JP4530647B2 - Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery Download PDF

Info

Publication number
JP4530647B2
JP4530647B2 JP2003386799A JP2003386799A JP4530647B2 JP 4530647 B2 JP4530647 B2 JP 4530647B2 JP 2003386799 A JP2003386799 A JP 2003386799A JP 2003386799 A JP2003386799 A JP 2003386799A JP 4530647 B2 JP4530647 B2 JP 4530647B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
electrode material
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003386799A
Other languages
Japanese (ja)
Other versions
JP2005149946A (en
Inventor
達夫 梅野
憲二 福田
孝士 岩尾
英二 安部
陽一郎 原
孝平 村山
十五 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Coke and Engineering Co Ltd
Original Assignee
Nippon Coke and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Coke and Engineering Co Ltd filed Critical Nippon Coke and Engineering Co Ltd
Priority to JP2003386799A priority Critical patent/JP4530647B2/en
Publication of JP2005149946A publication Critical patent/JP2005149946A/en
Application granted granted Critical
Publication of JP4530647B2 publication Critical patent/JP4530647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、大容量かつ安全性に優れ、また充放電サイクル特性に優れたリチウム二次電池用負極材料、前記負極材料の製造方法、及びリチウム二次電池に関する。   The present invention relates to a negative electrode material for a lithium secondary battery excellent in large capacity and safety, and excellent in charge / discharge cycle characteristics, a method for producing the negative electrode material, and a lithium secondary battery.

電子機器の小型軽量化に伴い、電池の高エネルギー密度化が要求され、また省資源の面から繰り返し充放電可能な二次電池が求められている。これらの要求に対して、リチウム二次電池が提案され、開発されている。   With the reduction in size and weight of electronic devices, higher energy density of batteries is required, and secondary batteries that can be repeatedly charged and discharged are demanded from the viewpoint of resource saving. In response to these requirements, lithium secondary batteries have been proposed and developed.

リチウム二次電池は、その開発当初は、負極材料として金属リチウムが用いられていた。   At the beginning of development of lithium secondary batteries, metallic lithium was used as a negative electrode material.

しかしながら、金属リチウムを用いる二次電池、即ち金属リチウム二次電池は、急速充電性に劣り、サイクル寿命が短い上、デンドライトが生成して発火や爆発を起こすことがあり、安全性に問題があった。   However, secondary batteries using metallic lithium, that is, metallic lithium secondary batteries, are inferior in rapid chargeability, have a short cycle life, and may generate dendrites and cause fires and explosions. It was.

このため、現在は、負極に炭素系及び/又は黒鉛系材料を用いるリチウム二次電池、即ちリチウムイオン二次電池が実用化され、多用されている。   Therefore, at present, lithium secondary batteries using carbon-based and / or graphite-based materials for the negative electrode, that is, lithium ion secondary batteries have been put into practical use and are widely used.

このリチウムイオン二次電池を始め種々のリチウム二次電池について、より一層の高容量化を図るため、負極材料のみならず、正極材料、電解質についての研究が現在も続けられている。   In order to further increase the capacity of various lithium secondary batteries including this lithium ion secondary battery, research not only on negative electrode materials but also on positive electrode materials and electrolytes continues.

リチウム二次電池の正極材料としては、従来、LiCoO2が多用されてきたが、これは調製が容易であり、また比較的安全性が高い等の理由による。最近はLiCoO2の理論容量よりも大きな理論容量を有するLiNiO2やLiMn24を用いて正極を製造することが検討されている。 Conventionally, LiCoO 2 has been frequently used as a positive electrode material for lithium secondary batteries, but this is because it is easy to prepare and is relatively safe. Recently, it has been studied to produce a positive electrode using LiNiO 2 or LiMn 2 O 4 having a theoretical capacity larger than that of LiCoO 2 .

また、電解質についても、リチウム固体二次電池における固体電解質の改良や、ポリマーリチウム二次電池におけるポリマー電解質の改良等種々の検討がなされている。   As for the electrolyte, various studies have been made such as improvement of the solid electrolyte in the lithium solid state secondary battery and improvement of the polymer electrolyte in the polymer lithium secondary battery.

しかしながら、リチウム二次電池の高容量化は負極材料の高容量化にかかっているといっても過言ではない。   However, it is no exaggeration to say that the increase in capacity of lithium secondary batteries depends on the increase in capacity of negative electrode materials.

現在実用化されているリチウム二次電池の負極材料に用いられている黒鉛と、金属リチウムの理論放電容量を比較すると、黒鉛の理論放電容量372mAh/gに比べて金属リチウムの放電容量は4000mAh/gと遙かに大きい。   When the theoretical discharge capacity of graphite and metal lithium used as a negative electrode material of a lithium secondary battery currently in practical use is compared, the discharge capacity of metal lithium is 4000 mAh / g compared to the theoretical discharge capacity of graphite 372 mAh / g. It is much larger than g.

そこで、サイクル寿命や安全性の問題を解決して一層の高容量化を図るべく、金属リチウムを負極材料に利用するための研究が現在も盛んに行われている。更に、リチウム合金は金属リチウムに近い放電容量を有することから、リチウム合金を負極材料に用いる研究も行われている。リチウム合金としては、例えば、リチウム錫合金、リチウム鉛合金、リチウムビスマス合金、リチウムアルミニウム合金、リチウム砒素合金、リチウムゲルマニウム合金、リチウム珪素合金、リチウムアンチモン合金等を挙げることができる。   Therefore, in order to solve the problem of cycle life and safety and to further increase the capacity, research for utilizing metallic lithium as a negative electrode material is still actively conducted. Furthermore, since lithium alloys have a discharge capacity close to that of metallic lithium, studies have been conducted on the use of lithium alloys as negative electrode materials. Examples of the lithium alloy include a lithium tin alloy, a lithium lead alloy, a lithium bismuth alloy, a lithium aluminum alloy, a lithium arsenic alloy, a lithium germanium alloy, a lithium silicon alloy, and a lithium antimony alloy.

リチウム合金はそのまま負極材料として用いることもできるが、多くの場合、リチウム合金のリチウム以外の成分、即ちリチウムと合金形成可能な金属又は半金属を負極材料として電池を組み立てている。この電池においては、充電時に正極から放出されるリチウムをこれらの金属又は半金属に電気化学的に反応させて合金化する方法が採られている。   The lithium alloy can be used as a negative electrode material as it is, but in many cases, a battery is assembled using a component other than lithium of the lithium alloy, that is, a metal or semimetal capable of forming an alloy with lithium as a negative electrode material. This battery employs a method in which lithium released from the positive electrode during charging is electrochemically reacted with these metals or metalloids to form an alloy.

しかしながら、この方法においては、合金化に伴い負極の体積が合金化前の数倍にも膨張するため、負極が粉化する。このため、電池の安全性やサイクル特性が充分改善されていない。従って、現状ではリチウム合金を負極材料とするリチウム二次電池は実用化に至っていない。   However, in this method, the volume of the negative electrode expands several times before alloying with alloying, so the negative electrode is pulverized. For this reason, the safety and cycle characteristics of the battery are not sufficiently improved. Therefore, at present, a lithium secondary battery using a lithium alloy as a negative electrode material has not been put into practical use.

