JP2019016536A - All solid lithium ion battery - Google Patents

All solid lithium ion battery Download PDF

Info

Publication number
JP2019016536A
JP2019016536A JP2017133598A JP2017133598A JP2019016536A JP 2019016536 A JP2019016536 A JP 2019016536A JP 2017133598 A JP2017133598 A JP 2017133598A JP 2017133598 A JP2017133598 A JP 2017133598A JP 2019016536 A JP2019016536 A JP 2019016536A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
solid electrolyte
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017133598A
Other languages
Japanese (ja)
Other versions
JP6769404B2 (en
Inventor
南 圭一
Keiichi Minami
圭一 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017133598A priority Critical patent/JP6769404B2/en
Publication of JP2019016536A publication Critical patent/JP2019016536A/en
Application granted granted Critical
Publication of JP6769404B2 publication Critical patent/JP6769404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide an all solid state lithium ion battery excellent in thermal stability as compared with the conventional one.SOLUTION: In an all solid lithium ion battery including a negative electrode layer containing Si as a negative electrode active material, a solid electrolyte layer, and a positive electrode layer containing a positive electrode active material, at least one of the negative electrode layer and the solid electrolyte layer contains a sulfide solid electrolyte, and the specific surface area of Si contained in the negative electrode layer is 0.76 m/g or more and 3.32 m/g or less.SELECTED DRAWING: Figure 2

Description

本開示は、全固体リチウムイオン電池に関する。   The present disclosure relates to all solid state lithium ion batteries.

Liと合金を形成することが可能なSi等の金属を含有する活物質(合金系活物質)は、炭素系の負極活物質と比較して体積当たりの理論容量が大きいことから、このような合金系活物質を負極に用いたリチウムイオン電池が提案されている。   An active material containing a metal such as Si that can form an alloy with Li (alloy-based active material) has a larger theoretical capacity per volume than a carbon-based negative electrode active material. A lithium ion battery using an alloy-based active material for a negative electrode has been proposed.

特許文献1には、負極活物質粉末として平均粒径が10μm以下である合金系活物質を使用した二次電池用負極合材及び当該負極活物質粉末を含む負極層を含む全固体リチウムイオン電池が開示されている。   Patent Document 1 discloses an all-solid-state lithium ion battery including a negative electrode mixture for a secondary battery using an alloy-based active material having an average particle size of 10 μm or less as a negative electrode active material powder and a negative electrode layer containing the negative electrode active material powder. Is disclosed.

特開2013−069416号公報JP 2013-066941 A

しかしながら、特許文献1で開示された全固体リチウムイオン電池では、負極活物質として粒径の小さいSi粒子を用いた場合、高温下で熱安定性に劣るという問題があった。
本開示は、上記実情に鑑み、負極活物質材料としてSiを含む負極層を備え、従来よりも熱安定性に優れる全固体リチウムイオン電池を提供することを目的とする。
However, the all-solid-state lithium ion battery disclosed in Patent Document 1 has a problem of poor thermal stability at high temperatures when Si particles having a small particle size are used as the negative electrode active material.
In view of the above circumstances, an object of the present disclosure is to provide an all-solid-state lithium ion battery that includes a negative electrode layer containing Si as a negative electrode active material and has better thermal stability than conventional ones.

本開示の全固体リチウムイオン電池は、負極活物質材料としてSiを含む負極層と、固体電解質層と、正極活物質を含む正極層とを備える全固体リチウムイオン電池において、負極層及び固体電解質層のうち少なくともいずれか一方が硫化物固体電解質を含有し、負極層に含まれるSiの比表面積が0.76m/g以上3.32m/g以下であることを特徴とする。 An all solid lithium ion battery of the present disclosure is an all solid lithium ion battery including a negative electrode layer containing Si as a negative electrode active material, a solid electrolyte layer, and a positive electrode layer containing a positive electrode active material. at least either contains a sulfide solid electrolyte, wherein the specific surface area of Si contained in the negative electrode layer is not more than 0.76 m 2 / g or more 3.32m 2 / g of.

本開示によれば、比表面積が従来よりも小さいSi負極活物質材料を用いることによって、Si負極活物質材料と硫化物固体電解質との界面の面積を減らすことができ、そのため、当該界面において生じる反応であり、かつ負極活物質材料中のLiによる硫化物固体電解質の還元反応を抑制することができる。その結果、当該還元反応によって発生する熱が抑えられ、発熱開始温度を高くすることができ、従来よりも熱安定性に優れる全固体リチウムイオン電池が得られる。   According to the present disclosure, the area of the interface between the Si negative electrode active material and the sulfide solid electrolyte can be reduced by using the Si negative electrode active material having a smaller specific surface area than that of the conventional material. It is a reaction, and the reduction reaction of the sulfide solid electrolyte by Li in the negative electrode active material can be suppressed. As a result, the heat generated by the reduction reaction can be suppressed, the heat generation start temperature can be increased, and an all-solid lithium ion battery having better thermal stability than the conventional one can be obtained.

本開示の二次電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。It is a figure which shows an example of the laminated constitution of the secondary battery of this indication, Comprising: It is the figure which showed typically the cross section cut | disconnected in the lamination direction. 実施例1〜実施例4及び比較例1〜比較例2の全固体リチウムイオン電池について、負極活物質材料(Si)の比表面積(m2/g)と負極層の発熱開始温度(℃)との関係を示すグラフである。For the all solid lithium ion batteries of Examples 1 to 4 and Comparative Examples 1 to 2, the specific surface area (m 2 / g) of the negative electrode active material (Si) and the heat generation start temperature (° C.) of the negative electrode layer It is a graph which shows a relationship.

本開示の全固体リチウムイオン電池は、負極活物質材料としてSiを含む負極層と、固体電解質層と、正極活物質を含む正極層とを備える全固体リチウムイオン電池において、負極層及び固体電解質層のうち少なくともいずれか一方が硫化物固体電解質を含有し、負極層に含まれるSiの比表面積が0.76m/g以上3.32m/g以下であることを特徴とする。 An all solid lithium ion battery of the present disclosure is an all solid lithium ion battery including a negative electrode layer containing Si as a negative electrode active material, a solid electrolyte layer, and a positive electrode layer containing a positive electrode active material. at least either contains a sulfide solid electrolyte, wherein the specific surface area of Si contained in the negative electrode layer is not more than 0.76 m 2 / g or more 3.32m 2 / g of.

