JP2004504950A - 工作物の測定及び機械加工のための方法及び装置 - Google Patents

工作物の測定及び機械加工のための方法及び装置 Download PDF

Info

Publication number
JP2004504950A
JP2004504950A JP2002504545A JP2002504545A JP2004504950A JP 2004504950 A JP2004504950 A JP 2004504950A JP 2002504545 A JP2002504545 A JP 2002504545A JP 2002504545 A JP2002504545 A JP 2002504545A JP 2004504950 A JP2004504950 A JP 2004504950A
Authority
JP
Japan
Prior art keywords
measuring
tool
workpiece
machine tool
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002504545A
Other languages
English (en)
Inventor
ハンス−ユルゲン カイサー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAG IAS GmbH Eislingen
Original Assignee
Boehringer Werkzeugmaschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Werkzeugmaschinen GmbH filed Critical Boehringer Werkzeugmaschinen GmbH
Publication of JP2004504950A publication Critical patent/JP2004504950A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • G05B19/184Generation of cam-like surfaces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37025Retract, swing out of the way, measuring device during normal machining for protection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37339Eccentricity, cylindricity, circularity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37574In-process, in cycle, machine part, measure part, machine same part
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50063Probe, measure, verify workpiece, feedback measured values
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50072Machine workpiece again to correct previous errors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306664Milling including means to infeed rotary cutter toward work
    • Y10T409/30756Machining arcuate surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Turning (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Milling Processes (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Multi-Process Working Machines And Systems (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

回転対称の、特に偏心回転対称の面を有する工作物、特にクランク軸のクランクピン軸受位置を切削加工する方法および装置であって、工作物の輪郭検査、特に真円度検査、及び、場合によってはクランク軸のクランクピン軸受ジャーナルのストローク高の検査が、迅速且つ正確に実施され、工具の補正値とそれらの角度関係を確定する作業が非常に簡単であり、測定センサによって、工作物の各測定角度位置について、基準値、例えば、回転中心からの、測定方向における測定すべき工作物輪郭の最大の実際の間隔のみが確定され、各測定角度位置について、実際の間隔と基準間隔との測定偏差が確定され、更に、少なくとも測定角度位置について、各工具基準位置が、各測定偏差から自動的に算出される補正値によって自動的に補正される。
【選択図】図1

