JP2004349056A - Anode material for lithium secondary battery and its manufacturing method - Google Patents

Anode material for lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2004349056A
JP2004349056A JP2003143258A JP2003143258A JP2004349056A JP 2004349056 A JP2004349056 A JP 2004349056A JP 2003143258 A JP2003143258 A JP 2003143258A JP 2003143258 A JP2003143258 A JP 2003143258A JP 2004349056 A JP2004349056 A JP 2004349056A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
secondary battery
lithium secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143258A
Other languages
Japanese (ja)
Inventor
Tatsuo Umeno
達夫 梅野
Takashi Iwao
孝士 岩尾
Yoshinori Yasumoto
義徳 安元
Kenji Fukuda
憲二 福田
Tadanori Tsunawake
忠則 綱分
Kohei Murayama
孝平 村山
Jugo Sumitomo
十五 住友
Yoichiro Hara
陽一郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Original Assignee
Mitsui Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd filed Critical Mitsui Mining Co Ltd
Priority to JP2003143258A priority Critical patent/JP2004349056A/en
Publication of JP2004349056A publication Critical patent/JP2004349056A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode material for a lithium secondary battery, and its manufacturing method, capable of exhibiting excellent conductivity and cycle characteristics when it is used for the lithium secondary battery. <P>SOLUTION: The anode material for the lithium secondary battery comprises an active material nucleus containing metal or semimetal capable of forming a lithium alloy and a plurality of carbon fibers with their one end combined with a surface of the anode material nucleus. The anode material can be manufactured by adding catalyst in adhesion on the surface of the active material nucleus containing metal or semimetal capable of forming a lithium alloy and applying chemical deposition treatment thereon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、活物質核と、その表面にその一端を結合した炭素繊維とからなるリチウム二次電池用負極材料及びその製造方法に関する。更に詳しく述べれば、本発明は、大容量かつ安全性に優れ、また充放電サイクル特性に優れたリチウム二次電池用負極材料及びその製造方法に関する。
【0002】
【従来の技術】
電子機器の小型軽量化に伴い、それに用いる電池の高エネルギー化が要求されている。また、省資源の面からも、繰り返し充放電が可能で高性能な二次電池の開発が要求されている。
【0003】
このような要求に応えるため、リチウム二次電池が開発され、その改良が続けられている。リチウム二次電池は、電解質の種類によって、リチウムイオン二次電池、リチウムポリマー二次電池、全固体リチウム二次電池等に分類される。現在最も広く実用化されているのはリチウムイオン二次電池である。
【0004】
リチウムイオン二次電池の負極には、集電体の表面に負極材料を少量の結着剤を用いて密着させ、薄い負極材層を形成させたものが通常用いられる。
【0005】
また、リチウム二次電池の負極材料には、炭素又は黒鉛が広く用いられている。更に高容量が得られるリチウム二次電池用の負極材料として金属又は半金属のリチウム合金を用いることが提案されている。
【0006】
金属又は半金属のリチウム合金としては、例えば、リチウム錫合金、リチウム鉛合金、リチウムビスマス合金、リチウムアルミニウム合金、リチウム砒素合金、リチウム珪素合金、リチウムアンチモン合金等が挙げられる。
【0007】
これらの合金は、リチウムと合金形成可能な金属又は半金属を負極材料に用いて電池を組み立て、この電池に充電することにより電池内に形成される。即ち、負極材料として用いている金属又は半金属は、充電時に正極から放出されるリチウムと電気化学的に反応してリチウム合金となる。これらのリチウム合金を負極の活物質とすることにより、理論的には、重量的にも容積的にも高容量の二次電池とすることができる。
【0008】
しかしながら合金化に伴い負極の体積が合金化前の数倍にも膨張するため、負極が粉化するという問題がある。このため、リチウム二次電池の安全性やサイクル特性が不十分となる。
【0009】
この問題に対して、リチウム合金を形成する金属又は半金属の表面を炭素で被覆した、複合材料の発明(特許文献1)が提案されている。即ち、リチウム合金を形成する金属又は半金属の粒子を核とし、化学蒸着法を用いて核の表面に炭素を蒸着させると、核粒子と炭素被覆層からなる二重構造の複合材料が得られる。この複合材料をリチウムイオン二次電池の負極に用いると、核の外表面を覆う炭素被覆層の強い拘束力によって、合金形成による核の膨張を抑制でき、電極の粉化、破壊を防止することができる。
【0010】
また、上記電極の粉化、破壊の問題を解決するために、リチウム合金を形成する金属又は半金属の微細粒子と炭素粒子とが結合してなる多孔性粒子を核とし、上記と同様に核の表面に炭素被覆層を形成した複合材料の発明(特許文献2)が提案されている。
【0011】
この複合材料をリチウムイオン二次電池の負極に用いると、核内の金属又は半金属が微細粒子であるためリチウムイオンの挿入と合金化が均一化される。また、炭素粒子と結合することにより導電性が向上し、充放電速度を向上させることができる。また、核を多孔性にすることによって、金属又は半金属がリチウム合金に変化する際の体積膨張を核内の金属又は半金属の微細粒子及び炭素粒子間の空隙で吸収することができる。従って、核内における膨張の吸収と、外表面の炭素被覆層による強い拘束力の両方の作用によって電極の粉化、破壊を防止することができる。
【0012】
上記二つの発明により、リチウム合金を活物質とする負極材料は著しく改良された。しかしながら、これらの負極材料を負極に用いるリチウム二次電池は、いずれの負極材料もサイクル特性が悪いという欠点がある。即ち、これらの負極材料を用いたリチウム二次電池では、充放電に伴い個々の活物質核が膨張と収縮を繰り返すため、活物質核同士の間に隙間を生じる。この結果、負極材層全体の導電性が低下して次第に充放電容量が低下する。
【0013】
この導電性が低下する問題に対して、負極材料に導電材を添加することが行われている。添加する導電材には、銀粒子、黒鉛微粒子、繊維径が小さい炭素繊維等が用いられる。
【0014】
繊維径が小さい炭素繊維は、例えば、炭素ウイスカー又は黒鉛ウイスカーと呼ばれているもので、その製造方法から気相成長炭素繊維とも呼ばれているものである。しかしながら、気相成長炭素繊維は製造コストが高い問題がある上、比重や形状の異なる活物質核とウイスカーとを単に混合するだけでは粒子とウイスカーとを均一に混合させることは困難である。
【0015】
【特許文献1】
特開2000−215887号公報(特許請求の範囲)
【特許文献2】
特開2002−216751号公報(特許請求の範囲)
【0016】
【解決しようとする課題】
本発明者等は、リチウム二次電池の負極に用いる際に従来の問題を解消でき、良好なサイクル特性が得られる負極材料を得ることを課題として研究を重ねた。その結果、負極材料に用いる活物質核の表面に結合したウイスカー状の炭素繊維を生成させる方法を見出した。そして、活物質核に炭素繊維を結合させた負極材料をリチウム二次電池の負極に用いることにより、負極材料間の導電性を著しく向上させることができ、しかもサイクル特性に優れた高容量のリチウム二次電池を得ることができることを見出し本発明を完成するに至った。
【0017】
【課題を解決するための手段】
上記課題を解決する本発明は以下に記載するものである。
【0018】
[1] リチウム合金を形成しうる金属又は半金属を含む活物質核と、該活物質核の表面にその一端を結合した複数の炭素繊維とからなることを特徴とするリチウム二次電池用負極材料。
【0019】
[2] 活物質核が複数の活物質粒子を含む[1]に記載のリチウム二次電池用負極材料。
【0020】
[3] 活物質核が炭素粒子又は黒鉛粒子を含む[1]又は[2]に記載のリチウム二次電池用負極材料。
【0021】
[4] 炭素繊維の繊維径が1μm以下である[1]に記載のリチウム二次電池用負極材料。
【0022】
[5] 活物質核がその表面に炭素被覆層を有する[1]乃至[4]の何れか1に記載のリチウム二次電池用負極材料。
【0023】
[6] リチウム合金を形成しうる金属又は半金属が珪素である[1]乃至[5]の何れか1に記載のリチウム二次電池用負極材料。
【0024】
[7] 活物質核と、その表面にその一端を結合した複数の炭素繊維とからなるリチウム二次電池用負極材料の製造方法において、リチウム合金を形成しうる金属又は半金属を含む活物質核の表面に触媒を添着させ、次いで化学蒸着処理をすることを特徴とするリチウム二次電池用負極材料の製造方法。
【0025】
[8] 触媒が、1種以上の遷移金属元素化合物又は1種以上の遷移金属元素化合物とアルミニウム元素化合物とを含む[7]に記載のリチウム二次電池用負極材料の製造方法。
【0026】
[9] 遷移金属元素化合物の遷移金属元素が、Ni、Fe及びCoよりなる群から選ばれる少なくとも1種である[8]に記載のリチウム二次電池用負極材料の製造方法。
【0027】
[10] 化学蒸着処理を600〜1200℃の温度範囲で行う[7]乃至[9]の何れか1に記載のリチウム二次電池用負極材料の製造方法。
【0028】
[11] 化学蒸着処理において、活物質核の表面にその一端を結合した複数の炭素繊維の形成と、活物質核の表面に炭素被覆層の形成とを行う[7]乃至[10]の何れか1に記載のリチウム二次電池用負極材料の製造方法。
【0029】
[12] [1]乃至[6]の何れか1に記載のリチウム二次電池用負極材料を用いたリチウム二次電池。
【0030】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0031】
本発明のリチウム二次電池用負極材料(以下、単に『負極材料』ということがある)は、図3にその一例を示すようにリチウム合金を形成しうる金属又は半金属を含む活物質核30と、該活物質核30の表面にその一端32を結合した複数の炭素繊維34からなる。炭素繊維34の他端36は、大部分が自由端である。
【0032】
本発明の負極材料においては、炭素繊維が導電性の向上作用を示す。即ち、本発明においては、活物質核の表面に形成したウイスカー状の炭素繊維により活物質核30同士に導電性を付与する。本発明における負極材料は、例えば活物質核表面を走査型電子顕微鏡で観察した図1或は図2に示すように、活物質核表面に複数の炭素繊維が重なり合った状態で層状に存在しており、各炭素繊維の間は空間となっている。そして、活物質核の表面に炭素繊維の一端が到達している状態から、活物質核と炭素繊維との相互の結合を確認することができる。この結合した炭素繊維により本発明の負極材料は、高い導電性を示し、リチウム二次電池の負極材料として優れたものである。また、導電材として他の用途にも広く利用できる。
【0033】
リチウム合金を形成しうる金属又は半金属としては、Fe、Cu、Ag、Ti、Si、As、Sn、Sb、Pb等を挙げることができる。これらの金属又は半金属の中で、珪素(Si)は高温の処理に対して安定であり、かつ大きな放電容量を有するので最も好ましい。
【0034】
以下の説明では珪素を用いて負極材料を説明するが、他の金属又は半金属を用いる場合も同様である。
【0035】
本発明において、珪素は結晶質であっても非結晶質であってもよい。珪素の純度は高純度であるほど好ましいが、珪素の放電容量は極めて高容量であるために若干の不純物を含んでいても電池容量の減少は少ない。
【0036】
従って、珪素の純度は、工業的に安価に製造できる95質量%以上であれば充分である。不純物として、珪素の酸化物が含まれていても問題ない。即ち、二酸化珪素は電気化学的に不活性である。また一酸化珪素は還元されて珪素になる。
【0037】
しかしながら、不純物として塩素等のハロゲン系の化合物や、電気化学的に活性な金属等が含まれることは好ましくない。このような不純物が5質量%を超えて含まれると、充電電位の低下によるリチウムデンドライトの生成、或いは不可逆容量の増加などにより電池性能が著しく低下することがある。
【0038】
活物質核は、その内部に空隙を有する多孔性粒子であることが好ましい。空隙を有することにより、珪素とリチウムとの合金化による膨張を吸収する効果が得られ、活物質核の粉化を防ぐことができる。空隙率は、体積基準で5〜30%が好ましい。
【0039】