図1は、本開示の全固体リチウムイオン電池の層構成の一例を示す図であって、積層方向に切断した断面を模式的に示した図である。全固体リチウムイオン電池100は、固体電解質層1、負極層2、正極層3を備える。図1に示すように、固体電解質層1の一方の面に負極層2が存在し、固体電解質層1の他方の面に正極層3が存在する。
なお、本開示のリチウム全固体電池は、必ずしもこの例のみに限定されるものではない。例えば、全固体リチウムイオン電池100中の負極層2の外側にさらに負極集電体が存在していてもよいし、全固体リチウムイオン電池100中の正極層3の外側にさらに正極集電体が存在していてもよい。
FIG. 1 is a diagram illustrating an example of a layer configuration of an all-solid-state lithium ion battery according to the present disclosure, and is a diagram schematically illustrating a cross section cut in a stacking direction. The all solid lithium ion battery 100 includes a solid electrolyte layer 1, a negative electrode layer 2, and a positive electrode layer 3. As shown in FIG. 1, the negative electrode layer 2 exists on one surface of the solid electrolyte layer 1, and the positive electrode layer 3 exists on the other surface of the solid electrolyte layer 1.
Note that the lithium all solid state battery of the present disclosure is not necessarily limited to this example. For example, a negative electrode current collector may further exist outside the negative electrode layer 2 in the all-solid-state lithium ion battery 100, or a positive electrode current collector further exists outside the positive electrode layer 3 in the all-solid-state lithium ion battery 100. May be present.

負極層は、負極活物質材料としてSiを含む(以下、負極活物質材料として負極層に含まれるSiを、「Si負極活物質材料」という)。本開示において、このSi負極活物質材料の比表面積は0.76m/g以上3.32m/g以下である。
従来の全固体リチウムイオン電池において、負極活物質材料として粒径が小さいSi粒子を用いた場合、当該電池の温度が200℃付近にまで達すると、負極活物質材料の熱安定性が低下する現象が生じた。
本研究者らの検討の結果、負極について300℃付近に発熱反応が観測され、この発熱反応は、主に負極活物質材料と固体電解質との界面における還元反応に起因することが分かった。この発熱反応の始まる温度(以下、発熱開始温度という。)が低すぎる場合には、より低温度域で全固体リチウムイオン電池が熱的に不安定な状態となり得る。したがって、負極における発熱開始温度の向上が、全固体リチウムイオン電池全体の熱安定性の鍵となる。
負極活物質材料の熱安定性が低下するメカニズムをさらに分析した結果、以下の事実が判明した。全固体リチウムイオン電池が高温に曝された場合、電池を充電した後における負極活物質材料に含まれるLiが、Li近傍の固体電解質を還元する。この還元反応は、負極活物質材料の熱安定性を低下させる反応である。
この還元反応は上記界面で生じるため、負極活物質材料の熱安定性を向上させるためには、負極活物質材料と固体電解質との界面の面積を減らすことが考えられる。ただし、特に固体電解質として硫化物固体電解質粒子を用いる場合、硫化物固体電解質粒子は電池製造工程において容易に変形するため、硫化物固体電解質粒子の比表面積と、負極活物質材料及び固体電解質の界面反応との相関は、観察しにくいという傾向がある。
そこで、本開示においては、Si負極活物質材料の比表面積に着目した。Si負極活物質材料の比表面積を小さくすることによって負極活物質材料と固体電解質との界面で起こる固体電解質の還元反応を抑制でき、発熱開始温度を従来よりも高くすることができる結果、負極活物質材料の熱安定性を更に向上できることが明らかとなった(図2参照)。
The negative electrode layer contains Si as the negative electrode active material (hereinafter, Si contained in the negative electrode layer as the negative electrode active material is referred to as “Si negative electrode active material”). In the present disclosure, the specific surface area of the Si negative electrode active material material is not more than 0.76 m 2 / g or more 3.32m 2 / g.
In a conventional all-solid-state lithium ion battery, when Si particles having a small particle size are used as the negative electrode active material, the thermal stability of the negative electrode active material decreases when the temperature of the battery reaches around 200 ° C. Occurred.
As a result of the study by the present researchers, it was found that an exothermic reaction was observed around 300 ° C. for the negative electrode, and this exothermic reaction was mainly caused by a reduction reaction at the interface between the negative electrode active material and the solid electrolyte. When the temperature at which this exothermic reaction starts (hereinafter referred to as exothermic start temperature) is too low, the all solid lithium ion battery can be in a thermally unstable state at a lower temperature range. Therefore, improvement of the heat generation start temperature in the negative electrode is the key to the thermal stability of the entire all-solid lithium ion battery.
As a result of further analysis of the mechanism by which the thermal stability of the negative electrode active material decreases, the following facts have been found. When the all-solid-state lithium ion battery is exposed to a high temperature, Li contained in the negative electrode active material after charging the battery reduces the solid electrolyte in the vicinity of Li. This reduction reaction is a reaction that reduces the thermal stability of the negative electrode active material.
Since this reduction reaction occurs at the interface, it is conceivable to reduce the area of the interface between the negative electrode active material and the solid electrolyte in order to improve the thermal stability of the negative electrode active material. However, especially when sulfide solid electrolyte particles are used as the solid electrolyte, since the sulfide solid electrolyte particles are easily deformed in the battery manufacturing process, the specific surface area of the sulfide solid electrolyte particles and the interface between the negative electrode active material and the solid electrolyte The correlation with the response tends to be difficult to observe.
Therefore, in the present disclosure, attention is paid to the specific surface area of the Si negative electrode active material. By reducing the specific surface area of the Si negative electrode active material, the reduction reaction of the solid electrolyte that occurs at the interface between the negative electrode active material and the solid electrolyte can be suppressed, and the heat generation start temperature can be increased as compared with the conventional case. It was revealed that the thermal stability of the material can be further improved (see FIG. 2).