Description

【0001】
1. 利用分野
この発明は、回転対称の、特に偏心回転対称の、面を有する工作物、例えばクランク軸のクランクピン軸受位置、の切削加工に関する。
【0002】
2. 技術背景
【0003】
クランク軸は、その複数のクランク形状のために、比較的に不安定な工作物である。
【0004】
多数のクランク軸を機械加工する際には、製造費用と共に、できる限り短い加工時間が優先されるので、必要とされる材料の除去を切削加工によってできるだけ速く完了する傾向が明らかである。このことは、一般に切削力が増すことを意味する。しかしながら同時に、必要な公差を、例えば、円形からの偏差に関して、特にクランクピン軸受位置について、そして中心軸受位置についても、遵守することが必要である。
【0005】
最大許容機械加工力とそれに伴う機械加工パラメータを理論的に確定することは部分的にしかできないので、円形からの偏差、及びできれば、機械加工される工作物におけるストローク高の検査が常に追加的に必要であり、その上で、許容公差に照らして機械加工パラメータを補正する必要がある。
【0006】
その問題は、クランクピン軸受位置に関して、特にクランクピン軸受位置の機械加工が例えばフライス削りによって実施され、クランク軸が中心同士で締め付けられ、フライス削り工具がそれぞれの偏心回転するクランクピン軸受位置に横方向に追従されられる場合に発生する。
【0007】
この点に関して、切削加工されたクランク軸の円形からの偏差は、測定室において、すなわち、クランク軸が工作機械に締め付けられた状態から解放された後に確定すべきことが既に知られている。その場合に、同時に二つの困難が生じる。まず、検出された円形からの偏差は、事前に工作機械におけるクランク軸のそれぞれの角度位置と、そして同様に、将来クランク軸の円形を改善するために確定すべき補正値と、精密に関連させておかなければならない。
【0008】
更に、クランク軸は、解放されたこと自体によって変形する。なぜなら、測定室において所定位置にクランク軸を支持する/締め付けることは、クランク軸を機械加工するために工作機械においてすることとは根本的に異なるからである。
【0009】
更に、測定装置は工作機械に直接に設置し、クランク軸が工作機械に締め付けられた状態において、真円度について、そしてできれば追加的にストロークについて測定できるようにすべきことは既知である。
【0010】
その場合に、クランク軸の長手軸線に平行に延びるピボット軸のまわりを測定アームが旋回してクランク軸に向かう。測定アームはプリズムを備え、プリズムは、例えば、測定すべき軸受面に当たるまでクランク軸に向かって動かされる。次に、工作物の表面とプリズム底部との間隔が、装置における測定プリズムの中間角に設けられた測定感知器によって測定される。
【0011】
この手順は、測定すべき軸受面の複数の角度位置において実施される。
【0012】
これを偏心回転する面、例えば、クランクピン軸受面について実施するには、ピボットアームの片持長の度合いもそれぞれの場合について変更しなければならない。このために、ピボットアームは互いに対して旋回可能な二つのアーム部分を有してなる。
【0013】
しかしながら、このことは、測定すべき工作物面に対する測定プリズムの接触角度位置を変更して補正値を決定する困難性を増すだけでなく、特に、工作機械における工作物の所定角度位置との関係を変更することになる。更に、測定装置のピボット軸はそれぞれ遊びがあり、この遊びは測定結果の正確度に悪影響を及ぼす。
【0014】
3. 発明の記述
a) 技術的目的
従って、本発明の目的は、工作物に対する輪郭検査作業、特に真円度検査作業が、そして選択的に、クランク軸のクランクピン軸受ジャーナルのストローク高についての検査作業が、迅速且つ正確に実施され、更に工具のための補正値を確定し且つその角度関係を与えることが極めて容易である方法と装置を提供することにある。
【0015】
b) 目的の達成
この目的は、請求の範囲第1項、第5項、第6項の特徴によって達成される。好ましい実施例は従属項に示される。
【0016】
測定すべき工作物輪郭上の点の、基準値からの距離は所定方向に限ってのみ確定されるが、これは工作物の複数の角度位置との関連においてなされることから、測定値から工作物の実際の輪郭を比較的容易に計算すること、そして回転中心に対する実際の輪郭の位置を決定することができる。これに対応して、工具移動のための補正値を確定することもできる。この場合に、測定装置が工具支えに直接に、特に工具の本体に直接に固定されるので、工具支えではなく工作機械の別の部分に固定された測定装置によって生じるような不正確さは生じ得ない。
【0017】
その場合に、工作物は、機械加工用の締め付け位置に留まることができるので、工作物の取り外しおよび再締め付けによる望ましくない影響は生じない。
【0018】
従って、クランク軸のクランクピン軸受位置については、実際の輪郭が測定され、それゆえ、その円形からの偏差だけでなく、基準ストロークからの偏差も測定される。
【0019】
更なる利点は、実際のところ、工作物は締め付けられた状態のままに保たれるので、既に切削加工されたクランク軸を、上記のようにして、補正された工具設定によって低コストで再切削加工できることである。
【0020】
補正値と工作物の角度位置との単純な関係ゆえに、測定された複数測定角度位置間の角度位置のための補正値を補間法によって低コストで確定し、そして、その補間された補正値を将来に用いること、そしてそれによって真円度を追加的に改善することができる。
【0021】
測定装置が工具支えに直接に設けられることから、X方向、そして場合によってはY方向に工具支えとの関連で存在する遊びも、測定結果に含まれる。送り台システムに存在する遊びを、一方では測定装置との関連で、またもう一方では工具ユニットとの関連でと、様々に考慮することは不要である。
【0022】
