処理と同様である。
【0061】
次に、ステップS33で行われる温度補正処理について説明する。但し、ゲイン調整データとオフセット調整データの温度補正処理の内容はほぼ共通であるので、ここでは、ゲイン調整データの温度補正処理について詳しく説明し,オフセット調整データの温度補正処理については、それに特有の事項についてのみ説明する。
【0062】
まず、MRセンサ2aの出力の振幅(MAX−MIN)が図6に示すように温度に対して直線的に変化すると近似した場合のゲイン初期調整データの温度補正処理について説明する。
【0063】
予めゲイン変動率データとして、センサ特性の試験により、図6に示す基準温度T0におけるMRセンサ2aの出力の振幅を基準とした、該振幅の温度変動率の傾きKTG[1/℃]を求めておき、不揮発性調整データ記憶部13に記憶させておく。また、ゲインの初期調整データとしては、実施形態1と異なり、上記式(1)で得られるGAINに代えて、以下の式(4)にて得られる基準温度T0でのゲインGAINを不揮発性調整データ記憶部13に記憶させておく。
ここで、TINITは、電源投入又はレンズシステムのリセットに際して行われる初期調整データの算出時に温度センサ14により検出された温度データである。
【0064】
【数4】
Figure 2005003559
【0065】
このゲイン変動率データを用いた、ステップS33での温度補正処理は以下のように行われる。すなわち、ステップS31で不揮発性調整データ記憶部13から読み出した初期調整データGAIN、振幅の温度変動率の傾きを示す変動率データKTG、およびステップS32で読み出した現在の温度センサ値Tを用いると、温度補正後の初期調整データGAINは以下の式(5)により得られる。
【0066】
【数5】
Figure 2005003559
【0067】
なお、オフセット調整データについては、式(4)の代わりに式(6)を、式(5)の代わりに式(7)を用いることで同様の温度補正処理を行う(すなわち、温度補正Vのオフセット調整データOFFSETを求める)。ここで、KTOFFS [1/℃]は、図7に示すように、基準温度TにおけるMRセンサ2aの出力の振幅中心を基準とした、該振幅中心の温度変動率の傾きであり、センサ特性試験により求めて不揮発性調整データ記憶部13に記憶させておく。
【0068】
【数6】
Figure 2005003559
【0069】
【数7】
Figure 2005003559
【0070】
このようにして得られたGAINおよびOFFSETを初期調整データとして、ステップS35以下に示す処理を行うことにより、不揮発性調整データ記憶部13に記憶された初期調整データに対して温度補正が加えられ、より安定したフォーカスレンズ1のサーボ制御を行うことができる。
【0071】
以上においては、MRセンサ2aの出力の振幅(MAX−MIN)が温度に対して直線的に変化すると近似した場合のゲイン調整方法について述べた。しかし、MRセンサ2aおよびアンプ回路3a〜3cなどの特性によっては、温度に対してMRセンサ2aの出力振幅が曲線的に変化し、直線による近似では不十分な場合も想定される。そこで、このような場合におけるゲインの調整方法について以下に説明する。
【0072】
まず、基準温度T0におけるMRセンサ2aの出力の振幅を基準とした、該振幅の温度変動率をセンサ特性試験にて求め、図8に示すように、折れ線LTG(1)〜LTG(N)にて近似する。
【0073】
このデータをもとに、ゲイン変動率データとして、該データの折れ点における温度T(k)および数式8,9に示すKTG(k),BTG(k)のデータを、k=1〜Nについて、それぞれ不揮発性調整データ記憶部13に記憶させておく。ここで、KTG(k)[1/℃]は折れ線LTG(k)の傾きであり、BTG(k)はLTG(k)をT=Tまで延長したときの切片である。また、W(k)は、MRセンサ2aの出力の振幅の温度変動率の折れ点における振幅変動率である。
【0074】
【数8】
Figure 2005003559
【0075】
【数9】
Figure 2005003559
【0076】
初期調整データとしては、式(1)で得られるGAINに代えて、式(10)にて得られる基準温度TでのゲインGAINを不揮発性調整データ記憶部13に記憶させておく。ここで、TINITは初期調整データを得た際の温度センサ14により検出された温度データである。また、KTG(k)はk=1〜Nのうち、
(k)<TINIT<T(k+1)
となるような折れ点での傾きおよび切片のデータである。
【0077】
【数10】
Figure 2005003559
【0078】
この変動率データを用いた、ステップS33での補正処理は以下のように行われる。すなわち、ステップS31で不揮発性調整データ記憶部13から読み出した初期調整データGAIN、ステップS32で読み出した現在の温度センサ値T、およびステップS31で読み出した温度補正データにおいてk=1〜Nのうち、
(k)<T<T(k+1)
となるようなKTG(k)、BTG(k)を用いると、温度補正後の初期調整データGAINは式(11)により得られる。
【0079】
【数11】
Figure 2005003559
【0080】
また、オフセットについては、基準温度Tにおける振幅中心M(0) を基準とした振幅中心の温度変動率をセンサ特性試験にて求め、図9に示すように折れ線LTM(1)〜LTM(N)にて近似する。この変動率データをもとに、初期調整データとして、振幅中心の温度変動率の折れ点における温度T(k) 、式(12),(13)に示すKTOFFS(k)、BTOFFS(k)のデータを、k=1〜Nについてそれぞれ不揮発性調整データ記憶部13に記憶させておく。ここで、KTOFFS(k)[1/℃]は折れ線LTM(k)の傾きであり、BTOFFS(k)はLTM(k)をT=Tまで延長したときの切片である。また、MT(k)は振幅中心の温度変動率の折れ点における振幅変動率である。
【0081】
【数12】
Figure 2005003559
【0082】
【数13】
Figure 2005003559
【0083】
