JP2004363757A - 直交変復調装置 - Google Patents

直交変復調装置 Download PDF

Info

Publication number
JP2004363757A
JP2004363757A JP2003157693A JP2003157693A JP2004363757A JP 2004363757 A JP2004363757 A JP 2004363757A JP 2003157693 A JP2003157693 A JP 2003157693A JP 2003157693 A JP2003157693 A JP 2003157693A JP 2004363757 A JP2004363757 A JP 2004363757A
Authority
JP
Japan
Prior art keywords
information
circuit
signal
quadrature
quadrature modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003157693A
Other languages
English (en)
Other versions
JP4184870B2 (ja
Inventor
Manabu Nakamura
学 中村
Teruji Ide
輝二 井手
一志 ▲高▼橋
Kazushi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2003157693A priority Critical patent/JP4184870B2/ja
Publication of JP2004363757A publication Critical patent/JP2004363757A/ja
Application granted granted Critical
Publication of JP4184870B2 publication Critical patent/JP4184870B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

【課題】直交変調回路18によりI情報及びQ情報から直交変調信号を生成する直交変調部と、直交復調回路22により直交変調信号から直交復調信号のI情報及びQ情報を生成する直交復調部を設けた直交変復調装置を提供する。
【解決手段】無線通信装置に設けられた直交変復調装置では、直交変調誤差検出回路31により直交変調信号に発生する位相誤差や振幅誤差に関する情報を検出し、当該検出結果に基づいて直交変調誤差補正回路12により位相誤差や振幅誤差を補正する。また、直交復調誤差検出補正回路27により直交復調信号に発生する位相誤差や振幅誤差に関する情報を検出して、位相誤差や振幅誤差を補正する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、直交変調回路によりI情報及びQ情報から直交変調信号を生成し、直交復調回路により直交変調信号から直交復調信号のI情報及びQ情報を生成する直交変復調装置や通信装置に関し、特に、直交変調信号に発生する位相や振幅の誤差や、直交復調信号に発生する位相や振幅の誤差を補正する技術に関する。
【0002】
【従来の技術】
例えば、無線により信号を通信する無線通信装置では、送信対象となる情報から直交変調回路により直交変調信号を生成して送信することや、受信した直交変調信号から直交復調回路により元の情報を生成することが行われている。
このような直交変調や直交復調を行う場合における変調方式や復調方式としては、例えば、QPSK(Quadrature Phase Shift Keying)方式や、QAM(Quadrature Amplitude Modulation)方式などが用いられている。
【0003】
また、直交変調回路では、I相成分の情報(I情報)及びQ相成分の情報(Q情報)のそれぞれに対して互いに位相が90度異なるローカル周波数信号(搬送波信号)を供給することにより、直交変調信号が生成される。同様に、直交復調回路では、直交変調信号に対して互いに位相が90度異なるローカル周波数信号(搬送波信号)を供給することにより、直交復調信号のI情報及びQ情報が生成される。
【0004】
しかしながら、上記のような直交変調回路や直交復調回路では、I相成分に対応するローカル周波数信号の位相とQ相成分に対応するローカル周波数信号の位相との差を広帯域にわたって正確に90度にすることが困難であった。
そして、このような90度の位相差について誤差(位相誤差)が発生する場合には、直交変調回路により生成される直交変調信号や直交復調回路により生成される直交復調信号においてI相成分とQ相成分との直交性が崩れてしまい、これにより、例えば、直交変調信号や直交復調信号の精度が劣化してしまい、広帯域にわたって直交変調方式や直交復調方式を精度よく使用することができないといった問題があった。
【0005】
また、上記のような直交変調回路や直交復調回路では、I相成分とQ相成分との間に、振幅の誤差(振幅誤差)が発生してしまうこともあった。
こうしたことから、広帯域の周波数に対応した直交変調回路や直交復調回路を実現することは困難なことであった。
【0006】
なお、直交変調における誤差を補正することに関して、従来技術の例を示す。
一例として、従来では、直交変調器により入力変調信号に対して直交変調を行うに際して、直交変調された信号を帰還させて直交復調し、直交復調された信号と入力変調信号とを比較して直交変調誤差を検出し、検出される直交変調誤差に基づいて入力変調信号に対して補正を行うことが為されていた(例えば、特許文献1参照。)。
また、本発明に関連する発明が、本出願人による特願2003−060839号に記載されている。
【0007】
【特許文献1】
特開2001−339452号公報
【0008】
【発明が解決しようとする課題】
上記従来例で示したように、従来の直交変調回路や直交復調回路では、直交変調信号や直交復調信号について、I相成分とQ相成分との直交性(90度の位相差)や振幅に関して誤差が発生してしまい、精度のよい直交変調や直交復調を実現することができないといった問題があった。また、このような問題は、特に、高い無線周波数で、広帯域にわたって直交変調や直交復調を行うような場合に、顕著であった。
【0009】
具体的には、一例として、ソフトウエア無線機などでは、例えば3GHz以上などの高い周波数帯である無線周波数帯を使用する無線機が用いられており、このような無線機では、直交変調誤差や直交復調誤差が大きな問題となり、I相成分とQ相成分との直交性や振幅関係が崩れると、広帯域な直交変調や直交復調が不可能となってしまう。
【0010】
なお、例えば、PDC(Personal Digital Cellular)やPHS(Personal Handyphone System)などにおいても直交変調や直交復調が行われるところ、これらの周波数帯に関しては、既にIC(Integrated Circuit)が市販されており、直交変調誤差や直交復調誤差が大きな問題となることは少ないと考えられるが、このようなシステムに後述する本発明が適用されても構わない。
【0011】
本発明は、上記のような従来の事情に鑑み為されたもので、例えば高い周波数で広帯域にわたって直交変調を行うような場合においても、直交変調信号における位相誤差や振幅誤差を補正して、精度のよい直交変調を実現することができる直交変復調装置や通信装置を提供することを目的とする。
また、本発明は、上記のような従来の事情に鑑み為されたもので、例えば高い周波数で広帯域にわたって直交復調を行うような場合においても、直交復調信号における位相誤差や振幅誤差を補正して、精度のよい直交復調を実現することができる直交変復調装置や通信装置を提供することを目的とする。
【0012】
なお、上記従来例に示したように、従来においても、上記のような位相誤差や振幅誤差を補正することに関して検討が為されていたが、未だに十分な検討が完了したとは言えず、本発明では、上記のような位相誤差や振幅誤差に関する情報を検出して当該位相誤差や当該振幅誤差を補正するための新たな構成を提供し、例えば、実用上で有効な構成により精度のよい直交変調や直交復調を実現することに貢献する。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る直交変復調装置では、直交変調回路によりI情報及びQ情報から直交変調信号を生成する直交変調部と、直交復調回路により直交変調信号から直交復調信号のI情報及びQ情報を生成する直交復調部を設けた構成において、次のような構成により、直交変調信号に発生する位相誤差や振幅誤差を補正する。
【0014】
すなわち、本発明に係る直交変復調装置では、直交変調位相誤差検出回路と、直交変調位相誤差補正回路と、直交変調振幅誤差検出回路と、直交変調振幅誤差補正回路を備える。
直交変調位相誤差検出回路は、直交変調回路により生成される直交変調信号に発生する位相誤差に関する情報を検出する。
直交変調位相誤差補正回路は、直交変調位相誤差検出回路により検出される位相誤差に関する情報に基づいて、直交変調回路による直交変調前のI情報Di及びQ情報Dqに対して補正を行う。
直交変調振幅誤差検出回路は、直交変調回路により生成される直交変調信号に発生する振幅誤差に関する情報を検出する。
直交変調振幅誤差補正回路は、直交変調振幅誤差検出回路により検出される振幅誤差に関する情報に基づいて、直交変調回路による直交変調前のI情報Di及びQ情報Dqに対して補正を行う。
【0015】
また、直交変調位相誤差検出回路は、2乗和値生成回路と、正負反転極性付与回路と、加算回路と、所定値乗算回路を用いて構成される。
2乗和値生成回路は、直交復調回路により直交変調信号から生成される直交復調信号のI情報Dix及びQ情報Dqxから、(Dix+Dqx)値を生成する。
【0016】
なお、I情報Dix及びQ情報Dqxとしては、例えば、直交復調に関する誤差が補正された後にサンプリングされたI情報Dir及びQ情報Dqrが用いられ、また、例えば、直交復調に関する誤差が補正されたI情報Die及びQ情報Dqeが用いられてもよく、或いは、直交復調に関する誤差が補正されていないI情報Dio及びQ情報Dqoが用いられてもよい。
【0017】
正負反転極性付与回路は、直交変調回路による直交変調前のI情報Di及びQ情報DqのI−Q平面上における座標が第1象限或いは第3象限に位置する場合と第2象限或いは第4象限に位置する場合とで、互いに正負が反転した極性を2乗和値生成回路により生成される(Dix+Dqx)値に対して与える。
【0018】
加算回路は、正負反転極性付与回路により生成される値を加算する。なお、当該値は、例えば、+(Dix+Dqx)又は−(Dix+Dqx)や、この定数倍の値などとなる。
所定値乗算回路は、加算回路により生成される値に対して所定の値A1を乗算する。なお、加算回路により生成される値は、例えば、正負反転極性付与回路により生成される値を累積的に積分した結果となる。
そして、直交変調位相誤差検出回路は、所定値乗算回路により生成される値を、位相誤差に関する情報として検出する。
【0019】
また、直交変調位相誤差補正回路は、直交変調回路による直交変調前のI情報Di及びQ情報Dqのうちの一方の情報(例えば、Q情報Dq、又は、I情報Di)を補正後の一方の情報(例えば、補正後のQ情報Dqc、又は、補正後のI情報Dic)とするとともに、一方の情報(例えば、Q情報Dq、又は、I情報Di)と直交変調位相誤差検出回路により検出される位相誤差に関する情報とを乗算した結果を他方の情報(例えば、I情報Di、又は、Q情報Dq)と加算した結果を補正後の他方の情報(例えば、補正後のI情報Dic、又は、補正後のQ情報Dqc)とする。
【0020】
また、直交変調振幅誤差検出回路は、差生成回路と、加算回路と、所定値乗算回路と、1値加算回路を用いて構成される。
差生成回路は、直交復調回路により直交変調信号から生成される直交復調信号のQ情報Dqxと直交変調回路による直交変調前のI情報Diとを乗算した結果の変動成分と、直交復調回路により直交変調信号から生成される直交復調信号のI情報Dixと直交変調回路による直交変調前のQ情報Dqとを乗算した結果の変動成分とで、絶対値の差又は2乗値の差に関する値を生成する。
【0021】
なお、変動成分は、例えば、時間に応じて変動する成分であり、高周波通過フィルタ(HPF:High Pass Filter)を用いて抽出することができる。
また、絶対値の差又は2乗値の差に関する値としては、種々な値が用いられてもよく、例えば、絶対値の差の値や、2乗値の差の値が用いられてもよく、或いは、実質的にこれらのいずれかと同一又は近似とみなすことができるような値が用いられてもよい。
【0022】
加算回路は、差生成回路により生成される値を加算する。
所定値乗算回路は、加算回路により生成される値に対して所定の値A2を乗算する。なお、加算回路により生成される値は、例えば、差生成回路により生成される値を累積的に積分した結果となる。
1値加算回路は、所定値乗算回路により生成される値に1値(“1”)を加算する。
そして、直交変調振幅誤差検出回路は、1値加算回路により生成される値を、振幅誤差に関する情報として検出する。
【0023】
また、直交変調振幅誤差補正回路は、直交変調回路による直交変調前のI情報Di及びQ情報Dqのうちの一方の情報(例えば、Q情報Dq、又は、I情報Di)と直交変調振幅誤差検出回路により検出される振幅誤差に関する情報とを乗算した結果を補正後の一方の情報(例えば、補正後のQ情報Dqc、又は、補正後のI情報Dic)とするとともに、他方の情報(例えば、I情報Di、又は、Q情報Dq)を補正後の他方の情報(例えば、補正後のI情報Dic、又は、補正後のQ情報Dqc)とする。
【0024】
このような構成を有する本発明に係る直交変復調装置では、直交変調信号に発生する位相誤差や振幅誤差を補正することができる。
従って、上記のような簡易で実用的な構成により、直交変調信号における位相誤差や振幅誤差に関する情報を検出して当該位相誤差や当該振幅誤差を補正して、精度のよい直交変調を実現することができる。また、本発明では、例えば高い周波数で広帯域にわたって直交変調を行うような場合においても、有効に、直交変調信号における位相誤差や振幅誤差に関する情報を検出して当該位相誤差や当該振幅誤差を補正することができる。
【0025】
ここで、直交変調や直交復調が行われる場合における変調方式や復調方式としては、種々な方式が用いられてもよく、例えば、QPSK方式や、16QAMや32QAMや64QAMなどのQAM方式などを用いることができる。
また、直交変調の対象となる情報としては、例えば、送信対象となる情報や、誤差を検出及び補正するために使用される情報などが用いられる。この場合、これらの情報は、I相成分の情報(I情報)とQ相成分の情報(Q情報)から構成される。
【0026】
また、直交変調回路による直交変調前のI情報Di及びQ情報DqのI−Q平面上における座標は、例えば、I情報の座標値>0且つQ情報の座標値>0である場合には第1象限に位置し、I情報の座標値<0且つQ情報の座標値<0である場合には第3象限に位置し、I情報の座標値<0且つQ情報の座標値>0である場合には第2象限に位置し、I情報の座標値>0且つQ情報の座標値<0である場合には第4象限に位置する。
【0027】
なお、例えば、I情報の座標値=0である場合や、Q情報の座標値=0である場合が発生するようなときには、このような場合における(I情報、Q情報)の座標がいずれの象限に位置するかについては、任意に設定されてもよい。
また、所定の値A1としては、種々な値が用いられてもよく、例えば、固定的に設定される一定の値が用いられてもよく、或いは、可変に制御することが可能な値が用いられてもよい。