活物質核には、珪素と共に炭素を含ませることが好ましい。図4にその一例を示すように、活物質核40を微細な珪素粒子42と炭素粒子44との集合体で構成することにより、活物質核は多孔性になり、珪素の表面積が増加すると共に活物質核内の導電性が向上する。この結果、リチウムと珪素の合金化反応が活物質核内で短時間で、均一に行われ、リチウムイオンの挿入と排出が速くなる。従って、充放電速度を向上させることができる。尚、46は炭素繊維、48は空隙である。
【0040】
活物質核を珪素粒子と炭素粒子との集合体で構成する場合、珪素粒子の平均粒子径は0.1〜5μmが好ましく、特に0.1〜1μmが好ましい。珪素粒子の平均粒子径が0.1μmよりも小さくなると活物質核表面に炭素被覆層を化学蒸着する時に炭素と反応してSiCとなる珪素粒子の量が多くなるので好ましくない。一方、珪素粒子の平均粒子径が5μmよりも大きくなると、充電時に珪素粒子が割れて珪素粒子の表面積が大きくなり、リチウムの不可逆量が増大する原因となるので好ましくない。
【0041】
また、炭素粒子の平均粒子径は、上記の目的から珪素粒子と同程度とすることが好ましい。即ち、炭素粒子の平均粒子径は0.1〜5μmが好ましく、特に 0.1〜1μmが好ましい。
【0042】
活物質核に含有させる炭素粒子には、カーボンブラック、アセチレンブラック等の熱分解炭素、或いは黒鉛、熱焼成炭素、木炭等のように一度750℃以上の熱履歴を持つものが好ましい。
【0043】
有機物や石炭のように熱履歴を持たない炭素粒子は、上記珪素と炭素からなる多孔性の活物質核を製造する過程で揮発成分が発生し、また、炭素粒子が大きく成長するので好ましくない。
【0044】
炭素粒子の純度は、炭素含有量として92質量%以上が好ましく、98質量%以上であることが特に好ましい。炭素粒子の純度が高いと導電性が高くなる。
【0045】
また、珪素粒子と炭素粒子との混合割合については、珪素粒子の割合を多くするほど電池容量が大きくなり、炭素粒子の割合を多くするほど活物質核内の導電性が高くなる。この結果、最も好ましい珪素粒子の含有割合は40〜90質量%であり、最も好ましい炭素粒子の割合は10〜60質量%である。
【0046】
珪素粒子及び炭素粒子を含む活物質核の製造方法としては、珪素原料及び炭素原料の混合物に衝撃的な圧縮力を加えて微粉砕すると同時に、微粉砕した複数のこれら粒子を圧着して造粒する粉砕圧着法が好ましい。
【0047】
この方法では粉砕圧着を、遊星ミル、振動ボールミル、ロッドミル、大型のボールミル等の一般的な粉砕機を用いて行うことができる。
【0048】
粉砕圧着法で処理することにより、珪素粒子と炭素粒子が1μm以下に粉砕されて互いに細かく分散し合うと共に、10体積%以上の空隙を有する多孔性の粒子になる。
【0049】
活物質核50は、図5にその一例を示すように、その表面に炭素被覆層52を有することが好ましい。炭素被覆層52を形成することにより、活物質核の膨張に対して拘束力を与えることができる。即ち、珪素とリチウムとの合金化に伴う膨張を抑制することにより、負極の粉化、破壊を防止することができる。尚、54は炭素繊維である。
【0050】
被覆層炭素の結晶性に関しては、導電性を高める意味では結晶性が高いことが好ましい。しかしながら、結晶性が高くなり過ぎると被覆層の強度が低下し、膨張に対する拘束力が低下する。従って、被覆炭素の結晶性は格子定数Co(002)が0.68〜0.72nmの範囲であることが好ましい。
【0051】
活物質核の表面に炭素被覆層を形成させる方法としては、攪拌機を備えた反応炉を用いて、活物質核を加熱した状態で、有機物質を不活性ガスと共に系内に導入する化学蒸着処理が優れている。
【0052】
化学蒸着処理の炭素源として使用する有機物には、ベンゼン、トルエン、キシレン、スチレン等の芳香族炭化水素や、メタン、エタン、プロパン等の脂肪族炭化水素を用いることができる。
【0053】
混合ガス中における有機物質のモル濃度は、1〜80%が好ましく、25〜60%がより好ましい。化学蒸着処理を行う温度は、700〜1200℃が好ましく、850〜1100℃がより好ましい。
【0054】
活物質核中の被覆層炭素の割合は5〜60質量%とすることが好ましい。
【0055】
活物質核の平均粒子径は、0.1〜50μmが好ましく、特に1〜30μmが好ましい。活物質核の平均粒子径が0.1μmよりも小さくなると表面積が大きくなり過ぎ、前述の炭素被覆層を形成する場合には被覆炭素量が多くなり過ぎるので好ましくない。また、電池性能の観点からは、活物質核の表面積に比例して初期電流効率が低下する傾向がある。このため、活物質核の平均粒子径が0.1μmよりも小さいと初期電流効率が低下するので好ましくない。
【0056】
一方、活物質核の平均粒子径が50μmよりも大きくなると、負極の形成の際に負極材層の表面が滑らかにならず、集電体から剥離する等、塗膜不良の原因となりやすい。
【0057】
本発明において、活物質核の表面に炭素繊維層を形成させる方法は例えば下記の2つの工程からなる。即ち、活物質核の表面に触媒を添着する工程と、化学蒸着処理により炭素繊維を生成する工程である。
【0058】
活物質核の表面に添着する触媒としては、1種以上の遷移金属化合物が用いられる。この遷移金属化合物としては、Ni、Fe、Co等の化合物が好ましい。また、これらの遷移金属化合物にAl化合物を混合して用いることにより、一層高い触媒活性を得ることができる。
【0059】
触媒は可溶性の化合物が好ましい。このような化合物としては、遷移金属の塩酸塩、硫酸塩、硝酸塩、アンモニウム塩、有機錯体等が例示できる。
【0060】
活物質核表面に触媒を添着する方法としては、触媒となる金属の硫酸塩、硝酸塩、塩化物、有機金属化合物の水溶液、又は有機溶媒に溶解した溶液を用いて、上記水溶液または溶液中に活物質核を浸漬した後、活物質核を取り出し、乾燥する方法を例示できる。或は、活物質核表面に上記水溶液または溶液を塗布した後、乾燥することにより添着することができる。また、溶液の代わりに、酸化物のコロイド分散液を用いることもできる。
【0061】
また、後述する炭素繊維を生成させる化学蒸着処理工程の反応炉を利用して、上記水溶液等を塗布及び乾燥することにより活物質核表面へ触媒を添着することにより行うこともできる。即ち、反応炉を用いて活物質核を加熱した状態で、系内に触媒溶液を直接注入して熱処理することにより、塩又は錯体の分解と溶媒の蒸発を行い、触媒を活物質核に添着することができる。
【0062】
触媒の添着量は、活物質核に対して5〜0.01質量%で効果が発現する。しかし、負極材料中に含まれる金属の増加は好ましくないので、触媒の添加量は0.5〜0.05質量%が好ましい。
【0063】
活物質核表面へ炭素繊維を形成させる化学蒸着処理は、反応炉を用いて行うことができる。即ち、反応炉内で活物質核を加熱した状態にしておき、この反応炉内に有機物質を不活性ガスと共に導入して活物質核の表面に炭素繊維を成長させる。反応炉は、攪拌機を備えていることが好ましい。
【0064】
化学蒸着処理の炭素源として使用する有機物としては、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ジフェニル、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環ないし3環の芳香族炭化水素、又はその誘電体、或いはこれらの混合物を用いることができる。更に、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素やその誘電体であるアルコールも単独或いは混合物として用いることができる。また、アセチレン、エチレン、プロピレン、イソプロピレン、ブタジエン等の多重結合を有する有機化合物も用いることができる。
【0065】
トルエン等の芳香族化合物を用いる場合は、繊維径が大きくなる傾向がある。細いウイスカーを得るためには、アセチレン、メタン、エタン等の低分子量の化合物を使用することが好ましい。
【0066】
混合ガス中における有機物のモル濃度は用いる有機物によって調整する。例えば、ベンゼンやトルエン等の芳香族炭化水素を用いる場合は炭素繊維の径が大きくなりやすく、またスス状炭素を形成しやすい。従って、有機物濃度は低くすることが望ましく、具体的には25〜80モル%が好ましく、45〜60モル%がより好ましい。一方、メタンやアセチレン等の脂肪族炭化水素を用いる場合、得られる炭素繊維の径は細いので、濃度は限定されない。反応速度を高めるためには不活性ガスで希釈することなく、濃度100モル%のガスを用いる。
【0067】
化学蒸着を行う温度も用いる有機物によって調整する。例えば、ベンゼンやトルエン等の芳香族炭化水素を用いる場合の温度は、850〜1100℃が好ましく、この温度より低いと反応は進みにい。この温度より高い場合はススを発生しやすい。
【0068】
一方、メタン等の二重結合を有さない脂肪族炭化水素を用いる場合の温度は、900℃以上1200℃以下とすることが好ましい。これは芳香族炭化水素に比べ反応速度が小さいためである。
【0069】
また、エチレンやアセチレンは反応速度が大きいために、反応温度は600℃〜800℃とすることが好ましい。
【0070】
上記の化学蒸着処理により、活物質核の表面にその一端を結合させた炭素繊維を成長させることができるが、炭素繊維の生成と同時に炭素被覆層を形成させることが好ましい。通常、化学蒸着を開始すると活物質核表面上の触媒が添着した部分には炭素繊維が生成し、触媒の存在しない部分には炭素被覆層が形成されるが、炭素被覆層は次第に活物質核表面上を広がるので、粒子表面全体に炭素被覆層を形成させることもできる。この場合、活物質核表面を炭素被覆層が密着して覆い、その上を炭素繊維が重なり合って層状に覆う形態になる。
【0071】
炭素繊維の形成は導電性の向上を目的としているので、炭素繊維の結晶性は高いほど好ましい。また、炭素繊維の繊維径は小さいものが好ましく、特に1μm以下のいわゆるウイスカー状であることが好ましい。しかし、炭素繊維の繊維長、1個の活物質核に対する繊維の数、並びにその形態については、特に限定はない。
【0072】
例えば、繊維長が短い場合には、1個の活物質核が、その粒子に一端を結合した多数の短繊維で被覆されることになる場合もある。繊維長が長い場合には、その一端を結合した炭素繊維が活物質核の表面を被覆するように成長することもある。或は複数の粒子と接触するように成長することもある。
【0073】
形成する炭素繊維の量は、活物質核に対して0.5〜5質量%が好ましい。5質量%以下で十分な導電性を得ることができる。0.5質量%未満の場合は、充分な電導度が得られない。
【0074】
次に、上記負極材料を用いて負極を調整する方法の一例につき説明する。
【0075】
負極材料にバインダーを溶解した溶剤(例えば1−メチル−2−ピロリドン)を加えて十分に混練して、固体濃度40質量%以上の高濃度スラリーを調製する。次いで、このスラリーを、金属箔(銅箔等)の集電体にドクターブレード等を用いて、20〜100μmの厚みにコーティングする。更に、これを乾燥することにより、負極材料が集電体に密着され負極材層を作成することができる。負極材層は必要があれば、更に加圧することにより密着性を高め、かつ電極密度を高めることができる。
【0076】
バインダーには、各種のピッチ、ラバー、合成樹脂等の公知の材料が用いられる。これらの中で、ポリビニリデンフルオライド(PVDF)、水溶性のカルボキシメチルセルロース(CMC)、SBRラテックス等がバインダーとして最適である。負極材料とバインダーとの混合比(質量比)は、100:2〜100:20とすることが望ましい。
【0077】
本発明において、リチウムイオン二次電池に用いる正極材料は特に限定されないが、LiCoO、LiNiO、LiMn等や、これらの混合物が好ましい。粉末状の正極材料は、必要があれば導電材を加えて、バインダーを溶解した溶剤と十分に混練した後、集電体と共に成形する公知の技術で調製することができる。また、セパレーターについても特に限定はなく、ポリプロピレンやポリエチレン等の公知の材料を用いることができる。
【0078】
リチウムイオン二次電池の電解液用非水溶媒としては、リチウム塩を溶解できる非プロトン性低誘電率の公知の溶媒が用いられる。例えば、エチレンカーボネート、ジメチルカーボネート、ジエチレンカーボネイト、アセトニトリル、プロピオニトリル、テトラヒドロフラン、γ−プチロラクトン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジエトキシエタン、ジエチルエーテル、スルホラン、メチルスルホラン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の溶媒が、単独又は二種以上混合して用いられる。
【0079】
電解質として用いられるリチウム塩には、LiClO、LiAsF、LiPF、LiBF、LiB(C)、LiCl、LiBr、CHSOLi、CFSOLi等があり、これらの塩が単独で、或いは二種以上の塩を混合して用いられる。
【0080】
また、上記電解液と電解質をゲル化したゲル電解質や、ポリエチレンオキサイド、ポリアクリルニトリル等の高分子電解質などを用いてリチウムポリマー二次電池とすることもできる。更に、固体電解質を用いて、リチウム全固体二次電池とすることもできる。
【0081】
【実施例】
本発明について、実施例を挙げて更に詳しく説明する。尚、実施例に用いた各材料及びそれらの調製方法を以下に示す。また、各物性値は、以下の方法で測定した。
【0082】
[平均粒子径]
活物質核、珪素粒子及び黒鉛粒子の平均粒子径は、株式会社島津製作所製のレーザー回折式粒度測定装置SALD−200V型機により表面活性剤入り水分散系で測定した。
【0083】
[炭素繊維の繊維径]
炭素繊維の繊維径は、株式会社日立製作所製のS−4300型機で、FT−SEM(フーリエ変換走査型電子顕微鏡)により測定した。
【0084】
[実施例1]
シリコン粉末((株)高純度化学研究所製、平均粒子径1μm)10gに、硝酸ニッケル・6水和物(和光純薬工業(株)製、特級)0.5gをエタノール50mlに溶かした溶液を加え、卓上マグネチックスターラーで攪拌した後乾燥して、Niを1質量%担持したシリコン粒子を得た。
【0085】
このシリコン粒子を乳鉢で粉砕した後得られた微細シリコン凝集体を篩い分けし、45μm以下の凝集体粒子を試料とし、これを化学蒸着処理することにより負極材料を得た。
【0086】
化学蒸着処理は、電気炉に設置した石英管の中央に試料を置き、窒素気流下(6リットル/h)で反応温度を900℃とし、トルエン5g/h(20体積%)を1時間供給して化学蒸着処理を行い、本発明の負極材料を作成した。
【0087】