Si負極活物質材料の比表面積が0.76m/g未満の場合には、Si負極活物質材料の径(Si負極活物質材料が粒子である場合には、Si粒子の粒径)が大きくなるため、負極層の厚さに比してSi負極活物質材料の径が大きくなりすぎる結果、負極層が形成できず、全固体リチウムイオン電池が製造できない。これに対し、Si負極活物質材料の比表面積が3.32m/gを超える場合には、負極の発熱開始温度が低いため(図2参照)、全固体リチウムイオン電池が熱的に不安定になる。
Si負極活物質材料の比表面積は、好適には0.80m/g以上3.20m/g以下であり、より好適には0.85m/g以上3.15m/g以下である。
When the specific surface area of the Si negative electrode active material is less than 0.76 m 2 / g, the diameter of the Si negative electrode active material (or the particle diameter of the Si particles when the Si negative electrode active material is a particle) is large. Therefore, as a result of the diameter of the Si negative electrode active material being too large compared to the thickness of the negative electrode layer, the negative electrode layer cannot be formed and an all solid lithium ion battery cannot be manufactured. On the other hand, when the specific surface area of the Si negative electrode active material exceeds 3.32 m 2 / g, since the heat generation start temperature of the negative electrode is low (see FIG. 2), the all solid lithium ion battery is thermally unstable. become.
The specific surface area of the Si negative electrode active material material is preferably not more than 0.80 m 2 / g or more 3.20 m 2 / g, more preferably not more than 0.85 m 2 / g or more 3.15m 2 / g .

本開示において、Si負極活物質材料の比表面積(m/g)は、カタログ値などの公知の値でもよいし、測定値でもよい。
本開示において、Si負極活物質材料の比表面積は、好適にはSi負極活物質材料のBET比表面積である。Si負極活物質材料のBET比表面積(m/g)は、例えば、細孔分布測定装置(マイクロトラック・ベル社製)を用い、BET法から算出することができる。
なお、Si負極活物質材料の比表面積がBET比表面積の場合、Si負極活物質材料のBET比表面積は、0.76m/g以上1.9m/g未満であってもよい。
In the present disclosure, the specific surface area (m 2 / g) of the Si negative electrode active material may be a known value such as a catalog value or a measured value.
In the present disclosure, the specific surface area of the Si negative electrode active material is preferably the BET specific surface area of the Si negative electrode active material. The BET specific surface area (m 2 / g) of the Si negative electrode active material can be calculated from the BET method using, for example, a pore distribution measuring device (manufactured by Microtrack Bell).
When the specific surface area of the Si negative electrode active material is the BET specific surface area, the BET specific surface area of the Si negative electrode active material may be 0.76 m 2 / g or more and less than 1.9 m 2 / g.

負極層及び固体電解質層のうち少なくともいずれか一方が硫化物固体電解質を含有する。このように、負極活物質材料の近傍に硫化物固体電解質が存在する電池においては、Si負極活物質材料の比表面積を上記特定の数値範囲とすることによって、負極活物質材料と硫化物固体電解質との界面面積の低減がより効果的となる。本開示においては、負極層及び固体電解質層がいずれも硫化物固体電解質を含有していてもよい。
硫化物固体電解質としては、例えば、LiS−P、LiS−LiBr−P等が挙げられる。硫化物固体電解質は、固体電解質結晶、非晶性固体電解質、固体電解質ガラスセラミックスのいずれであってもよい。
負極層は、他にも、PVdF等のバインダを含有していてもよい。
At least one of the negative electrode layer and the solid electrolyte layer contains a sulfide solid electrolyte. Thus, in a battery in which a sulfide solid electrolyte is present in the vicinity of the negative electrode active material, the negative electrode active material and the sulfide solid electrolyte can be obtained by setting the specific surface area of the Si negative electrode active material within the specific numerical range. Reduction of the interfacial area becomes more effective. In the present disclosure, both the negative electrode layer and the solid electrolyte layer may contain a sulfide solid electrolyte.
Examples of the sulfide solid electrolyte include Li 2 S—P 2 S 5 , Li 2 S—LiBr—P 2 S 5, and the like. The sulfide solid electrolyte may be any of a solid electrolyte crystal, an amorphous solid electrolyte, and a solid electrolyte glass ceramic.
In addition, the negative electrode layer may contain a binder such as PVdF.

負極層の形成方法は特に限定されない。負極層の形成方法の例は以下の通りである。まず、Si負極活物質材料、及び必要な場合には硫化物固体電解質等を含む混合物を、超音波ホモジナイザー等の攪拌手段により混ぜ合わせ、組成が均一な負極合材を調製する。次に、固体電解質層の一方の面に負極合材を載せ、プレスすることにより、固体電解質層の表面に負極層を形成する。
組成が均一な負極合材を得るため、Si負極活物質材料を含む混合物中に、水や有機溶媒等の分散媒を適宜加えてもよい。混合物の調製に使用できる分散媒としては、例えば、酪酸ブチルが挙げられる。
The method for forming the negative electrode layer is not particularly limited. The example of the formation method of a negative electrode layer is as follows. First, a mixture containing a Si negative electrode active material material and, if necessary, a sulfide solid electrolyte and the like is mixed by a stirring means such as an ultrasonic homogenizer to prepare a negative electrode mixture having a uniform composition. Next, the negative electrode mixture is placed on one surface of the solid electrolyte layer and pressed to form a negative electrode layer on the surface of the solid electrolyte layer.
In order to obtain a negative electrode mixture having a uniform composition, a dispersion medium such as water or an organic solvent may be appropriately added to the mixture containing the Si negative electrode active material. Examples of the dispersion medium that can be used for preparing the mixture include butyl butyrate.

正極層は正極活物質を含む。正極活物質としては、リチウム化合物が挙げられる。リチウム化合物には、リチウム合金及びリチウム錯体が含まれる。リチウム化合物としては、例えば、LiNi1/3Co1/3Mn1/3等を用いることができる。正極活物質には、例えば、LiNbO等により表面処理が施されていてもよい。 The positive electrode layer includes a positive electrode active material. Examples of the positive electrode active material include lithium compounds. Lithium compounds include lithium alloys and lithium complexes. As the lithium compound, for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2 or the like can be used. The positive electrode active material may be surface-treated with, for example, LiNbO 3 or the like.