また、所定の値A2としては、種々な値が用いられてもよく、例えば、固定的に設定される一定の値が用いられてもよく、或いは、可変に制御することが可能な値が用いられてもよい。
【0028】
また、直交変調部や、直交復調部としては、種々な構成のものが用いられてもよい。
また、直交変調回路や、直交復調回路としては、種々な構成のものが用いられてもよく、例えば、直交変調回路と直交復調回路とは互いに対応するものが用いられる。
【0029】
また、直交変調位相誤差検出回路や、直交変調位相誤差補正回路や、直交変調振幅誤差検出回路や、直交変調振幅誤差補正回路としては、種々な構成のものが用いられてもよい。また、これらを構成するそれぞれの回路としては、種々な構成のものが用いられてもよい。
また、直交変調位相誤差補正回路では、例えば、直交変調位相誤差検出回路による検出結果に基づいて、フィードバック制御が行われる。
また、直交変調振幅誤差補正回路では、例えば、直交変調振幅誤差検出回路による検出結果に基づいて、フィードバック制御が行われる。
【0030】
また、直交変調位相誤差補正回路により位相誤差を補正する処理と、直交変調振幅誤差補正回路により振幅誤差を補正する処理との順序としては、特に限定はなく、例えば、直交変調位相誤差補正回路の後段に直交変調振幅誤差補正回路が備えられてもよく、或いは、直交変調振幅誤差補正回路の後段に直交変調位相誤差補正回路が備えられてもよい。
【0031】
また、直交変調位相誤差検出回路により位相誤差に関する情報を検出する処理と、直交変調振幅誤差検出回路により振幅誤差に関する情報を検出する処理との順序としては、特に限定はなく、例えば、直交変調位相誤差検出回路と直交変調振幅誤差検出回路とが並列に備えられてもよく、或いは、直交変調位相誤差検出回路の後段に直交変調振幅誤差検出回路が備えられてもよく、或いは、直交変調振幅誤差検出回路の後段に直交変調位相誤差検出回路が備えられてもよい。
【0032】
本発明に係る直交変復調装置では、直交変調回路によりI情報及びQ情報から直交変調信号を生成する直交変調部と、直交復調回路により直交変調信号から直交復調信号のI情報及びQ情報を生成する直交復調部を設けた構成において、次のような構成により、直交復調信号に発生する位相誤差や振幅誤差を補正する。
【0033】
すなわち、本発明に係る直交変復調装置では、直交復調位相誤差検出補正回路と、直交復調振幅誤差検出補正回路を備える。
直交復調位相誤差検出補正回路は、直交復調回路により直交変調信号から生成される直交復調信号のI情報Dio及びQ情報Dqoに発生する位相誤差に関する情報を検出して、当該検出される位相誤差に関する情報に基づいて、当該I情報Dio及び当該Q情報Dqoに対して補正を行う。
直交復調振幅誤差検出補正回路は、直交復調回路により直交変調信号から生成される直交復調信号のI情報Dio及びQ情報Dqoに発生する振幅誤差に関する情報を検出して、当該検出される振幅誤差に関する情報に基づいて、当該I情報Dio及び当該Q情報Dqoに対して補正を行う。
【0034】
また、直交復調位相誤差検出補正回路は、位相誤差補正値加算回路と、乗算回路と、加算回路と、所定値乗算回路と、位相誤差補正値生成回路を用いて構成される。
位相誤差補正値加算回路は、直交復調回路により直交変調信号から生成される直交復調信号のI情報Dio及びQ情報Dqoのうちの一方の情報(例えば、Q情報Dqo、又は、I情報Dio)と所定の位相誤差補正値とを加算した結果を補正後の一方の情報(例えば、補正後のQ情報Dqe、又は、補正後のI情報Diq)とする。なお、所定の位相誤差補正値は、後述する位相誤差補正値生成回路により生成される。
【0035】
乗算回路は、補正後の一方の情報(例えば、補正後のQ情報Dqe、又は、補正後のI情報Die)と他方の情報(例えば、I情報Dio、又は、Q情報Dqo)とを乗算する。
加算回路は、乗算回路により生成される値を加算する。
所定値乗算回路は、加算回路により生成される値に対して所定の値A3を乗算する。なお、加算回路により生成される値は、例えば、乗算回路により生成される値を累積的に積分した結果となる。
【0036】
位相誤差補正値生成回路は、所定値乗算回路により生成される値と他方の情報(例えば、I情報Dio、又は、Q情報Dqo)とを乗算した結果を所定の位相誤差補正値とする。
また、直交復調位相誤差検出補正回路は、他方の情報(例えば、I情報Dio、又は、Q情報Dqo)を補正後の他方の情報(例えば、補正後のI情報Die、又は、補正後のQ情報Dqe)とする。
【0037】
また、直交復調振幅誤差検出補正回路は、振幅誤差補正値乗算回路と、差生成回路と、加算回路と、所定値乗算回路と、1値加算回路を用いて構成される。
振幅誤差補正値乗算回路は、直交復調回路により直交変調信号から生成される直交復調信号のI情報Dio及びQ情報Dqoのうちの一方の情報(例えば、Q情報Dqo、又は、I情報Dio)と所定の振幅誤差補正値とを乗算した結果を補正後の一方の情報(例えば、補正後のQ情報Dqe、又は、補正後のI情報Die)とする。なお、所定の振幅誤差補正値は、後述する1値加算回路(例えば、振幅誤差補正値生成回路)により生成される。
【0038】
差生成回路は、補正後の一方の情報(例えば、補正後のQ情報Dqe、又は、補正後のI情報Die)と他方の情報(例えば、I情報Dio、又は、Q情報Dqo)とで、絶対値の差又は2乗値の差に関する値を生成する。
なお、絶対値の差又は2乗値の差に関する値としては、種々な値が用いられてもよく、例えば、絶対値の差の値や、2乗値の差の値が用いられてもよく、或いは、実質的にこれらのいずれかと同一又は近似とみなすことができるような値が用いられてもよい。
【0039】
加算回路は、差生成回路により生成される値を加算する。
所定値乗算回路は、加算回路により生成される値に対して所定の値A4を乗算する。なお、加算回路により生成される値は、例えば、差生成回路により生成される値を累積的に積分した結果となる。
1値加算回路は、所定値乗算回路により生成される値に対して1値(“1”)を加算した結果を、所定の振幅誤差補正値とする。
また、直交復調振幅誤差検出補正回路は、他方の情報(例えば、I情報Dio、又は、Q情報Dqo)を補正後の他方の情報(例えば、補正後のI情報Die、又は、補正後のQ情報Dqe)とする。
【0040】
このような構成を有する本発明に係る直交変復調装置では、直交復調信号に発生する位相誤差や振幅誤差を補正することができる。
従って、上記のような簡易で実用的な構成により、直交復調信号における位相誤差や振幅誤差に関する情報を検出して当該位相誤差や当該振幅誤差を補正して、精度のよい直交復調を実現することができる。また、本発明では、例えば高い周波数で広帯域にわたって直交復調を行うような場合においても、有効に、直交復調信号における位相誤差や振幅誤差に関する情報を検出して当該位相誤差や当該振幅誤差を補正することができる。
【0041】
ここで、所定の値A3としては、種々な値が用いられてもよく、例えば、固定的に設定される一定の値が用いられてもよく、或いは、可変に制御することが可能な値が用いられてもよい。
また、所定の値A4としては、種々な値が用いられてもよく、例えば、固定的に設定される一定の値が用いられてもよく、或いは、可変に制御することが可能な値が用いられてもよい。
【0042】
また、直交復調位相誤差検出補正回路や、直交復調振幅誤差検出補正回路としては、種々な構成のものが用いられてもよい。また、これらを構成するそれぞれの回路としては、種々な構成のものが用いられてもよい。
また、直交復調位相誤差検出補正回路では、例えば、位相誤差に関する情報の検出結果に基づいて、フィードバック制御が行われる。
また、直交復調振幅誤差検出補正回路では、例えば、振幅誤差に関する情報の検出結果に基づいて、フィードバック制御が行われる。
【0043】
また、直交復調位相誤差検出補正回路により位相誤差を補正する処理と、直交復調振幅誤差検出補正回路により振幅誤差を補正する処理との順序としては、特に限定はなく、例えば、直交復調位相誤差検出補正回路の後段に直交復調振幅誤差検出補正回路が備えられてもよく、或いは、直交復調振幅誤差検出補正回路の後段に直交復調位相誤差検出補正回路が備えられてもよい。
【0044】
本発明に係る通信装置では、直交変調回路によりI情報及びQ情報から直交変調信号を生成する直交変調部と、直交復調回路により直交変調信号から直交復調信号のI情報及びQ情報を生成する直交復調部を設けて、信号を通信する構成において、次のような構成により、直交変調信号や直交復調信号に発生する位相誤差や振幅誤差を補正する。
【0045】
すなわち、本発明に係る通信装置では、上記したような直交変調位相誤差検出回路と直交変調位相誤差補正回路と直交変調振幅誤差検出回路と直交変調振幅誤差補正回路を備え、また、上記したような直交復調位相誤差検出補正回路と直交復調振幅誤差検出補正回路を備える。
そして、これらの回路を並行に動作させて、直交変調部の直交変調回路によりI情報Di及びQ情報Dqから生成される直交変調信号を直交復調部の直交復調回路に入力して、当該直交復調回路により当該直交変調信号から直交復調信号のI情報Diy及びQ情報Dqyを生成する。これにより、直交変調信号に発生する位相誤差及び振幅誤差と直交復調信号に発生する位相誤差及び振幅誤差を並行して検出及び補正する。
【0046】
従って、例えば、直交変調信号に発生する位相誤差及び振幅誤差と直交復調信号に発生する位相誤差及び振幅誤差を同時に補正することができ、効率的な誤差の補正が実現される。
なお、I情報Diy及びQ情報Dqyとしては、例えば、直交復調に関する誤差が補正された後にサンプリングされたI情報Dir及びQ情報Dqrが用いられ、また、例えば、直交復調に関する誤差が補正されたI情報Die及びQ情報Dqeが用いられてもよい。
【0047】
ここで、通信装置では、例えば、送信対象となる情報(I情報及びQ情報)に対して直交変調回路により直交変調を行って、これにより得られる直交変調信号を送信し、また、受信される直交変調信号に対して直交復調回路により直交復調を行って、これにより受信される情報(I情報及びQ情報)を取得する。
また、通信装置としては、例えば、無線の通信装置が用いられてもよく、或いは、有線の通信装置が用いられてもよい。
【0048】
以下で、更に、本発明に係る構成例を示す。
一構成例として、直交変調位相誤差補正回路及び直交変調振幅誤差補正回路を有する直交変調誤差補正回路が、直交変調回路の前段に備えられる。
一構成例として、直交復調位相誤差検出補正回路及び直交復調振幅誤差検出補正回路を有する直交復調誤差検出補正回路が、直交復調回路の後段に備えられる。
一構成例として、直交変調位相誤差検出回路及び直交変調振幅誤差検出回路を有する直交変調誤差検出回路が、直交変調誤差補正回路の前段であって、直交復調誤差検出補正回路の後段に備えられる。
【0049】
なお、前段としては、例えば、直前である態様ばかりでなく、他の回路素子を介して前段であるような態様が用いられてもよい。
また、後段としては、例えば、直後である態様ばかりでなく、他の回路素子を介して後段であるような態様が用いられてもよい。
【0050】
一構成例として、直交変調信号や直交復調信号に関する位相や振幅の誤差の検出や補正は、QPSK方式のI情報及びQ情報を用いて行われる。また、このような誤差の検出や補正が行われないときには、他の種々な方式が用いられてもよい。
【0051】
一構成例として、TDD(Time Division Duplex)方式のように、送信周波数と受信周波数とが同一である方式が用いられる。
他の構成例として、FDD(Frequency Division Duplex)方式のように、送信周波数と受信周波数とが異なる方式が用いられる。この場合、直交変調信号や直交復調信号に関する位相や振幅の誤差の検出や補正を行うときには、当該検出や当該補正のために、送信周波数と受信周波数とが同一の周波数となるように設定される。
【0052】
一構成例として、位相の誤差や振幅の誤差を検出や補正するに際して、直交変調回路で用いられるローカル周波数信号の角周波数ω1と直交復調回路で用いられるローカル周波数信号の角周波数ω2との差が、例えばシンボルレートの1/1000程度に相当するといったように、僅かに存在する。
一構成例として、直交復調誤差検出補正回路には、直交復調回路により生成される直交復調信号をシンボルレートの2倍以上の速度でサンプリングした結果が入力される。
【0053】
【発明の実施の形態】
本発明に係る実施例を図面を参照して説明する。
まず、図5(a)(b)(c)を参照して、直交変調回路により生成される直交変調信号に発生する位相誤差や振幅誤差を補正する処理の原理を説明する。
本例では、直交変調回路による処理を数式により表す場合における一般的な方法として、I相成分に対応するローカル周波数信号をcos(ω1・t)で表し、Q相成分に対応するローカル周波数信号をsin(ω1・t)で表す。
なお、ω1は角周波数を表し、tは時刻を表す。
【0054】
まず、理想的な直交変調回路によりI情報Diの信号及びQ情報Dqの信号から直交変調波(直交変調信号)Sc(t)が生成される場合には、当該理想的な直交変調波Sc(t)は式1により表される。ここで、直交変調回路では、I情報Diの信号及びQ情報Dqの信号がそれぞれのミキサに入力され、それぞれのミキサのローカルポートには発振器からのローカル周波数信号の位相を0度及び90度にずらした信号が入力され、これら2つのミキサからの出力の足し合わせが直交変調回路からの出力となる。
【0055】
【数1】
Figure 2004363757
【0056】
しかしながら、ローカル周波数信号が高い場合や、ソフトウエア無線機のようにローカル周波数が広帯域に変化するような場合には、上記した90度の位相差を正確に実現することが困難である。また、ミキサの変換損失のばらつきや、ベースバンドの増幅器利得(アンプゲイン)のばらつきなどに起因して、振幅にもずれが生じてしまう。
【0057】
図5(a)には、Q相成分のローカル周波数信号sin(ω1・t)にΔθ1の位相誤差が発生するとともにQ相成分にΔG1を乗算する振幅誤差が発生する直交変調回路157の一例を示してある。
当該直交変調回路157では、発振器151から発振されるI相成分のローカル周波数信号cos(ω1・t)とI情報Diの信号とがミキサ152により混合されるとともに、発振器151から発振されるI相成分のローカル周波数信号cos(ω1・t)が位相シフタ153により(90°+Δθ1)だけ移相されて生成されるQ相成分のローカル周波数信号sin(ω1・t+Δθ1)とQ情報Dqの信号とがミキサ154により混合される。また、当該ミキサ154による混合結果に対して乗算器155によりΔG1が乗算されるのと同等な振幅誤差が発生し、当該乗算結果とI相成分のミキサ152による混合結果とが加算器(結合器)156により合成されて、直交変調波S(t)が生成される。
【0058】
このような位相誤差及び振幅誤差が存在する場合における直交変調波S(t)は式2により表される。
【0059】
【数2】
Figure 2004363757
【0060】
また、sin(ω1・t+Δθ1)=sin(ω1・t)・cos(Δθ1)+cos(ω1・t)・sin(Δθ1)となることから、上記式2は式3のように変形される。式3は、直交変調回路の位相誤差や振幅誤差は、ベースバンドの誤差へ変換することが可能であることを示す。
【0061】
【数3】
Figure 2004363757
【0062】