そして、式(10)の代わりに式(14)を、式(11)の代わりに式(15)を用いることで、ゲインの場合と同様の温度補正を行う。
【0084】
【数14】
Figure 2005003559
【0085】
【数15】
Figure 2005003559
【0086】
以上の処理により、温度変化によるMRセンサ出力の変動が曲線的に変化し、直線による近似では不十分な場合に対しても適切な、初期調整データの温度補正を行うことができる。
【0087】
(実施形態3および4)
図10および図11にはそれぞれ、本発明の実施形態3および実施形態4である位置検出装置を備えたカメラの構成を示す。これらは前述した実施形態1,2に対して、フォーカスレンズ1の位置を検出するセンサとして、検出マグネット2bとMRセンサ2aとに代えてそれぞれ、光学スケール2dと光学エンコーダ2cとを備えている。
【0088】
光学エンコーダ2cは、発光部と受光部とを備え、発光部から照射した光を光学スケール2dで反射させ、受光部で検出した光量に応じた信号を出力する。光学スケール2dは、光軸に平行な方向に周期的に形状(向き)が変化する反射面を有する。
【0089】
そして、この光学スケール2dの形状および光学エンコーダ2cからの受光信号の処理により、MRセンサと同様の正弦波信号を発生させることができる。このため、実施形態1,2にて説明したのと同様の位置検出手法およびゲイン・オフセット調整手法を適用することができる。
【0090】
具体的な処理については、前述した実施形態1,2と同じであるので、説明は省略する。
【0091】
以上説明したように、MRセンサや光学エンコーダといったセンサの出力のゲインおよびオフセットは、個々の製品におけるセンサの組み付け誤差や回路の電気的特性の誤差、センサの温度変化などにより変動するが、このうちセンサの組み付け誤差と回路の電気的特性の誤差は同一個体であればほとんど変動しない。したがって、過去の通電動作時の調整データを不揮発性調整データ記憶部に保持しておき、電源投入時またはシステムのリセット時の直後はこの保持されている調整データ(GAIN、OFFSET又はMAX、MIN)を用いてゲインおよびオフセット調整を行うことにより、電源投入時又はシステムリセット開始直後から安定した対象物の位置検出および制御を行うことができる。このため、この間に対象物を十分遅い速度で駆動して確実にセンサ出力の最大値および最小値をサンプリングすることができる。これにより、対象物に余計な往復運動を行わせることなくゲインおよびオフセット調整データが得られる。言い換えれば、電源投入後又はシステムリセット開始後に安定的制御が行えるようになるまでに時間を短縮することができる。
【0092】
さらに、センサ近傍の温度を検出し、該検出温度と不揮発性調整データ記憶部に保持された、温度変化に対するゲインおよびオフセットの変動率データとに基づいて、初期調整データの温度による変動を補正することにより、過去の通電動作時の調整データを不揮発性調整データ記憶部に保持した際の環境温度と異なる温度下で電源投入やシステムリセットが行われた場合でも、安定した対象物の制御を行うことができる。
【0093】
なお、上記各実施形態では、カメラの撮影光学系に含まれるフォーカスレンズの位置検出について説明したが、本発明は、フォーカスレンズ以外の可動光学素子(例えば、ズームレンズ)や、光学素子以外の可動対象物の位置検出を行う装置に適用することができる。
【0094】
【発明の効果】
以上説明したように、本発明によれば、電源投入時やシステムのリセット時の直後においても対象物の位置検出および位置制御を安定的に行うことができる。言い換えれば、ゲインおよびオフセット調整データを得て対象物を安定的に制御できるようになるまでの時間を短縮することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態1である位置検出装置を備えたカメラの構成を示す図である。
【図2】実施形態1のカメラにおけるMRセンサ出力のゲイン・オフセット初期調整データを得るための動作を示すフローチャートである。
【図3】実施形態1のカメラにおけるMRセンサ出力のゲイン・オフセット調整データを得るための動作を示すフローチャートである。
【図4】本発明の実施形態2である位置検出装置を備えたカメラの構成を示す図である。
【図5】実施形態2のカメラにおけるMRセンサ出力のゲイン・オフセット調整データを得るための動作を示すフローチャートである。
【図6】実施形態2において、MRセンサ出力の振幅の温度に対する直線的な変動特性を示す図である。
【図7】実施形態2において、MRセンサ出力の振幅中心の温度に対する直線的な変動特性を示す図である。
【図8】実施形態2において、MRセンサ出力の振幅の温度に対する曲線的な変動特性を示す図である。
【図9】実施形態2において、MRセンサ出力の振幅中心の温度に対する曲線的な変動特性を示す図である。
【図10】本発明の実施形態3である位置検出装置を備えたカメラの構成を示す図である。
【図11】本発明の実施形態4である位置検出装置を備えたカメラの構成を示す図である。
【図12】MRセンサからの2相の出力信号の振幅および振幅中心のレベルが異なっている様子を示す図である。
【図13】MRセンサからの2相の出力信号の振幅および振幅中心が揃った様子を示す図である。
【図14】MRセンサ出力の最大値・最小値が正しくサンプリングされている様子を示す図である。
【図15】MRセンサ出力の最大値・最小値が正しくサンプリングされていない様子を示す図である。
【符号の説明】
1 フォーカスレンズ
2a 検出マグネット
2b MRセンサ
2c 光学スケール
2d 光学エンコーダ
3a、3b、3c アンプ
4a、4b、4c サンプルアンドホールド回路
5 A/Dコンバータ
6 ゲイン・オフセット調整部
7 位置演算部
8 レンズ制御部
9 駆動回路
10 レンズ駆動モータ
11 波数演算部
12 揮発性調整データ記憶部
13 不揮発性調整データ記憶部
14 温度センサ
20 撮像素子
105,105’ カメラCPU
110 レンズ鏡筒
120 撮影光学系