反応終了後のサンプル(負極材料)中に含まれる全炭素量は20質量%であった。また、サンプルを電子顕微鏡(SEM)で観察した結果を図1に示す。
【0088】
図1から明らかなように、活物質核の表面に炭素被覆層が形成されると共に、活物質核の表面を基点とした炭素繊維の成長が確認された。炭素繊維の繊維径は20〜100nmであり、繊維長の長い繊維であった。
【0089】
[実施例2]
化学蒸着処理の条件として、反応温度を700℃とし、トルエンの代わりにアセチレンガスを用いた(5リットル/h)以外は実施例1と同様にして負極材料を作成した。
【0090】
反応終了後のサンプル(負極材料)中に含まれる全炭素量は20質量%であった。また、サンプルを電子顕微鏡(SEM)で観察した結果を図2に示す。
【0091】
図2から明らかなように、実施例1と同様に、活物質核の表面に炭素被覆層が形成されると共に、活物質核の表面を基点とした炭素繊維の成長が観察された。炭素繊維径は20〜100nmであり、繊維長の長い繊維であった。
【0092】
[実施例3]
化学蒸着処理の条件として、反応温度を600℃とした以外は実施例2と同様にして負極材料を作成した。
【0093】
反応終了後のサンプル(負極材料)中に含まれる全炭素量は5質量%であった。また、サンプルを電子顕微鏡(SEM)で観察した結果、実施例2と同様に、活物質核の表面を基点とした炭素繊維の成長が観察された。
【0094】
[実施例4]
ニッケルの担持量を0.1質量%とした以外は、実施例1と同様にして負極材料を作成した。反応終了後のサンプル中に含まれる全炭素量は20質量%であった。また、サンプルを電子顕微鏡(SEM)で観察した結果、活物質核の表面に炭素被覆層が形成されると共に、活物質核の表面を基点とした炭素繊維の成長が観察された。繊維径は20〜100nmであり、繊維長の長い繊維であったが、実施例1と比較して繊維の本数が1/5程度に減少していた。
【0095】
[実施例5]
シリコン粉末((株)高純度化学研究所製、1μm)5gと黒鉛(中国産、10μm)5gとを、遊星ミル(フレッチェ社製、P6型)を用いて、200rpmで5時間粉砕圧着して造粒を行った。
【0096】
この造粒物を活物質核として、実施例1と同様にしてNiを1質量%担持させた後、実施例1と同様にして化学蒸着処理を行い、負極材料を作成した。
【0097】
反応終了後のサンプル中に含まれる全炭素量(黒鉛を含む)は60質量%であった。また、サンプルを電子顕微鏡(SEM)で観察した結果、実施例1と同様に、活物質核の表面に炭素被覆層が形成されると共に、活物質核の表面を基点とした炭素繊維の成長が観察され、繊維径は20〜100nmであり、繊維長の長い繊維であった。
【0098】
[実施例6]
シリコン粉末((株)高純度化学研究所製、1μm)100gに、硝酸ニッケル・6水和物(和光純薬工業(株)製、特級)5gを、エタノール1000mlに溶かした溶液を加え、攪拌してスラリー状としたものをスプレードライヤーで乾燥造粒し、Niを1質量%担持したシリコン粉末を得た。この材料を篩い分けし、45μm以下の粒子を試料とした。
【0099】
この試料を実施例1と同様にして化学蒸着処理を行い、本発明の負極材料を作成した。反応終了後のサンプル中に含まれる全炭素量は20質量%であった。
また、サンプルを電子顕微鏡(SEM)で観察した結果、実施例1と同様に、活物質核の表面に炭素被覆層が形成されると共に、活物質核の表面を基点とした炭素繊維の成長が観察され、繊維径は20〜100nmであり、繊維長の長い繊維であった。
【0100】
[実施例7]
実施例1で作成した負極材料を用いてリチウムイオン二次電池を作成し、充放電試験を行ない負極材料としての性能を評価した。
【0101】
負極材料2gにバインダーとしてPVDF0.2gを含むN−メチルピロリドン溶液を加え、よく混合してペースト状にしたものを銅箔に塗布し、120℃で乾燥した後、98MPaで加圧成形したものを直径16mmの円形状に切り出し、更に、160℃で2時間真空乾燥して負極とした。
【0102】
市販のLiCoO5gに、導電材としてアセチレンブラック0.3gを加えて混合した後、バインダーとしてPVDF0.3gを含むN−メチルピロリドン溶液を加え、よく混合してペースト状にした。このペースト状のものをアルミ箔に塗布し、120℃で乾燥した後、98MPaで加圧成形した。成形物を直径15.9mmの円形状に切り出し、更に、160℃で2時間真空乾燥して正極とした。
【0103】
電解液の溶媒として、エチレンカーボネートとジメチルカーボネートを容積比1:2で混合したものを用いた。
【0104】
電解質には、LiPFを用い、その濃度は1.0mol/lとした。
【0105】
セパレーターには、多孔質ポリプロピレン不織布を用い、グラスファイバー濾紙に電解液を含浸させ、アルゴン雰囲気下で、コイン型セルを作成した。
【0106】
充放電試験は次の条件で充放電を繰り返して行った。
【0107】
充電は、電流密度を1mA/g(0.4mA/cm)として行い、3.9Vでカットした。放電は、電流密度を1mA/g(0.4mA/cm)として行い、2.5Vでカットした。
【0108】
負極材料1g当たりの初期の充放電容量と、初期放電量に対する放電容量維持率を表1に示す。表1に示した結果から明らかなように、実施例6のリチウム二次電池は、300サイクルでも高い放電量を維持し、負極の劣化は認められなかった。
【0109】
[実施例8〜12]
実施例8は実施例2で得た負極材料、実施例9は実施例3で得た負極材料、実施例10は実施例4で得た負極材料、実施例11は実施例5で得た負極材料、実施例12は実施例6で得た負極材料を夫々用いた以外は実施例7と同様にしてリチウム二次電池を作成した。これらの電池について実施例7と同様充放電試験を行った。その結果を表1に示す。表1に示した結果から明らかなように、実施例8〜12のリチウム二次電池は何れも300サイクルでも高い放電量を維持でき、負極の劣化が認められなかった。
【0110】
[比較例1]
シリコン粉末((株)高純度化学研究所製、1μm)10gに、ニッケル粉末((株)高純度化学研究所製、1μm)0.1gをエタノール50mlに分散した溶液を加え、卓上マグネスチックスターラーで攪拌した後乾燥して、Niを1質量%担持したシリコンを得た。
【0111】
得られたシリコンを乳鉢で粉砕した後篩い分けし、45μm以下の粒子を試料とし、これを実施例1と同様にして化学蒸着処理したものを負極材料とした。
【0112】
反応終了後のサンプル中に含まれる全炭素量は20質量%であった。また、サンプルを電子顕微鏡(SEM)で観察した結果を図6に示す。図6から明らかなように、各粒子の表面に炭素被覆層の形成は観察されたが、炭素繊維の成長は観察されなかった。
【0113】
[比較例2]
シリコン粉末((株)高純度化学研究所製、1μm)10gと、ニッケル粉末((株)高純度化学研究所製、1μm)0.1gとを遊星ミル(フレッチェ社製、P6型)を用いて200rpmで5時間粉砕し、Niを1質量%担持したシリコンを得た。得られたシリコンを、実施例1と同様にして化学蒸着処理したものを負極材料とした。
【0114】
反応終了後のサンプル中に含まれる全炭素量は20質量%であった。また、サンプルを電子顕微鏡(SEM)で観察した結果、各粒子の表面に炭素被覆層の形成は観察されたが、炭素繊維の成長は観察されなかった。
【0115】
[比較例3〜4]
比較例3は比較例1で得た負極材料、比較例4は比較例2で得た負極材料を夫々用いた以外は実施例7と同様にしてリチウム二次電池を作成した。これらの電池について実施例7と同様充放電試験を行った。その結果を表1に示す。表1に示した結果から明らかなように、比較例3、4のリチウム二次電池は、本発明の負極材料を用いたリチウム二次電池に比較して、充分なサイクル特性が得られなかった。
【0116】
[比較例5]
Niを担持しない珪素粒子を用いた以外は実施例3と同様に化学蒸着処理して負極材料を作成した。得られた負極材料は、炭素量が増加しないことから、炭素被覆層は形成されていないことが確認された。
【0117】
【表1】

Figure 2004349056
【0118】
【発明の効果】
本発明の負極材料は、無数の炭素繊維の交絡によって活物質核間の導電性が確保される。従って、リチウム二次電池の負極材層が充放電により膨張と収縮を繰り返すことにより活物質核間の距離が大きくなっても炭素繊維の交絡は殆ど影響されない。その結果、サイクル特性が確保される。
【0119】
本発明の負極材料の製造方法は、特殊な装置を使用する必要もなく、容易に製造することができる。形成される炭素繊維は、活物質核の表面に端を発して種々の形態で成長する。また、その繊維径は、従来の気相成長炭素繊維と同様に1μm以下のウイスカーとすることが容易にできる。従って、均一混合が困難な従来の粒子とウイスカーとを混合して導電性を高める方法と比較して、極めて安価に製造することが可能である。
【0120】
本発明の負極材料は、これを用いてリチウム二次電池を製造する場合、優れた導電性及びサイクル特性を有するリチウム二次電池を提供できる。
【図面の簡単な説明】
【図1】実施例1の負極材料を示す図面代用電子顕微鏡(SEM)写真である。
【図2】実施例2の負極材料を示す図面代用電子顕微鏡(SEM)写真である。
【図3】本発明において単一の活物質粒子で構成される活物質核を示す模式図である。
【図4】本発明において複数の活物質粒子で構成される活物質核を示す模式図である。
【図5】本発明において、その表面に炭素被覆層を有する活物質核を示す模式図である。
【図6】比較例1の負極材料を示す図面代用電子顕微鏡(SEM)写真である。
【符号の説明】
30:活物質核
32:活物質核表面に結合した炭素繊維の一端
34:炭素繊維
36:炭素繊維の他端(自由端)
40:活物質核
42:珪素粒子
44:炭素粒子
46:炭素繊維
48:空隙
50:活物質核
52:炭素被覆層
54:炭素繊維[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material for a lithium secondary battery comprising an active material core and a carbon fiber having one end bonded to the surface thereof, and a method for manufacturing the same. More specifically, the present invention relates to a negative electrode material for a lithium secondary battery having a large capacity, excellent safety, and excellent charge / discharge cycle characteristics, and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art As electronic devices have become smaller and lighter, batteries used therein have been required to have higher energy. Further, from the viewpoint of resource saving, the development of a high-performance secondary battery that can be repeatedly charged and discharged is demanded.
[0003]
In order to meet such demands, lithium secondary batteries have been developed and improved. Lithium secondary batteries are classified into lithium ion secondary batteries, lithium polymer secondary batteries, all-solid lithium secondary batteries, and the like, depending on the type of electrolyte. At present, the most widely used is a lithium ion secondary battery.
[0004]
As a negative electrode of a lithium ion secondary battery, a negative electrode material that is closely adhered to the surface of a current collector using a small amount of a binder to form a thin negative electrode material layer is usually used.
[0005]
Carbon or graphite is widely used as a negative electrode material of a lithium secondary battery. It has been proposed to use a metal or metalloid lithium alloy as a negative electrode material for a lithium secondary battery capable of obtaining a higher capacity.
[0006]
Examples of the metal or metalloid lithium alloy include a lithium tin alloy, a lithium lead alloy, a lithium bismuth alloy, a lithium aluminum alloy, a lithium arsenic alloy, a lithium silicon alloy, and a lithium antimony alloy.
[0007]