同じ理由から、測定センサ、例えば、測定面の形の測定センサも、工具、例えばフライスと同じ径方向面において、好ましくは工具と工作物の間に設けられる。好ましくは、位置決めは、その径方向面内の工具中心位置と工作物中心位置とを結ぶ線上で実施され、測定面は、横方向、好ましくは測定方向に対して直角の方向において、そして横方向、特に工作物の長手軸線に対して直角の方向において、測定すべき偏心面が全ての角度位置において測定面によって感知され得る大きさである。
【0023】
上記の目的のためには、測定方向に対する測定面の形状が、その角度位置について、精密に知られていること、すなわち、直角の配置が用いられる場合には、その直角が正確に遵守されることが必要であることが分かる。
【0024】
更に、工具支え又は工具支えの固定点から測定面までの精密な距離が必要である。
【0025】
使用される工具が、フライス削りディスクのような回転工具ではなく、旋削バイトのような静止工具である場合は、測定センサ及び特にその測定面は、工作物、好ましくは工作物の中心点と、切削端とを結ぶ線上に配置する。
【0026】
基本的に、その場合には、測定面を工具にできるだけ近く配置することが好ましい。
【0027】
更に、測定作業時には、必ず測定センサが工作物に定められた力で当たるようにする必要があり、この力は、好ましくは、所定の最大値を上回らず、また所定の最小値を下回らず、特に測定装置のアームのねじりを避ける必要がある。このアームのねじりは直ちに測定結果を誤らせるものである。
【0028】
この場合、測定方向は、測定すべき回転対称工作物面の中心あるいは曲率中心に対する半径方向に向けることができる。特に、測定センサが、C軸に対して、面の全偏心領域に対応する長さの測定面を有する場合はそうである。しかしながら、測定方向は、接線方向であってもよく、又は接線方向に対して半径方向内向きに変位した方向であってもよい。その場合、測定センサは工作物を通り越して移動させられ、その結果、工作物面によって、測定される面の中心に対して半径方向外向きに押される。そのためには、測定センサは、測定装置に対し旋回可能なように或いは直線的に移動可能なように固定されるものとすることができ、特に、測定装置に二つの互いに対向配置された測定センサを設けて、単一の測定作業で工作物の二つの互いに対向配置された点を同時に測定できるようにすることが可能である。
【0029】
c) 実施例
以下に下記の図を参照して例示によって本発明の実施例をより詳細に記述する。
【0030】
Fig.1aは、測定装置を備えた本発明による工作機械の正面図である。
【0031】
Fig.1bは、Fig.1aの工作機械に別の測定装置を備えたものの正面図である。
【0032】
Fig.2a−2cは、測定装置のII−II線に沿った詳細図である。
【0033】
Fig.3は、Fig.2と同様の図である。
【0034】
Fig.4は、測定すべき回転対称面の断面図である。
【0035】
Fig.5は、別の測定装置の詳細図である。
【0036】
Fig.6は、測定装置の別の例の詳細図である。
【0037】
Fig.7は、一対型測定装置の詳細図である。
【0038】
Fig.1は、Y方向から、すなわち、長手方向(クランク軸のZ方向)に対して水平且つ横向きの方向から見たクランク軸フライス盤を示す。
【0039】
クランク軸は、その二つの端部、すなわち、その主軸受軸の二端部をチャック21、22によって受けるが、チャック21、22は、同期駆動可能な主軸台23、24の部品である。
【0040】
主軸台23、24は、ベッド20上に配置され、長さの異なるクランク軸を受けるように、Z方向に移動可能とすることができる。
【0041】
工作機械は、二つの別々の切削加工ユニット25、26を備え、切削加工ユニット25、26はそれぞれZ送り台29、30を含み、Z送り台29、30は、長手ガイド33に沿ってZ方向に移動可能である。
【0042】
X送り台27、28は、それぞれZ送り台29、30にX方向に移動可能なように配置される。
【0043】
両X送り台27、28の互いに向き合った端部には、それぞれのフライス削りディスク5、6が配置され、ディスク5、6は、例えば、それぞれのモータ31、32によって回転駆動される。
【0044】
クランク軸1および工具ユニット5、6の位置および動作のパラメータは、機械制御装置35により制御される。対応するパラメータは、入力ユニット、例えば、キーボード36を通して変更することができる。
【0045】
この構成において、フライス削りディスク5、6、すなわち、工具ユニットは、工作物1に対して一つの横方向、すなわち、X方向にのみ移動可能である。
【0046】
切削加工時に、それぞれの回転駆動されるフライス削りディスク5、6は、クランクピン軸受の一つにおいて、例えば、H、あるいは又、中心軸受MLの一つにおいて動作している間、クランク軸、すなわち工作物1は、Z軸のまわりをゆっくりと回転する。
【0047】
クランクピン軸受Hの加工に際して、クランクピン軸受に偏心があることは、工作物1の瞬間的な回転位置に従って、X方向にフライス削りディスク5、6を連続的に追跡動作させることが必要なことを意味する。対応するように、工具と工作物との接点は、一方はフライスの中心によって、そして他方は工作物の回転軸によって定まる面の高さに必ず正確に存在するわけではなく、クランク軸のそれぞれの回転位置に従って、その面よりも上か又は下になる。
【0048】
Fig.1は、動作中の左側工具ユニット25を示し、図中、フライス削りディスク5は、クランクピン軸受位置Hにおいてフライス削りを実施中である。この状況において、プランジ段階の操作においては、隣接するクランクアームの側面のフライス削りも既に済ませた場合もありうる。好ましくは、Z方向に測定したフライス削りディスク5の幅は、機械加工すべき軸受位置の幅にほぼ相当する。
【0049】
Fig.1は、以下により詳細に説明するように、右側機械加工ユニット26のみにおける測定装置1を示すが、両切削加工ユニットはそれぞれこのような測定装置を備えることが可能である。実際においては、費用の面から、そして全般的な追加的較正手順を避けるために、一つの機械加工ユニットにのみ測定装置を一つだけ備えることになろう。