Claims (9)

  1. 対象物の移動に応じて少なくとも2相の周期的又は正弦波状に変化する位置検出信号を出力する信号出力手段と、
    前記各位置検出信号について、調整データを用いてゲインおよびオフセット調整を行う信号調整手段と、
    前記ゲインおよびオフセット調整された前記位置検出信号に基づいて前記対象物の位置を求める演算手段と、
    前記調整データを不揮発的に記憶可能な不揮発性記憶手段とを有し、
    前記不揮発性記憶手段は、該位置検出装置の過去の動作時に前記ゲインおよびオフセット調整に用いた調整データを少なくとも今回の動作時まで保持し、
    前記信号調整手段は、今回の該位置検出装置の動作開始に際して、前記不揮発性記憶手段に記憶された調整データを初期データとして用いて前記ゲインおよびオフセット調整を行うことを特徴とする位置検出装置。
  2. 前記信号調整手段は、今回の動作開始後は、前記調整データを新たに求めて揮発性記憶手段に記憶させるとともに、該新たに求めた調整データを用いて前記ゲインおよびオフセット調整を行うことを特徴とする請求項1に記載の位置検出装置。
  3. 前記信号出力手段の周辺の温度を検出する温度検出手段を有し、前記不揮発性記憶手段は、温度変化に対する前記位置検出信号のゲインおよびオフセットの変動率データを記憶しており、
    前記信号調整手段は、前記温度検出手段により検出された温度と前記不揮発性記憶手段に記憶された変動率データとに基づいて前記初期データを補正することを特徴とする請求項1又は2に記載の位置検出装置。
  4. 前記信号出力手段は、周期的に着磁されたマグネット部材と、前記対象物の移動に伴って前記マグネット部材と相対的に移動し、該移動による磁気変化に応じて少なくとも2相の周期的又は正弦波状に変化する位置検出信号を出力する磁気検出手段とにより構成されていることを特徴とする請求項1から3のいずれか1つに記載の位置検出装置。
  5. 前記信号出力手段は、周期的に形状が変化する反射面を有した光学スケール部材と、前記対象物の移動に伴って前記光学スケール部材と相対的に移動し、投射した光のうち該移動によって変化する前記光学スケール部材での反射光の受光量に応じて少なくとも2相の周期的又は正弦波状に変化する位置検出信号を出力する光学検出手段とにより構成されていることを特徴とする請求項1から3のいずれか1つに記載の位置検出装置。
  6. 光学系と、
    該光学系のうち少なくとも1つの光学素子の位置を検出する、請求項1から5のいずれか1つに記載の位置検出装置とを有することを特徴とする光学装置。
  7. 前記光学系の温度変化に伴うピント変動を補正する制御を行う制御手段を有し、
    前記温度検出手段は、その出力が前記ピント変動の補正制御にも用いられることを特徴とする請求項6に記載の光学装置。
  8. 対象物の移動に応じて信号出力手段から出力された、少なくとも2相の周期的又は正弦波状に変化する位置検出信号のゲインおよびオフセット調整を行い、該ゲインおよびオフセット調整後の位置検出信号に基づいて前記対象物の位置を求める位置検出方法であって、
    前記ゲインおよびオフセット調整に用いた調整データを不揮発性記憶手段に記憶させる第1のステップと、
    該第1のステップの後の位置検出動作の開始に際して、前記不揮発性記憶手段に記憶された調整データを初期データとして用いて前記ゲインおよびオフセット調整を行う第2のステップとを含むことを特徴とする位置検出方法。
  9. 前記不揮発性記憶手段に、温度変化に対する前記位置検出信号のゲインおよびオフセットの変動率データを不揮発的に記憶させるステップと、
    前記信号出力手段の周辺の温度を検出するステップと、
    前記検出された温度と前記記憶された変動率データとに基づいて前記初期データを補正するステップとを有することを特徴とする請求項8に記載の位置検出方法。
JP2003168384A 2002-06-28 2003-06-12 位置検出装置、光学装置および位置検出方法 Pending JP2005003559A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003168384A JP2005003559A (ja) 2003-06-12 2003-06-12 位置検出装置、光学装置および位置検出方法
US10/600,766 US6873148B2 (en) 2002-06-28 2003-06-23 Position detecting apparatus, and optical apparatus comprising this and position detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168384A JP2005003559A (ja) 2003-06-12 2003-06-12 位置検出装置、光学装置および位置検出方法