These alloys are formed in a battery by assembling a battery using a metal or metalloid capable of forming an alloy with lithium as a negative electrode material and charging the battery. That is, the metal or metalloid used as the negative electrode material electrochemically reacts with lithium released from the positive electrode during charging to form a lithium alloy. By using these lithium alloys as the active material of the negative electrode, a secondary battery of high capacity can be theoretically obtained both in weight and volume.
[0008]
However, since the volume of the negative electrode expands several times as much as that before alloying with the alloying, there is a problem that the negative electrode is powdered. For this reason, safety and cycle characteristics of the lithium secondary battery become insufficient.
[0009]
To solve this problem, there has been proposed a composite material invention (Patent Document 1) in which the surface of a metal or metalloid forming a lithium alloy is coated with carbon. That is, when a metal or metalloid particle forming a lithium alloy is used as a nucleus and carbon is deposited on the surface of the nucleus using a chemical vapor deposition method, a composite material having a double structure consisting of a nucleus particle and a carbon coating layer is obtained. . When this composite material is used for a negative electrode of a lithium ion secondary battery, the expansion of the nucleus due to alloy formation can be suppressed by the strong binding force of the carbon coating layer covering the outer surface of the nucleus, and powdering and destruction of the electrode can be prevented. Can be.
[0010]
In addition, in order to solve the problem of powdering and destruction of the electrode, porous particles formed by bonding fine particles of a metal or metalloid forming a lithium alloy and carbon particles are used as nuclei. (Patent Document 2) has been proposed for a composite material having a carbon coating layer formed on the surface thereof.
[0011]
When this composite material is used for a negative electrode of a lithium ion secondary battery, since the metal or metalloid in the nucleus is fine particles, lithium ion insertion and alloying are uniform. In addition, by bonding to carbon particles, conductivity is improved, and the charge and discharge speed can be improved. In addition, by making the nucleus porous, the volume expansion when the metal or metalloid changes to a lithium alloy can be absorbed by the voids between the metal or metalloid fine particles and the carbon particles in the nucleus. Therefore, powdering and destruction of the electrode can be prevented by both the action of absorbing the expansion in the nucleus and the strong binding force of the carbon coating layer on the outer surface.
[0012]
According to the above two inventions, a negative electrode material using a lithium alloy as an active material is remarkably improved. However, lithium secondary batteries using these negative electrode materials for the negative electrode have the disadvantage that all the negative electrode materials have poor cycle characteristics. That is, in the lithium secondary battery using these negative electrode materials, each active material nucleus repeatedly expands and contracts with charging and discharging, and thus a gap is generated between the active material nuclei. As a result, the conductivity of the entire negative electrode material layer decreases, and the charge / discharge capacity gradually decreases.
[0013]
In order to solve the problem that the conductivity is reduced, a conductive material is added to the negative electrode material. As the conductive material to be added, silver particles, graphite fine particles, carbon fibers having a small fiber diameter, and the like are used.
[0014]
The carbon fiber having a small fiber diameter is called, for example, a carbon whisker or a graphite whisker, and is also called a vapor-grown carbon fiber from its manufacturing method. However, the vapor grown carbon fiber has a problem that the production cost is high, and it is difficult to uniformly mix the particles and the whiskers simply by mixing the whiskers with the active material cores having different specific gravities and shapes.
[0015]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-21587 (Claims)
[Patent Document 2]
JP-A-2002-216751 (Claims)
[0016]
[Problem to be solved]
The inventors of the present invention have conducted studies with the object of obtaining a negative electrode material which can solve the conventional problems when used for a negative electrode of a lithium secondary battery and has good cycle characteristics. As a result, they found a method of generating whisker-like carbon fibers bonded to the surface of the active material core used for the negative electrode material. By using a negative electrode material in which carbon fibers are bonded to the core of the active material for the negative electrode of a lithium secondary battery, the conductivity between the negative electrode materials can be significantly improved, and high-capacity lithium with excellent cycle characteristics can be obtained. The inventors have found that a secondary battery can be obtained, and have completed the present invention.
[0017]
[Means for Solving the Problems]
The present invention that solves the above-mentioned problems is described below.
[0018]
[1] A negative electrode for a lithium secondary battery, comprising: an active material nucleus containing a metal or metalloid capable of forming a lithium alloy; and a plurality of carbon fibers having one end bonded to the surface of the active material nucleus. material.
[0019]
[2] The negative electrode material for a lithium secondary battery according to [1], wherein the active material core includes a plurality of active material particles.
[0020]
[3] The negative electrode material for a lithium secondary battery according to [1] or [2], wherein the active material core contains carbon particles or graphite particles.
[0021]
[4] The negative electrode material for a lithium secondary battery according to [1], wherein the carbon fiber has a fiber diameter of 1 μm or less.
[0022]
[5] The negative electrode material for a lithium secondary battery according to any one of [1] to [4], wherein the active material core has a carbon coating layer on its surface.
[0023]
[6] The negative electrode material for a lithium secondary battery according to any one of [1] to [5], wherein the metal or metalloid capable of forming a lithium alloy is silicon.