【0050】
Fig.1aの測定装置1は、作業位置と休止位置との間を移動可能な測定アーム2を有する。
【0051】
測定アーム2は、工具を直接に搭載するユニット、従ってこの事例では、X送り台28に配置され、測定アームの移動は、X送り台28に対して、ピボット軸3のまわりのピボット動作によってなされる。この場合、ピボット軸3は、クランク軸1の回転軸線に対して横方向、好ましくは直角に、すなわち、X方向に、且つ測定センサの測定面4に対して平行あるいは横方向に、特に直角に、延びる。
【0052】
従って、測定アーム2は、工作物の方を向くX送り台28の側面に旋回可能に配置される。折曲した測定アーム2の自由端には、工作物に面し且つセンサ7を介して測定アーム2に接続される測定面4を備えた測定バー4’が配置される。従って、測定バー4’は、X送り台28によって、X方向に位置決め動作11を行うことができる。センサ7は、位置決め動作11のX方向と同じ測定方向10における測定バー4’の移動を記録することが可能である。
【0053】
Fig.1aにおいて、作業位置にある測定装置1を実線で示す。この場合、測定バー4’は、フライス6と工作物の間にある。ピボット軸3のまわりのピボット運動によって、測定アーム2、それと共に測定装置1全体は、旋回してフライス6の作業領域から完全に外に出て休止位置に位置し得、この休止位置において、好ましくは、測定バー4’は、X送り台28の側面に位置し、このX送り台の側面はフライス削りディスク6から離隔している。
【0054】
Fig.1bは、測定装置1が、X送り台28上にではなく、例えば、回転するフライス削りディスク6の面に直接に配置されている点で、Fig.1aと異なる。
【0055】
フライス削りディスク6が静止している場合には、従って、X方向の位置決め動作11がX送り台28によって実施できる。所定の回転位置にフライス削りディスク1を回転させることによって、測定装置1をY方向に移動させることが追加的に可能となることがわかる。既にFig.1aを参照して説明したように、Fig.1bの測定装置も測定バー4’を有するが、測定バー4’は以下に説明するように別の形状とすることもできる。
【0056】
Fig.4は、実際の輪郭が如何に基準輪郭、すなわち切削手順の後に生じるべき目標輪郭と異なり得るかを誇張して示した概念図である。実際の輪郭は、完全な円形輪郭ではなく、長い波状又は短い波状の凸部や凹部を有する。その不規則な実際の輪郭に、最大限の内円KIを内嵌させることができると共に、最小限の外円KAを外嵌させることが可能であり、これらの円は、互いに同心状をなし、一方で半径方向における真円度を、また他方において、一般に基準中心又は目標中心とは同一でない工作物の輪郭の実際の中心を決定する。
【0057】
二つの影響、すなわち、真円度と基準中心からの実際の中心の偏差とが互いに重ね合わせられるのは、正に、基準ストローク、すなわち、目標ストロークに対してクランク軸のクランクピン軸受位置の実際のストロークを確定する時である。
【0058】
Fig.2a−2cは、測定装置1が作業位置にある時に、測定面4を有する測定バー4’が、測定方向10、例えばX方向、におけるX送り台28の移動によって、測定すべきクランクピン軸受位置Hに向かってどのように動かされるかを示す。測定バー4’の移動は、クランク軸の異なる測定位置、すなわち回転位置において、クランクピン軸受位置Hに対して連続的に実施される。
【0059】
その状況において、Y位置については、測定面4を有する測定バー4’は常に同じ位置にある。
【0060】
従って、クランクピン軸受位置Hが、測定バー4’がセンサ7に取りつけられる位置である測定面4の中心において、測定面4に押しつけられるのは、クランク軸101の二つの回転位置においてのみである。
【0061】
他の場合は全部、接点は測定面4の中心を外れるが、にもかかわらず、測定センサ7は、測定すべき面、例えばクランクピン軸受Hの軸受面と、測定面4との接点の、X送り台28上の定められた点、例えばフライス削りディスク6の回転軸からの距離を確定する。
【0062】
更に、機械制御システムは、測定作業中は回転せずに静止しているクランク軸101のC軸の位置、すなわち、クランク軸101の回転位置も認識しており、更に、測定すべき面に測定面4が接する時のX送り台28のX位置をも認識しているので、各個別の測定作業について、測定点の実際位置が、正確な円形の基準輪郭上の基準位置又は目標位置から逸脱しているか否か及びどれ程逸脱しているかを確定することができる。それぞれの場合に、クランク軸のそれぞれの角度位置によって決まるクランクピン軸受ジャーナルA1の周面上の異なる点に測定面4が接する。
【0063】
それにより、個々の測定位置の各回転位置について、工具位置の補正値、すなわち、クランク軸がその回転位置にある時に、その位置における真円度を高めるために、工具及びそれと共にX送り台28をX方向に工作物に向かって前進あるいは後退させる値を確定することが可能である。
【0064】
回転対称面、この場合にはクランクピン軸受ジャーナルHの真円度は、そのようにして、各個別の測定位置に対しての補正値を得ることによって、更には、補間法により、測定位置間の補正値を確定することによって、改善することができる。
【0065】
測定面4が、平面ではなく、工具の輪郭と同様の弧状形状に曲がった面をなし、測定位置としてFig.3に示すように、作業位置にある場合に、測定方向10において工具輪郭から所定値の間隔を有するならば、特に容易に補正値を確定することが可能である。
【0066】
このことは、測定面4aとフライス削りディスク6の輪郭とが平行に位置するおかげで、測定手順において、クランクピン軸受ジャーナル1における測定面4aの接点は、クランク軸101が同じ角度位置にある時には、フライス削りディスクによる切削加工の際と同一接点であるという利点がある。従って、補正値を確定するには、測定面4aとフライス削りディスク6とのX方向変位のみを考慮するだけで済む。