本発明者らは、リチウム合金を用いるリチウム二次電池の負極材料として、珪素含有粒子と炭素含有粒子とが結合してなる多孔性粒子を核として、この核粒子の表面に炭素からなる被覆層を形成した負極材料について先に特許出願した(特許文献1)。   As a negative electrode material of a lithium secondary battery using a lithium alloy, the present inventors have used porous particles formed by bonding silicon-containing particles and carbon-containing particles as nuclei, and a coating layer made of carbon on the surface of the core particles. A patent application was previously filed for the negative electrode material formed (Patent Document 1).

この負極材料は、核粒子を形成する珪素粒子と炭素粒子が微粒子状態で分散しているので、導電性が向上し、珪素へのリチウムイオンの挿入と合金化が均一化され、充放電速度を向上させることができる。また、核粒子の内部には適度の空隙があり、合金化の際に起きる体積膨張を吸収する効果がある。更には、核粒子の表面に形成する炭素被覆層の強い拘束力によって、体積膨張を抑制することができる。
特開2002−216751号公報
In this negative electrode material, the silicon particles and carbon particles forming the core particles are dispersed in a fine particle state, so that the conductivity is improved, the insertion and alloying of lithium ions into silicon are made uniform, and the charge / discharge rate is increased. Can be improved. In addition, there are moderate voids inside the core particles, which has the effect of absorbing volume expansion that occurs during alloying. Furthermore, volume expansion can be suppressed by the strong restraining force of the carbon coating layer formed on the surface of the core particle.
Japanese Patent Laid-Open No. 2002-216751

しかしながら、この負極材料においても解決すべき問題を残している。即ち、充電時の体積膨張が非常に大きいことに起因して、依然としてサイクル劣化を起こす問題がある。体積膨張を抑えるためには充電量を制限することが有効であるが、充電電圧の変化がなだらかであるため、電圧による充電量の制御は困難である。   However, this negative electrode material still has problems to be solved. That is, there is still a problem of causing cycle deterioration due to the very large volume expansion during charging. In order to suppress the volume expansion, it is effective to limit the charge amount. However, since the change in the charge voltage is gentle, it is difficult to control the charge amount by the voltage.

更に、この負極材料を用いた二次電池は、現在使用されている黒鉛系の負極材料を用いた二次電池とは充放電条件が異なるために、電池の互換性がないという問題がある。   Furthermore, the secondary battery using the negative electrode material has a problem in that the battery is not compatible because the charge / discharge conditions are different from those of the secondary battery using the graphite negative electrode material currently used.

本発明は、上記の問題を解決し、大容量で安全性に優れ、また充放電サイクル特性に優れたリチウム二次電池用負極材料、前記負極材料の製造方法、及び前記負極材料を用いたリチウム二次電池を提供することを目的とする。   The present invention solves the above-mentioned problems, has a large capacity, is excellent in safety, and has excellent charge / discharge cycle characteristics. A negative electrode material for a lithium secondary battery, a method for producing the negative electrode material, and lithium using the negative electrode material An object is to provide a secondary battery.

本発明者等は、研究を重ねた結果、活物質としてリチウム合金を形成可能な金属、又は半金属の酸化物を負極材料として使用し、炭素との複合材料とすることにより、充電時の膨張が少なく安定して良好なサイクル特性が得られ、同時に黒鉛系の負極材料と同じ充放電条件が得られることを見出した。更に、この活物質を用いた負極材料は、大容量で安全性に優れた負極材料となることを確認し、本発明を完成するに至った。   As a result of repeated research, the present inventors have used a metal capable of forming a lithium alloy as an active material, or an oxide of a semimetal as a negative electrode material, and formed a composite material with carbon, thereby expanding during charging. It has been found that stable and good cycle characteristics can be obtained, and that the same charge / discharge conditions as the graphite negative electrode material can be obtained at the same time. Furthermore, the negative electrode material using this active material was confirmed to be a negative electrode material having a large capacity and excellent safety, and the present invention was completed.

上記課題を解決する本発明は、以下に記載するものである。   The present invention for solving the above problems is described below.

〔1〕 リチウム合金を形成可能な金属又は半金属の酸化物を含有する粒子と炭素含有粒子とが密着してなる複合粒子を核として該複合粒子表面に炭素からなる被覆層を形成してなることを特徴とするリチウム二次電池用負極材料。   [1] A coating layer made of carbon is formed on the surface of a composite particle using a composite particle in which a particle containing a metal or metalloid oxide capable of forming a lithium alloy and a carbon-containing particle are in close contact with each other. A negative electrode material for a lithium secondary battery.

〔2〕 平均粒子径が1〜50μmであり、比表面積が10m2/g以下である〔1〕に記載のリチウム二次電池用負極材料。 [2] The negative electrode material for a lithium secondary battery according to [1], having an average particle diameter of 1 to 50 μm and a specific surface area of 10 m 2 / g or less.

〔3〕 前記酸化物を含有する粒子の平均粒子径が10μm以下である〔1〕又は〔2〕に記載のリチウム二次電池用負極材料。   [3] The negative electrode material for a lithium secondary battery according to [1] or [2], wherein an average particle diameter of the oxide-containing particles is 10 μm or less.

〔4〕 前記酸化物が珪素又はゲルマニウムの酸化物である〔1〕乃至〔3〕の何れかに記載のリチウム二次電池用負極材料。   [4] The negative electrode material for a lithium secondary battery according to any one of [1] to [3], wherein the oxide is an oxide of silicon or germanium.

〔5〕 前記炭素含有粒子が黒鉛である〔1〕乃至〔4〕の何れかに記載のリチウム二次電池用負極材料。   [5] The negative electrode material for a lithium secondary battery according to any one of [1] to [4], wherein the carbon-containing particles are graphite.

〔6〕 〔1〕乃至〔5〕5の何れかに記載のリチウム二次電池用負極材料を用いたリチウム二次電池。   [6] A lithium secondary battery using the negative electrode material for a lithium secondary battery according to any one of [1] to [5] 5.

〔7〕 リチウム合金を形成可能な金属又は半金属の酸化物と炭素との混合物を機械的粉砕処理することにより、該酸化物を含有する粒子と炭素含有粒子とが密着した複合粒子を形成する粒子核製造工程と、前記製造した複合粒子の表面に炭素からなる被覆層を形成する被覆層形成工程とからなり、前記被覆層形成工程において、化学蒸着処理により被覆層を形成するリチウム二次電池用負極材料の製造方法。   [7] By mechanically pulverizing a mixture of a metal or metalloid oxide capable of forming a lithium alloy and carbon, composite particles in which the oxide-containing particles and the carbon-containing particles are in close contact are formed. A lithium secondary battery comprising a particle nucleus manufacturing step and a coating layer forming step of forming a coating layer made of carbon on the surface of the manufactured composite particle, wherein the coating layer is formed by chemical vapor deposition in the coating layer forming step For producing a negative electrode material.