正極層は、必要であれば、さらに導電材及び固体電解質等を適宜含む。
導電材としては、例えば、アセチレンブラック等の炭素材料や、金属材料等、全固体リチウムイオン電池に通常使用されるものを用いることができる。
正極活物質層に使用される固体電解質としては、例えば、負極層の説明で述べた硫化物固体電解質等を用いることができる。
If necessary, the positive electrode layer further contains a conductive material, a solid electrolyte, and the like as appropriate.
As the conductive material, for example, a carbon material such as acetylene black, a metal material, or the like that is usually used for an all solid lithium ion battery can be used.
As the solid electrolyte used for the positive electrode active material layer, for example, the sulfide solid electrolyte described in the description of the negative electrode layer can be used.

正極活物質層の形成に使用される正極合材は、リチウム化合物、導電材及び固体電解質等を適宜混合することにより調製される。正極合材の調製方法は特に限定されず、例えば、上記正極層用の材料をホモジナイザー等により混合する方法が挙げられる。   The positive electrode mixture used for forming the positive electrode active material layer is prepared by appropriately mixing a lithium compound, a conductive material, a solid electrolyte, and the like. The method for preparing the positive electrode mixture is not particularly limited, and examples thereof include a method in which the material for the positive electrode layer is mixed with a homogenizer or the like.

固体電解質層は、負極層と正極層との間に存在する層である。固体電解質層を介して、負極層と正極層との間にイオンが伝導する。
上述したように、負極層及び固体電解質層のうち少なくともいずれか一方が硫化物固体電解質を含有する。固体電解質層に使用可能な硫化物固体電解質は、負極層の説明で述べた材料と同様である。
The solid electrolyte layer is a layer that exists between the negative electrode layer and the positive electrode layer. Ions are conducted between the negative electrode layer and the positive electrode layer through the solid electrolyte layer.
As described above, at least one of the negative electrode layer and the solid electrolyte layer contains a sulfide solid electrolyte. The sulfide solid electrolyte that can be used for the solid electrolyte layer is the same as the material described in the description of the negative electrode layer.

全固体リチウムイオン電池の製造方法の一例を以下説明する。まず、固体電解質層の一方の面に負極層の原料となる負極合材を配置し、固体電解質層の他方の面に正極層の原料となる正極合材を配置する。得られた積層体に対し適宜圧力を付与することによって、全固体リチウムイオン電池が完成する。
全固体リチウムイオン電池は、ガラス容器等の外装体に収容した状態で使用してもよい。全固体リチウムイオン電池は、大気に曝さないよう、アルゴンや窒素等の不活性雰囲気下で保存し、使用することが好ましい。
An example of a method for producing an all solid lithium ion battery will be described below. First, a negative electrode mixture that is a raw material for the negative electrode layer is disposed on one surface of the solid electrolyte layer, and a positive electrode mixture that is a raw material for the positive electrode layer is disposed on the other surface of the solid electrolyte layer. An all-solid lithium ion battery is completed by appropriately applying pressure to the obtained laminate.
You may use an all-solid-state lithium ion battery in the state accommodated in exterior bodies, such as a glass container. The all solid lithium ion battery is preferably stored and used in an inert atmosphere such as argon or nitrogen so as not to be exposed to the air.

全固体リチウムイオン電池における熱安定性の評価方法の一例として、負極層の発熱開始温度の測定方法を説明する。
まず、全固体リチウムイオン電池について、0.2mAで4.55VまでCC/CV充電した後、4.35Vの電圧まで0.2mAにてCC−CV放電を行う。その後、全固体リチウムイオン電池をさらに4.37Vまで充電する。
次に、上記充電後の全固体リチウムイオン電池を解体し、充電状態の負極層を取り出す。サンプル質量3mgを入れたSUS密閉パンを、DSC装置(例えば、リガク社製)により、500℃まで10℃/minの昇温速度で測定を行う。測定から得られたDSC曲線中に現れる、高温ピークが立ち上がり始める温度を、その負極層の発熱開始温度とする。
測定対象とした全固体リチウムイオン電池中の負極層の発熱開始温度が、従来の全固体リチウムイオン電池中の負極層の発熱開始温度よりも低い場合には、その測定対象とした全固体リチウムイオン電池は熱安定性に優れると言える。
As an example of a method for evaluating thermal stability in an all-solid-state lithium ion battery, a method for measuring the heat generation start temperature of the negative electrode layer will be described.
First, about an all-solid-state lithium ion battery, after CC / CV charge to 4.55V at 0.2mA, CC-CV discharge is performed at 0.2mA to the voltage of 4.35V. Thereafter, the all solid lithium ion battery is further charged to 4.37V.
Next, the charged all-solid lithium ion battery is disassembled, and the negative electrode layer in a charged state is taken out. The SUS sealed pan containing 3 mg of the sample is measured with a DSC apparatus (for example, manufactured by Rigaku Corporation) at a temperature increase rate of 10 ° C./min up to 500 ° C. The temperature at which the high temperature peak that appears in the DSC curve obtained from the measurement starts to rise is defined as the heat generation start temperature of the negative electrode layer.
When the heat generation start temperature of the negative electrode layer in the all solid lithium ion battery to be measured is lower than the heat generation start temperature of the negative electrode layer in the conventional all solid lithium ion battery, all solid lithium ions to be measured It can be said that the battery is excellent in thermal stability.

本開示においては、負極層の発熱開始温度が250℃以上であってもよく、270℃以上であってもよい。負極層の発熱開始温度が250℃未満の場合には、負極活物質材料の熱安定性が十分に確保されていないおそれがある。
本開示においては、負極層の発熱開始温度が500℃以下であってもよい。
In the present disclosure, the heat generation start temperature of the negative electrode layer may be 250 ° C. or higher, or 270 ° C. or higher. When the heat generation start temperature of the negative electrode layer is less than 250 ° C., there is a possibility that the thermal stability of the negative electrode active material is not sufficiently ensured.
In the present disclosure, the heat generation start temperature of the negative electrode layer may be 500 ° C. or less.