【0067】
Fig.5−7は、測定方向10、すなわち、測定値を確定する幾何学的方向が、測定手順を実施するために測定装置1が動かされる位置決め動作11と同一ではないという点でFig.2の構造とは異なる測定装置を示す。
【0068】
Fig.5に示した構造においても、測定装置1はX送り台28に固定され、それによって動かされる。位置決め動作11は、従ってX方向と同じである。
【0069】
しかしながら、測定チップ8を搭載する測定アーム2は、X送り台28に固定され且つY方向に延びるガイド9に沿って移動可能である。センサ(図示していない)を搭載したガイド9は、従ってこの場合はY方向である測定方向10における測定アーム2の変位のみを検出できるだけである測定センサ7’を表すものである。同様にして、測定アーム2は測定方向10に対し横向きに、すなわち位置決め方向11に、片持ち状に突出し、測定アーム2の測定チップ8は、測定アーム2から横向きに突出する。
【0070】
従って、測定送り台28のX方向の移動によって、測定アーム2の測定チップ8は、例えば測定すべきクランクピン軸受ジャーナルHの輪郭に突き当たると、その輪郭によって測定方向10に押しのけられ、それによって、この手順における回転位置の工作物についての、測定方向10における測定アーム2の最大偏位点が確定される。同じ工作物輪郭における工作物の異なる回転位置での測定値を求めるには、工具ユニット上の測定装置1のY方向における別の大まかな位置決めが可能なようにすることが必要となる場合がある。
【0071】
位置決め動作の方向における測定チップ8のアプローチ動作は、工作物、例えばクランク軸が、静止している時に実施可能であり、クランク軸が異なる回転位置に停止した時に複数回実施できる。
【0072】
しかしながら、測定作業は、工作物が回転中においても、例えばクランク軸が回転している時にも、実施可能である。けれども、その場合には、測定チップ8は、測定すべき工作物面について、位置決め動作11の方向に、X方向に、及び場合によってはY方向におおよその、追従動作を実施する必要がある。その手順によって、一方において、測定すべき輪郭の全周を測定することがたしかに可能であるが、測定方向10において最も高いとは限らない点が測定されるという欠点が生じる場合もある。例えば、測定すべき面の真円度あるいは偏心位置に関して未知の偏差がある場合である。
【0073】
Fig.6に示す構造は、測定アーム2が直線的に変位可能ではなく、位置決め動作11に対して横向きに且つZ軸に平行に延びるピボット軸12のまわりを旋回可能である点で、Fig.5の構造と異なる。その結果生じる測定チップ8の測定方向も、直線的動作ではなく、弧状動作である。Fig.6の測定アーム2と同様にゼロ位置又は中立位置にバイアスをかけた測定アーム2の旋回角に基づき、測定値、すなわちクランクピン軸受位置Hのこの場合マイナスY方向に最も突出した点の測定値を確定できる。明らかに、この目的のためには、ピボット軸12に対する測定チップ8の位置が、休止位置における距離及び角度について既知である必要がある。
【0074】
Fig.7は、Fig.6に似た構造物を示す。この構造物は、Fig.6のものとは二つの基本条件で異なる。一つには、Fig.6に示す測定装置1は、ここでは鏡像的に二重状をなす。二つの測定チップ8,8’は互いに向き合っており、従って、丸い工作物輪郭の二つの側面を同時に計測する能力がある。これは、旋回可能な測定アーム2,2’に代わりに、Fig.5に示す直線的変位が可能な測定アームによっても可能である。
【0075】
更に、測定装置1は、X送り台28にではなく、ディスク状回転可能工具に、例えば、Fig.1に示したフライス削りディスク6に直接に固定される。それにより、工具WZの回転運動によって、測定装置1を更にY方向に移動させることが可能であるが、それは、しかしながら、それぞれそのピボット軸12又は12’に対する測定アーム2又は2’の角度位置の移動をも生じる。それらとは独立して、位置決め動作11は常に、送り台を搭載したユニットの動作の方向であり、この場合は、X送り台28によるX方向である。
【0076】
このような対構造は、回転対称な工作物の輪郭の測定に要する時間を半減し、更に、クランク軸を個々の測定位置に回転することによる、測定すべきクランクピン軸受ジャーナル、例えばH、のY位置の変化を補償するために、例えばX送り台28上における、別のY位置に全測定装置を再位置決めすることを不要にする。
【図面の簡単な説明】
【図1】
測定装置を備えた本発明による工作機械の正面図である。
【図2】
Fig.1aの工作機械に別の測定装置を備えたものの正面図である。
【図3】
測定装置を備えた本発明による工作機械の正面図である。
【図4】
測定装置のII−II線に沿った詳細図である。
【図5】
測定装置のII−II線に沿った詳細図である。
【図6】
測定装置のII−II線に沿った詳細図である。
【図7】
Fig.2と同様の図である。
【図8】
測定すべき回転対称面の断面図である。
【図9】
別の測定装置の詳細図である。
【図10】
測定装置の別の例の詳細図である。
【図11】
一対型測定装置の詳細図である。
【符号の説明】
1  測定装置
2  測定アーム
3  ピボット軸
4  測定面
4’  測定バー
5  フライス削りディスク
6  フライス削りディスク
7  センサ
8  測定チップ
9  ガイド
10  測定方向
11  位置決め動作
12  ピボット軸
13
14
15
16
17
18
19
20  ベッド
21  チャック
22  チャック
23  主軸台
24  主軸台
25  機械加工ユニット
26  機械加工ユニット
27  X送り台
28  X送り台
29  Z送り台
30  Z送り台
31  モータ
32  モータ
101  工作物