Publications (2)

Publication Number Publication Date
JP2005003559A true JP2005003559A (ja) 2005-01-06
JP2005003559A5 JP2005003559A5 (ja) 2006-07-27

Family

ID=34093898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168384A Pending JP2005003559A (ja) 2002-06-28 2003-06-12 位置検出装置、光学装置および位置検出方法

Country Status (1)

Country Link
JP (1) JP2005003559A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025365A2 (en) * 2008-08-28 2010-03-04 Faro Technologies, Inc. Indexed optical encoder, method for indexing an optical encoder, and method for dynamically adjusting gain and offset in an optical encoder
JP2014164244A (ja) * 2013-02-27 2014-09-08 Nikon Corp レンズ駆動装置、レンズ駆動方法、および撮像装置
JP2015169602A (ja) * 2014-03-10 2015-09-28 Dmg森精機株式会社 位置検出装置
JP2015225023A (ja) * 2014-05-29 2015-12-14 日本電産サンキョー株式会社 エンコーダ
WO2016006355A1 (ja) * 2014-07-07 2016-01-14 ソニー株式会社 IC(Integrated Circuit)、イメージセンサIC、イメージセンサモジュール、及び撮像装置
JP2017191343A (ja) * 2017-07-27 2017-10-19 株式会社ニコン レンズ駆動装置、レンズ駆動方法、および撮像装置
US10215595B2 (en) 2015-04-22 2019-02-26 Faro Technologies, Inc. Indexed optical encoder
JP2019135556A (ja) * 2019-04-18 2019-08-15 株式会社ニコン レンズ駆動装置、レンズ駆動方法、および撮像装置
CN114593754A (zh) * 2020-12-04 2022-06-07 华大半导体有限公司 数据的分析/校正/方法及***、存储介质、磁性编码器