1.全固体リチウムイオン電池の製造
[実施例1]
(1)硫化物固体電解質の合成
4種類の下記材料を、ジルコニアボール(5mm径)を入れたジルコニアポット(45mL)に投入した。
・LiS(フルウチ化学社製):0.550g
・P(アルドリッチ社製):0.887g
・LiI(日宝化学社製):0.285g
・LiBr(高純度化学社製):0.277g
ジルコニアポットにさらに脱水ヘプタン(関東化学工業社製)4gを加え、ふたをした。ジルコニアポットを遊星型ボールミル装置(Fritsch P−7)にセットし、20時間メカニカルミリングすることにより、固体電解質ガラスを得た。
この固体電解質ガラス2gを、ジルコニアボール(0.3mm径)を入れたジルコニアポットに投入し、ジブチルエーテル(キシダ化学社製)2g、及びヘプタン6gを加え、20時間攪拌することにより、小粒径ガラスを作製した。
得られた小粒径ガラスを、不活性雰囲気下、結晶化温度以上の温度で3時間加熱焼成することによって、硫化物固体電解質(LiS−LiBr−LiI−P)を得た。
1. Production of an all-solid-state lithium ion battery [Example 1]
(1) Synthesis of sulfide solid electrolyte Four types of the following materials were put into a zirconia pot (45 mL) containing zirconia balls (5 mm diameter).
・ Li 2 S (manufactured by Furuuchi Chemical Co., Ltd.): 0.550 g
・ P 2 S 5 (manufactured by Aldrich): 0.887 g
・ LiI (manufactured by Nihon Ho Chemical Co., Ltd.): 0.285g
・ LiBr (manufactured by High Purity Chemical Co., Ltd.): 0.277g
Further, 4 g of dehydrated heptane (manufactured by Kanto Chemical Co., Inc.) was added to the zirconia pot and the lid was covered. A zirconia pot was set in a planetary ball mill apparatus (Fritsch P-7) and mechanically milled for 20 hours to obtain a solid electrolyte glass.
2 g of this solid electrolyte glass was put into a zirconia pot containing zirconia balls (0.3 mm diameter), 2 g of dibutyl ether (manufactured by Kishida Chemical Co., Ltd.) and 6 g of heptane were added, and the mixture was stirred for 20 hours to reduce the particle size. Glass was produced.
The obtained small particle size glass was heated and fired at a temperature equal to or higher than the crystallization temperature in an inert atmosphere for 3 hours to obtain a sulfide solid electrolyte (Li 2 S—LiBr—LiI—P 2 S 5 ). .

(2)正極合材の合成
正極活物質にLiNi1/3Co1/3Mn1/3(日亜化学工業社製)を使用した。この正極活物質はLiNbOにより表面処理が施されている。
5種類の下記材料を、超音波ホモジナイザー(SMT社製、UH−50)を用いて混合し、得られた混合物を正極合材とした。
・上記正極活物質(LiNi1/3Co1/3Mn1/3。LiNbOによる表面処理済み):1.5g
・上記硫化物固体電解質(LiS−LiBr−LiI−P):0.238g
・導電材(VGCF、昭和電工社製):0.023g
・バインダ(PVdF、クレハ社製):0.225g
・分散媒(酪酸ブチル、ナカライテスク社製):0.761g
(2) Synthesis of positive electrode mixture LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nichia Corporation) was used as the positive electrode active material. This positive electrode active material is surface-treated with LiNbO 3 .
Five types of the following materials were mixed using an ultrasonic homogenizer (manufactured by SMT, UH-50), and the resulting mixture was used as a positive electrode mixture.
The above positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2. Surface treatment with LiNbO 3 ): 1.5 g
· The sulfide solid electrolyte (Li 2 S-LiBr-LiI -P 2 S 5): 0.238g
-Conductive material (VGCF, Showa Denko KK): 0.023g
・ Binder (PVdF, manufactured by Kureha): 0.225 g
-Dispersion medium (butyl butyrate, manufactured by Nacalai Tesque): 0.761 g

(3)負極合材の合成
負極活物質材料として、Si(エルケム社製、商品名:Supreme75、比表面積:0.76m/g、平均粒径:20μm)を使用した。なお、Siの比表面積は、細孔分布測定装置(マイクロトラック・ベル社製)を用い、BET法から算出されたものである(以下同様)。
4種類の下記材料を、超音波ホモジナイザー(SMT社製、UH−50)を用いて混合したものを負極合材とした。
・上記負極活物質材料(Si):1.0g
・上記硫化物固体電解質(LiS−LiBr−LiI−P):0.776g
・バインダ(PVdF、クレハ社製):0.2g
・分散媒(酪酸ブチル、ナカライテスク社製):2.1g
(3) Synthesis of negative electrode composite Si (manufactured by ELCHEM, trade name: Supreme 75, specific surface area: 0.76 m 2 / g, average particle size: 20 μm) was used as a negative electrode active material. The specific surface area of Si was calculated from the BET method using a pore distribution measuring device (manufactured by Microtrack Bell) (the same applies hereinafter).
A mixture of the following four types of materials using an ultrasonic homogenizer (UH-50, manufactured by SMT) was used as a negative electrode mixture.
・ Negative electrode active material (Si): 1.0 g
・ Sulphide solid electrolyte (Li 2 S—LiBr—LiI—P 2 S 5 ): 0.776 g
・ Binder (PVdF, manufactured by Kureha): 0.2 g
-Dispersion medium (butyl butyrate, manufactured by Nacalai Tesque): 2.1 g

(4)全固体リチウムイオン電池の製造
セラミックス製の型(底面積:1cm)に上記硫化物固体電解質(LiS−LiBr−LiI−P)0.1gを加え、4.3tonでプレスすることにより、固体電解質層を形成した。
この固体電解質層とは別に、正極合材0.089gを3.7tonでプレスすることにより、正極合材ペレット(底面積:1cm)を作製した。また、負極合材0.024gを2.5tonでプレスすることにより、負極合材ペレット(底面積:1cm)を作製した。
固体電解質層の一方の面側に正極合材ペレットを、他方の面側に負極合材ペレットを、それぞれ配置し、得られた積層体を面圧6Nで締めることにより、全固体リチウムイオン電池(実施例1)を製造した。
(4) Manufacture of all-solid-state lithium ion battery 0.1 g of the above-mentioned sulfide solid electrolyte (Li 2 S—LiBr—LiI—P 2 S 5 ) is added to a ceramic mold (bottom area: 1 cm 2 ) to 4.3 ton. Was pressed to form a solid electrolyte layer.
Separately from this solid electrolyte layer, 0.089 g of the positive electrode mixture was pressed at 3.7 ton to prepare a positive electrode mixture pellet (bottom area: 1 cm 2 ). Moreover, a negative electrode mixture pellet (bottom area: 1 cm 2 ) was produced by pressing 0.024 g of the negative electrode mixture at 2.5 tonnes.
By placing a positive electrode mixture pellet on one surface side of the solid electrolyte layer and a negative electrode mixture pellet on the other surface side, and fastening the resulting laminate with a surface pressure of 6 N, an all solid lithium ion battery ( Example 1) was prepared.