Claims (15)

  1. 回転対称の、同心又は偏心の面を有する工作物(101)を、特にクランク軸について、測定し、それに基づいて、特に自動的に、工作物(101)の複数作業点について工作機械に対する工具基準位置を補正する方法であって、
    測定センサ(7)によって、測定すべき工作物輪郭、例えばクランクピン軸受面(H)の、測定方向(10)、例えばX方向における、基準値、例えば回転中心からの、最大の実際の間隔のみが、工作物(101)の各測定角度位置について確定され、
    各測定角度位置について、実際の間隔と基準間隔との測定偏差が確定され、且つ少なくとも測定角度位置について、各工具基準位置が、各測定偏差から自動的に算出される補正値によって自動的に補正されることを特徴とする方法。
  2. 工作物(101)が、測定手順の間、機械加工用締め付け装置に留まることを特徴とする請求項1記載の方法。
  3. 測定角度位置同士の間の中間位置について補正値が補間法によって追加的に決定され且つ補正作業が実施されることを特徴とする請求項1又は2記載の方法。
  4. 測定センサ(7)が、工具を直接に搭載した送り台(27、28)によって、又は工具(WZ)によって動かされることを特徴とする前記請求項の一つに記載の方法。
  5. 回転対称の、同心又は偏心の面を有する工作物(101)を、特にクランク軸について、切削加工し且つ測定し、それに基づいて、特に自動的に、工作物(101)の複数作業点について工作機械に対する工具基準位置を補正する方法であって、測定センサ(7)によって、測定すべき工作物輪郭、例えばクランクピン軸受面(H)の、測定方向(10)、例えばX方向における、基準値、例えば回転中心からの、最大の実際の間隔のみが、工作物(101)の各測定角度位置について確定され、
    各測定角度位置について、実際の間隔と基準間隔との測定偏差が確定され、
    少なくとも測定角度位置について、各工具基準位置が、各測定偏差から自動的に算出される補正値によって自動的に補正され、且つ
    工具が一つの方向、特に測定方向(10)、又はそれに対して横方向の位置決め動、においてのみ移動可能であることを特徴とする方法。
  6. 回転中心上のZ軸のまわりに工作物(101)を受け且つ回転駆動するための少なくとも一つのスピンドル(23、24)、
    工具、例えばフライス削りディスク(5、6)を、少なくともX方向に、工作物スピンドル(C軸)の回転位置に応じて動かすための少なくとも一つの機械加工ユニット(25、26)、及び
    測定器(1)、特に真円度測定器を備えた工作機械であって、
    測定器(1)が工具支えに直接に配置されていることを特徴とする工作機械。
  7. 測定器(1)が、工具支えの工具(WZ)に直接に配置されていることを特徴とする請求項6記載の工作機械。
  8. 測定器(1)が、工具(WZ)を直接に搭載するX送り台(27、28)に直接に配置されていることを特徴とする請求項6記載の工作機械。
  9. 測定器(1)が、工具支えに固定され、特に作業位置と休止位置との間を自動的に移動可能、特に旋回可能であることを特徴とする請求項8記載の工作機械。
  10. 測定器(1)が、測定バー(4’)上に、従って測定センサ(7)上に、測定面(4)を有し、その測定面がZ軸に直角に且つ測定方向(10)、特にX方向、に直角に向いていることを特徴とする前記装置請求項の一つに記載の工作機械。
  11. 測定面(4)を有する測定センサ(7)が、測定方向(10)において工具支えに対し所定の固定位置に配置されていることを特徴とする前記装置請求項の一つに記載の工作機械。
  12. フライス削りディスク(5、6)を工具として使用する場合に、測定面(4、4a)が、作業位置において、フライス削りディスク(5、6)の半径方向外方において、工具(WZ)の円板状本体の平面内に、又はそれに対し軸方向に移動した位置に、配置されていることを特徴とする前記装置請求項の一つに記載の工作機械。
  13. 旋回可能測定アーム(2)を備え、測定アーム(2)は、測定方向(10)に対して横向きに且つZ方向に対して横向きに延びるピボット軸(3)のまわりに旋回可能であることを特徴とする前記装置請求項の一つに記載の工作機械。
  14. 工具が、ターニングリボルバータレットあるいはターニングブローチングリボルバータレットであり、測定面が、作業位置において、リボルバータレットの平面における工具の半径方向外方に配置されていることを特徴とする前記装置請求項の一つに記載の工作機械。
  15. 測定面、例えば4aが、その輪郭が、関連する工具の外側輪郭と平行となるように形成且つ配置され、前記外側輪郭が測定方向に面することを特徴とする前記装置請求項の一つに記載の工作機械。
JP2002504545A 2000-06-19 2001-06-19 工作物の測定及び機械加工のための方法及び装置 Pending JP2004504950A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10030087A DE10030087B4 (de) 2000-06-19 2000-06-19 Verfahren und Vorrichtung zum Vermessen und Bearbeiten von Werkstücken
PCT/EP2001/006923 WO2001098847A2 (de) 2000-06-19 2001-06-19 Verfahren und vorrichtung zum vermessen und bearbeiten von werkstücken