本発明のリチウム二次電池用負極材料は、リチウム合金を形成可能な金属又は半金属の酸化物を含有する粒子と炭素含有粒子とが密着してなる複合粒子の表面に炭素の被覆層を形成したものであるので、金属又は半金属の酸化物とリチウムの合金化に伴う負極材料の膨張を抑制し、負極の粉化、破壊を防止することができる。従って、本発明の負極材料を用いたリチウム二次電池は、充放電を繰り返し行っても負極材料が劣化しにくく、サイクル特性に優れる。更に、本発明の負極材料を使用したリチウム二次電池は大容量で、デンドライトが生成しないため安全性に優れる。   The negative electrode material for a lithium secondary battery of the present invention forms a carbon coating layer on the surface of a composite particle in which particles containing a metal or metalloid oxide capable of forming a lithium alloy and carbon-containing particles are in close contact with each other Therefore, the expansion of the negative electrode material accompanying the alloying of the metal or metalloid oxide and lithium can be suppressed, and the negative electrode can be prevented from being powdered or broken. Therefore, the lithium secondary battery using the negative electrode material of the present invention is excellent in cycle characteristics because the negative electrode material is hardly deteriorated even when charging and discharging are repeated. Furthermore, the lithium secondary battery using the negative electrode material of the present invention has a large capacity and is excellent in safety because no dendrite is generated.

本発明の負極材料は、リチウム合金を形成可能な金属又は半金属の酸化物を含有する粒子と炭素含有粒子とを密着した複合粒子の核(粒子核)の表面に炭素からなる被覆層を形成したものである。   The negative electrode material of the present invention forms a coating layer made of carbon on the surface of the core (particle core) of a composite particle in which particles containing a metal or metalloid oxide capable of forming a lithium alloy and carbon-containing particles are in close contact with each other It is a thing.

リチウム合金を形成可能な金属又は半金属の酸化物としては、例えば、銀、錫、鉛、ビスマス、アルミニウム、砒素、ゲルマニウム、珪素、アンチモン等の酸化物、具体的には、SiO、SiO2、GeO、GeO2、Ag2O、Ag22、Al23、As23、SnO、SnO2、Sb23、Bi23等を挙げることができる。 Examples of the metal or metalloid oxide capable of forming a lithium alloy include oxides such as silver, tin, lead, bismuth, aluminum, arsenic, germanium, silicon, and antimony, specifically, SiO, SiO 2 , GeO, can be cited GeO 2, Ag 2 O, Ag 2 O 2, Al 2 O 3, As 2 O 3, SnO, SnO 2, Sb 2 O 3, Bi 2 O 3 and the like.

これらの酸化物の純度は高純度のものほど良く、純度が95%以上のものが好ましく、98%以上のものがより好ましい。特に、電気化学的に活性な金属等の不純物は、電解液の分解や充電電位の低下によるリチウムデンドライトの生成、或は不可逆容量の増加などにより電池性能を著しく阻害するので、含まないほうが良い。   The purity of these oxides is better as the purity is higher. The purity is preferably 95% or more, more preferably 98% or more. In particular, impurities such as electrochemically active metals should not be included because they significantly impede battery performance due to the formation of lithium dendrites due to the decomposition of the electrolytic solution and the decrease in charging potential, or the increase in irreversible capacity.

これらの酸化物を活物質とした場合には、初期に生成するLiO2によって活物質が安定した構造になり、充電量が制御された二次電池とすることができる。同時に、LiO2が導電性であるために活物質の導電性が飛躍的に向上し、充放電が活物質全体にわたって円滑に行われる。この結果、充放電による負極の膨張収縮が制限されると共に、一定の割合で行われることになり、極めて良好なサイクル特性を得ることができる。 When these oxides are used as the active material, the active material has a stable structure due to LiO 2 generated in the initial stage, and a secondary battery in which the charge amount is controlled can be obtained. At the same time, since LiO 2 is conductive, the conductivity of the active material is dramatically improved, and charging / discharging is smoothly performed throughout the active material. As a result, the expansion and contraction of the negative electrode due to charge / discharge is limited, and the negative electrode is performed at a constant rate, so that extremely good cycle characteristics can be obtained.

複合粒子中の酸化物の割合は、1〜90質量%が好ましく、10〜50質量%がより好ましい。酸化物の割合をこの範囲内とすることにより、複合粒子の導電性を向上させるとともに、エネルギー密度を高くすることができる。   1-90 mass% is preferable and, as for the ratio of the oxide in a composite particle, 10-50 mass% is more preferable. By setting the ratio of the oxide within this range, the conductivity of the composite particles can be improved and the energy density can be increased.

上記酸化物と共に複合粒子を構成する原料炭素としては、一度750℃以上の熱履歴を受けた炭素類が好ましく、カーボンブラック、アセチレンブラック等の熱分解炭素類;炭素繊維、コークス等の熱焼成炭素類;黒鉛類等を用いることができる。   The raw material carbon constituting the composite particles together with the oxide is preferably carbons that have once undergone a thermal history of 750 ° C. or higher, pyrolytic carbons such as carbon black and acetylene black; and heat-fired carbon such as carbon fiber and coke. Class: Graphite and the like can be used.

複合粒子を構成する炭素の純度は、92質量%以上が好ましく、98質量%以上がより好ましい。炭素の純度が92質量%以上で複合粒子の導電性が実現すると共に、純度が高くなる程上記酸化物との複合化が容易となり、また電池とした場合に初期の不可逆容量が減少するためである。   The purity of carbon constituting the composite particles is preferably 92% by mass or more, and more preferably 98% by mass or more. When the purity of the carbon is 92% by mass or more, the conductivity of the composite particle is realized, and the higher the purity, the easier the composite with the above oxide, and the lower the initial irreversible capacity in the case of a battery. is there.

複合粒子の表面に被覆層を形成する第一の目的は、充電時の粒子核の膨張に対して拘束力を与えることである。上記酸化物とリチウムとの合金化に伴う粒子核の膨張を抑制することにより、負極の粉化、破壊を防止することができる。第二の目的は、被覆層の形成により負極材粒子の表面積を小さくすることである。粒子の表面積を小さくすることにより、不可逆成分となる保護膜の形成が減少し、初期効率の低下を防止することができる。第三の目的は、負極材粒子に対するリチウムイオンの挿入又は放出を均一にすることである。粒子核表面に均一な炭素被覆層を施すことにより、リチウムイオンの挿入放出はこの炭素被覆層を通して行われるので、粒子表面全体にリチウムイオンを均一に挿入放出することが可能になる。   The first purpose of forming the coating layer on the surface of the composite particle is to give a restraining force to the expansion of the particle nucleus during charging. By suppressing the expansion of the particle nuclei accompanying the alloying of the oxide and lithium, powdering and destruction of the negative electrode can be prevented. The second purpose is to reduce the surface area of the negative electrode material particles by forming a coating layer. By reducing the surface area of the particles, the formation of a protective film serving as an irreversible component is reduced, and a decrease in initial efficiency can be prevented. A third object is to make the insertion or release of lithium ions uniform with respect to the negative electrode material particles. By applying a uniform carbon coating layer on the surface of the particle core, lithium ions are inserted and released through the carbon coating layer, so that lithium ions can be uniformly inserted and released throughout the particle surface.

被覆層を形成する炭素は、負極材料全体に対して1〜30質量%とすることが好ましく、3〜15質量%がより好ましい。1質量%未満では、表面積低減効果が発現しにくく、30質量%を超えると、電池特性の改良効果はほぼ飽和すると共に、粒子間の接着が顕著となり粒子の粗大化を招きやすい。   The carbon forming the coating layer is preferably 1 to 30% by mass, and more preferably 3 to 15% by mass with respect to the entire negative electrode material. If the amount is less than 1% by mass, the effect of reducing the surface area is hardly exhibited. If the amount exceeds 30% by mass, the effect of improving the battery characteristics is almost saturated, and adhesion between particles becomes remarkable and the particles are likely to become coarse.