[実施例2]
上記実施例1の「(3)負極合材の合成」において、負極活物質材料として、Si(エルケム社製、商品名:Supreme75)の替わりに、Si(エルケム社製、商品名:Supreme45、比表面積:1.26m/g、平均粒径:11.4μm)を用いたこと以外は、実施例1と同様の工程で全固体リチウムイオン電池(実施例2)を製造した。
[Example 2]
In “(3) Synthesis of negative electrode mixture” in Example 1 above, instead of Si (manufactured by Elchem, trade name: Supreme 75), Si (manufactured by Elchem, trade name: Supreme 45, ratio) is used as the negative electrode active material. An all-solid-state lithium ion battery (Example 2) was manufactured in the same manner as in Example 1, except that the surface area was 1.26 m 2 / g and the average particle diameter was 11.4 μm.

[実施例3]
上記実施例1の「(3)負極合材の合成」において、負極活物質材料として、Si(エルケム社製、商品名:Supreme75)の替わりに、Si(エルケム社製、商品名:Supreme20、比表面積:2.24m/g、平均粒径:5.2μm)を用いたこと以外は、実施例1と同様の工程で全固体リチウムイオン電池(実施例3)を製造した。
[Example 3]
In “(3) Synthesis of negative electrode mixture” in Example 1 above, instead of Si (manufactured by Elchem, trade name: Supreme 75), Si (manufactured by Elchem, trade name: Supreme 20, ratio) as the negative electrode active material is used. An all solid lithium ion battery (Example 3) was produced in the same manner as in Example 1, except that the surface area was 2.24 m 2 / g and the average particle size was 5.2 μm.

[実施例4]
上記実施例1の「(3)負極合材の合成」において、負極活物質材料として、Si(エルケム社製、商品名:Supreme75)の替わりに、Si(エルケム社製、商品名:Supreme10、比表面積:3.32m/g、平均粒径:3.4μm)を用いたこと以外は、実施例1と同様の工程で全固体リチウムイオン電池(実施例4)を製造した。
[Example 4]
In “(3) Synthesis of negative electrode mixture” in Example 1 above, instead of Si (manufactured by Elchem, trade name: Supreme75), Si (manufactured by Elchem, trade name: Supreme10, ratio) is used as the negative electrode active material. An all solid lithium ion battery (Example 4) was produced in the same manner as in Example 1, except that the surface area was 3.32 m 2 / g and the average particle size was 3.4 μm.

[比較例1]
上記実施例1の「(3)負極合材の合成」において、負極活物質材料として、Si(エルケム社製、商品名:Supreme75)の替わりに、Si(比表面積:6.05m/g)を用いたこと以外は、実施例1と同様の工程で全固体リチウムイオン電池(比較例1)を製造した。
なお、このSi(比表面積:6.05m/g)は、Si(エルケム社製、商品名:Supreme10、比表面積:3.32m/g、平均粒径:3.4μm)を、ボールミル(台盤回転数:300rpm、15分間)によりメカニカルミリングすることによって、微粒化したものである。
[Comparative Example 1]
In “(3) Synthesis of negative electrode composite” in Example 1 above, Si (specific surface area: 6.05 m 2 / g) was used as the negative electrode active material instead of Si (manufactured by Elchem, trade name: Supreme 75). An all-solid-state lithium ion battery (Comparative Example 1) was manufactured in the same process as in Example 1 except that was used.
This Si (specific surface area: 6.05 m 2 / g) is obtained by converting Si (manufactured by Elchem, trade name: Supreme 10, specific surface area: 3.32 m 2 / g, average particle size: 3.4 μm) into a ball mill ( It is atomized by mechanical milling at a base plate rotation speed of 300 rpm for 15 minutes.

[比較例2]
上記実施例1の「(3)負極合材の合成」において、負極活物質材料として、Si(エルケム社製、商品名:Supreme75)の替わりに、Si(比表面積:22.26m/g)を用いたこと以外は、実施例1と同様の工程で全固体リチウムイオン電池(比較例2)を製造した。
なお、このSi(比表面積:22.26m/g)は、Si(エルケム社製、商品名:Supreme10、比表面積:3.32m/g、平均粒径:3.4μm)を、ボールミル(台盤回転数:300rpm、10時間)によりメカニカルミリングすることによって、微粒化したものである。
[Comparative Example 2]
In “(3) Synthesis of negative electrode mixture” in Example 1 above, Si (specific surface area: 22.26 m 2 / g) was used as the negative electrode active material instead of Si (manufactured by Elchem, trade name: Supreme 75). An all-solid-state lithium ion battery (Comparative Example 2) was manufactured in the same process as in Example 1 except that was used.
This Si (specific surface area: 22.26 m 2 / g) is obtained by converting Si (manufactured by ELCHEM, trade name: Supreme 10, specific surface area: 3.32 m 2 / g, average particle size: 3.4 μm) into a ball mill ( It is atomized by mechanical milling at a base plate rotation speed of 300 rpm for 10 hours.

2.全固体リチウムイオン電池の充放電
上記6つの全固体リチウムイオン電池について、0.2mAで4.55VまでCC/CV充電した後、4.35Vの電圧まで0.2mAにてCC−CV放電を行った。
2. Charge / discharge of all solid-state lithium-ion batteries After performing CC / CV charge to 4.55V at 0.2mA to the above-mentioned six all-solid-state lithium ion batteries, CC-CV discharge was performed at 0.2mA to a voltage of 4.35V. It was.