Publications (1)

Publication Number Publication Date
JP2004504950A true JP2004504950A (ja) 2004-02-19

Family

ID=7646212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002504545A Pending JP2004504950A (ja) 2000-06-19 2001-06-19 工作物の測定及び機械加工のための方法及び装置

Country Status (7)

Country Link
US (1) US20040215414A1 (ja)
EP (1) EP1366394B1 (ja)
JP (1) JP2004504950A (ja)
AT (1) ATE310982T1 (ja)
DE (2) DE10030087B4 (ja)
ES (1) ES2254473T3 (ja)
WO (1) WO2001098847A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274141A (ja) * 2008-05-12 2009-11-26 Niigata Machine Techno Co Ltd 工具径補正装置及び工具径補正方法
CN103857493A (zh) * 2011-09-27 2014-06-11 弗立兹·斯图特公司 机床及用于测量工件的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056802A1 (de) * 2004-11-24 2006-06-01 Naxos-Union Gmbh Schleifmaschine für wellenförmige Werkstücke
JP4531023B2 (ja) * 2006-08-22 2010-08-25 コマツ工機株式会社 クランクシャフトの加工方法、クランクシャフトの加工装置、制御装置およびプログラム
DE102007060661B4 (de) * 2007-12-17 2015-09-03 Erwin Junker Maschinenfabrik Gmbh Messvorrichtung, an einer Werkzeugmaschine, insbesondere Schleifmaschine, angeordnet, zur Bestimmung der Querschnittsabmessung von rotationssymmetrischen Werkstück-Bereichen
DE102010047444B4 (de) * 2010-10-04 2014-04-03 Audi Ag Verfahren zur Visualisierung von Maßabweichungen zwischen einer Ist- und Soll-Geometrie eines Bauteils
DE102012110673B4 (de) 2012-11-07 2014-05-15 Fritz Studer Ag Werkzeugmaschine und Verfahren zur Vermessung eines Werkstücks
US9810524B2 (en) 2015-12-15 2017-11-07 Sears Brands, L.L.C. Power tool with optical measurement device
US10906110B2 (en) 2017-04-28 2021-02-02 Transform Sr Brands Llc Power tool with integrated measurement device and associated methods
CN110645865A (zh) * 2019-08-06 2020-01-03 桂林福达曲轴有限公司 一种汽车发动机曲轴连杆颈90度分度偏差检测方法
JP2023512556A (ja) * 2020-02-06 2023-03-27 ファイブズ・ランディス・コーポレーション 音響的クランクピン位置検出
CN112171379B (zh) * 2020-08-22 2021-07-27 芽米科技成都有限公司 数控车床检测待维修管件中心轴偏移量的方法
CN112161555B (zh) * 2020-09-30 2021-12-10 重庆红江机械有限责任公司 低速柴油机大型滑块导向面的精加工方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6817197A (ja) * 1968-11-30 1970-06-02
AT351110B (de) * 1977-07-04 1979-07-10 Gfm Fertigungstechnik Numerische bahnsteuereinrichtung fuer eine mittels eines fraesers oder eines schleifwerk- zeuges konturbildende bzw.- bearbeitende werk- zeugmaschine, insbesondere eine kurbelwellen- fraesmaschine
DE2822346C2 (de) * 1978-05-22 1985-09-05 GFM Gesellschaft für Fertigungstechnik und Maschinenbau GmbH, Steyr Elektrische numerische Programmsteuerung für Kurbelwellenfräsmaschinen und Kurbelwellen-Schleifmaschinen
US4382215A (en) * 1981-07-16 1983-05-03 General Electric Company System and method of precision machining
JPS58206364A (ja) * 1982-05-24 1983-12-01 Toshiba Mach Co Ltd 工作機械
JPS59142045A (ja) * 1983-01-31 1984-08-15 Hitachi Ltd 数値制御工作機械
US4576069A (en) * 1984-02-02 1986-03-18 Leblond Makino Machine Tool Co. Turret lathe having probe and protective cover
DE3633840A1 (de) * 1986-10-04 1988-04-14 Hoechst Ag Phenylpyrazolcarbonsaeurederivate, ihre herstellung und verwendung als pflanzenwachstumsregulatoren und safener
IT1211395B (it) * 1987-10-12 1989-10-18 Ocn Ppl S P A Dispositivo di misura e di correzione automatica delle quote di lavorazione in un centro di lavoro a con trollo numerico
US5348969A (en) * 1992-04-03 1994-09-20 Bristol-Myers Squibb Company Diphenyloxazolyl-oxazoles as platelet aggregation inhibitors
FR2716882B1 (fr) * 1994-03-04 1996-04-05 Roussel Uclaf Utilisation de dérivés de l'imidazole au traitement d'affections impliquant les récepteurs AT1 et AT2 de l'Angiotensine, certains de ces produits, leur préparation, compositions pharmaceutiques.
US5756527A (en) * 1995-06-07 1998-05-26 Ontogen Corporation Imidazole derivatives useful as modulators of multi drug resistances
US6080870A (en) * 1996-04-03 2000-06-27 Merck & Co., Inc. Biaryl substituted imidazole compounds useful as farnesyl-protein transferase inhibitors
DE19846944A1 (de) * 1998-10-12 2000-04-13 Reform Maschinenfabrik A Raben Werkzeugmaschine mit verschiedenen Bearbeitungsstationen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274141A (ja) * 2008-05-12 2009-11-26 Niigata Machine Techno Co Ltd 工具径補正装置及び工具径補正方法
CN103857493A (zh) * 2011-09-27 2014-06-11 弗立兹·斯图特公司 机床及用于测量工件的方法
JP2014533207A (ja) * 2011-09-27 2014-12-11 フリッツ スチューダー アーゲー 工作機械およびワークピース測定方法