[0024]
[7] A method for producing a negative electrode material for a lithium secondary battery comprising an active material core and a plurality of carbon fibers having one end bonded to the surface thereof, wherein the active material core includes a metal or metalloid capable of forming a lithium alloy. A method for producing a negative electrode material for a lithium secondary battery, comprising: attaching a catalyst to the surface of the substrate; and performing a chemical vapor deposition process.
[0025]
[8] The method for producing a negative electrode material for a lithium secondary battery according to [7], wherein the catalyst includes one or more transition metal element compounds or one or more transition metal element compounds and an aluminum element compound.
[0026]
[9] The method for producing a negative electrode material for a lithium secondary battery according to [8], wherein the transition metal element of the transition metal element compound is at least one selected from the group consisting of Ni, Fe and Co.
[0027]
[10] The method for producing a negative electrode material for a lithium secondary battery according to any one of [7] to [9], wherein the chemical vapor deposition treatment is performed in a temperature range of 600 to 1200 ° C.
[0028]
[11] In any one of [7] to [10], in the chemical vapor deposition process, a plurality of carbon fibers each having one end bonded to the surface of the active material core and a carbon coating layer formed on the surface of the active material core are formed. 9. The method for producing a negative electrode material for a lithium secondary battery according to item 1 or 2.
[0029]
[12] A lithium secondary battery using the negative electrode material for a lithium secondary battery according to any one of [1] to [6].
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0031]
The negative electrode material for a lithium secondary battery of the present invention (hereinafter sometimes simply referred to as “negative electrode material”) has an active material core 30 containing a metal or metalloid capable of forming a lithium alloy as shown in FIG. And a plurality of carbon fibers 34 each having one end 32 bonded to the surface of the active material core 30. Most of the other end 36 of the carbon fiber 34 is a free end.
[0032]
In the negative electrode material of the present invention, carbon fibers exhibit an effect of improving conductivity. That is, in the present invention, the whisker-like carbon fibers formed on the surface of the active material nucleus impart conductivity to the active material nuclei 30. In the present invention, for example, as shown in FIG. 1 or FIG. 2 in which the active material nucleus surface is observed with a scanning electron microscope, a plurality of carbon fibers are present in a layered state with a plurality of carbon fibers overlapping on the active material nucleus surface. Therefore, there is a space between the carbon fibers. Then, from the state where one end of the carbon fiber reaches the surface of the active material core, mutual coupling between the active material core and the carbon fiber can be confirmed. Due to the bonded carbon fibers, the negative electrode material of the present invention exhibits high conductivity and is excellent as a negative electrode material of a lithium secondary battery. Further, it can be widely used as a conductive material for other uses.
[0033]
Examples of the metal or semimetal that can form a lithium alloy include Fe, Cu, Ag, Ti, Si, As, Sn, Sb, and Pb. Among these metals or metalloids, silicon (Si) is most preferred because it is stable to high-temperature processing and has a large discharge capacity.
[0034]
In the following description, the negative electrode material will be described using silicon, but the same applies to the case where another metal or metalloid is used.
[0035]
In the present invention, silicon may be crystalline or amorphous. Although the purity of silicon is preferably as high as possible, the discharge capacity of silicon is extremely high, so that even if it contains some impurities, the decrease in battery capacity is small.
[0036]
Therefore, it is sufficient that the purity of silicon is 95% by mass or more, which can be produced industrially at low cost. There is no problem if silicon oxide is contained as an impurity. That is, silicon dioxide is electrochemically inert. Also, silicon monoxide is reduced to silicon.
[0037]
However, it is not preferable that a halogen-based compound such as chlorine, an electrochemically active metal or the like be contained as an impurity. When such an impurity is contained in excess of 5% by mass, battery performance may be significantly reduced due to generation of lithium dendrite due to a decrease in charging potential or increase in irreversible capacity.
[0038]
The active material core is preferably a porous particle having voids therein. By having the void, an effect of absorbing expansion due to alloying of silicon and lithium is obtained, and powdering of the active material core can be prevented. The porosity is preferably 5 to 30% on a volume basis.
[0039]
The active material nucleus preferably contains carbon together with silicon. As shown in FIG. 4, the active material nucleus 40 is made of an aggregate of fine silicon particles 42 and carbon particles 44, so that the active material nucleus becomes porous and the surface area of silicon increases. The conductivity in the core of the active material is improved. As a result, the alloying reaction between lithium and silicon is performed uniformly in a short time within the nucleus of the active material, and the insertion and discharge of lithium ions are accelerated. Therefore, the charge / discharge speed can be improved. In addition, 46 is a carbon fiber and 48 is a void.
[0040]
When the active material nucleus is composed of an aggregate of silicon particles and carbon particles, the average particle diameter of the silicon particles is preferably 0.1 to 5 μm, particularly preferably 0.1 to 1 μm. If the average particle diameter of the silicon particles is smaller than 0.1 μm, it is not preferable because the amount of silicon particles that react with carbon to form SiC during the chemical vapor deposition of the carbon coating layer on the surface of the active material core increases. On the other hand, when the average particle diameter of the silicon particles is larger than 5 μm, the silicon particles are broken at the time of charging, and the surface area of the silicon particles becomes large, which is not preferable because the irreversible amount of lithium increases.
[0041]
In addition, the average particle diameter of the carbon particles is preferably about the same as the silicon particles for the above purpose. That is, the average particle diameter of the carbon particles is preferably from 0.1 to 5 μm, particularly preferably from 0.1 to 1 μm.
[0042]
The carbon particles to be contained in the active material core are preferably pyrolytic carbon such as carbon black and acetylene black, or those having a heat history of 750 ° C. or more once, such as graphite, calcined carbon, and charcoal.
[0043]
Carbon particles having no heat history, such as organic matter and coal, are not preferable because volatile components are generated in the process of producing the porous active material core made of silicon and carbon, and the carbon particles grow large.
[0044]
The purity of the carbon particles is preferably 92% by mass or more, particularly preferably 98% by mass or more, as the carbon content. The higher the purity of the carbon particles, the higher the conductivity.
[0045]
As for the mixing ratio of silicon particles and carbon particles, the battery capacity increases as the ratio of silicon particles increases, and the conductivity in the active material nucleus increases as the ratio of carbon particles increases. As a result, the most preferable content ratio of silicon particles is 40 to 90% by mass, and the most preferable ratio of carbon particles is 10 to 60% by mass.
[0046]
As a method for producing an active material core containing silicon particles and carbon particles, a mixture of a silicon raw material and a carbon raw material is pulverized by applying a shocking compressive force, and a plurality of the finely pulverized particles are pressed and granulated. Is preferred.
[0047]
In this method, the pulverization and compression can be performed using a general pulverizer such as a planetary mill, a vibrating ball mill, a rod mill, and a large ball mill.
[0048]
By the pulverization and compression treatment, the silicon particles and the carbon particles are pulverized to 1 μm or less and finely dispersed with each other, and become porous particles having voids of 10% by volume or more.
[0049]
The active material core 50 preferably has a carbon coating layer 52 on the surface, as shown in FIG. By forming the carbon coating layer 52, a binding force can be given to the expansion of the active material core. That is, by suppressing expansion accompanying the alloying of silicon and lithium, powdering and destruction of the negative electrode can be prevented. Incidentally, 54 is a carbon fiber.
[0050]
Regarding the crystallinity of the carbon in the coating layer, it is preferable that the crystallinity be high in order to increase the conductivity. However, if the crystallinity becomes too high, the strength of the coating layer decreases, and the binding force against expansion decreases. Therefore, the crystallinity of the coated carbon is preferably such that the lattice constant Co (002) is in the range of 0.68 to 0.72 nm.
[0051]
As a method of forming a carbon coating layer on the surface of the active material nucleus, a chemical vapor deposition process in which an organic material is introduced into the system together with an inert gas while heating the active material nucleus using a reaction furnace equipped with a stirrer. Is better.
[0052]
As the organic substance used as the carbon source in the chemical vapor deposition process, aromatic hydrocarbons such as benzene, toluene, xylene, and styrene, and aliphatic hydrocarbons such as methane, ethane, and propane can be used.
[0053]
The molar concentration of the organic substance in the mixed gas is preferably from 1 to 80%, more preferably from 25 to 60%. The temperature at which the chemical vapor deposition is performed is preferably 700 to 1200 ° C, more preferably 850 to 1100 ° C.
[0054]
The proportion of the coating layer carbon in the active material core is preferably 5 to 60% by mass.
[0055]
The average particle diameter of the active material core is preferably from 0.1 to 50 μm, and particularly preferably from 1 to 30 μm. If the average particle diameter of the active material nucleus is smaller than 0.1 μm, the surface area becomes too large, and when the above-mentioned carbon coating layer is formed, the coated carbon amount becomes too large, which is not preferable. Further, from the viewpoint of battery performance, the initial current efficiency tends to decrease in proportion to the surface area of the active material core. For this reason, if the average particle diameter of the active material nucleus is smaller than 0.1 μm, the initial current efficiency decreases, which is not preferable.
[0056]
On the other hand, when the average particle diameter of the active material nucleus is larger than 50 μm, the surface of the negative electrode material layer is not smooth at the time of forming the negative electrode, and the negative electrode material layer tends to be peeled off from the current collector, which is likely to cause a coating film defect.
[0057]
In the present invention, the method of forming the carbon fiber layer on the surface of the active material core includes, for example, the following two steps. That is, a step of attaching a catalyst to the surface of the active material core and a step of generating carbon fibers by a chemical vapor deposition process.
[0058]
As the catalyst to be attached to the surface of the active material core, one or more transition metal compounds are used. As the transition metal compound, a compound such as Ni, Fe, and Co is preferable. Further, by using these transition metal compounds in combination with an Al compound, higher catalytic activity can be obtained.
[0059]
The catalyst is preferably a soluble compound. Examples of such compounds include transition metal hydrochlorides, sulfates, nitrates, ammonium salts, and organic complexes.
[0060]
As a method for attaching the catalyst to the active material core surface, an aqueous solution of a metal sulfate, a nitrate, a chloride, an organometallic compound, or a solution dissolved in an organic solvent, or a solution dissolved in an organic solvent is used as the catalyst. After dipping the material core, a method of taking out and drying the active material core can be exemplified. Alternatively, it is possible to apply the aqueous solution or the solution on the surface of the active material core and then dry the solution to attach the solution. Further, instead of the solution, a colloidal dispersion of an oxide can be used.
[0061]
Alternatively, the reaction may be performed by applying and drying the above-mentioned aqueous solution or the like by using a reaction furnace in a chemical vapor deposition process for generating carbon fibers described below, thereby attaching a catalyst to the active material core surface. That is, while the active material nucleus is heated using a reaction furnace, the catalyst solution is directly injected into the system and heat-treated, thereby decomposing the salt or complex and evaporating the solvent, and attaching the catalyst to the active material nucleus. can do.