図5(b)には、上記図5(a)に示した回路と等価な回路として、理想的な直交変調回路170の一例と、上記図5(a)において直交変調信号に発生する位相誤差及び振幅誤差をベースバンドのものへ変換した位相誤差及び振幅誤差を発生する回路(誤差発生回路)169の一例を示してある。
ここで、当該直交変調回路170では、発振器164と2つのミキサ165、167と位相シフタ166と加算器168により、上記式1に示したのと同様に、理想的な直交変調が行われる。
【0063】
また、当該直交変調回路170の前段に位置する当該誤差発生回路169では、Q情報Dqの信号と{ΔG1・sin(Δθ1)}の信号とを乗算器161により乗算して当該乗算結果とI情報Diの信号とを加算器162により加算した結果{Di+Dq・ΔG1・sin(Δθ1)}が、位相誤差及び振幅誤差の成分が付与されたI情報Diiの信号として直交変調回路170へ出力され、また、Q情報Dqの信号と{ΔG1・cos(Δθ1)}の信号とを乗算器163により乗算した結果{Dq・ΔG1・cos(Δθ1)}が、位相誤差及び振幅誤差の成分が付与されたQ情報Dqqの信号として直交変調回路170へ出力される。この場合、直交変調回路170では、入力されるI情報Diiの信号及びQ情報Dqqの信号から、上記式3に示したのと同様な直交変調波S(t)が生成される。
【0064】
図5(c)には、上記図5(b)に示したのと同様に、理想的な直交変調回路182の一例と、ベースバンドに変換した位相誤差及び振幅誤差を発生する回路(誤差発生回路)183の一例を示してあるとともに、位相誤差及び振幅誤差を補正する回路(誤差補正回路)184の一例を示してある。
【0065】
ここで、当該直交変調回路182では、発振器177と2つのミキサ178、180と位相シフタ179と加算器181により、上記式1に示したのと同様に、理想的な直交変調が行われる。
また、当該誤差発生回路183では、2つの乗算器174、176と加算器175により、上記図5(b)に示した誤差発生回路169と同様に、位相誤差及び振幅誤差を発生する。
【0066】
また、当該誤差発生回路183の前段に位置する当該誤差補正回路184では、Q情報Dqの信号と{−sin(Δθ1)/cos(Δθ1)}の信号とを乗算器171により乗算して当該乗算結果とI情報Diの信号とを加算器172により加算した結果{Di−Dq・sin(Δθ1)/cos(Δθ1)}が、補正後のI情報Dicの信号として誤差発生回路183へ出力され、また、Q情報Dqの信号と[1/{ΔG1・cos(Δθ1)}]の信号とを乗算器173により乗算した結果[Dq/{ΔG1・cos(Δθ1)}]が、補正後のQ情報Dqcとして誤差発生回路183へ出力される。
【0067】
この場合、誤差発生回路183では、入力される補正後のI情報Dicの信号及び補正後のQ情報Dqcの信号から、補正後であって且つ位相誤差及び振幅誤差が発生したI情報Diiiの信号として元のI情報Diと等しい情報の信号が生成されて直交変調回路182へ出力されるとともに、補正後であって且つ位相誤差及び振幅誤差が発生したQ情報Dqqqの信号として元のQ情報Dqと等しい情報の信号が生成されて直交変調回路182へ出力される。
そして、直交変調回路182では、入力されるI情報Diiiの信号及びQ情報Dqqqの信号から、上記式1に示したのと同様に、位相誤差や振幅誤差の無い理想的な直交変調波Sc(t)が生成される。
【0068】
また、ここでは、厳密な数式の計算に基づく理想的な位相誤差及び振幅誤差の補正処理を示したが、実用上では、例えば、位相のずれΔθ1の値が小さい場合には、cos(Δθ1)はおよそ1となる(cos(Δθ1)〜1)ため、誤差補正回路184による補正後のI情報Dic=Di−Dq・sin(Δθ1)となるとともに、誤差補正回路184による補正後のQ情報Dqc=Dq/ΔG1となるような回路構成を用いることも可能である。本例では、当該回路構成を用いて、直交変調信号に発生する位相誤差及び振幅誤差を補正する。
【0069】
次に、図6(a)(b)(c)を参照して、直交復調回路により生成される直交復調信号に発生する位相誤差や振幅誤差を補正する処理の原理を説明する。
本例では、直交復調回路による処理を数式により表す場合における一般的な方法として、I相成分に対応するローカル周波数信号をcos(ω2・t)で表し、Q相成分に対応するローカル周波数信号をsin(ω2・t)で表す。
なお、ω2は角周波数を表し、tは時刻を表す。
【0070】
まず、理想的な直交復調回路により直交変調信号Sr(t)={Di・cos(ω2・t)+Dq・sin(ω2・t)}から直交復調波(直交復調信号)のI情報Dipの信号及びQ情報Dqpの信号が生成される場合には、当該理想的な直交復調波のI情報Dip及びQ情報Dqpは式4により表される。ここで、直交復調回路では、直交変調信号Sr(t)がそれぞれのミキサに入力されて互いに90度の位相差を有するローカル周波数信号により検波が行われ、その後、例えば低周波通過フィルタ(LPF:Low Pass Filter)により高調波が除去されて、ベースバンド信号としてI情報Dirrの信号及びQ情報Dqrrの信号が得られる。
【0071】
【数4】
Figure 2004363757
【0072】
しかしながら、ローカル周波数信号が高い場合や、ソフトウエア無線機のようにローカル周波数が広帯域に変化するような場合には、上記した90度の位相差を正確に実現することが困難である。また、ミキサの変換損失のばらつきや、ベースバンドの増幅器利得(アンプゲイン)のばらつきなどに起因して、振幅にもずれが生じてしまう。
【0073】
図6(a)には、Q相成分のローカル周波数信号sin(ω2・t)にΔθ2の位相誤差が発生するとともにQ相成分にΔG2を乗算する振幅誤差が発生する直交復調回路196の一例を示してある。
当該直交復調回路196では、発振器191から発振されるI相成分のローカル周波数信号cos(ω2・t)と直交変調信号Sr(t)とがミキサ192により混合されるとともに、発振器191から発振されるI相成分のローカル周波数信号cos(ω2・t)が位相シフタ193により(90°+Δθ2)だけ移相されて生成されるQ相成分のローカル周波数信号sin(ω2・t+Δθ2)と直交変調信号Sr(t)とがミキサ194により混合される。また、当該ミキサ194による混合結果に対して乗算器195によりΔG2が乗算されるのと同等な振幅誤差が発生し、当該乗算結果が直交復調信号のQ情報Dqoの信号として出力され、I相成分のミキサ192による混合結果が直交復調信号のI情報Dioの信号として出力される。
【0074】
このような位相誤差及び振幅誤差が存在する場合における直交復調信号のI情報Dio及びQ情報Dqoは式5により表される。
【0075】
【数5】
Figure 2004363757
【0076】
また、sin(ω2・t+Δθ2)=sin(ω2・t)・cos(Δθ2)+cos(ω2・t)・sin(Δθ2)となることから、上記式5は式6のように変形される。式6は、直交復調回路の位相誤差や振幅誤差は、ベースバンドの誤差へ変換することが可能であることを示す。
【0077】
【数6】
Figure 2004363757
【0078】
図6(b)には、上記図6(a)に示した回路と等価な回路として、理想的な直交復調回路210の一例と、上記図6(a)において直交復調信号に発生する位相誤差及び振幅誤差をベースバンドのものへ変換した位相誤差及び振幅誤差を発生する回路(誤差発生回路)209の一例を示してある。
ここで、当該直交復調回路210では、発振器201と2つのミキサ202、204と位相シフタ203により、上記式4に示したのと同様に、理想的な直交復調が行われる。
【0079】
また、当該直交復調回路210の後段に位置する当該誤差発生回路209では、I情報Dipの信号が、位相誤差及び振幅誤差の成分が付与されたI情報Dioの信号として出力され、また、Q情報Dqpの信号とcos(Δθ2)の信号とを乗算器205により乗算した結果とI情報Dipの信号とsin(Δθ2)の信号とを乗算器206により乗算した結果との加算器207による加算結果に対して乗算器208によりΔG2を乗算した結果[ΔG2・{Dip・sin(Δθ2)+Dqp・cos(Δθ2)}]が、位相誤差及び振幅誤差の成分が付与されたQ情報Dqoの信号として出力される。この場合、誤差発生回路209では、入力されるI情報Dipの信号及びQ情報Dqpの信号から、上記式6に示したのと同様なI情報Dio及びQ情報Dqoが生成される。
【0080】
図6(c)には、上記図6(b)に示したのと同様に、理想的な直交復調回路224の一例と、ベースバンドに変換した位相誤差及び振幅誤差を発生する回路(誤差発生回路)223の一例を示してあるとともに、位相誤差及び振幅誤差を補正する回路(誤差補正回路)222の一例を示してある。
【0081】
ここで、当該直交復調回路224では、発振器211と2つのミキサ212、214と位相シフタ213により、上記式4に示したのと同様に、理想的な直交変調が行われる。
また、当該誤差発生回路223では、3つの乗算器215、216、218と加算器217により、上記図6(b)に示した誤差発生回路209と同様に、位相誤差及び振幅誤差を発生する。
【0082】
また、当該誤差発生回路223の後段に位置する当該誤差補正回路222では、I情報Dioの信号が、補正後のI情報Dieとして出力され、また、Q情報Dqoの信号と[1/{ΔG2・cos(Δθ2)}]の信号とを乗算器219により乗算した結果とI情報Dioの信号と{−sin(Δθ2)/cos(Δθ2)}の信号とを乗算器220により乗算した結果との加算器221による加算結果[−Dio・{sin(Δθ2)/cos(Δθ2)}+Dqo/{ΔG2・cos(Δθ2)}]=Dqpが、補正後のQ情報Dqeとして出力される。
【0083】
このように、当該誤差補正回路222では、入力される誤差が発生したI情報Dioの信号及び誤差が発生したQ情報Dqoの信号から、補正後のI情報Die及びQ情報Dqeの信号として、元のI情報Di及びQ情報Dqと等しい情報の信号が取得される。
【0084】
また、ここでは、厳密な数式の計算に基づく理想的な位相誤差及び振幅誤差の補正処理を示したが、実用上では、例えば、位相のずれΔθ2の値が小さい場合には、cos(Δθ2)はおよそ1となる(cos(Δθ2)〜1)ため、誤差補正回路222による補正後のI情報Die=Dioとなるとともに、誤差補正回路222による補正後のQ情報Dqe={−Dio・sin(Δθ2)+Dqo/ΔG2}となるような回路構成を用いることも可能である。本例では、当該回路構成を用いて、直交復調信号に発生する位相誤差及び振幅誤差を補正する。
【0085】
図7(a)、(b)、(c)には、直交変調回路或いは直交復調回路に位相誤差や振幅誤差が存在する場合におけるQPSK方式のコンステレーションの例を示してある。
同図(a)には、理想的な場合におけるコンステレーションの一例を示してある。
同図(a)の例では、I−Q平面において、第1象限の座標(Di、Dq)=(+1、+1)に位置するシンボル点と、第2象限の座標(Di、Dq)=(−1、+1)に位置するシンボル点と、第3象限の座標(Di、Dq)=(−1、−1)に位置するシンボル点と、第4象限の座標(Di、Dq)=(+1、−1)に位置するシンボル点を示してある。
【0086】
同図(b)には、Δθ1或いはΔθ2=10度(°)の位相誤差が存在する場合におけるコンステレーションの一例を示してある。
同図の例では、I−Q平面において、座標(Di、Dq)=(+1、+1)であってシンボル点が第1象限に位置する場合や座標(Di、Dq)=(−1、−1)であってシンボル点が第3象限に位置する場合には誤差を受けた|Di|の値が理想的な|Di|の値と比べて大きくなり、一方、座標(Di、Dq)=(−1、+1)であってシンボル点が第2象限に位置する場合や座標(Di、Dq)=(+1、−1)であってシンボル点が第4象限に位置する場合には誤差を受けた|Di|の値が理想的な|Di|の値と比べて小さくなる。
なお、|X|は、Xの絶対値を表す。
【0087】
同図(c)には、ΔG1或いはΔG2=1dBの振幅誤差が存在する場合におけるコンステレーションの一例を示してある。
同図の例では、I−Q平面において、4つの全てのシンボル点の場合について、誤差を受けた|Dq|の値が理想的な|Dq|の値と比べて大きくなる。
【0088】
このように、直交変調信号や直交復調信号に位相誤差や振幅誤差が存在しない場合には直交復調後のI情報Di及び直交復調後のQ情報Dqのコンステレーションの形状は正方形となり、直交変調信号や直交復調信号に位相誤差が存在する場合には当該形状はひし形となり、直交変調信号や直交復調信号に振幅誤差が存在する場合には当該形状は長方形となる。
【0089】
次に、本実施例に係る直交変復調装置を設けた無線通信装置を説明する。
本例の無線通信装置では、高周波数である無線周波数(RF:Radio Frequency)帯の信号を広帯域にわたって直交変調や直交復調する場合を示す。
図1には、本例の無線通信装置の構成例を示してある。
本例の無線通信装置には、送信部1と、受信部2と、スイッチ(SW)3と、アンテナ4が備えられている。
【0090】
送信部1には、直交信号発生回路11と、直交変調誤差補正回路12と、2つのD/A(Digital to Analog)変換器13、14と、2つの低周波通過フィルタ(LPF)15、16と、発振器17と、位相誤差や振幅誤差が発生する直交変調回路18が備えられている。
受信部2には、発振器21と、位相誤差や振幅誤差が発生する直交復調回路22と、2つの低周波通過フィルタ(LPF)23、24と、2つのA/D(Analog to Digital)変換器25、26と、直交復調誤差検出補正回路27と、サンプリング回路28と、識別回路29と、遅延回路30と、直交変調誤差検出回路31が備えられている。
【0091】
本例の無線通信装置により行われる概略的な動作の一例を示す。
送信部1では、直交信号発生回路11がI情報Di及びQ情報Dqを発生させて、直交変調誤差補正回路12と遅延回路30へ出力する。また、直交信号発生回路11が、I情報Di及びQ情報Dqを発生させるタイミングであるシンボルのタイミングに関する情報(タイミング情報)を遅延回路30へ出力する。
【0092】
直交変調誤差補正回路12は、直交変調誤差検出回路31から入力される位相誤差情報及び振幅誤差情報に基づいて、直交信号発生回路11から入力されるI情報Di及びQ情報Dqに対して直交変調における位相誤差や振幅誤差の補正を行い、当該補正後のI情報Dic及びQ情報Dqcをそれぞれに対応したD/A変換器13、14へ出力する。
【0093】
一方のD/A変換器13は、入力されるI情報Dicをデジタル信号からアナログ信号へ変換して一方のLPF15へ出力する。
他方のD/A変換器14は、入力されるQ情報Dqcをデジタル信号からアナログ信号へ変換して他方のLPF16へ出力する。
一方のLPF15は、入力されるI情報Dicのアナログ信号をフィルタリングして直交変調回路18へ出力する。
他方のLPF16は、入力されるQ情報Dqcのアナログ信号をフィルタリングして直交変調回路18へ出力する。
【0094】
発振器17は、所定のローカル周波数(角周波数ω1)を有するローカル周波数信号を発生させて、直交変調回路18へ出力する。
直交変調回路18は、発振器17から入力されるローカル周波数信号に基づいて、2つのLPF15、16から入力されるI情報Dic及びQ情報Dqcのアナログ信号に対して直交変調を行い、これにより生成される直交変調信号をスイッチ3へ出力する。
【0095】
スイッチ3は、送信時には送信部1から入力される直交変調信号をアンテナ4へ出力し、受信時にはアンテナ4から入力される受信した直交変調信号を受信部2へ出力する。また、本例では、直交変調回路18や直交復調回路22の位相誤差や振幅誤差を検出及び補正する場合になどに、送信部1からの直交変調信号が受信部2に入力される構成となっている。