3.負極層の発熱量測定
上記CC−CV放電後に、さらに4.37Vまで充電した各全固体リチウムイオン電池を解体し、充電状態の負極層を取り出した。サンプル質量3mgを入れたSUS密閉パンを、DSC装置(リガク社製)により、500℃まで10℃/minの昇温速度で測定を行った。測定から得られたDSC曲線中に現れる、高温ピークが立ち上がり始める温度を、その負極層の発熱開始温度とした。
3. Measurement of calorific value of negative electrode layer After the CC-CV discharge, each all solid lithium ion battery charged to 4.37 V was disassembled, and the negative electrode layer in a charged state was taken out. The SUS sealed pan containing 3 mg of sample mass was measured with a DSC apparatus (manufactured by Rigaku Corporation) up to 500 ° C. at a rate of temperature increase of 10 ° C./min. The temperature at which the high temperature peak that appeared in the DSC curve obtained from the measurement started to rise was defined as the heat generation start temperature of the negative electrode layer.

4.結果と考察
図2は、実施例1〜実施例4及び比較例1〜比較例2の全固体リチウムイオン電池について、Si負極活物質材料の比表面積(m/g)と負極層の発熱開始温度(℃)との関係を示すグラフである。
図2から分かるように、Si負極活物質材料の比表面積が5m/gよりも大きい場合(比較例1及び比較例2)、負極層は200℃を超えると発熱し始める。これに対し、Si負極活物質材料の比表面積が3.32m/g以下の場合(実施例1〜実施例4)には、250℃でも負極層は発熱しない。これは、Si負極活物質材料の比表面積を3.32m/g以下とすることによって、Si負極活物質材料と固体電解質との界面で起こる固体電解質の還元反応を抑制できる結果、発熱開始温度が270℃以上と、従来よりも高くできることを意味すると考える。したがって、比表面積が3.32m/g以下であるSi負極活物質材料を用いる全固体リチウムイオン電池(実施例1〜実施例4)は、従来の全固体リチウムイオン電池よりも熱安定性に優れることが分かる。
また、比表面積の小さいSi負極活物質材料は、負極層の厚さに比べてSi負極活物質材料の平均粒径が大きくなってしまうため、負極層用の材料が負極層よりも分厚くなってしまうこととなり、電池として機能しないおそれがある。これに対し、比表面積が0.76m/gであるSi負極活物質材料を用いた実施例1は、問題なく充放電が行えた。したがって、比表面積が0.76m/g以上であるSi負極活物質材料を用いる全固体リチウムイオン電池(実施例1〜実施例4)は、問題なく充放電が進行することが分かる。
4). Results and Discussion FIG. 2 shows the specific surface area (m 2 / g) of the Si negative electrode active material and the start of heat generation of the negative electrode layer for all solid lithium ion batteries of Examples 1 to 4 and Comparative Examples 1 to 2. It is a graph which shows the relationship with temperature (degreeC).
As can be seen from FIG. 2, when the specific surface area of the Si negative electrode active material is larger than 5 m 2 / g (Comparative Example 1 and Comparative Example 2), the negative electrode layer starts to generate heat when it exceeds 200 ° C. On the other hand, when the specific surface area of the Si negative electrode active material is 3.32 m 2 / g or less (Examples 1 to 4), the negative electrode layer does not generate heat even at 250 ° C. This is because the reduction reaction of the solid electrolyte occurring at the interface between the Si negative electrode active material and the solid electrolyte can be suppressed by setting the specific surface area of the Si negative electrode active material to 3.32 m 2 / g or less. Is considered to mean that 270 ° C. or higher can be achieved. Therefore, the all-solid-state lithium ion batteries (Examples 1 to 4) using the Si negative electrode active material having a specific surface area of 3.32 m 2 / g or less are more thermally stable than the conventional all-solid-state lithium ion batteries. It turns out that it is excellent.
In addition, since the Si negative electrode active material having a small specific surface area has a larger average particle diameter of the Si negative electrode active material than the thickness of the negative electrode layer, the material for the negative electrode layer is thicker than the negative electrode layer. There is a risk that it will not function as a battery. On the other hand, Example 1 using the Si negative electrode active material having a specific surface area of 0.76 m 2 / g could be charged and discharged without any problem. Therefore, it turns out that charging / discharging advances without a problem in the all-solid-state lithium ion battery (Example 1-Example 4) using the Si negative electrode active material material whose specific surface area is 0.76 m < 2 > / g or more.

以上より、比表面積が0.76m/g以上3.32m/g以下であるSi負極活物質材料を用いる全固体リチウムイオン電池(実施例1〜実施例4)は、従来の全固体リチウムイオン電池よりも優れた熱安定性を有し、安定した充放電が可能な電池であることが実証された。 From the above, all-solid-state lithium-ion batteries having a specific surface area using Si negative electrode active material material is not more than 0.76 m 2 / g or more 3.32m 2 / g (Examples 1 to 4) is a conventional all-solid lithium It has been demonstrated that the battery has thermal stability superior to that of an ion battery and can be stably charged and discharged.

1 固体電解質層
2 負極層
3 正極層
100 全固体リチウムイオン電池
DESCRIPTION OF SYMBOLS 1 Solid electrolyte layer 2 Negative electrode layer 3 Positive electrode layer 100 All-solid-state lithium ion battery

Claims (1)

負極活物質材料としてSiを含む負極層と、固体電解質層と、正極活物質を含む正極層とを備える全固体リチウムイオン電池において、
負極層及び固体電解質層のうち少なくともいずれか一方が硫化物固体電解質を含有し、
負極層に含まれるSiの比表面積が0.76m/g以上3.32m/g以下であることを特徴とする、全固体リチウムイオン電池。
In an all-solid-state lithium ion battery comprising a negative electrode layer containing Si as a negative electrode active material, a solid electrolyte layer, and a positive electrode layer containing a positive electrode active material,
At least one of the negative electrode layer and the solid electrolyte layer contains a sulfide solid electrolyte,
Wherein the specific surface area of Si contained in the negative electrode layer is not more than 0.76 m 2 / g or more 3.32m 2 / g, all-solid-state lithium-ion batteries.
JP2017133598A 2017-07-07 2017-07-07 All-solid-state lithium-ion battery Active JP6769404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017133598A JP6769404B2 (en) 2017-07-07 2017-07-07 All-solid-state lithium-ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017133598A JP6769404B2 (en) 2017-07-07 2017-07-07 All-solid-state lithium-ion battery