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010025365A2 (en) * 2008-08-28 2010-03-04 Faro Technologies, Inc. Indexed optical encoder, method for indexing an optical encoder, and method for dynamically adjusting gain and offset in an optical encoder
WO2010025365A3 (en) * 2008-08-28 2010-07-29 Faro Technologies, Inc. Indexed optical encoder, method for indexing an optical encoder, and method for dynamically adjusting gain and offset in an optical encoder
JP2012501453A (ja) * 2008-08-28 2012-01-19 ファロ テクノロジーズ インコーポレーテッド インデックス光学エンコーダ、光学エンコーダをインデックスする方法、および光学エンコーダの利得とオフセットを動的に調整する方法
GB2496236A (en) * 2008-08-28 2013-05-08 Faro Tech Inc Dynamically adjusting the gain and offset in an optical encoder
US8476579B2 (en) 2008-08-28 2013-07-02 Faro Technologies, Inc. Indexed optical encoder, method for indexing an optical encoder, and method for dynamically adjusting gain and offset in an optical encoder
GB2496236B (en) * 2008-08-28 2013-07-17 Faro Tech Inc Indexed optical encoder, method for indexing an optical encoder, and method for dynamically adjusting gain and offset in an optical encoder
US8513589B2 (en) 2008-08-28 2013-08-20 Faro Technologies, Inc. Indexed optical encoder, method for indexing an optical encoder, and method for dynamically adjusting gain and offset in an optical encoder
JP2014164244A (ja) * 2013-02-27 2014-09-08 Nikon Corp レンズ駆動装置、レンズ駆動方法、および撮像装置
JP2015169602A (ja) * 2014-03-10 2015-09-28 Dmg森精機株式会社 位置検出装置
JP2015225023A (ja) * 2014-05-29 2015-12-14 日本電産サンキョー株式会社 エンコーダ
WO2016006355A1 (ja) * 2014-07-07 2016-01-14 ソニー株式会社 IC(Integrated Circuit)、イメージセンサIC、イメージセンサモジュール、及び撮像装置
US10215595B2 (en) 2015-04-22 2019-02-26 Faro Technologies, Inc. Indexed optical encoder
JP2017191343A (ja) * 2017-07-27 2017-10-19 株式会社ニコン レンズ駆動装置、レンズ駆動方法、および撮像装置
JP2019135556A (ja) * 2019-04-18 2019-08-15 株式会社ニコン レンズ駆動装置、レンズ駆動方法、および撮像装置
CN114593754A (zh) * 2020-12-04 2022-06-07 华大半导体有限公司 数据的分析/校正/方法及***、存储介质、磁性编码器
CN114593754B (zh) * 2020-12-04 2024-01-19 小华半导体有限公司 数据的分析/校正/方法及***、存储介质、磁性编码器

Similar Documents

Publication Publication Date Title
JP4422988B2 (ja) 位置検出装置、光学装置、撮像システムおよびプログラム
US8284275B2 (en) Lens barrel and imaging apparatus
KR101574057B1 (ko) 선형 운동 디바이스의 제어 장치 및 그 제어 방법
US8817169B2 (en) Motor driven optical apparatus
US6873148B2 (en) Position detecting apparatus, and optical apparatus comprising this and position detecting method
US6954589B2 (en) Lens control apparatus, lens control method and camera
JPWO2015015877A1 (ja) 撮像装置
JP5053819B2 (ja) 撮像装置およびその制御方法
JP2005003559A (ja) 位置検出装置、光学装置および位置検出方法
EP2372430B1 (en) Image pickup lens, image pickup apparatus, and lens controlling method
US11617494B2 (en) Endoscope system, processor, calibration apparatus, and endoscope
JP2006208703A (ja) 電子カメラ
JP2006227274A (ja) 撮像装置
JP4612886B2 (ja) レンズ装置および撮像システム
JP6368605B2 (ja) 位置検出装置及びそれを備えた駆動装置
JP4632423B2 (ja) 位置制御装置、位置制御方法及び光学装置
JP2004037121A (ja) 位置検出装置、これを備えたレンズおよび位置検出方法
JP5368237B2 (ja) 温度補正量修正システムおよびその動作制御方法
JP2017151208A (ja) レンズ制御装置およびレンズ制御方法
JP2000356504A (ja) 位置検出装置、カメラ装置及びレンズ位置検出方法
JP2011064889A (ja) カメラシステム
WO2005098499A1 (ja) 撮像装置
JP2004279559A (ja) オートフォーカスカメラ
JPH0821944A (ja) レンズ駆動装置
JP2000121912A (ja) フランジバック調整方法および撮像装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070615

A131 Notification of reasons for refusal

Effective date: 20070619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070820

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Written amendment

Effective date: 20080310

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20080317

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20080404

Free format text: JAPANESE INTERMEDIATE CODE: A912

RD03 Notification of appointment of power of attorney

Effective date: 20081010

Free format text: JAPANESE INTERMEDIATE CODE: A7423

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20081201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090108