アンテナ4は、スイッチ3から入力される信号を無線により送信し、また、無線により受信した信号をスイッチ3へ出力する。
【0096】
受信部2では、発振器21が所定のローカル周波数(角周波数ω2)を有するローカル周波数信号を発生させて、直交復調回路22へ出力する。
直交復調回路22は、発振器21から入力されるローカル周波数信号に基づいて、スイッチ3を介して入力されるアナログ信号である直交変調信号に対して直交復調を行い、これにより生成される直交復調信号のI情報Dio及びQ情報Dqoをそれぞれに対応したLPF23、24へ出力する。
【0097】
一方のLPF23は、入力されるI情報Dioのアナログ信号をフィルタリングして一方のA/D変換器25へ出力する。
他方のLPF24は、入力されるQ情報Dqoのアナログ信号をフィルタリングして他方のA/D変換器26へ出力する。
一方のA/D変換器25は、入力されるI情報Dioのアナログ信号をデジタル信号へ変換して直交復調誤差検出補正回路27へ出力する。
他方のA/D変換器26は、入力されるQ情報Dqoのアナログ信号をデジタル信号へ変換して直交復調誤差検出補正回路27へ出力する。
【0098】
直交復調誤差検出補正回路27は、2つのA/D変換器25、26から入力されるI情報Dio及びQ情報Dqoに対して直交復調における位相誤差や振幅誤差の検出と補正を行い、当該補正後のI情報Die及びQ情報Dqeをサンプリング回路28へ出力する。
遅延回路30は、直交信号発生回路11から入力されるI情報Di及びQ情報Dqを遅延させて直交変調誤差検出回路31へ出力する。また、遅延回路30は、直交信号発生回路11から入力されるタイミング情報を遅延させてサンプリング回路28へ出力する。
【0099】
サンプリング回路28は、遅延回路30から入力されるタイミング情報に基づくタイミングで、直交復調誤差検出補正回路27から入力されるI情報Die及びQ情報Dqeをサンプリングし、当該サンプリングしたI情報Dir及びQ情報Dqrを識別回路29と直交変調誤差検出回路31へ出力する。なお、サンプリング回路28では、例えば、シンボルレートと同一の速度でシンボルタイミングに合わせてサンプリングが行われる。
識別回路29は、サンプリング回路28から入力されるI情報Dir及びQ情報Dqrに基づいてデータの値を識別する。
【0100】
直交変調誤差検出回路31は、遅延回路30から入力されるI情報Di及びQ情報Dqとサンプリング回路28から入力されるI情報Dir及びQ情報Dqrに基づいて、直交変調における位相誤差に関する情報(位相誤差情報)と振幅誤差に関する情報(振幅誤差情報)を検出し、検出した位相誤差情報及び振幅誤差情報を直交変調誤差補正回路12へ出力する。
【0101】
本例では、送信部1から送信した信号を折り返しで受信部2により受信し、位相誤差や振幅誤差がある直交変調回路18と直交復調回路22について同時に補正を行う。
また、本例では、誤差の補正を行っている期間における条件として、それぞれのローカルに入力する信号(ローカル周波数信号)の角周波数ω1及びω2がシンボルレートの1/1000程度ずれていることを必要とする。なお、このような条件における角周波数ω1、ω2とシンボルレートとの関係(当該ずれ)は、例えば、回路の時定数によりその程度が決定される。
【0102】
また、本例の無線通信装置では、TDD方式のように送信周波数と受信周波数とが同一である場合について説明するが、他の例として、FDD方式のように送信周波数と受信周波数とが違う場合においても、誤差の補正を行う期間だけ直交変調回路と直交復調回路で使用される角周波数がシンボルレートの1/1000程度のずれとなるように切り替えを行う構成を用いることが可能である。
【0103】
以下では、まず、直交変調回路18の誤差補正について説明し、次に、直交復調回路22の誤差補正について説明し、次いで、直交変調回路18と直交復調回路22との両方の誤差補正を同時に行うことについて説明する。
【0104】
まず、直交変調回路18の誤差補正について説明する。
直交変調回路18の誤差補正を行うために用いられる回路は、遅延回路30と直交変調誤差検出回路31と直交変調誤差補正回路12である。
本例の方式により誤差補正を行うときに用いる直交信号発生回路11からの信号は、QPSK方式の信号である。なお、誤差補正を行った後においては、直交信号発生回路11からの信号としてQPSK方式以外の信号が用いられてもよい。
【0105】
遅延回路30は、例えばシフトレジスタを用いて構成されており、直交信号発生回路11から出力されるI情報Di及びQ情報Dqが送信部1を通って受信部2により受信されてサンプリング回路28からの出力信号Dir、Dqrとなるまでの遅延時間分だけ、入力信号を遅らせて出力する。これにより、送信部1から送信したI情報Di及びQ情報Dqと受信部2により受信したI情報Dir及びQ情報Dqrから、直交変調回路18の位相誤差や振幅誤差を検出することが可能となる。
【0106】
ここで、上記図5(a)、(b)、(c)を参照して説明したように、例えば、位相のずれΔθ1の値が小さい場合にはcos(Δθ1)はおよそ1と近似することができ、補正後のI情報Dic=Di−Dq・sin(Δθ1)となり、補正後のQ情報Dqc=Dq/ΔG1となる。
また、振幅誤差が無い(つまり、ΔG1=1)とすると、補正後のI情報Dic及び補正後のQ情報Dqcは式7のように表される。
【0107】
【数7】
Figure 2004363757
【0108】
このため、−sin(Δθ1)を位相誤差検出回路により検出することにより、位相誤差補正回路により位相誤差を補正することが可能である。
また、位相誤差がある場合のコンステレーションは上記図7(b)に示したようになる。第1象限に位置する(Di、Dq)=(+1、+1)のときと第3象限に位置する(Di、Dq)=(−1、−1)のときには位相誤差のあるI情報|Dir|は位相誤差の無いI情報|Di|と比べて大きくなり、一方、第2象限に位置する(Di、Dq)=(−1、+1)のときと第4象限に位置する(Di、Dq)=(+1、−1)のときには位相誤差のあるI情報|Dir|は位相誤差の無いI情報|Di|と比べて小さくなる。
【0109】
つまり、位相誤差がある場合には、コンステレーションの形状がひし形になる。そこで、本例では、受信部2により受信したI情報Dir及びQ情報DqrのI−Q平面上における対角線の長さの比が1でない場合には位相誤差があると判断し、当該長さの比が1である場合には位相誤差が無いと判断する。
【0110】
図2(a)、(b)には、直交変調誤差検出回路31の構成例を示してある。
本例の直交変調誤差検出回路31は、同図(a)に示した位相誤差検出回路41と、同図(b)に示した振幅誤差検出回路42を有している。
直交変調誤差回路31に入力される送信信号Di、Dqや受信信号Dir、Dqrは、それぞれ、シンボルタイミングでサンプリングされた信号である。
【0111】
ここでは、図2(a)に示した位相誤差検出回路41により行われる動作の一例を示す。
位相誤差検出回路41には、2つの2乗器51、52と、加算器53と、XOR54と、値変換器55と、乗算器56と、積分器60を構成する加算器57及びD型のフリップフロップ58と、乗算器59が備えられている。
【0112】
位相誤差検出回路41では、サンプリング回路28によりサンプリングされたI情報Dirの信号が一方の2乗器51の入力端に入力され、サンプリング回路28によりサンプリングされたQ情報Dqrの信号が他方の2乗器52の入力端に入力され、送信I情報Diの信号が遅延回路30を介してXOR54の一方の入力端に入力され、送信Q情報Dqの信号が遅延回路30を介してXOR54の他方の入力端に入力される。
【0113】
一方の2乗器51は、入力されるI情報Dirの信号の絶対値を2乗して、当該2乗結果である|Dir|値の信号を加算器53へ出力する。
他方の2乗器52は、入力されるQ情報Dqrの信号の絶対値を2乗して、当該2乗結果である|Dqr|値の信号を加算器53へ出力する。
【0114】
加算器53は、一方の2乗器51から入力される信号と他方の2乗器52から入力される信号とを加算し、当該加算結果である(|Dir|+|Dqr|)値の信号を乗算器56へ出力する。
ここで、当該(|Dir|+|Dqr|)値は、I−Q平面において、サンプリング回路28によりサンプリングされるシンボル点の座標(Dir、Dqr)と原点(0、0)との距離の2乗値に相当する。
【0115】
XOR54は、2つの入力端の一方から送信I情報Diの信号を入力するとともに他方から送信Q情報Dqの信号を入力し、これら2つの入力信号の値Di、Dqに基づくXOR値である0値又は1値の信号を値変換器55へ出力する。一例として、XOR54は、送信I情報Di=+1であり且つ送信Q情報Dq=+1である場合や送信I情報Di=−1であり且つ送信Q情報Dq=−1である場合にXOR値として0値を出力し、送信I情報Di=−1であり且つ送信Q情報Dq=+1である場合や送信I情報Di=+1であり且つ送信Q情報Dq=−1である場合にXOR値として1値を出力する。
【0116】
これにより、本例では、I−Q平面において、直交変調前のシンボル点の座標(Di、Dq)が第1象限或いは第3象限に位置する場合にはXOR54から0値の信号が出力され、第2象限或いは第4象限に位置する場合にはXOR54から1値の信号が出力される。
【0117】
値変換器55は、XOR54から入力される信号の値が0値であるか或いは1値であるかに応じて、互いに正負(±)の極性が反転した信号を乗算器56へ出力する。本例では、値変換器55は、XOR54から入力される信号の値が0値である場合には+1値の信号を乗算器56へ出力し、XOR54から入力される信号の値が1値である場合には−1値の信号を乗算器56へ出力する。
【0118】
これにより、本例では、I−Q平面において、直交変調前のシンボル点の座標(Di、Dq)が第1象限或いは第3象限に位置する場合には値変換器55から+1値の信号が出力され、第2象限或いは第4象限に位置する場合には値変換器55から−1値の信号が出力される。
【0119】
乗算器56は、加算器53から入力される(|Dir|+|Dqr|)値の信号と、値変換器55から入力される+1値又は−1値の信号とを乗算し、当該乗算結果である+(|Dir|+|Dqr|)値又は−(|Dir|+|Dqr|)値の信号を加算器57へ出力する。
【0120】
これにより、本例では、I−Q平面において、直交変調前のシンボル点の座標(Di、Dq)が第1象限或いは第3象限に位置する場合には乗算器56から+(|Dir|+|Dqr|)値の信号が出力され、第2象限或いは第4象限に位置する場合には乗算器56から−(|Dir|+|Dqr|)値の信号が出力される。
【0121】
ここで、上記の回路構成51〜56を用いることにより、サンプリング回路28によりサンプリングされるI情報Dir及びQ情報DqrのI−Q平面における対角線の長さを比較することができる。
具体的には、例えば、上記図7(b)に示されるような四角形について、第1象限に存在する頂点と第3象限に存在する頂点とを結んだ線の長さと、第2象限に存在する頂点と第4象限に存在する頂点とを結んだ線の長さとを比較すればよく、この場合には(|Dir|+|Dqr|)値の平方根を計算することになるが、本例では、2つの対角線の長さが同一であるか否かを判定することができればよいため、(|Dir|+|Dqr|)値に正負(±)の極性を付与した値を乗算器56により生成している。
【0122】
本例では、サンプリング回路28によりサンプリングされるI情報Dir=Di+Dq・sin(Δθ1)であり、サンプリング回路28によりサンプリングされるQ情報Dqr=Dqであることから、例えば、シンボル点が第1象限に位置する場合には+[{1+1・sin(Δθ1)}+(1)]値の信号が乗算器56から出力され、シンボル点が第2象限に位置する場合には−[{−1+1・sin(Δθ1)}+(1)]値の信号が乗算器56から出力され、シンボル点が第3象限に位置する場合には+[{−1+(−1)・sin(Δθ1)}+(−1)]値の信号が乗算器56から出力され、シンボル点が第4象限に位置する場合には−[{1+(−1)・sin(Δθ1)}+(−1)]値の信号が乗算器56から出力される。
【0123】
加算器57は、乗算器56から入力される信号と、フリップフロップ58から入力される信号とを加算し、当該加算結果をフリップフロップ58へ出力する。
フリップフロップ58は、加算器57から入力される信号を、例えば加算器57における加算のタイミングを確保するために遅延させて、加算器57及び乗算器59へ出力する。
【0124】
これにより、積分器60では、乗算器56から入力される信号が加算器57により累積的に加算されていく。
例えば、第1象限に位置するシンボル点、第2象限に位置するシンボル点、第3象限に位置するシンボル点、第4象限に位置するシンボル点がそれぞれ1回ずつ送信される場合には、8・sin(Δθ1)の値の信号が積分器60のフリップフロップ58から乗算器59へ出力される。
【0125】
また、通常は、送信I情報Di及び送信Q情報Dqはランダムに送信されるとみなすことができるため、十分に長いシンボル数であるN個のシンボルを送信したときに積分器60から出力される信号の値は、8・sin(Δθ1)・(N/4)となる。
【0126】
乗算器59は、積分器60のフリップフロップ58から入力される信号と、例えば予め設定された定数A1の値の信号とを乗算し、当該乗算結果の信号を位相誤差情報の信号として直交変調誤差補正回路12の位相誤差補正回路へ出力する。
ここで、十分に長いシンボル数であるN個のシンボルを送信したときには、乗算器59から、8・sin(Δθ1)・(N/4)・A1の値の信号が位相誤差情報の信号として出力される。
そして、本例では、8・(N/4)・A1=−1となったときに、つまりN=−1/(2・A1)となったときに、位相誤差情報の信号の値が−sin(Δθ1)となり、直交変調誤差補正回路12の位相誤差補正回路において直交変調信号に発生する位相誤差が補正される。
【0127】
なお、本例では、上記図7(b)に示されるような四角形の2つの対角線の長さが同一となる(長さの比が1となる)ように制御するフィードバック方式を用いており、位相誤差Δθ1が打ち消されてゼロ(0)となるように制御するフィードバック方式を用いている。また、このようなフィードバック制御の時定数を決定する位相誤差補正制御時定数である定数A1としては、例えば、絶対値が1と比べて非常に小さく(|A1|<<1)且つ負(−)である定数値が用いられる。
【0128】
当該定数A1は、例えば、システムで要求される仕様に基づいて、シミュレーション等を行いながら、1より小さい負の値に決定される。通常は、当該定数A1の値を大きく設定すると、制御の収束は速くなるが制御が粗くなり、一方、当該定数A1の値を小さく設定すると、制御の収束は遅くなるが細かい制御が可能である。
【0129】
また、振幅誤差があり、位相誤差が無い(つまり、Δθ1=0)とすると、補正後のI情報Dic及び補正後のQ情報Dqcは式8のように表される。
【0130】
【数8】
Figure 2004363757
【0131】
振幅誤差がある場合のコンステレーションは上記図7(c)に示したようになる。
つまり、振幅誤差がある場合には、コンステレーションの形状が長方形になる。そこで、本例では、受信部2により受信したI情報Dir及びQ情報DqrのI−Q平面上における辺の長さの比が1でない場合には振幅誤差があると判断し、当該長さの比が1である場合には振幅誤差が無いと判断する。