[0062]
The effect is exhibited when the amount of the catalyst attached is 5 to 0.01% by mass based on the active material core. However, since an increase in metal contained in the negative electrode material is not preferable, the amount of the catalyst to be added is preferably 0.5 to 0.05% by mass.
[0063]
The chemical vapor deposition treatment for forming carbon fibers on the active material core surface can be performed using a reaction furnace. That is, the active material nucleus is heated in the reaction furnace, and an organic substance is introduced into the reaction furnace together with the inert gas to grow carbon fibers on the surface of the active material nucleus. The reactor is preferably equipped with a stirrer.
[0064]
Examples of the organic substance used as a carbon source in the chemical vapor deposition include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, diphenyl, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, cumarone, pyridine, anthracene, phenanthrene and the like. A cyclic or tricyclic aromatic hydrocarbon, a dielectric thereof, or a mixture thereof can be used. Further, aliphatic hydrocarbons such as methane, ethane, propane, butane, pentane and hexane, and alcohols which are dielectrics thereof may be used alone or as a mixture. Further, an organic compound having a multiple bond such as acetylene, ethylene, propylene, isopropylene, and butadiene can also be used.
[0065]
When an aromatic compound such as toluene is used, the fiber diameter tends to increase. In order to obtain thin whiskers, it is preferable to use low molecular weight compounds such as acetylene, methane, and ethane.
[0066]
The molar concentration of the organic substance in the mixed gas is adjusted depending on the organic substance used. For example, when an aromatic hydrocarbon such as benzene or toluene is used, the diameter of the carbon fiber tends to be large, and soot-like carbon is easily formed. Therefore, it is desirable to lower the organic matter concentration, specifically, 25 to 80 mol% is preferable, and 45 to 60 mol% is more preferable. On the other hand, when an aliphatic hydrocarbon such as methane or acetylene is used, the concentration is not limited because the diameter of the obtained carbon fiber is small. To increase the reaction rate, a gas having a concentration of 100 mol% is used without dilution with an inert gas.
[0067]
The temperature at which the chemical vapor deposition is performed is also adjusted depending on the organic substance used. For example, when an aromatic hydrocarbon such as benzene or toluene is used, the temperature is preferably 850 to 1100 ° C. If the temperature is lower than this, the reaction does not proceed. If the temperature is higher than this temperature, soot is easily generated.
[0068]
On the other hand, when an aliphatic hydrocarbon having no double bond such as methane is used, the temperature is preferably from 900 ° C to 1200 ° C. This is because the reaction rate is lower than that of aromatic hydrocarbons.
[0069]
In addition, since ethylene and acetylene have a high reaction rate, the reaction temperature is preferably set to 600 ° C to 800 ° C.
[0070]
By the above-described chemical vapor deposition treatment, a carbon fiber having one end bonded to the surface of the active material nucleus can be grown, but it is preferable to form the carbon coating layer simultaneously with the generation of the carbon fiber. Normally, when chemical vapor deposition is started, carbon fibers are formed on a portion of the active material nucleus surface to which a catalyst is attached, and a carbon coating layer is formed on a portion where no catalyst is present. Since it spreads on the surface, a carbon coating layer can be formed on the entire particle surface. In this case, the surface of the active material nucleus is covered with the carbon coating layer in close contact, and the carbon fiber is overlaid thereon to cover the active material core in a layered manner.
[0071]
Since the formation of carbon fibers is intended to improve conductivity, the higher the crystallinity of the carbon fibers, the better. The carbon fiber preferably has a small fiber diameter, and particularly preferably has a so-called whisker shape of 1 μm or less. However, the fiber length of the carbon fiber, the number of fibers for one active material core, and the form are not particularly limited.
[0072]
For example, when the fiber length is short, one active material core may be covered with a large number of short fibers having one end bonded to the particle. When the fiber length is long, the carbon fiber having one end bonded thereto may grow so as to cover the surface of the active material core. Alternatively, it may grow in contact with multiple particles.
[0073]
The amount of the formed carbon fiber is preferably 0.5 to 5% by mass based on the active material core. Sufficient conductivity can be obtained at 5% by mass or less. If the amount is less than 0.5% by mass, sufficient conductivity cannot be obtained.
[0074]
Next, an example of a method for adjusting a negative electrode using the above negative electrode material will be described.
[0075]
A solvent in which a binder is dissolved (for example, 1-methyl-2-pyrrolidone) is added to the negative electrode material and sufficiently kneaded to prepare a high-concentration slurry having a solid concentration of 40% by mass or more. Next, this slurry is coated on a current collector of metal foil (such as copper foil) to a thickness of 20 to 100 μm using a doctor blade or the like. Further, by drying this, the negative electrode material is brought into close contact with the current collector, so that a negative electrode material layer can be formed. If necessary, the negative electrode material layer can be further pressed to increase the adhesion and the electrode density.
[0076]
Known materials such as various pitches, rubbers, and synthetic resins are used for the binder. Among these, polyvinylidene fluoride (PVDF), water-soluble carboxymethylcellulose (CMC), SBR latex and the like are most suitable as the binder. The mixing ratio (mass ratio) of the negative electrode material and the binder is desirably 100: 2 to 100: 20.
[0077]
In the present invention, the cathode material used for the lithium ion secondary battery is not particularly limited. 2 , LiNiO 2 , LiMn 2 O 4 And mixtures thereof. The powdered positive electrode material can be prepared by a known technique in which a conductive material is added, if necessary, and the mixture is sufficiently kneaded with a solvent in which a binder is dissolved, and then molded together with a current collector. The separator is not particularly limited, and a known material such as polypropylene or polyethylene can be used.
[0078]
As the non-aqueous solvent for the electrolytic solution of the lithium ion secondary battery, a known aprotic low dielectric constant solvent capable of dissolving a lithium salt is used. For example, ethylene carbonate, dimethyl carbonate, diethylene carbonate, acetonitrile, propionitrile, tetrahydrofuran, γ-butyrolactone, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, 1,2-diethoxy Solvents such as ethane, diethyl ether, sulfolane, methylsulfolane, nitromethane, N, N-dimethylformamide, and dimethylsulfoxide are used alone or as a mixture of two or more.
[0079]
The lithium salt used as the electrolyte includes LiClO 4 , LiAsF 5 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ), LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li and the like, and these salts are used alone or as a mixture of two or more kinds.
[0080]
Further, a lithium polymer secondary battery can also be formed using a gel electrolyte obtained by gelling the above-mentioned electrolyte and electrolyte, or a polymer electrolyte such as polyethylene oxide and polyacrylonitrile. Furthermore, a lithium all-solid-state secondary battery can be obtained by using a solid electrolyte.
[0081]
【Example】
The present invention will be described in more detail with reference to examples. The materials used in the examples and the methods for preparing them are shown below. Each physical property value was measured by the following method.
[0082]
[Average particle size]
The average particle diameter of the active material nucleus, the silicon particles and the graphite particles was measured by a laser dispersion type particle size analyzer SALD-200V model manufactured by Shimadzu Corporation in an aqueous dispersion containing a surfactant.
[0083]
[Fiber diameter of carbon fiber]
The fiber diameter of the carbon fiber was measured by an FT-SEM (Fourier transform scanning electron microscope) using a model S-4300 manufactured by Hitachi, Ltd.
[0084]
[Example 1]
A solution prepared by dissolving 0.5 g of nickel nitrate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) in 50 g of ethanol in 10 g of silicon powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., average particle size: 1 μm). Was added and stirred with a tabletop magnetic stirrer, followed by drying to obtain silicon particles carrying 1% by mass of Ni.
[0085]
The silicon particles were pulverized in a mortar, and the obtained fine silicon aggregates were sieved. Aggregate particles having a size of 45 μm or less were used as a sample and subjected to chemical vapor deposition to obtain a negative electrode material.
[0086]
In the chemical vapor deposition process, a sample is placed in the center of a quartz tube installed in an electric furnace, the reaction temperature is set to 900 ° C. under a nitrogen stream (6 l / h), and toluene 5 g / h (20% by volume) is supplied for 1 hour. The negative electrode material of the present invention was prepared by chemical vapor deposition.
[0087]
The total amount of carbon contained in the sample (negative electrode material) after the reaction was 20% by mass. FIG. 1 shows the results of observation of the sample with an electron microscope (SEM).
[0088]
As is clear from FIG. 1, a carbon coating layer was formed on the surface of the active material nucleus, and the growth of carbon fibers was confirmed based on the surface of the active material nucleus. The carbon fiber had a fiber diameter of 20 to 100 nm and had a long fiber length.
[0089]
[Example 2]
A negative electrode material was prepared in the same manner as in Example 1 except that the reaction temperature was 700 ° C. and acetylene gas was used instead of toluene (5 L / h) as conditions for the chemical vapor deposition treatment.
[0090]
The total amount of carbon contained in the sample (negative electrode material) after the reaction was 20% by mass. FIG. 2 shows the result of observing the sample with an electron microscope (SEM).
[0091]
As is clear from FIG. 2, as in Example 1, a carbon coating layer was formed on the surface of the active material nucleus, and the growth of carbon fibers starting from the surface of the active material nucleus was observed. The carbon fiber diameter was 20 to 100 nm, and the fiber had a long fiber length.
[0092]
[Example 3]
A negative electrode material was prepared in the same manner as in Example 2 except that the reaction temperature was set to 600 ° C. as the conditions for the chemical vapor deposition treatment.
[0093]
The total amount of carbon contained in the sample (negative electrode material) after the reaction was 5% by mass. Further, as a result of observing the sample with an electron microscope (SEM), as in Example 2, the growth of carbon fibers starting from the surface of the active material nucleus was observed.
[0094]
[Example 4]
A negative electrode material was prepared in the same manner as in Example 1 except that the amount of nickel supported was 0.1% by mass. The total amount of carbon contained in the sample after the reaction was 20% by mass. In addition, as a result of observing the sample with an electron microscope (SEM), a carbon coating layer was formed on the surface of the active material nucleus, and the growth of carbon fibers starting from the surface of the active material nucleus was observed. Although the fiber diameter was 20 to 100 nm and the fiber had a long fiber length, the number of fibers was reduced to about 1/5 as compared with Example 1.
[0095]
[Example 5]
5 g of silicon powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., 1 μm) and 5 g of graphite (manufactured by China, 10 μm) were pulverized and pressed at 200 rpm for 5 hours using a planetary mill (Frecce, P6 type). Granulation was performed.
[0096]
Using the granules as active material nuclei, Ni was supported at 1% by mass in the same manner as in Example 1, and then a chemical vapor deposition treatment was performed in the same manner as in Example 1 to prepare a negative electrode material.
[0097]
The total amount of carbon (including graphite) contained in the sample after the reaction was 60% by mass. Further, as a result of observing the sample with an electron microscope (SEM), as in Example 1, a carbon coating layer was formed on the surface of the active material nucleus, and the growth of carbon fibers starting from the surface of the active material nucleus was observed. It was observed that the fiber diameter was 20 to 100 nm and the fiber had a long fiber length.