Also Published As

Publication number Publication date
DE10030087B4 (de) 2007-01-18
WO2001098847A3 (de) 2003-09-18
ATE310982T1 (de) 2005-12-15
DE10030087A1 (de) 2002-01-10
DE50108206D1 (de) 2005-12-29
EP1366394A2 (de) 2003-12-03
US20040215414A1 (en) 2004-10-28
WO2001098847A2 (de) 2001-12-27
ES2254473T3 (es) 2006-06-16
EP1366394B1 (de) 2005-11-23

Similar Documents

Publication Publication Date Title
US8083444B2 (en) Method and apparatus for machining work pieces
US6568096B1 (en) Device and method for measuring shape deviations of a cylindrical workpiece and correcting steadying element and correcting follower for use therewith
JP4051872B2 (ja) 加工部の測定方法及び加工方法
JP2004504950A (ja) 工作物の測定及び機械加工のための方法及び装置
JP5787985B2 (ja) 大きいピニオンの機械加工のための架台
CA2650162C (en) Three point turning machine
JP5063589B2 (ja) 切れ刃を備える平板状または円筒形の工作物を機械加工するための装置
JP4468632B2 (ja) 事実上円筒形の内歯車または外歯車の切削加工方法
US10092956B2 (en) Device and method for machining an optical workpiece
US4114281A (en) Method of and device for clamping a workpiece
JP3845602B2 (ja) 軸の偏芯部における回転位相角度の測定装置およびその測定方法と、その測定に用いるスプライン溝位相測定治具
JP5008504B2 (ja) 刃物の芯高測定装置
JP2964305B2 (ja) 工作機械
JPH04226807A (ja) 加工片を切削するための位置決め装置
JPS59192457A (ja) 位置決め装置
JP5401858B2 (ja) 研削盤および研削方法
JP2021084157A (ja) クランクシャフトの加工システム及び加工方法
JP4046490B2 (ja) 加工工具の心高測定方法
JP2001162426A (ja) 曲面切削装置及び曲面切削方法
CN211805154U (zh) 一种轴类零件切断钻孔一体机
JPH0224610Y2 (ja)
RU2111089C1 (ru) Устройство для механической обработки поверхности вращения детали
JPH07241918A (ja) フレネルレンズ切削用刃物台
RU30298U1 (ru) Самоцентрирующий карусельный патрон
US20200348118A1 (en) Edge, runout, and true center of rotation finder