このように、I相の辺の長さとQ相の辺の長さとの差や比を振幅誤差検出回路により検出することにより、振幅誤差補正回路により振幅誤差を補正することが可能である。
【0132】
ここでは、図2(b)に示した振幅誤差検出回路42により行われる動作の一例を示す。
振幅誤差検出回路42には、2つの値変換器61、62と、4つの乗算器63〜66と、4つの高周波通過フィルタ(HPF)67〜70と、4つの2乗器71〜74と、3つの加算器75〜77と、積分器82を構成する加算器78及びD型のフリップフロップ79と、乗算器80と、加算器81が備えられている。
【0133】
振幅誤差検出回路42では、サンプリング回路28によりサンプリングされたI情報Dirの信号が2つの乗算器63、65の入力端に入力され、サンプリング回路28によりサンプリングされたQ情報Dqrの信号が2つの乗算器64、66の入力端に入力され、送信I情報Diの信号が遅延回路30を介して一方の値変換器61の入力端に入力され、送信Q情報Dqの信号が遅延回路30を介して他方の値変換器62の入力端に入力される。
【0134】
一方の値変換器61は、入力されるI情報Diの信号の値(I情報Di値)を2つの乗算器63、64へ出力する。
他方の値変換器62は、入力されるQ情報Dqの信号の値(Q情報Dq値)を2つの乗算器65、66へ出力する。
【0135】
乗算器63は、入力されるI情報Dirの信号とI情報Di値とを乗算し、当該乗算結果の信号をHPF67へ出力する。
乗算器64は、入力されるQ情報Dqrの信号とI情報Di値とを乗算し、当該乗算結果の信号をHPF68へ出力する。
乗算器65は、入力されるI情報Dirの信号とQ情報Dq値とを乗算し、当該乗算結果の信号をHPF69へ出力する。
乗算器66は、入力されるQ情報Dqrの信号とQ情報Dq値とを乗算し、当該乗算結果の信号をHPF70へ出力する。
【0136】
HPF67は、乗算器63から入力される信号をフィルタリングして2乗器71へ出力する。
HPF68は、乗算器64から入力される信号をフィルタリングして2乗器72へ出力する。
HPF69は、乗算器65から入力される信号をフィルタリングして2乗器73へ出力する。
HPF70は、乗算器66から入力される信号をフィルタリングして2乗器74へ出力する。
【0137】
2乗器71は、HPF67から入力される信号の絶対値を2乗し、当該2乗結果の信号を加算器75へ出力する。
2乗器72は、HPF68から入力される信号の絶対値を2乗し、当該2乗結果の信号を加算器75へ出力する。
2乗器73は、HPF69から入力される信号の絶対値を2乗し、当該2乗結果の信号を加算器76へ出力する。
2乗器74は、HPF70から入力される信号の絶対値を2乗し、当該2乗結果の信号を加算器76へ出力する。
【0138】
加算器75は、2つの2乗器71、72から入力される信号を加算し、当該加算結果の信号を加算器77へ出力する。
加算器76は、2つの2乗器73、74から入力される信号を加算し、当該加算結果の信号を加算器77へ出力する。
加算器77は、2つの加算器75、76から入力される信号を逆相で加算し、具体的には、加算器75からの入力信号から加算器76からの入力信号を減算するように加算を行い、当該加算結果を加算器78へ出力する。
【0139】
ここで、上記した回路構成61〜77を用いることにより、I相の辺の長さとQ相の辺の長さを比較することができる。
具体的には、加算器76からの出力としてI相の辺の長さの2乗値を得ることができる。つまり、受信したI情報Dir及びQ情報Dqrに対して直交変調前のQ情報Dqを乗算した結果としては、シンボル点が第1象限にある場合には(I相の乗算結果、Q相の乗算結果)=(+1、+ΔG1)×(+1)=(+1、+ΔG1)が得られ、シンボル点が第2象限にある場合には(I相の乗算結果、Q相の乗算結果)=(−1、+ΔG1)×(+1)=(−1、+ΔG1)が得られ、シンボル点が第3象限にある場合には(I相の乗算結果、Q相の乗算結果)=(−1、−ΔG1)×(−1)=(+1、+ΔG1)が得られ、シンボル点が第4象限にある場合には(I相の乗算結果、Q相の乗算結果)=(+1、−ΔG1)×(−1)=(−1、+ΔG1)が得られる。
【0140】
このように、I相の辺の長さについては、I相の乗算結果が+1値と−1値とで変動する一方、Q相の乗算結果が常に一定値+ΔG1となる。
このため、I相の乗算結果をHPF69に通すと出力が+1又は−1となって、絶対値をとることによりI相の辺の長さを得ることができる。また、Q相の乗算結果をHPF70に通すと出力が0となる。
なお、本例では、I相の辺の長さとQ相の辺の長さとが違うことが判定可能であればよいため、絶対値の代わりに2乗器73による2乗値を用いている。
【0141】
同様に、加算器75からの出力としてQ相の辺の長さの2乗値を得ることができる。つまり、受信したI情報Dir及びQ情報Dqrに対して直交変調前のI情報Diを乗算した結果としては、シンボル点が第1象限にある場合には(I相の乗算結果、Q相の乗算結果)=(+1、+ΔG1)×(+1)=(+1、+ΔG1)が得られ、シンボル点が第2象限にある場合には(I相の乗算結果、Q相の乗算結果)=(−1、+ΔG1)×(−1)=(+1、−ΔG1)が得られ、シンボル点が第3象限にある場合には(I相の乗算結果、Q相の乗算結果)=(−1、−ΔG1)×(−1)=(+1、+ΔG1)が得られ、シンボル点が第4象限にある場合には(I相の乗算結果、Q相の乗算結果)=(+1、−ΔG1)×(+1)=(+1、−ΔG1)が得られる。
【0142】
このように、Q相の辺の長さについては、I相の乗算結果が常に一定値+1となる一方、Q相の乗算結果が+ΔG1と−ΔG1とで変動する。
このため、I相の乗算結果をHPF67に通すと出力が0となる。また、Q相の乗算結果をHPF68に通すと出力が+ΔG1又は−ΔG1となって、絶対値をとることによりQ相の辺の長さを得ることができる。
なお、本例では、I相の辺の長さとQ相の辺の長さとが違うことが判定可能であればよいため、絶対値の代わりに2乗器72による2乗値を用いている。
【0143】
すると、加算器77からは、Q相の辺の長さの2乗値からI相の辺の長さの2乗値を減算した結果の値(ΔG1−1)の信号が出力される。
加算器78は、加算器77から入力される信号と、フリップフロップ79から入力される信号とを加算し、当該加算結果をフリップフロップ79へ出力する。
フリップフロップ79は、加算器78から入力される信号を、例えば加算器78における加算のタイミングを確保するために遅延させて、加算器78及び乗算器80へ出力する。
これにより、積分器82では、加算器77から入力される信号が加算器78により累積的に加算されていく。
【0144】
乗算器80は、積分器82のフリップフロップ79から入力される信号と、例えば予め設定された定数A2の値の信号とを乗算し、当該乗算結果の信号を加算器81へ出力する。
加算器81は、乗算器80から入力される信号に基準となる1を加算し、当該加算結果の信号を振幅誤差情報の信号として直交変調誤差補正回路12の振幅誤差補正回路へ出力する。
【0145】
ここで、十分に長いシンボル数であるN個のシンボルを送信したときには、加算器81から、(ΔG1−1)・N・A2+1の値の信号が振幅誤差情報の信号として出力される。
そして、本例では、フィードバック制御により振幅誤差の補正が行われて安定して、I相の辺の長さとQ相の辺の長さとの差が無くなると、ΔG1=1となることから(ΔG1−1)=0となって、積分器82への入力が0となる。この場合、振幅誤差情報の信号の値は{1/(補正前の振幅誤差ΔG1)}に安定し、これにより、直交変調誤差補正回路12の振幅誤差補正回路において直交変調信号に発生する振幅誤差が補正される。
【0146】
なお、本例では、上記図7(c)に示されるような四角形の2つ(縦と横)の辺の長さが同一となる(長さの比が1となる)ように制御するフィードバック方式を用いており、振幅誤差ΔG1が打ち消されて1となるように制御するフィードバック方式を用いている。
また、定数A2は、例えば、システムで要求される仕様に基づいて、シミュレーション等を行いながら、適当な値に決定される。通常は、当該定数A2の値を大きく設定すると、制御の収束は速くなるが制御が粗くなり、一方、当該定数A2の値を小さく設定すると、制御の収束は遅くなるが細かい制御が可能である。
【0147】
図3には、直交変調誤差補正回路12の構成例を示してある。
本例の直交変調誤差補正回路12は、位相誤差補正回路91と振幅誤差補正回路92を直列に接続して構成されている。
位相誤差補正回路91には、乗算器101と、加算器102が備えられている。
【0148】
位相誤差補正回路91では、送信I情報Diの信号が直交信号発生回路11から加算器102に入力され、送信Q情報Dqの信号が直交信号発生回路11から乗算器101に入力される。また、直交変調誤差検出回路31の位相誤差検出回路41から出力される位相誤差情報の信号が乗算器101に入力される。
また、位相誤差補正回路91では、直交信号発生回路11から入力される送信Q情報Dqの信号を、そのまま、補正後のQ情報Dq’の信号として振幅誤差補正回路92へ出力する。
【0149】
乗算器101は、直交信号発生回路11から入力される送信Q情報Dqの信号と、位相誤差検出回路41から入力される位相誤差情報の信号とを乗算し、当該乗算結果の信号を加算器102へ出力する。
加算器102は、直交変調回路11から入力される送信I情報Diの信号と、乗算器101から入力される信号とを加算し、当該加算結果の信号を補正後のI情報Di’の信号として振幅誤差補正回路92へ出力する。
【0150】
ここで、振幅誤差を省略して位相誤差について考えると、位相誤差検出回路41から乗算器101に入力される位相誤差情報の信号の値が−sin(Δθ1)となった場合には、補正後のI情報Di’=Di−Dq・sin(Δθ1)となり、補正後のQ情報Dq’=Dqとなる。そして、この場合には、上記図5(c)を参照して説明したように、直交変調回路18により直交変調信号が生成されるに際して発生する位相誤差が、位相誤差補正回路91により予め与えられた補正により打ち消されて、無くなる。
【0151】
振幅誤差補正回路92には、乗算器103が備えられている。
振幅誤差補正回路92では、位相誤差補正回路91により位相誤差の補正が行われたI情報Di’の信号が入力されて、そのまま、補正後のI情報Dicの信号として一方のD/A変換器13へ出力される。
また、振幅誤差補正回路92では、位相誤差補正回路91により位相誤差の補正が行われたQ情報Dq’の信号が乗算器103に入力される。また、直交変調誤差検出回路31の振幅誤差検出回路42から出力される振幅誤差情報の信号が乗算器103に入力される。
【0152】
乗算器103は、位相誤差補正回路91から入力されるQ情報Dq’の信号と、振幅誤差検出回路42から入力される振幅誤差情報の信号とを乗算し、当該乗算結果の信号を補正後のQ情報Dqcの信号として他方のD/A変換器14へ出力する。
【0153】
ここで、位相誤差を省略して振幅誤差について考えると、振幅誤差検出回路42から乗算器103に入力される振幅誤差情報の信号の値が(1/ΔG1)となった場合には、補正後のI情報Dic=Di’となり、補正後のQ情報Dqc=Dq’/ΔG1となる。そして、この場合には、上記図5(c)を参照して説明したように、直交変調回路18により直交変調信号が生成されるに際して発生する振幅誤差が、振幅誤差補正回路92により予め与えられた補正により打ち消されて、無くなる。
【0154】
ここで、上記では、位相誤差補正回路91による位相誤差の補正と振幅誤差補正回路92による振幅誤差の補正をそれぞれ説明したが、本例の直交変調誤差補正回路12では、これら両方の回路91、92を組み合わせることにより、直交変調回路18における位相誤差と振幅誤差との両方を補正することができる。
【0155】
次に、直交復調回路22の誤差補正について説明する。
図4(a)には、直交復調誤差検出補正回路27の構成例を示してある。
直交復調誤差検出補正回路27は、位相誤差検出補正回路111と振幅誤差検出補正回路112を直列に接続して構成されている。
位相誤差検出補正回路111には、乗算器121と、加算器122と、乗算器123と、積分器124と、乗算器125が備えられている。
振幅誤差検出補正回路112には、乗算器131と、2つの絶対値器132、133と、加算器134と、積分器135と、乗算器136と、加算器137が備えられている。
【0156】
また、図4(b)には、上記した積分器124、135として用いることが可能な積分器143の構成例を示してある。
同図(b)に示した積分器143は、加算器141とD型のフリップフロップ142を用いて構成されており、入力信号とフリップフロップ142からの出力信号とを加算器141により加算した結果を当該フリップフロップ142に入力することにより、当該フリップフロップ142からの出力信号を積分結果として取得する。
【0157】
ここで、直交復調誤差検出補正回路27により位相誤差や振幅誤差を補正する基本的な原理は、例えば、直交変調の場合と同様である。
本例の直交復調誤差検出補正回路27では、シンボルレートの2倍や4倍などの速度でサンプリングしたI情報Dio及びQ情報Dqoの信号を入力して処理を行う。本例の直交復調誤差検出補正回路27では、シンボルタイミングの再生は行わないことから、直交復調された信号がサンプリングされるタイミングは把握されないが、シンボルレートの2倍(以上)で処理を行う場合には、直交復調回路22の位相誤差や振幅誤差を検出することが可能である。
【0158】
上記図6(a)、(b)、(c)を参照して示したように、例えば、位相のずれΔθ2の値が小さい場合には、cos(Δθ2)はおよそ1と近似することができ、補正後のI情報Dio’=Dioとなり、補正後のQ情報Dqo’={−Dio・sin(Δθ2)+Dqo/ΔG2}となる。
また、振幅誤差が無い(つまり、ΔG2=1)とすると、補正後のI情報Dio’及び補正後のQ情報Dqo’は式9のように表される。
【0159】
【数9】
Figure 2004363757
【0160】
本例の位相誤差検出補正回路111は、上記式9に示される位相誤差の補正が行われる構成となっている。
位相誤差検出補正回路111により行われる動作の一例を示す。
位相誤差検出補正回路111では、一方のA/D変換器25から入力されるI情報Dioの信号が、2つの乗算器121、123に入力されるとともに、そのまま、補正後のI情報Dio’の信号として振幅誤差検出補正回路112へ出力される。
また、位相誤差検出補正回路111では、他方のA/D変換器26から入力されるQ情報Dqoの信号が加算器122に入力される。
【0161】
乗算器121は、入力されるI情報Dioの信号と後述する乗算器125から入力される信号とを乗算し、当該乗算結果の信号を加算器122へ出力する。
加算器122は、入力されるQ情報Dqoと乗算器121から入力される信号とを加算し、当該加算結果の信号を、乗算器123に入力するとともに、そのまま、補正後のQ情報Dqo’として振幅誤差検出補正回路112へ出力する。
【0162】
乗算器123は、入力されるI情報Dioの信号と加算器122から入力される信号とを乗算し、当該乗算結果の信号を積分器124へ出力する。
積分器124は、乗算器123から入力される信号を順次積分していき、当該積分結果の信号を乗算器125へ出力する。
乗算器125は、積分器124から入力される信号と例えば予め設定された定数A3の値の信号とを乗算し、当該乗算結果を乗算器121へ出力する。
【0163】