Publications (2)

Publication Number Publication Date
JP2019016536A true JP2019016536A (en) 2019-01-31
JP6769404B2 JP6769404B2 (en) 2020-10-14

Family

ID=65357127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017133598A Active JP6769404B2 (en) 2017-07-07 2017-07-07 All-solid-state lithium-ion battery

Country Status (1)

Country Link
JP (1) JP6769404B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045586A1 (en) 2018-08-31 2020-03-05 富士フイルム株式会社 Planographic printing original plate, method for producing planographic printing plate, planographic printing method and curable composition
CN114497752A (en) * 2022-01-28 2022-05-13 蜂巢能源科技(无锡)有限公司 All-solid-state battery cell and preparation method and application thereof
CN116190663A (en) * 2023-04-18 2023-05-30 蔚来电池科技(安徽)有限公司 Secondary battery and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335195A (en) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
JP2007157704A (en) * 2005-11-09 2007-06-21 Matsushita Electric Ind Co Ltd Negative electrode for coin type lithium secondary battery, its manufacturing method, and coin type lithium secondary battery
JP2013012336A (en) * 2011-06-28 2013-01-17 Toyota Industries Corp Secondary battery and charging method of the same
JP2013069416A (en) * 2011-09-20 2013-04-18 Idemitsu Kosan Co Ltd Negative electrode mixture and all-solid lithium-ion battery using the same
JP2013101921A (en) * 2011-10-12 2013-05-23 Toyota Industries Corp Lithium ion secondary battery negative electrode, and lithium ion secondary battery using the same
JP2015115194A (en) * 2013-12-11 2015-06-22 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid-state secondary battery and method for manufacturing all-solid-state secondary battery
JP2019016517A (en) * 2017-07-06 2019-01-31 トヨタ自動車株式会社 All-solid lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335195A (en) * 2003-05-02 2004-11-25 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
JP2007157704A (en) * 2005-11-09 2007-06-21 Matsushita Electric Ind Co Ltd Negative electrode for coin type lithium secondary battery, its manufacturing method, and coin type lithium secondary battery
JP2013012336A (en) * 2011-06-28 2013-01-17 Toyota Industries Corp Secondary battery and charging method of the same
JP2013069416A (en) * 2011-09-20 2013-04-18 Idemitsu Kosan Co Ltd Negative electrode mixture and all-solid lithium-ion battery using the same
JP2013101921A (en) * 2011-10-12 2013-05-23 Toyota Industries Corp Lithium ion secondary battery negative electrode, and lithium ion secondary battery using the same
JP2015115194A (en) * 2013-12-11 2015-06-22 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid-state secondary battery and method for manufacturing all-solid-state secondary battery
JP2019016517A (en) * 2017-07-06 2019-01-31 トヨタ自動車株式会社 All-solid lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045586A1 (en) 2018-08-31 2020-03-05 富士フイルム株式会社 Planographic printing original plate, method for producing planographic printing plate, planographic printing method and curable composition
CN114497752A (en) * 2022-01-28 2022-05-13 蜂巢能源科技(无锡)有限公司 All-solid-state battery cell and preparation method and application thereof
CN114497752B (en) * 2022-01-28 2023-07-21 蜂巢能源科技(无锡)有限公司 All-solid-state battery cell and preparation method and application thereof
CN116190663A (en) * 2023-04-18 2023-05-30 蔚来电池科技(安徽)有限公司 Secondary battery and device

Also Published As

Publication number Publication date
JP6769404B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
Shen et al. Hierarchical carbon-coated ball-milled silicon: synthesis and applications in free-standing electrodes and high-voltage full lithium-ion batteries
CN110498611B (en) Sulfide-based solid electrolyte, method for producing sulfide-based solid electrolyte, and method for producing all-solid-state battery
CN106898827B (en) Lithium solid state battery
TW535316B (en) Method for the preparation of cathode active material and method for the preparation of non-aqueous electrolyte
JP6222142B2 (en) Method for manufacturing electrode body
JP6329745B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP6679843B2 (en) Electrode, electrode manufacturing method and battery
JP6832073B2 (en) Manufacturing method of positive electrode active material for all-solid-state batteries
CN102683649A (en) Method for preparing lithium ion battery carbon silicon anode material
US11757087B2 (en) Lithium ion battery electrode
JP7042426B2 (en) Solid electrolytes and batteries
JP2018049732A (en) Sulfide-based inorganic solid electrolytic material, solid electrolyte film, all-solid lithium ion battery, and method for manufacturing sulfide-based inorganic solid electrolytic material
CN103347813A (en) Cathode material having double-layer carbon coating and preparation method therefor
JP6769404B2 (en) All-solid-state lithium-ion battery
JP2015056326A (en) Solid electrolyte, and all-solid-state ion secondary battery
Dhaiveegan et al. Investigation of carbon coating approach on electrochemical performance of Li 4 Ti 5 O 12/C composite anodes for high-rate lithium-ion batteries
JP6222433B2 (en) Method for producing negative electrode active material for power storage device
JP6578743B2 (en) Electrode manufacturing method
JP2018049731A (en) Sulfide-based inorganic solid electrolytic material, solid electrolyte film and all-solid lithium ion battery
US11532837B2 (en) Sulfide solid electrolyte particles and all-solid-state battery
JP2012204150A (en) Method of producing electrode active material and electrode active material, electrode, and battery
CN103187569A (en) Preparation method for LiFePO4/C contained anode material for lithium ion battery
JP2014120265A (en) All-solid-state lithium battery
JP6443701B2 (en) Negative electrode active material for sodium ion secondary battery and method for producing the same
JP5831296B2 (en) Olivine-type lithium transition metal oxide and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R151 Written notification of patent or utility model registration

Ref document number: 6769404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151