[0098]
[Example 6]
A solution of 5 g of nickel nitrate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) in 1000 ml of ethanol was added to 100 g of silicon powder (manufactured by Kojundo Chemical Laboratory Co., Ltd., 1 μm) and stirred. The slurry was dried and granulated with a spray drier to obtain a silicon powder carrying 1% by mass of Ni. This material was sieved, and particles having a size of 45 μm or less were used as a sample.
[0099]
This sample was subjected to a chemical vapor deposition treatment in the same manner as in Example 1 to prepare a negative electrode material of the present invention. The total amount of carbon contained in the sample after the reaction was 20% by mass.
Further, as a result of observing the sample with an electron microscope (SEM), as in Example 1, a carbon coating layer was formed on the surface of the active material nucleus, and the growth of carbon fibers starting from the surface of the active material nucleus was observed. It was observed that the fiber diameter was 20 to 100 nm and the fiber had a long fiber length.
[0100]
[Example 7]
A lithium ion secondary battery was prepared using the negative electrode material prepared in Example 1, and a charge / discharge test was performed to evaluate the performance as the negative electrode material.
[0101]
An N-methylpyrrolidone solution containing 0.2 g of PVDF as a binder was added to 2 g of the negative electrode material, and the mixture was mixed well and made into a paste, applied to a copper foil, dried at 120 ° C., and then pressed and molded at 98 MPa. It was cut into a circular shape having a diameter of 16 mm, and further vacuum-dried at 160 ° C. for 2 hours to obtain a negative electrode.
[0102]
Commercial LiCoO 2 After adding and mixing 0.3 g of acetylene black as a conductive material to 5 g, an N-methylpyrrolidone solution containing 0.3 g of PVDF as a binder was added and mixed well to form a paste. This paste was applied to an aluminum foil, dried at 120 ° C., and then pressed at 98 MPa. The molded product was cut into a circular shape having a diameter of 15.9 mm, and further dried under vacuum at 160 ° C. for 2 hours to obtain a positive electrode.
[0103]
As a solvent for the electrolytic solution, a mixture of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 was used.
[0104]
The electrolyte is LiPF 6 And the concentration was 1.0 mol / l.
[0105]
As a separator, a porous polypropylene non-woven fabric was used, a glass fiber filter paper was impregnated with an electrolytic solution, and a coin-type cell was prepared under an argon atmosphere.
[0106]
The charge / discharge test was performed by repeating charge / discharge under the following conditions.
[0107]
Charging is performed by setting the current density to 1 mA / g (0.4 mA / cm 2 ) And cut at 3.9V. The discharge is performed by setting the current density to 1 mA / g (0.4 mA / cm 2 ) And cut at 2.5V.
[0108]
Table 1 shows the initial charge / discharge capacity per gram of the negative electrode material and the discharge capacity retention ratio with respect to the initial discharge amount. As is clear from the results shown in Table 1, the lithium secondary battery of Example 6 maintained a high discharge amount even at 300 cycles, and no deterioration of the negative electrode was observed.
[0109]
[Examples 8 to 12]
Example 8 is the negative electrode material obtained in Example 2, Example 9 is the negative electrode material obtained in Example 3, Example 10 is the negative electrode material obtained in Example 4, and Example 11 is the negative electrode obtained in Example 5. In Example 12, a lithium secondary battery was prepared in the same manner as in Example 7, except that the negative electrode material obtained in Example 6 was used. A charge / discharge test was performed on these batteries in the same manner as in Example 7. Table 1 shows the results. As is clear from the results shown in Table 1, all of the lithium secondary batteries of Examples 8 to 12 were able to maintain a high discharge amount even after 300 cycles, and no deterioration of the negative electrode was observed.
[0110]
[Comparative Example 1]
A solution in which 0.1 g of nickel powder (1 μm, manufactured by Kojundo Chemical Laboratory) was dispersed in 50 ml of ethanol was added to 10 g of silicon powder (1 μm, manufactured by Kojundo Chemical Laboratory), and a tabletop magnetic stirrer was added. And dried to obtain silicon carrying 1% by mass of Ni.
[0111]
The obtained silicon was pulverized in a mortar and then sieved. Particles having a size of 45 μm or less were used as a sample, which was subjected to chemical vapor deposition in the same manner as in Example 1 to obtain a negative electrode material.
[0112]
The total amount of carbon contained in the sample after the reaction was 20% by mass. FIG. 6 shows the result of observing the sample with an electron microscope (SEM). As is clear from FIG. 6, formation of a carbon coating layer was observed on the surface of each particle, but growth of carbon fibers was not observed.
[0113]
[Comparative Example 2]
10 g of silicon powder (1 μm, manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 0.1 g of nickel powder (1 μm, manufactured by Kojundo Chemical Laboratory Co., Ltd.) were used using a planetary mill (F6, P6 type). And pulverized at 200 rpm for 5 hours to obtain silicon carrying 1% by mass of Ni. The obtained silicon was subjected to chemical vapor deposition in the same manner as in Example 1 to obtain a negative electrode material.
[0114]
The total amount of carbon contained in the sample after the reaction was 20% by mass. As a result of observing the sample with an electron microscope (SEM), formation of a carbon coating layer on the surface of each particle was observed, but growth of carbon fibers was not observed.
[0115]
[Comparative Examples 3 and 4]
Comparative Example 3 produced a lithium secondary battery in the same manner as in Example 7, except that the negative electrode material obtained in Comparative Example 1 was used, and Comparative Example 4 used the negative electrode material obtained in Comparative Example 2. A charge / discharge test was performed on these batteries in the same manner as in Example 7. Table 1 shows the results. As is clear from the results shown in Table 1, the lithium secondary batteries of Comparative Examples 3 and 4 did not have sufficient cycle characteristics compared to the lithium secondary batteries using the negative electrode material of the present invention. .
[0116]
[Comparative Example 5]
A negative electrode material was prepared by chemical vapor deposition in the same manner as in Example 3 except that silicon particles not supporting Ni were used. Since the amount of carbon did not increase in the obtained negative electrode material, it was confirmed that the carbon coating layer was not formed.
[0117]
[Table 1]
Figure 2004349056
[0118]
【The invention's effect】
In the negative electrode material of the present invention, conductivity between active material nuclei is ensured by innumerable carbon fibers entangled. Therefore, even when the distance between the active material nuclei increases due to repeated expansion and contraction of the negative electrode material layer of the lithium secondary battery due to charge and discharge, the entanglement of the carbon fibers is hardly affected. As a result, cycle characteristics are secured.
[0119]
The method for producing a negative electrode material of the present invention can be easily produced without using a special device. The formed carbon fiber grows in various forms starting from the surface of the active material core. In addition, the whisker having a fiber diameter of 1 μm or less can be easily formed similarly to the conventional vapor-grown carbon fiber. Therefore, compared to the conventional method of mixing particles and whiskers, which are difficult to uniformly mix, to increase the conductivity, it is possible to manufacture at extremely low cost.
[0120]
When the negative electrode material of the present invention is used to manufacture a lithium secondary battery, it can provide a lithium secondary battery having excellent conductivity and cycle characteristics.
[Brief description of the drawings]
FIG. 1 is a scanning electron microscope (SEM) photograph showing a negative electrode material of Example 1.
FIG. 2 is a scanning electron microscope (SEM) photograph showing a negative electrode material of Example 2.
FIG. 3 is a schematic view showing an active material core composed of a single active material particle in the present invention.
FIG. 4 is a schematic diagram showing an active material core composed of a plurality of active material particles in the present invention.
FIG. 5 is a schematic view showing an active material core having a carbon coating layer on its surface in the present invention.
6 is a drawing-substitute electron microscope (SEM) photograph showing a negative electrode material of Comparative Example 1. FIG.
[Explanation of symbols]
30: Active material core
32: One end of the carbon fiber bonded to the active material core surface
34: Carbon fiber
36: Other end (free end) of carbon fiber
40: Active material core
42: Silicon particles
44: carbon particles
46: Carbon fiber
48: void
50: Active material core
52: carbon coating layer
54: Carbon fiber

Claims (12)

リチウム合金を形成しうる金属又は半金属を含む活物質核と、該活物質核の表面にその一端を結合した複数の炭素繊維とからなることを特徴とするリチウム二次電池用負極材料。A negative electrode material for a lithium secondary battery, comprising: an active material core containing a metal or metalloid capable of forming a lithium alloy; and a plurality of carbon fibers having one end bonded to the surface of the active material core. 活物質核が複数の活物質粒子を含む請求項1に記載のリチウム二次電池用負極材料。The negative electrode material for a lithium secondary battery according to claim 1, wherein the active material core includes a plurality of active material particles. 活物質核が炭素粒子又は黒鉛粒子を含む請求項1又は2に記載のリチウム二次電池用負極材料。The negative electrode material for a lithium secondary battery according to claim 1, wherein the active material core includes carbon particles or graphite particles. 炭素繊維の繊維径が1μm以下である請求項1に記載のリチウム二次電池用負極材料。The negative electrode material for a lithium secondary battery according to claim 1, wherein the fiber diameter of the carbon fiber is 1 µm or less. 活物質核がその表面に炭素被覆層を有する請求項1乃至4の何れか1項に記載のリチウム二次電池用負極材料。The negative electrode material for a lithium secondary battery according to any one of claims 1 to 4, wherein the active material core has a carbon coating layer on a surface thereof. リチウム合金を形成しうる金属又は半金属が珪素である請求項1乃至5の何れか1項に記載のリチウム二次電池用負極材料。The negative electrode material for a lithium secondary battery according to any one of claims 1 to 5, wherein the metal or metalloid capable of forming a lithium alloy is silicon. 活物質核と、その表面にその一端を結合した複数の炭素繊維とからなるリチウム二次電池用負極材料の製造方法において、リチウム合金を形成しうる金属又は半金属を含む活物質核の表面に触媒を添着させ、次いで化学蒸着処理をすることを特徴とするリチウム二次電池用負極材料の製造方法。An active material nucleus and a method for producing a negative electrode material for a lithium secondary battery comprising a plurality of carbon fibers having one end bonded to the surface thereof, wherein the surface of the active material nucleus containing a metal or metalloid capable of forming a lithium alloy is provided. A method for producing a negative electrode material for a lithium secondary battery, comprising attaching a catalyst and then performing a chemical vapor deposition treatment. 触媒が、1種以上の遷移金属元素化合物又は1種以上の遷移金属元素化合物とアルミニウム元素化合物とを含む請求項7に記載のリチウム二次電池用負極材料の製造方法。The method for producing a negative electrode material for a lithium secondary battery according to claim 7, wherein the catalyst comprises one or more transition metal element compounds or one or more transition metal element compounds and an aluminum element compound. 遷移金属元素化合物の遷移金属元素が、Ni、Fe及びCoよりなる群から選ばれる少なくとも1種である請求項8に記載のリチウム二次電池用負極材料の製造方法。The method for producing a negative electrode material for a lithium secondary battery according to claim 8, wherein the transition metal element of the transition metal element compound is at least one selected from the group consisting of Ni, Fe, and Co. 化学蒸着処理を600〜1200℃の温度範囲で行う請求項7乃至9の何れか1項に記載のリチウム二次電池用負極材料の製造方法。The method for producing a negative electrode material for a lithium secondary battery according to any one of claims 7 to 9, wherein the chemical vapor deposition is performed in a temperature range of 600 to 1200 ° C. 化学蒸着処理において、活物質核の表面にその一端を結合した複数の炭素繊維の形成と、活物質核の表面に炭素被覆層の形成とを行う請求項7乃至10の何れか1項に記載のリチウム二次電池用負極材料の製造方法。The chemical vapor deposition treatment includes forming a plurality of carbon fibers each having one end bonded to the surface of the active material core, and forming a carbon coating layer on the surface of the active material core. Method for producing a negative electrode material for a lithium secondary battery. 請求項1乃至6の何れか1項に記載のリチウム二次電池用負極材料を用いたリチウム二次電池。A lithium secondary battery using the negative electrode material for a lithium secondary battery according to claim 1.