ここで、乗算器123では、補正後のI情報Dio’の信号と補正後のQ情報Dqo’の信号とを乗算している。このため、当該乗算結果は、補正後のI情報Dio’と補正後のQ情報Dqo’とが同一の符号(±)である場合には正の値となり、異なる符号(±)である場合には負の値となる。つまり、シンボル点が第1象限や第3象限に位置する場合には当該乗算結果は正の値となり、シンボル点が第2象限や第4象限に位置する場合には当該乗算結果は負の値となる。
【0164】
具体的に、仮にシンボル点でサンプリングしたとして、乗算器123に入力される位相誤差のあるI情報Dio=Di、位相誤差のあるQ情報Dqo=Di・sin(Δθ2)+Dqと表すと、シンボル点が第1象限に位置する場合には(+1)・{(+1)・sin(Δθ2)+(+1)}=1+sin(Δθ2)値の信号が積分器124に入力され、シンボル点が第2象限に位置する場合には(−1)・{(−1)・sin(Δθ2)+(+1)}=−1+sin(Δθ2)値の信号が積分器124に入力され、シンボル点が第3象限に位置する場合には(−1)・{(−1)・sin(Δθ2)+(−1)}=1+sin(Δθ2)値の信号が積分器124に入力され、シンボル点が第4象限に位置する場合には(+1)・{(+1)・sin(Δθ2)+(−1)}=−1+sin(Δθ2)値の信号が積分器124に入力される。
【0165】
また、通常は、送信I情報Di及び送信Q情報Dqはランダムに送信されるとみなすことができるため、十分に長いシンボル数であるN個のシンボルを送信したときに積分器124から出力される信号の値は、±1値の部分が平均化されてゼロ(0)となることにより、N・sin(Δθ2)となる。
すると、乗算器125から出力される信号の値は、A3・N・sin(Δθ2)となる。
【0166】
そして、A3・N=−1となると、乗算器125から出力される位相誤差情報の値が−sin(Δθ2)となり、加算器122から出力される補正後のQ情報Dqo’=−Dio・sin(Δθ2)+Dqoとなることから、直交復調信号に発生する位相誤差が補正される。
【0167】
なお、本例では、上記図7(b)に示されるような四角形の2つの対角線の長さが同一となる(長さの比が1となる)ように制御するフィードバック方式を用いており、位相誤差Δθ2が打ち消されてゼロ(0)となるように制御するフィードバック方式を用いている。また、このようなフィードバック制御の時定数を決定する位相誤差補正制御時定数である定数A3としては、例えば、絶対値が1と比べて非常に小さく(|A3|<<1)且つ負(−)である定数値が用いられる。
【0168】
当該定数A3は、例えば、システムで要求される仕様に基づいて、シミュレーション等を行いながら、1より小さい負の値に決定される。通常は、当該定数A3の値を大きく設定すると、制御の収束は速くなるが制御が粗くなり、一方、当該定数A3の値を小さく設定すると、制御の収束は遅くなるが細かい制御が可能である。
【0169】
また、上記図6(a)、(b)、(c)を参照して示したように、例えば、位相誤差が無い(つまり、Δθ2=0)とすると、補正後のI情報Die及び補正後のQ情報Dqeは式10のように表される。
【0170】
【数10】
Figure 2004363757
【0171】
本例の振幅誤差検出補正回路112は、上記式10に示される振幅誤差の補正が行われる構成となっている。
振幅誤差検出補正回路112により行われる動作の一例を示す。
振幅誤差検出補正回路112では、位相誤差検出補正回路111から入力されるI情報Dio’の信号が、絶対値器132に入力されるとともに、そのまま、補正後のI情報Dieの信号としてサンプリング回路28へ出力される。
また、位相誤差検出補正回路111では、位相誤差検出補正回路111から入力されるQ情報Dqo’の信号が乗算器131に入力される。
【0172】
乗算器131は、入力されるQ情報Dqo’の信号と後述する加算器137から入力される信号とを乗算し、当該乗算結果の信号を、絶対値器133へ出力するとともに、そのまま、補正後のQ情報Dqeの信号としてサンプリング回路28へ出力する。
【0173】
一方の絶対値器132は、入力されるI情報Dieの信号の絶対値|Die|を加算器134へ出力する。
他方の絶対値器133は、入力されるQ情報Dqeの信号の絶対値|Dqe|を加算器134へ出力する。
加算器134は、2つの絶対値器132、133から入力される信号を逆相で加算し、具体的には、一方の絶対値器132からの入力信号から他方の絶対値器133からの入力信号を減算するように加算を行い、当該加算結果を積分器135へ出力する。
【0174】
積分器135は、加算器134から入力される信号を順次積分していき、当該積分結果の信号を乗算器136へ出力する。
乗算器136は、積分器135から入力される信号と例えば予め設定された定数A4の値の信号とを乗算し、当該乗算結果を加算器137へ出力する。
加算器137は、乗算器136から入力される信号と1値の信号とを加算し、当該加算結果の信号を乗算器131へ出力する。
【0175】
ここで、加算器134では、補正後のI情報Dieの信号の絶対値と補正後のQ情報Dqeの信号の絶対値との差を算出しており、これにより、I相の辺の長さとQ相の辺の長さとの違い(例えば、比)が得られる。
具体的に、仮にシンボル点でサンプリングしたとして、2つの絶対値器132、133に入力される振幅誤差のあるI情報Dio’=Di、振幅誤差のあるQ情報Dqo’=ΔG2・Dqと表すと、加算器134から出力される信号の値は(1−ΔG2)となる。
【0176】
また、通常は、送信I情報Di及び送信Q情報Dqはランダムに送信されるとみなすことができ、十分に長いシンボル数であるN個のシンボルを送信したときに積分器135から出力される信号の値は、N・(1−ΔG2)となる。
すると、乗算器136から出力される信号の値は、A4・N・(1−ΔG2)となり、加算器137から出力される振幅誤差情報の信号の値は、{A4・N・(1−ΔG2)+1}となる。
【0177】
そして、本例では、フィードバック制御により振幅誤差の補正が行われて安定して、I相の辺の長さとQ相の辺の長さとの差が無くなると、ΔG2=1となることから(1−ΔG2)=0となって、積分器135への入力が0となる。この場合、振幅誤差情報の信号の値は{1/(補正前の振幅誤差ΔG2)}に安定し、これにより、直交復調信号に発生する振幅誤差が補正される。
【0178】
なお、本例では、上記図7(c)に示されるような四角形の2つ(縦と横)の辺の長さが同一となる(長さの比が1となる)ように制御するフィードバック方式を用いており、振幅誤差ΔG2が打ち消されて1となるように制御するフィードバック方式を用いている。
また、定数A4は、例えば、システムで要求される仕様に基づいて、シミュレーション等を行いながら、適当な値に決定される。通常は、当該定数A4の値を大きく設定すると、制御の収束は速くなるが制御が粗くなり、一方、当該定数A4の値を小さく設定すると、制御の収束は遅くなるが細かい制御が可能である。
【0179】
次いで、直交変調回路18と直交復調回路22との両方の誤差補正を同時に行うことについて説明する。
このときの条件は、直交変調回路18で使用されるローカル周波数信号の角周波数ω1と直交復調回路22で使用されるローカル周波数信号の角周波数ω2とが僅かにずれていることである。フィードバック制御の時定数としては、これら2つの角周波数の差|ω1−ω2|から求められる周波数の逆数(時間)と比べて十分に長い時定数が必要になる。
【0180】
上記した2つの角周波数ω1、ω2にずれがある場合、直交復調誤差検出補正回路27に入力される信号Dio、Dqoは、角周波数|ω1−ω2|の速度で回転しているように見える。
当該信号Dio、Dqoは、シンボルレートの2倍や4倍などの速度でサンプリングされているため、回転していても不都合は無い。更に、当該回転によって直交変調回路18の位相誤差及び振幅誤差のI相とQ相の関係が逆になり、当該回転の速度に対して十分に長い時定数でフィードバック制御を行うことにより、直交変調回路18の位相誤差及び振幅誤差は、平均化されて、直交復調誤差検出補正回路27により検出することができない。
【0181】
このため、本例では、直交変調回路18における位相や振幅の誤差と、直交復調回路22における位相や振幅の誤差を分離することができ、これにより、同時に、直交変調回路18における位相や振幅の誤差と直交復調回路22における位相や振幅の誤差をそれぞれ補正することができる。
【0182】
以上のように、本例の直交変復調装置を設けた無線通信装置では、位相誤差や振幅誤差が発生する直交変調回路18や直交復調回路22について、送信側では受信側の直交変調誤差検出回路31により検出した誤差情報に基づいて直交変調回路18における位相や振幅の誤差を直交変調誤差補正回路12により補正することができ、また、受信側では直交復調誤差検出補正回路27により直交復調回路22における位相や振幅の誤差を検出して補正することができ、また、直交変調に係る誤差と直交復調に係る誤差を同時に補正することができる。
【0183】
従って、本例の直交変復調装置を設けた無線通信装置では、例えば、高い周波数の信号や広帯域の周波数の信号を処理するような場合においても、位相誤差や振幅誤差による影響が少ない直交変調や直交復調を実現することができ、これにより、通信におけるエラーレートを改善することが可能であり、品質の良い通信を行うことが可能となる。
【0184】
また、本例の直交変復調装置を設けた無線通信装置では、例えば、高い周波数で広帯域にわたって直交変調や直交復調を行うような場合においても、簡易で実用的な構成により、直交変調信号や直交復調信号における位相誤差や振幅誤差に関する情報を検出してこれらの誤差を補正して、精度のよい直交変調や直交復調を実現することができる。
【0185】
なお、本例の無線通信装置に設けられた直交変復調装置では、直交変調回路18や発振器17により或いはその周辺の回路を含めて直交変調部が構成されており、直交復調回路22や発振器21により或いはその周辺の回路を含めて直交復調部が構成されている。
【0186】
また、本例の直交変調位相誤差検出回路41では、2つの2乗器51、52と加算器53から2乗和値生成回路が構成されており、XOR54と値変換器55と乗算器56から正負反転極性付与回路が構成されており、加算器57とフリップフロップ58から加算回路が構成されており、乗算器59から所定値乗算回路が構成されている。
【0187】
また、本例の直交変調振幅誤差検出回路42では、2つの値変換器61、62と4つの乗算器63〜66と4つのHPF67〜70と4つの2乗器71〜74と3つの加算器75〜77から差生成回路が構成されており、加算器78とフリップフロップ79から加算回路が構成されており、乗算器80から所定値乗算回路が構成されており、加算器81から1値加算回路が構成されている。
【0188】
また、本例の直交復調位相誤差検出補正回路111では、加算器122から位相誤差補正値加算回路が構成されており、乗算器123から乗算回路が構成されており、積分器124から加算回路が構成されており、乗算器125から所定値乗算回路が構成されており、乗算器121から位相誤差補正値生成回路が構成されている。
【0189】
また、本例の直交復調振幅誤差検出補正回路112では、乗算器131から振幅誤差補正値乗算回路が構成されており、2つの絶対値器132、133と加算器134から差生成回路が構成されており、積分器135から加算回路が構成されており、乗算器136から所定値乗算回路が構成されており、加算器137から1値加算回路が構成されている。
【0190】
ここで、本発明に係る直交変復調装置や通信装置などの構成としては、必ずしも以上に示したものに限られず、種々な構成が用いられてもよい。なお、本発明は、例えば本発明に係る処理を実行する方法或いは方式や、このような方法や方式を実現するためのプログラムなどとして提供することも可能である。
また、本発明の適用分野としては、必ずしも以上に示したものに限られず、本発明は、種々な分野に適用することが可能なものである。
【0191】
また、本発明に係る直交変復調装置や通信装置などにおいて行われる各種の処理としては、例えばプロセッサやメモリ等を備えたハードウエア資源においてプロセッサがROM(Read Only Memory)に格納された制御プログラムを実行することにより制御される構成が用いられてもよく、また、例えば当該処理を実行するための各機能手段が独立したハードウエア回路として構成されてもよい。
また、本発明は上記の制御プログラムを格納したフロッピー(登録商標)ディスクやCD(Compact Disc)−ROM等のコンピュータにより読み取り可能な記録媒体や当該プログラム(自体)として把握することもでき、当該制御プログラムを記録媒体からコンピュータに入力してプロセッサに実行させることにより、本発明に係る処理を遂行させることができる。
【0192】
【発明の効果】
以上説明したように、本発明に係る直交変復調装置や通信装置では、例えば高い周波数で広帯域にわたって直交変調や直交復調を行うような場合においても、直交変調信号や直交復調信号における位相誤差や振幅誤差を補正して、精度のよい直交変調や直交復調を実現することができ、また、直交変調信号における位相誤差や振幅誤差と直交復調信号における位相誤差や振幅誤差を同時に補正することが可能であり、精度のよい誤差補正を効率的に行うことができる。
【図面の簡単な説明】
【図1】本発明の実施例に係る無線通信装置の構成例を示す図である。
【図2】直交変調誤差検出回路の構成例を示す図である。
【図3】直交変調誤差補正回路の構成例を示す図である。
【図4】直交復調誤差検出補正回路の構成例を示す図である。
【図5】直交変調回路において発生する誤差を補正する処理の原理を説明するための図である。
【図6】直交復調回路において発生する誤差を補正する処理の原理を説明するための図である。
【図7】QPSKのコンステレーションの例を示す図である。
【符号の説明】
1・・送信部、 2・・受信部、 3・・スイッチ、 4・・アンテナ、
11・・直交信号発生回路、 12・・直交変調誤差補正回路、
13、14・・D/A変換器、 15、16、23、24・・LPF、
17、21、151、164、177、191、201、211・・発振器、
18、157、170、182・・直交変調回路、
22、196、210、224・・直交復調回路、
25、26・・A/D変換器、 27・・直交復調誤差検出補正回路、
28・・サンプリング回路、 29・・識別回路、 30・・遅延回路、
31・・直交変調誤差検出回路、 41・・位相誤差検出回路、
42・・振幅誤差検出回路、 51、52、71〜74・・2乗器、
53、57、75〜78、81、102、122、134、137、141、156、162、168、172、175、181、207、217、221・・加算器、
54・・XOR、 55、61、62・・値変換器、
56、59、63〜66、80、101、103、121、123、125、131、136、155、161、163、171、173、174、176、195、205、206、208、215、216、218〜220・・乗算器、
58、79、142・・フリップフロップ、
60、82、124、135、143・・積分器、 67〜70・・HPF、
91・・位相誤差補正回路、 92・・振幅誤差補正回路、
111・・位相誤差検出補正回路、 112・・振幅誤差検出補正回路、
132、133・・絶対値器、
152、154、165、167、178、180、192、194、202、204、212、214・・ミキサ、
153、166、179、193、203、213・・位相シフタ、
169、183、209、223・・誤差発生回路、
184、222・・誤差補正回路、