被覆層の炭素の結晶性に関しては、導電性を高める意味では結晶性が高いことが好ましい。しかしながら、結晶性が高くなると炭素層間の強度が低下する結果、膨張に対する拘束力が低下する。従って、被覆層炭素の結晶性は、格子定数Co(002)が、0.68〜0.72nmであることが好ましい。   Regarding the crystallinity of carbon of the coating layer, it is preferable that the crystallinity is high in the sense of increasing the conductivity. However, as the crystallinity increases, the strength between the carbon layers decreases, and as a result, the restraining force against expansion decreases. Accordingly, the crystallinity of the coating layer carbon is preferably such that the lattice constant Co (002) is 0.68 to 0.72 nm.

本発明の負極材料の平均粒子径は、1〜50μmが好ましく、特に1〜30μmが好ましい。負極材料の平均粒子径が1μm未満であると表面積が大きくなるが、表面積に比例して不可逆成分となる保護膜が形成されるために、電池の初期効率が低下する傾向がある。負極材料の平均粒子径が50μmを超えると、集電体に塗布して負極を製造する場合、得られる負極表面が滑らかにならなかったり、集電体から剥離したりする等の塗膜の不良原因となりやすい。   1-50 micrometers is preferable and, as for the average particle diameter of the negative electrode material of this invention, 1-30 micrometers is especially preferable. When the average particle diameter of the negative electrode material is less than 1 μm, the surface area increases, but since a protective film that is an irreversible component is formed in proportion to the surface area, the initial efficiency of the battery tends to decrease. When the average particle size of the negative electrode material exceeds 50 μm, when the negative electrode is manufactured by applying to the current collector, the resulting negative electrode surface is not smooth or peels off from the current collector. Prone to cause.

上述のように、負極材料の平均粒子径は1〜50μmとすることが好ましいので、複合粒子の平均粒子径も、概ね1〜50μmとすることが好ましい。   As described above, since the average particle diameter of the negative electrode material is preferably 1 to 50 μm, the average particle diameter of the composite particles is also preferably approximately 1 to 50 μm.

また、複合粒子を構成する酸化物は、その平均粒子径が小さいほど均一な分散状態が得られるので、10μm以下が好ましく、5μm以下がより好ましく、0.1〜1μmが特に好ましい。   In addition, the oxide constituting the composite particle is more preferably 10 μm or less, more preferably 5 μm or less, and particularly preferably 0.1 to 1 μm because a uniform dispersion state is obtained as the average particle size is smaller.

負極材料の比表面積は、10m2/g以下が好ましく、1〜5m2/gがより好ましい。10m2/gを超えると、不可逆成分となる保護膜が多く形成され、電池の初期効率が低下する傾向がある。 The specific surface area of the negative electrode material is preferably from 10 m 2 / g or less, 1 to 5 m 2 / g is more preferable. If it exceeds 10 m 2 / g, many protective films that are irreversible components are formed, and the initial efficiency of the battery tends to decrease.

以下、本発明の負極材料の製造方法について説明する。   Hereinafter, the manufacturing method of the negative electrode material of this invention is demonstrated.

上記の酸化物と炭素との混合物を機械的に粉砕処理し、酸化物と炭素が均一に分散して密着した複合粒子を製造する。複合粒子とすることにより、酸化物へのリチウムイオンの挿入と合金化を均一に行うことができる。   The mixture of the above oxide and carbon is mechanically pulverized to produce composite particles in which the oxide and carbon are uniformly dispersed and adhered. By using composite particles, lithium ions can be inserted into the oxide and alloyed uniformly.

機械的粉砕処理は、金属材料の粉砕又は合金化に用いる一般的な粉砕機を用いて行うことが好ましく、例えば、遊星ミル、振動ボールミル、ロッドミル、大型のボールを使用するボールミル等を用いることができる。   The mechanical pulverization treatment is preferably performed using a general pulverizer used for pulverization or alloying of a metal material. For example, a planetary mill, a vibration ball mill, a rod mill, or a ball mill using a large ball may be used. it can.

これらの粉砕機は、酸化物と炭素の混合物に衝撃的な圧縮力を加え、各原料を押し潰して微粉砕すると共に、相互に細かく分散させる。これと同時に、混合物に加える衝撃的な圧縮力には、複数の粒子を圧着して造粒する機能があるので、酸化物と炭素の微粒子が分散した状態の新たな粒子の集合体を形成する。この操作を繰り返すことにより、酸化物と炭素が相互に細かく分散し、強度のある複合粒子を得ることができる。   These pulverizers apply a shocking compressive force to a mixture of oxide and carbon to crush and finely pulverize each raw material, and finely disperse each other. At the same time, the impact compression force applied to the mixture has the function of pressing and granulating a plurality of particles, thus forming a new particle aggregate in which oxide and carbon particles are dispersed. . By repeating this operation, the oxide and the carbon are finely dispersed in each other, and strong composite particles can be obtained.

機械的処理を行う際の処理雰囲気としては、材料の酸化を防止するために、不活性雰囲気で行うことが好ましい。   As a processing atmosphere when performing the mechanical processing, it is preferable to perform in an inert atmosphere in order to prevent oxidation of the material.

処理時間は、使用する粉砕機の種類や仕込み量等によって異なるが、一般に5時間以上が好ましく、10時間以上がより好ましい。   The treatment time varies depending on the type of the pulverizer used, the amount charged, and the like, but is generally preferably 5 hours or longer, and more preferably 10 hours or longer.

複合粒子の炭素被覆は、流動床化学蒸着や固定床化学蒸着等の方法によって行うことができる。特に、流動床で行う場合には、粒子の表面を少量の蒸着炭素で均一に被覆することが可能である。   The carbon coating of the composite particles can be performed by a method such as fluidized bed chemical vapor deposition or fixed bed chemical vapor deposition. In particular, when performed in a fluidized bed, the surface of the particles can be uniformly coated with a small amount of vapor-deposited carbon.

化学蒸着温度は、700〜1200℃とすることが好ましく、850〜1100℃がより好ましい。処理温度が700℃未満では、分解炭素の析出速度が小さく、長時間の処理が必要となる。また、炭素の電気抵抗が大きくなり、強度も低下する傾向がある。   The chemical vapor deposition temperature is preferably 700 to 1200 ° C, and more preferably 850 to 1100 ° C. When the treatment temperature is less than 700 ° C., the deposition rate of cracked carbon is low, and a long-time treatment is required. In addition, the electrical resistance of carbon tends to increase and the strength tends to decrease.

熱分解炭素源として用いる有機物としては、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ジフェニル、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素、又はその誘導体あるいはこれらの混合物を用いることができる。   Examples of organic substances used as the pyrolytic carbon source include one ring to three such as benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, diphenyl, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene. A ring aromatic hydrocarbon, a derivative thereof, or a mixture thereof can be used.

また、石炭系のタール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、あるいは石油系の分留油やナフサ分解タール油のほか、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素やその誘導体であるアルコールも単独であるいは混合物として用いることができる。   In addition to gas diesel oil, creosote oil, anthracene oil obtained from coal-based tar distillation process, petroleum-based fractionated oil and naphtha cracked tar oil, fats such as methane, ethane, propane, butane, pentane, and hexane Aromatic hydrocarbons and alcohols thereof can be used alone or as a mixture.

さらにはアセチレン、エチレン、プロピレン、イソプロピレン、ブタジエン等の二重結合を有する有機化合物も用いることが出来る。   Furthermore, organic compounds having a double bond such as acetylene, ethylene, propylene, isopropylene, and butadiene can also be used.

熱分解炭素源として用いる有機物は、中でも、化学蒸着処理時にタールを生成しない芳香環数が1のベンゼン、トルエン、キシレン、スチレン等又はそれらの混合物が好ましい。   Among them, the organic substance used as the pyrolytic carbon source is preferably benzene, toluene, xylene, styrene or the like having 1 aromatic ring that does not generate tar during chemical vapor deposition or a mixture thereof.

化学蒸着処理は窒素等の不活性ガス雰囲気下で実施する。不活性ガスは、反応系より酸素や未反応有機ガスを排出するのに用いられるが、同時に流動床を形成する流動化媒体として重要である。従って、化学蒸着炭素源となる有機物は、窒素等の不活性ガスで稀釈されて流動床に導入される。   Chemical vapor deposition is carried out in an inert gas atmosphere such as nitrogen. The inert gas is used to discharge oxygen and unreacted organic gas from the reaction system, but at the same time is important as a fluidizing medium for forming a fluidized bed. Therefore, the organic substance that becomes the chemical vapor deposition carbon source is diluted with an inert gas such as nitrogen and introduced into the fluidized bed.

有機物の濃度は、生成する蒸着炭素の結晶性に大きな影響を与える。モル濃度が小さい場合、炭素蒸着速度は下がるが、蒸着炭素の結晶性は向上する。一方モル濃度が高い場合、炭素蒸着速度は増大するが、同時にスス状炭素が発生し、蒸着炭素の結晶性は低下する。蒸着炭素、即ち複合粒子の表面を被覆する炭素の格子定数を上記範囲とするため、本発明においては有機物の不活性ガスに対するモル濃度を2〜50%することが好ましく、5〜33%とすることがより好ましい。   The concentration of the organic substance has a great influence on the crystallinity of the deposited carbon produced. When the molar concentration is small, the carbon deposition rate is lowered, but the crystallinity of the deposited carbon is improved. On the other hand, when the molar concentration is high, the carbon deposition rate is increased, but soot-like carbon is generated at the same time, and the crystallinity of the deposited carbon is lowered. In order to set the lattice constant of the deposited carbon, that is, the carbon covering the surface of the composite particle, within the above range, in the present invention, the molar concentration of the organic substance with respect to the inert gas is preferably 2 to 50%, more preferably 5 to 33%. It is more preferable.

本発明の負極材料を用いてリチウム二次電池の負極を調製する方法は特に限定されないが、例えば、この負極材料にバインダーを溶解した溶剤を加えて十分に混練後、金属箔等の集電体に塗膜して負極とすることができる。   A method for preparing a negative electrode of a lithium secondary battery using the negative electrode material of the present invention is not particularly limited. For example, a current collector such as a metal foil is added after sufficiently adding a solvent in which a binder is dissolved to the negative electrode material A negative electrode can be formed by coating the film.

バインダーには公知の材料、例えば各種ピッチ、ラバー、合成樹脂等を用いることができるが、なかでもポリビニリデンフルオライド(PVDF)、エチレンプロピレンジエンポリマー(EPDM)、カルボキシメチルセルロース(CMC)、スチレンブタジエンラテックス(SBR)等が好適である。   Known materials such as various pitches, rubbers, and synthetic resins can be used for the binder. Among them, polyvinylidene fluoride (PVDF), ethylene propylene diene polymer (EPDM), carboxymethyl cellulose (CMC), styrene butadiene latex, among others. (SBR) and the like are preferable.

本発明の負極材料を用いてリチウム二次電池とする場合、正極材料はリチウム二次電池に通常用いられるものであれば特に限定されないが、LiCoO2、LiNiO2、LiMn24等、又はこれらの混合物或いは金属置換物が好適である。 When the negative electrode material of the present invention is used to form a lithium secondary battery, the positive electrode material is not particularly limited as long as it is usually used for a lithium secondary battery, but LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc., or these A mixture of these or a metal substitution is preferred.

粉末状の正極材料は必要があれば導電材を加え、バインダーを溶解した溶剤と十分に混練後、集電体とともに成形して調製することができる。これらは公知の技術である。   If necessary, the powdered positive electrode material can be prepared by adding a conductive material, sufficiently kneading with a solvent in which a binder is dissolved, and then molding together with a current collector. These are known techniques.

また、セパレーターについても特に限定はなく、ポリプロピレンやポリエチレン等の公知の材料を用いることができる。   The separator is not particularly limited, and a known material such as polypropylene or polyethylene can be used.

リチウムイオン二次電池の電解液用非水系溶媒としては、リチウム塩を溶解できる非プロトン性低誘電率の公知の溶媒を用いることができる。例えば、エチレンカーボネイト、ジメチルカーボネイト、プロピレンカーボネイト、ジエチレンカーボネイト、アセトニトリル、プロピオニトリル、テトラヒドロフラン、γ−ブチロラクトン、2−メチルテトラヒドロフラン、1、3−ジオキソラン、4−メチル−1、3−ジオキソラン、1、2−ジメトキシエタン、1、2−ジエトキシエタン、ジエチルエーテル、スルホラン、メチルスルホラン、ニトロメタン、N、N−ジメチルホルムアミド、ジメチルスルホキシド等の溶媒を単独でまたは二種類以上を混合して用いることができる。   As the non-aqueous solvent for the electrolyte of the lithium ion secondary battery, a known aprotic low dielectric constant solvent capable of dissolving a lithium salt can be used. For example, ethylene carbonate, dimethyl carbonate, propylene carbonate, diethylene carbonate, acetonitrile, propionitrile, tetrahydrofuran, γ-butyrolactone, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2 Solvents such as -dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methyl sulfolane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide can be used alone or in admixture of two or more.

電解質として用いられるリチウム塩にはLiClO4、LiAsF5、LiPF6、LiBF4、LiB(C654、LiCl、LiBr、CH3SO3Li、CF3SO3Li等があり、これらの塩を単独であるいは二種類以上を混合して用いることができる。 Lithium salts used as the electrolyte include LiClO 4 , LiAsF 5 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc. A salt can be used alone or in admixture of two or more.

また、上記電解液と電解質を混合してゲル化したゲル電解質や、ポリエチレンオキサイド、ポリアクリロニトリル等の高分子電解質等を用いてリチウムポリマー二次電池とすることもできる。   Moreover, it can also be set as a lithium polymer secondary battery using the gel electrolyte which mixed the said electrolyte solution and electrolyte and gelatinized, polymer electrolytes, such as polyethylene oxide and polyacrylonitrile.

さらには固体電解質を用いてリチウム全固体二次電池とすることもできる。   Furthermore, it can also be set as a lithium all-solid-state secondary battery using a solid electrolyte.

各物性値は以下の方法で測定した。   Each physical property value was measured by the following method.

平均粒子径および粒度分布:
(株)島津製作所製、レーザー式回折粒度分布測定装置(SALD−200Vを用いて測定した。
Average particle size and particle size distribution:
Measured using a laser diffraction particle size distribution analyzer (SALD-200V) manufactured by Shimadzu Corporation.

比表面積:
日本ベル(株)製、高精度自動ガス吸着装置(BELSORB28)を用い、液体窒素温度で窒素吸着量を多点法で測定しBET法にて比表面積を算出した。
Specific surface area:
Using a high precision automatic gas adsorption device (BELSORB28) manufactured by Nippon Bell Co., Ltd., the nitrogen adsorption amount was measured by the multipoint method at the liquid nitrogen temperature, and the specific surface area was calculated by the BET method.

被覆炭素量:
(株)島津製作所製、熱重量分析装置(TGA−50)を用い、試料を空気気流中で900℃まで昇温して炭素を燃焼させ、重量減少量から被覆炭素量を算出した。
Carbon content:
Using a thermogravimetric analyzer (TGA-50) manufactured by Shimadzu Corporation, the sample was heated to 900 ° C. in an air stream to burn carbon, and the amount of coated carbon was calculated from the weight loss.

実施例1
一酸化珪素((株)高純度化学研究所製、1μm)500gに、黒鉛(中国産、10μm)粉末500gを加え、アルゴン雰囲気下で、振動ミルで12時間複合化処理した後、篩い分けにより粒径53μm以下の複合粒子を得た。この複合粒子500gを内容積1000mlのステンレス容器に挿入し、攪拌しながら、窒素気流により粒子を流動化状態とした。容器内部の空気を窒素ガスによって完全にパージした後、流動化状態を保ちながら内部温度を950℃に昇温し、更に底部よりベンゼン蒸気を導入することにより化学蒸着処理を行って、複合粒子の表面に炭素からなる被覆層を形成した。ベンゼン濃度は10モル%であった。
Example 1
After adding 500 g of graphite (made in China, 10 μm) powder to 500 g of silicon monoxide (manufactured by High-Purity Chemical Laboratory Co., Ltd., 1 μm), the mixture is compounded in a vibration mill for 12 hours in an argon atmosphere, and then sieved. Composite particles having a particle size of 53 μm or less were obtained. 500 g of the composite particles were inserted into a stainless steel container having an internal volume of 1000 ml, and the particles were fluidized by a nitrogen stream while stirring. After completely purging the air inside the container with nitrogen gas, the internal temperature is raised to 950 ° C. while maintaining the fluidized state, and further chemical vapor deposition treatment is performed by introducing benzene vapor from the bottom, A coating layer made of carbon was formed on the surface. The benzene concentration was 10 mol%.

化学蒸着処理を180分間行った後、窒素気流下で室温まで冷却して処理物を取り出した。得られた負極材料の被覆炭素量、平均粒子径、比表面積を表1に示す。   After chemical vapor deposition treatment was performed for 180 minutes, the treated product was taken out by cooling to room temperature under a nitrogen stream. Table 1 shows the coating carbon amount, average particle diameter, and specific surface area of the obtained negative electrode material.

この負極材料(試料)を用いて非水溶媒系リチウムイオン二次電池を作成し、これを用いて充放電試験を行うことにより、その性能を評価した。   Using this negative electrode material (sample), a non-aqueous solvent type lithium ion secondary battery was prepared, and the performance was evaluated by conducting a charge / discharge test using this.

負極は、以下の方法で調製した。
試料2gに、バインダーとしてPVDF0.2gのN−メチルピロリドン溶液を加え、よく混合してペースト状にした。これを銅箔に塗布し、120℃で乾燥した後、98MPaで加圧成形した。その後、直径16mmの円形に切り出して、これを160℃で2時間真空乾燥して負極を得た。
The negative electrode was prepared by the following method.
To 2 g of sample, N-methylpyrrolidone solution of PVDF 0.2 g as a binder was added and mixed well to make a paste. This was applied to a copper foil, dried at 120 ° C., and then pressure molded at 98 MPa. Thereafter, it was cut out into a circle having a diameter of 16 mm and vacuum-dried at 160 ° C. for 2 hours to obtain a negative electrode.

正極は、市販のLiCoO2を用いて以下の方法で調製した。
5gのLiCoO2に導電助剤のアセチレンブラックを0.3g加えて混合した後、バインダーとしてPVDF0.3gのN−メチルピロリドン溶液を加え、よく混合してペースト状にした。これをアルミ箔に塗布し、120℃で乾燥した後、98MPaで加圧成形した。その後、直径15.9mmの円形に切り出し、160℃で2時間真空乾燥し、正極を得た。
The positive electrode was prepared by the following method using commercially available LiCoO 2 .
After adding 0.3 g of acetylene black as a conductive additive to 5 g of LiCoO 2 and mixing, 0.3 g of PVDF N-methylpyrrolidone solution as a binder was added and mixed well to obtain a paste. This was applied to an aluminum foil, dried at 120 ° C., and then pressure molded at 98 MPa. Thereafter, it was cut into a circle having a diameter of 15.9 mm and vacuum dried at 160 ° C. for 2 hours to obtain a positive electrode.

電解溶媒にはエチレンカーボネイトとジメチルカーボネイトの容積比1:2の混合溶媒を用いた。電解質にはLiPF6を用い、濃度は1.0mol/lとした。 As the electrolytic solvent, a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2 was used. LiPF 6 was used as the electrolyte, and the concentration was 1.0 mol / l.

セパレーターには多孔質ポリプロピレン布織布を用い、グラスファイバー濾紙に電解液を含浸させ、アルゴン雰囲気下でコイン型セルを作成した。   A porous polypropylene cloth was used as a separator, and a glass fiber filter paper was impregnated with an electrolytic solution to prepare a coin-type cell in an argon atmosphere.

充放電試験は次の条件で行った。
充電は、電流密度を50mA/g、及び0.4mA/cm2とし、4.1Vでカットした。
放電は、電流密度を50mA/g、及び0.4mA/cm2とし、2.5Vでカットした。
The charge / discharge test was performed under the following conditions.
Charging was performed at 4.1 V with current densities of 50 mA / g and 0.4 mA / cm 2 .
The discharge was cut at 2.5 V at a current density of 50 mA / g and 0.4 mA / cm 2 .

そして、負極重量基準での充電量、初期効率、及び初回容量の維持率を算出した。結果を表2に示す。   Then, the charge amount, the initial efficiency, and the initial capacity retention rate on the negative electrode weight basis were calculated. The results are shown in Table 2.

表2に示すように、この電池はサイクル性能が高く、300サイクルまで劣化はなかった。   As shown in Table 2, this battery had high cycle performance and was not deteriorated up to 300 cycles.

実施例2
一酸化珪素((株)高純度化学研究所製、1μm)200gに、黒鉛(中国産、10μm)粉末500gを加え、アルゴン雰囲気下で、振動ミルで12時間複合化処理した後、篩い分けにより粒径53μm以下の複合粒子を得た。この複合粒子500gを用いて、実施例1と同様に化学蒸着処理を行った。また、得られた負極材料を用いて、実施例1と同様に電池性能の評価を行った。結果を、表1及び表2に示す。
表2に示すように、この電池はサイクル性能が高く、300サイクルまで劣化はなかった。
Example 2
After adding 500 g of graphite (made in China, 10 μm) powder to 200 g of silicon monoxide (manufactured by High-Purity Chemical Laboratory Co., Ltd., 1 μm), and compositing with a vibration mill for 12 hours in an argon atmosphere, sieving Composite particles having a particle size of 53 μm or less were obtained. Chemical vapor deposition was performed in the same manner as in Example 1 using 500 g of the composite particles. Moreover, the battery performance was evaluated in the same manner as in Example 1 using the obtained negative electrode material. The results are shown in Tables 1 and 2.
As shown in Table 2, this battery had high cycle performance and was not deteriorated up to 300 cycles.

実施例3
酸化ゲルマニウム((株)高純度化学研究所製、1μm)500gに、黒鉛(中国産、10μm)粉末500gを加え、アルゴン雰囲気下で、振動ミルで12時間複合化処理した後、篩い分けにより53μm以下の複合粒子を得た。この複合粒子500gを用いて、実施例1と同様に化学蒸着処理を行った。また、得られた負極材料を用いて、実施例1と同様に電池性能の評価を行った。結果を、表1及び表2に示す。
表2に示すように、この電池はサイクル性能が高く、300サイクルまで劣化はなかった。
Example 3
To 500 g of germanium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., 1 μm) is added 500 g of graphite (made in China, 10 μm) powder, and after a composite treatment with a vibration mill for 12 hours in an argon atmosphere, 53 μm by sieving. The following composite particles were obtained. Chemical vapor deposition was performed in the same manner as in Example 1 using 500 g of the composite particles. Moreover, the battery performance was evaluated in the same manner as in Example 1 using the obtained negative electrode material. The results are shown in Tables 1 and 2.
As shown in Table 2, this battery had high cycle performance and was not deteriorated up to 300 cycles.

比較例1
一酸化珪素((株)高純度化学研究所製、1μm)500gを用いて、複合化処理を行うことなく、実施例1と同様に化学蒸着処理を行った。この試料を用いて、実施例1と同様に電池性能の評価を行った。結果を、表1及び表2に示す。
表2に示すように、この電池はサイクル性能が低く、100サイクルまでに劣化した。
Comparative Example 1
Chemical vapor deposition treatment was performed in the same manner as in Example 1 using 500 g of silicon monoxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., 1 μm) without performing the composite treatment. Using this sample, the battery performance was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
As shown in Table 2, this battery had low cycle performance and deteriorated by 100 cycles.

比較例2
一酸化珪素((株)高純度化学研究所製、1μm)500gに、黒鉛(中国産、10μm)粉末500gを加え、アルゴン雰囲気下で、振動ミルで12時間複合化処理した後、篩い分けにより53μm以下の複合粒子を得た。この試料を用いて、実施例1と同様に電池性能の評価を行った。結果を、表1及び表2に示す。
表2に示すように、この電池はサイクル性能が低く、100サイクルまでに劣化した。
Comparative Example 2
After adding 500 g of graphite (made in China, 10 μm) powder to 500 g of silicon monoxide (manufactured by High-Purity Chemical Laboratory Co., Ltd., 1 μm), the mixture is compounded in a vibration mill for 12 hours in an argon atmosphere, and then sieved. Composite particles of 53 μm or less were obtained. Using this sample, the battery performance was evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 2.
As shown in Table 2, this battery had low cycle performance and deteriorated by 100 cycles.

表 1
──────────────────────────────────
酸化物/配合炭素/被覆炭素 平均粒子径 比表面積
(質量%) (μm) (m2/g)
──────────────────────────────────
実施例1 45/ 45 /10 18 3.7
実施例2 26/ 64 /10 21 4.5
実施例3 45/ 45 /10 19 4.0
比較例1 90/ 0 /10 2 12.6
比較例2 50/ 50 / 0 18 18.5
──────────────────────────────────
Table 1
──────────────────────────────────
Oxide / Compounded carbon / Coated carbon Average particle size Specific surface area
(Mass%) (μm) (m 2 / g)
──────────────────────────────────
Example 1 45/45/10 18 3.7
Example 2 26/64/10 21 4.5
Example 3 45/45/10 19 4.0
Comparative Example 1 90/0/10 2 12.6
Comparative Example 2 50/50/0 18 18.5
──────────────────────────────────

表 2
────────────────────────────────────
充電量 効率(%) 初期容量に対する容量維持率(%)
(mAh/g) 1st 10th 50th 100th 300th
────────────────────────────────────
実施例1 980 69.5 99.6 99.7 97.8 91.8
実施例2 700 75.7 99.5 99.3 99.6 98.6
実施例3 500 84.3 97.8 99.2 98.6 96.7
比較例1 1600 62.9 91.6 31.5 劣化 −
比較例2 900 56.5 96.5 52.2 劣化 −
────────────────────────────────────
Table 2
────────────────────────────────────
Charging amount Efficiency (%) Capacity maintenance rate against initial capacity (%)
(mAh / g) 1st 10th 50th 100th 300th
────────────────────────────────────
Example 1 980 69.5 99.6 99.7 97.8 91.8
Example 2 700 75.7 99.5 99.3 99.6 98.6
Example 3 500 84.3 97.8 99.2 98.6 96.7
Comparative Example 1 1600 62.9 91.6 31.5 Degradation −
Comparative Example 2 900 56.5 96.5 52.2 Degradation −
────────────────────────────────────

Claims (6)

リチウム合金を形成可能な金属又は半金属の酸化物を含有する平均粒子径0.1〜1μmの粒子と炭素含有粒子とが機械的粉砕処理により密着してなる複合粒子を核として該複合粒子表面に炭素からなる被覆層を形成してなり、比表面積が1〜4.5m /gであることを特徴とするリチウム二次電池用負極材料。 Surface of the composite particles using as a core composite particles in which particles having an average particle diameter of 0.1 to 1 μm containing a metal or metalloid oxide capable of forming a lithium alloy and carbon-containing particles are adhered by mechanical pulverization an anode material for lithium secondary battery, wherein Ri Na to form a coating layer composed of carbon, having a specific surface area of 1~4.5m 2 / g to. 平均粒子径が1〜50μmである請求項1に記載のリチウム二次電池用負極材料。 2. The negative electrode material for a lithium secondary battery according to claim 1, having an average particle diameter of 1 to 50 μm. 前記酸化物が珪素又はゲルマニウムの酸化物である請求項1又は2に記載のリチウム二次電池用負極材料。 The negative electrode material for a lithium secondary battery according to claim 1, wherein the oxide is an oxide of silicon or germanium. 前記炭素含有粒子が黒鉛である請求項1乃至の何れかに記載のリチウム二次電池用負極材料。 The negative electrode material for a lithium secondary battery according to any one of claims 1 to 3 , wherein the carbon-containing particles are graphite. 請求項1乃至の何れかに記載のリチウム二次電池用負極材料を用いたリチウム二次電池。 The lithium secondary battery using the negative electrode material for lithium secondary batteries in any one of Claims 1 thru | or 4 . リチウム合金を形成可能な金属又は半金属の酸化物であって平均粒子径0.1〜1μmの粒子と炭素との混合物を機械的粉砕処理することにより、該酸化物を含有する粒子と炭素含有粒子とが密着した複合粒子を形成する粒子核製造工程と、前記製造した複合粒子の表面に炭素からなる被覆層を形成する被覆層形成工程とからなり、前記被覆層形成工程において、化学蒸着処理により被覆層を形成するリチウム二次電池用負極材料の製造方法。 Metal or metalloid oxide capable of forming a lithium alloy, and a mixture of particles and carbon having an average particle diameter of 0.1 to 1 μm and carbon are mechanically pulverized to contain the oxide-containing particles and carbon A particle core manufacturing process for forming composite particles in close contact with the particles, and a coating layer forming process for forming a coating layer made of carbon on the surface of the manufactured composite particles. In the coating layer forming process, chemical vapor deposition The manufacturing method of the negative electrode material for lithium secondary batteries which forms a coating layer by this.
JP2003386799A 2003-11-17 2003-11-17 Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery Expired - Lifetime JP4530647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003386799A JP4530647B2 (en) 2003-11-17 2003-11-17 Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003386799A JP4530647B2 (en) 2003-11-17 2003-11-17 Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005149946A JP2005149946A (en) 2005-06-09
JP4530647B2 true JP4530647B2 (en) 2010-08-25

Family

ID=34694384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003386799A Expired - Lifetime JP4530647B2 (en) 2003-11-17 2003-11-17 Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4530647B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913200B (en) * 2006-08-22 2010-05-26 深圳市贝特瑞电子材料有限公司 Silicon carbone compound negative polar material of lithium ion battery and its preparation method
EP2093821A4 (en) * 2006-11-17 2013-03-27 Mitsubishi Heavy Ind Ltd Cathode active material for nonaqueous electrolyte secondary battery and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP5277656B2 (en) * 2007-02-20 2013-08-28 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP4774090B2 (en) * 2008-09-11 2011-09-14 キヤノン株式会社 Data selection apparatus and control method thereof
KR101106261B1 (en) 2009-09-04 2012-01-18 국립대학법인 울산과학기술대학교 산학협력단 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
JP5390336B2 (en) * 2009-10-22 2014-01-15 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101126202B1 (en) 2010-11-04 2012-03-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
JP5682276B2 (en) * 2010-12-10 2015-03-11 日立化成株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9614216B2 (en) 2010-12-10 2017-04-04 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5903761B2 (en) * 2010-12-10 2016-04-13 日立化成株式会社 Method for producing negative electrode material for lithium secondary battery
JP5691469B2 (en) * 2010-12-10 2015-04-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5691468B2 (en) * 2010-12-10 2015-04-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6060506B2 (en) * 2012-03-23 2017-01-18 三菱化学株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR101375615B1 (en) 2012-03-27 2014-03-18 한국세라믹기술원 Manufacturing method of silicon-active carbon composites for electrode active material
WO2013149807A2 (en) 2012-04-05 2013-10-10 Timcal S.A. Surface-modified low surface area graphite, processes for making it, and applications of the same
JP5949194B2 (en) * 2012-06-12 2016-07-06 信越化学工業株式会社 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
KR20140022682A (en) * 2012-08-14 2014-02-25 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, and negative electrode and rechargeable lithium battery including same
CN104781956B (en) 2012-08-21 2018-01-30 克雷多斯公司 IVA races functional particles and its application method
KR20140139294A (en) 2013-05-27 2014-12-05 삼성에스디아이 주식회사 Negative electrode active material for rechargable lithium battery, negative electrode including the same, and rechargable lithium battery including the negative electrode
JP2016106358A (en) * 2015-12-25 2016-06-16 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
US11522178B2 (en) 2016-07-05 2022-12-06 Kratos LLC Passivated pre-lithiated micron and sub-micron group IVA particles and methods of preparation thereof
CN110140241A (en) * 2016-10-07 2019-08-16 克雷多斯公司 Graphite and IVA race composite particles and production method
WO2018183909A1 (en) 2017-03-31 2018-10-04 Kratos LLC Precharged negative electrode material for secondary battery
CN107093738B (en) * 2017-04-24 2019-12-24 广东烛光新能源科技有限公司 Preparation method of nano silicon-based material
CN115000392B (en) * 2022-07-18 2023-06-30 湖北亿纬动力有限公司 Composite anode material and preparation method and application thereof
CN116190620B (en) * 2023-04-25 2023-07-07 北京科技大学 Silicon germanium oxygen composite material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303588A (en) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd Electrode material and method of manufacturing the same, and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2003317717A (en) * 2002-04-19 2003-11-07 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode material of nonaqueous electrolyte secondary battery
JP2004200001A (en) * 2002-12-18 2004-07-15 Kashima Oil Co Ltd Composit carbon material for lithium-ion secondary battery negative electrode, and its manufacturing method
JP2005158721A (en) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd Electrode material of nonaqueous secondary battery, its process of manufacture, and nonaqueous secondary battery using electrode material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303588A (en) * 2002-02-07 2003-10-24 Hitachi Maxell Ltd Electrode material and method of manufacturing the same, and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2003317717A (en) * 2002-04-19 2003-11-07 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode material of nonaqueous electrolyte secondary battery
JP2004200001A (en) * 2002-12-18 2004-07-15 Kashima Oil Co Ltd Composit carbon material for lithium-ion secondary battery negative electrode, and its manufacturing method
JP2005158721A (en) * 2003-10-31 2005-06-16 Hitachi Maxell Ltd Electrode material of nonaqueous secondary battery, its process of manufacture, and nonaqueous secondary battery using electrode material

Also Published As

Publication number Publication date
JP2005149946A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4530647B2 (en) Negative electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3466576B2 (en) Composite material for negative electrode of lithium secondary battery and lithium secondary battery
EP2633575B1 (en) Negative active material, method of preparing negative active material and lithium ion battery comprising the same
JP4393610B2 (en) Negative electrode material for lithium secondary battery, lithium secondary battery, and charging method of the secondary battery
EP2633577B1 (en) Negative active material, method for preparing the same and lithium ion battery comprising the same
EP2317592B1 (en) Electrode material comprising silicon and/or tin particles and production method and use thereof
EP1102339B1 (en) Negative electrode material for non-aqueous lithium secondary battery, method for manufacturing the same, and non-aqueous lithium secondary battery using the same
JP5390336B2 (en) Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
EP3407409B1 (en) Negative electrode active material, material of mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium-ion secondary battery, method for producing negative electrode active material, and method for producing a lithium-ion secondary battery
JP2004178922A (en) Negative electrode material and secondary battery using the same
US20130157106A1 (en) Lithium metal powder-carbon powder composite anode for lithium secondary battery and lithium metal secondary battery comprising the same
JP2003303585A (en) Battery
JP2013258076A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same
KR101669316B1 (en) Sulfur-carbon composite and method for manufacturing the same
KR101728753B1 (en) Negative active material, negative electrode and lithium battery including the negative active material, and method for manufacturing the negative active material
WO2016125819A1 (en) Composite active material for lithium secondary cell and method for manufacturing same
JP4375042B2 (en) Negative electrode material and negative electrode for non-aqueous lithium ion secondary battery, and non-aqueous lithium ion secondary battery
KR20210000983A (en) Composite Anode, and the lithium secondary battery comprising the same
JP2017134937A (en) Composite active material for lithium secondary battery and method of producing the same
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
JP2018170246A (en) Composite active material for lithium secondary battery and manufacturing method therefor
JP2012151129A (en) Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte battery provided thereby
JP2001283848A (en) Negative electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP3406583B2 (en) Graphite-carbon composite material for negative electrode of lithium secondary battery, method for producing the same, and lithium secondary battery
JP2018170247A (en) Composite active material for lithium secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4530647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term