JP2003143258A 2003-05-21 2003-05-21 Anode material for lithium secondary battery and its manufacturing method Pending JP2004349056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143258A JP2004349056A (en) 2003-05-21 2003-05-21 Anode material for lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143258A JP2004349056A (en) 2003-05-21 2003-05-21 Anode material for lithium secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004349056A true JP2004349056A (en) 2004-12-09

Family

ID=33531096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143258A Pending JP2004349056A (en) 2003-05-21 2003-05-21 Anode material for lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004349056A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022254A1 (en) * 2004-08-26 2006-03-02 Matsushita Electric Industrial Co., Ltd. Composite particle for electrode, method for producing same and secondary battery
WO2006067891A1 (en) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite negative-electrode active material, process for producing the same and nonaqueous-electrolyte secondary battery
JP2006173121A (en) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd Anode active material, its manufacturing method, and anode and lithium cell using this anode active material
JP2006339093A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Wound type nonaqueous electrolyte secondary battery and its negative electrode
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
KR100728783B1 (en) 2005-11-02 2007-06-19 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
WO2007069562A1 (en) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007207466A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007207699A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008027912A (en) * 2006-07-14 2008-02-07 Kumho Petrochem Co Ltd Anode active material for lithium secondary cell mixed with carbon nanofiber
JP2010095797A (en) * 2008-10-14 2010-04-30 Korea Inst Of Science & Technology Carbon nanotube-coated silicon/metal composite particle, preparation method thereof, and anode for secondary battery and secondary battery using the same
US7736808B2 (en) 2006-01-31 2010-06-15 Panasonic Corporation Non-aqueous electrolyte secondary battery
US20100178566A1 (en) * 2005-10-14 2010-07-15 Panasonic Corporation Method of producing silicon oxide, negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
US7892677B2 (en) 2005-12-13 2011-02-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery having the same
JP2011090943A (en) * 2009-10-23 2011-05-06 Sumitomo Bakelite Co Ltd Carbon material for lithium secondary battery negative electrode, the lithium secondary battery negative electrode and manufacturing method of the lithium secondary battery and carbon material for the lithium secondary battery negative electrode
JP2012038735A (en) * 2008-12-26 2012-02-23 Sekisui Chem Co Ltd Carbon particle for electrode, and anode material for lithium-ion secondary battery
JP2013008584A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP2014029848A (en) * 2012-06-29 2014-02-13 Jfe Chemical Corp Composite particle for lithium ion secondary battery negative electrode, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015511374A (en) * 2012-12-21 2015-04-16 エルジー・ケム・リミテッド Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US20150280222A1 (en) * 2012-10-17 2015-10-01 Institutt For Energiteknikk Method, powder, film & lithium ion battery
US20160197343A1 (en) * 2015-01-07 2016-07-07 Samsung Sdi Co., Ltd. Secondary battery
US9431652B2 (en) 2012-12-21 2016-08-30 Lg Chem, Ltd. Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the anode active material
CN113632262A (en) * 2018-11-13 2021-11-09 株式会社Lg新能源 Negative active material and method for preparing same
JP2022546527A (en) * 2019-09-30 2022-11-04 エルジー エナジー ソリューション リミテッド Composite negative electrode active material, manufacturing method thereof, and negative electrode including the same
WO2023002758A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance, anode material and battery
WO2024048355A1 (en) * 2022-08-31 2024-03-07 日本ゼオン株式会社 Composite particles and production method for same, electrochemical element electrode, and electrochemical element

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022254A1 (en) * 2004-08-26 2006-03-02 Matsushita Electric Industrial Co., Ltd. Composite particle for electrode, method for producing same and secondary battery
JP2006173121A (en) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd Anode active material, its manufacturing method, and anode and lithium cell using this anode active material
US8029931B2 (en) 2004-12-18 2011-10-04 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
WO2006067891A1 (en) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite negative-electrode active material, process for producing the same and nonaqueous-electrolyte secondary battery
KR100816612B1 (en) * 2005-06-06 2008-03-24 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
JP2006339093A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Wound type nonaqueous electrolyte secondary battery and its negative electrode
JP2006339092A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its negative electrode
KR100789070B1 (en) * 2005-06-06 2007-12-26 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
CN100401557C (en) * 2005-06-06 2008-07-09 松下电器产业株式会社 Non-aqueous electrolyte rechargeable battery
US20100178566A1 (en) * 2005-10-14 2010-07-15 Panasonic Corporation Method of producing silicon oxide, negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
KR100728783B1 (en) 2005-11-02 2007-06-19 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
US8394531B2 (en) 2005-11-02 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
US7892677B2 (en) 2005-12-13 2011-02-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery having the same
US8039148B2 (en) 2005-12-13 2011-10-18 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2007069562A1 (en) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP4613953B2 (en) * 2005-12-28 2011-01-19 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100901048B1 (en) 2005-12-28 2009-06-04 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
JPWO2007074654A1 (en) * 2005-12-28 2009-06-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US7736808B2 (en) 2006-01-31 2010-06-15 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2007207466A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007207699A (en) * 2006-02-06 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008027912A (en) * 2006-07-14 2008-02-07 Kumho Petrochem Co Ltd Anode active material for lithium secondary cell mixed with carbon nanofiber
JP2010095797A (en) * 2008-10-14 2010-04-30 Korea Inst Of Science & Technology Carbon nanotube-coated silicon/metal composite particle, preparation method thereof, and anode for secondary battery and secondary battery using the same
JP2012038735A (en) * 2008-12-26 2012-02-23 Sekisui Chem Co Ltd Carbon particle for electrode, and anode material for lithium-ion secondary battery
JP2011090943A (en) * 2009-10-23 2011-05-06 Sumitomo Bakelite Co Ltd Carbon material for lithium secondary battery negative electrode, the lithium secondary battery negative electrode and manufacturing method of the lithium secondary battery and carbon material for the lithium secondary battery negative electrode
US9083054B2 (en) 2011-06-24 2015-07-14 Sony Corporation Lithium ion secondary battery, lithium ion secondary battery negative electrode, battery pack, electric vehicle, electricity storage system, power tool, and electronic apparatus
JP2013008584A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP2014029848A (en) * 2012-06-29 2014-02-13 Jfe Chemical Corp Composite particle for lithium ion secondary battery negative electrode, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20150280222A1 (en) * 2012-10-17 2015-10-01 Institutt For Energiteknikk Method, powder, film & lithium ion battery
JP2015511374A (en) * 2012-12-21 2015-04-16 エルジー・ケム・リミテッド Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US9431652B2 (en) 2012-12-21 2016-08-30 Lg Chem, Ltd. Anode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery including the anode active material
US20160197343A1 (en) * 2015-01-07 2016-07-07 Samsung Sdi Co., Ltd. Secondary battery
US10038185B2 (en) * 2015-01-07 2018-07-31 Samsung Sdi Co., Ltd. Secondary battery
CN113632262A (en) * 2018-11-13 2021-11-09 株式会社Lg新能源 Negative active material and method for preparing same
EP3859835A4 (en) * 2018-11-13 2021-11-10 Lg Energy Solution, Ltd. Anode active material and manufacturing method therefor
JP2022546527A (en) * 2019-09-30 2022-11-04 エルジー エナジー ソリューション リミテッド Composite negative electrode active material, manufacturing method thereof, and negative electrode including the same
US11891523B2 (en) 2019-09-30 2024-02-06 Lg Energy Solution, Ltd. Composite negative electrode active material, method of manufacturing the same, and negative electrode including the same
JP7451012B2 (en) 2019-09-30 2024-03-18 エルジー エナジー ソリューション リミテッド Composite negative electrode active material, its manufacturing method, and negative electrode containing the same
WO2023002758A1 (en) * 2021-07-20 2023-01-26 パナソニックIpマネジメント株式会社 Anode active substance, anode material and battery
WO2024048355A1 (en) * 2022-08-31 2024-03-07 日本ゼオン株式会社 Composite particles and production method for same, electrochemical element electrode, and electrochemical element

Similar Documents

Publication Publication Date Title
JP2004349056A (en) Anode material for lithium secondary battery and its manufacturing method
KR101396521B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
US6770399B2 (en) Composite material for anode of lithium secondary battery, and lithium secondary battery
KR100855166B1 (en) Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
JP4208034B2 (en) Method for producing conductive composite particles
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
KR100832205B1 (en) Anode for non-aqueous secondary battery and non-aqueous secondary battery using the same
KR100809570B1 (en) Cathode material for manufacturing a rechargeable battery
JP6207143B2 (en) Negative electrode active material and lithium battery employing the material
CN108511674B (en) Positive electrode material: method for preparing the same and using the same in lithium secondary battery
US8241793B2 (en) Secondary lithium ion battery containing a prelithiated anode
JP4393610B2 (en) Negative electrode material for lithium secondary battery, lithium secondary battery, and charging method of the secondary battery
KR101594533B1 (en) Composite electrode material
JP5346962B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4530647B2 (en) Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2004178922A (en) Negative electrode material and secondary battery using the same
JP2015524993A (en) Porous silicon-based negative electrode active material, manufacturing method thereof, and lithium secondary battery including the same
KR20150086280A (en) Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
US20200295356A1 (en) Process for producing semiconductor nanowires and carbon/semiconductor nanowire hybrid materials
JP2004200001A (en) Composit carbon material for lithium-ion secondary battery negative electrode, and its manufacturing method
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
JP3406583B2 (en) Graphite-carbon composite material for negative electrode of lithium secondary battery, method for producing the same, and lithium secondary battery
KR101692330B1 (en) Negative active material for rechargable lithium battery, method for manufacturing the same, and rechargable lithium battery including the same
JP2004250275A (en) Graphite-carbon composite material
JP4053763B2 (en) Lithium ion secondary battery