Claims (1)

  1. 直交変調回路によりI情報及びQ情報から直交変調信号を生成する直交変調部と、直交復調回路により直交変調信号から直交復調信号のI情報及びQ情報を生成する直交復調部を設けた直交変復調装置において、
    直交変調回路により生成される直交変調信号に発生する位相誤差に関する情報を検出する直交変調位相誤差検出回路と、直交変調位相誤差検出回路により検出される位相誤差に関する情報に基づいて直交変調回路による直交変調前のI情報Di及びQ情報Dqに対して補正を行う直交変調位相誤差補正回路と、直交変調回路により生成される直交変調信号に発生する振幅誤差に関する情報を検出する直交変調振幅誤差検出回路と、直交変調振幅誤差検出回路により検出される振幅誤差に関する情報に基づいて直交変調回路による直交変調前のI情報Di及びQ情報Dqに対して補正を行う直交変調振幅誤差補正回路と、を備え、
    直交変調位相誤差検出回路は、直交復調回路により直交変調信号から生成される直交復調信号のI情報Dix及びQ情報Dqxから(Dix+Dqx)値を生成する2乗和値生成回路と、直交変調回路による直交変調前のI情報Di及びQ情報DqのI−Q平面上における座標が第1象限或いは第3象限に位置する場合と第2象限或いは第4象限に位置する場合とで互いに正負が反転した極性を2乗和値生成回路により生成される(Dix+Dqx)値に対して与える正負反転極性付与回路と、正負反転極性付与回路により生成される値を加算する加算回路と、加算回路により生成される値に対して所定の値A1を乗算する所定値乗算回路とを用いて構成され、所定値乗算回路により生成される値を位相誤差に関する情報として検出し、
    直交変調位相誤差補正回路は、直交変調回路による直交変調前のI情報Di及びQ情報Dqのうちの一方の情報を補正後の一方の情報とするとともに、一方の情報と直交変調位相誤差検出回路により検出される位相誤差に関する情報とを乗算した結果を他方の情報と加算した結果を補正後の他方の情報とし、
    直交変調振幅誤差検出回路は、直交復調回路により直交変調信号から生成される直交復調信号のQ情報Dqxと直交変調回路による直交変調前のI情報Diとを乗算した結果の変動成分と直交復調回路により直交変調信号から生成される直交復調信号のI情報Dixと直交変調回路による直交変調前のQ情報Dqとを乗算した結果の変動成分とで絶対値の差又は2乗値の差に関する値を生成する差生成回路と、差生成回路により生成される値を加算する加算回路と、加算回路により生成される値に対して所定の値A2を乗算する所定値乗算回路と、所定値乗算回路により生成される値に1値を加算する1値加算回路とを用いて構成され、1値加算回路により生成される値を振幅誤差に関する情報として検出し、
    直交変調振幅誤差補正回路は、直交変調回路による直交変調前のI情報Di及びQ情報Dqのうちの一方の情報と直交変調振幅誤差検出回路により検出される振幅誤差に関する情報とを乗算した結果を補正後の一方の情報とするとともに、他方の情報を補正後の他方の情報とする、
    ことを特徴とする直交変復調装置。
JP2003157693A 2003-06-03 2003-06-03 直交変復調装置 Expired - Fee Related JP4184870B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157693A JP4184870B2 (ja) 2003-06-03 2003-06-03 直交変復調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157693A JP4184870B2 (ja) 2003-06-03 2003-06-03 直交変復調装置

Publications (2)

Publication Number Publication Date
JP2004363757A true JP2004363757A (ja) 2004-12-24
JP4184870B2 JP4184870B2 (ja) 2008-11-19

Family

ID=34051323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157693A Expired - Fee Related JP4184870B2 (ja) 2003-06-03 2003-06-03 直交変復調装置

Country Status (1)

Country Link
JP (1) JP4184870B2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100114A1 (ja) * 2006-03-01 2007-09-07 Hitachi Kokusai Electric Inc. 送信機及びキャリアリーク検出方法
JP2008104065A (ja) * 2006-10-20 2008-05-01 Advantest Corp 検出装置、アナログ変調回路、及び試験装置
JPWO2006132118A1 (ja) * 2005-06-09 2009-01-08 松下電器産業株式会社 振幅誤差補償装置及び直交度誤差補償装置
WO2012035733A1 (ja) * 2010-09-13 2012-03-22 パナソニック株式会社 通信装置及び直交誤差補正方法
US8184740B2 (en) 2006-04-21 2012-05-22 Nec Corporation Signal processing circuit
US8285508B2 (en) 2007-07-10 2012-10-09 Nec Corporation Signal processing apparatus and signal processing method
JP2012231546A (ja) * 2007-09-14 2012-11-22 Fujitsu Ltd 振幅不均衡観測装置及びそれらを用いる装置
US8385458B2 (en) 2006-08-08 2013-02-26 Nec Corporation Signal processing circuit and signal processing method
US9231523B2 (en) 2013-03-22 2016-01-05 Fujitsu Limited Modulating device and modulation method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006132118A1 (ja) * 2005-06-09 2009-01-08 松下電器産業株式会社 振幅誤差補償装置及び直交度誤差補償装置
JP2010136399A (ja) * 2005-06-09 2010-06-17 Panasonic Corp 振幅誤差補償装置及び直交度誤差補償装置
JP4495210B2 (ja) * 2005-06-09 2010-06-30 パナソニック株式会社 振幅誤差補償装置及び直交度誤差補償装置
US8090036B2 (en) 2006-03-01 2012-01-03 Hitachi Kokusai Electric Inc. Transmitter and carrier leak detection method
WO2007100114A1 (ja) * 2006-03-01 2007-09-07 Hitachi Kokusai Electric Inc. 送信機及びキャリアリーク検出方法
US8184740B2 (en) 2006-04-21 2012-05-22 Nec Corporation Signal processing circuit
US8385458B2 (en) 2006-08-08 2013-02-26 Nec Corporation Signal processing circuit and signal processing method
JP2008104065A (ja) * 2006-10-20 2008-05-01 Advantest Corp 検出装置、アナログ変調回路、及び試験装置
US8285508B2 (en) 2007-07-10 2012-10-09 Nec Corporation Signal processing apparatus and signal processing method
JP2012231546A (ja) * 2007-09-14 2012-11-22 Fujitsu Ltd 振幅不均衡観測装置及びそれらを用いる装置
US8762086B2 (en) 2007-09-14 2014-06-24 Fujitsu Limited Phase imbalance monitoring apparatus, amplitude imbalance monitoring apparatus, and apparatus using the same
JP2012060569A (ja) * 2010-09-13 2012-03-22 Panasonic Corp 通信装置及び直交誤差補正方法
WO2012035733A1 (ja) * 2010-09-13 2012-03-22 パナソニック株式会社 通信装置及び直交誤差補正方法
US8929426B2 (en) 2010-09-13 2015-01-06 Panasonic Corporation Communication device and orthogonal-error correction method
US9231523B2 (en) 2013-03-22 2016-01-05 Fujitsu Limited Modulating device and modulation method

Also Published As

Publication number Publication date
JP4184870B2 (ja) 2008-11-19

Similar Documents

Publication Publication Date Title
US9270390B2 (en) Frequency and phase offset compensation of modulated signals with symbol timing recovery
EP2238725B1 (en) I/Q imbalance estimation and correction in a communication system
JP4773318B2 (ja) ダイレクトコンバージョン復調器のローカル周波数信号検出回路
JP2002319987A (ja) 位相検出回路および受信機
CN106911604B (zh) 中频调制信号的解调方法及装置
JP4184870B2 (ja) 直交変復調装置
CN107547458B (zh) Iq调制中镜像抑制参数的设置方法、装置及射频拉远单元
JP2011146979A (ja) 送信装置、無線通信装置及び送信方法
US8174310B2 (en) Quadrature modulation demodulation circuit
JP2004274288A (ja) 直交変調装置
JP2746781B2 (ja) 移相器
JP4738604B2 (ja) 復調装置及び復調方法
JP4214635B2 (ja) ディジタル無線装置
JP2004241886A (ja) 周波数制御回路、及びそれを用いた無線送受信装置とその周波数制御方法
JP4463063B2 (ja) 復調回路及び復調方法
JP3873078B2 (ja) タイミング抽出装置及び方法並びにそのタイミング抽出装置を備えた復調装置
JP2006186581A (ja) 直交復調誤差補償方法および直交復調誤差補償回路
JP4698331B2 (ja) 送信装置
WO2018157798A1 (zh) 一种矢量毫米波的产生方法及装置、计算机存储介质
JP4098745B2 (ja) ディジタル復調器
JP6902259B2 (ja) 測定装置及び測定方法
JP2018064223A (ja) 衛星放送受信装置
JP2001217886A (ja) 移相器
JP4458549B2 (ja) 受信装置
JP2004179805A (ja) 周波数制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4184870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees