JP2004326979A - Electrodeposition plating bath for forming magnetic film and electrodeposition plating method using the same - Google Patents

Electrodeposition plating bath for forming magnetic film and electrodeposition plating method using the same Download PDF

Info

Publication number
JP2004326979A
JP2004326979A JP2003123229A JP2003123229A JP2004326979A JP 2004326979 A JP2004326979 A JP 2004326979A JP 2003123229 A JP2003123229 A JP 2003123229A JP 2003123229 A JP2003123229 A JP 2003123229A JP 2004326979 A JP2004326979 A JP 2004326979A
Authority
JP
Japan
Prior art keywords
magnetic film
electrodeposition plating
forming
electrodeposition
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123229A
Other languages
Japanese (ja)
Inventor
Kaori Hosoiri
香織里 細入
Mine O
峰 王
Sayaka Doi
さやか 土井
Toru Watanabe
徹 渡辺
Toshio Kuzushima
俊夫 葛島
Takayuki Sone
孝之 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EEJA Ltd
Original Assignee
Electroplating Engineers of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroplating Engineers of Japan Ltd filed Critical Electroplating Engineers of Japan Ltd
Priority to JP2003123229A priority Critical patent/JP2004326979A/en
Publication of JP2004326979A publication Critical patent/JP2004326979A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrodeposition plating bath for forming a Co-platinum alloy magnetic film of a new composition by a wet method, when forming a magnetic recording medium of the cobalt-platinum alloy magnetic film. <P>SOLUTION: The electrodeposition plating bath for forming the cobalt-platinum alloy magnetic film contains 0.5-20 g/l of cobalt chloride hexahydrate, 2-60 g/l of chloroplatinic acid (IV), and 0.5-50 g/l of ammonium tartrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気記録媒体を構成する磁性膜の形成に関し、特に、コバルト−白金合金(以下、Co−Pt合金と略す場合もある)磁性膜を電析めっきにより形成する技術に関する。
【0002】
【従来の技術】
近年、磁気記録媒体の製造においては、記録密度の高密度化のため、スパッタリング法や真空蒸着法のような乾式法によりディスク基板上に形成した磁性膜を記録層とする薄膜型の磁気記録媒体の研究開発が盛んに行われている。
【0003】
この磁気記録媒体の磁性膜材料としては、コバルトを含むコバルト系合金が一般的に知られている。これらの磁性膜は高記録密度特性を有し、乾式法により形成した薄膜の記録層はその記録密度を飛躍的に向上させているのが現状である。
【0004】
しかしながら、乾式法により磁性膜を形成する場合、大量生産性の観点からすると、十分に満足するものとはいえない。いわゆるブロードバンド化による大量情報通信技術の進展を考慮すると、今後、高密度の記録媒体は必須であり、このような高密度記録媒体を大量且つ低コストで提供できる製造技術が必要となる。このようなことから、大量生産が可能となる電析めっきという湿式法による磁性膜製造技術が現在注目されている。
【0005】
このコバルト系合金磁性膜としては、例えばCo−Pt合金磁性膜形成用のめっき浴が知られている(特許文献1参照)。
【0006】
【特許文献1】特開平4−307419号公報
【0007】
このCo−Pt合金磁性膜は原子組成比が1:1である場合、高密度の磁気記録媒体への応用としての可能性があり、近年特に注目されている。それは、Co−Pt合金磁性膜が通常不規則なfcc構造をとっているものの、600〜700℃付近で熱処理を行うと、AuCl型、L1のfct構造の規則構造となり、高い一軸結晶磁気異方性を有するためである。
【0008】
【発明の解決する課題】
しかしながら、特許文献1の先行技術の電解めっき液は、酸性の電解めっき液であり、析出物の合金比率の安定性などの点において検討する余地がある。また、Co−Pt合金磁性膜を湿式法により形成する技術開発は注目されているものの、めっき浴の種類やその条件等について、あまり多く報告されていない。そのため、現在も、乾式法による磁性膜形成が主流であり、飛躍的な生産性の向上や低コスト化への対応が今ひとつ十分であるとはいえない状況である。
【0009】
本発明は、以上のような事情のもとになされたもので、磁気記録媒体をコバルト−白金合金磁性膜で構成する際に、湿式法により形成するために、新たな組成のコバルト−白金合金磁性膜形成用電析めっき浴を提供せんとするものである。
【0010】
【課題を解決するための手段】
かかる課題を解決するため、本発明のCo−Pt合金磁性膜形成用電析めっき浴は、塩化コバルト六水和物を0.5〜20g/Lと、塩化白金酸(IV)を2〜60g/Lと、酒石酸アンモニウムを0.5〜50g/Lとを含有するものとした。
【0011】
塩化コバルト六水和物は、0.5g/L未満であると、コバルトが共析不可能となり、20g/Lを超えるとめっき液中で不安定となり、沈殿しやすくなる傾向となる。塩化白金酸(IV)は、2g/L未満であると、白金が共析しづらくなり、50g/Lを超えるとめっき液中から塩析が発生し易くなる傾向となる。
【0012】
酒石酸アンモニウムは、コバルトの錯化剤の役割をし、0.5g/L未満であると、コバルトが沈殿しやすくなり、50g/Lを超えるとめっき液中から塩析が発生し易くなる傾向となる。
【0013】
本発明に係るコバルト−白金合金の磁性膜形成用電析めっき浴により磁性膜を形成する場合、電析電流密度を100〜2000A/m、液温50〜70℃でめっき処理を行うことが好ましい。電流密度が100A/m未満であると、析出物の外観が不均一となり、2000A/mを超えると、析出物の外観が焼け状態になる傾向がある。そして、液温が50℃未満であると白金が共析しづらくなり、70℃を超えるとアンモニアが揮発し、めっき液の安定性が悪くなる傾向とある。
【0014】
本発明に係るコバルト−白金合金磁性膜形成用電析めっき浴により磁性膜を形成すると、得られる磁性膜は微細な結晶により構成されており、磁性膜中の白金濃度が増加するに従い、膜の構造は微細化されるものとなる。そして、本発明のコバルト−白金合金磁性膜形成用電析めっき浴によれば、10at%〜60at%Ptの組成範囲を有するCo−Pt合金磁性膜を形成することができる。
【0015】
【発明の実施の形態】
以下に、本発明の好ましい実施形態について説明する。
【0016】
本実施形態は、表1に示す組成の各めっき浴により、Co−Pt合金磁性膜を形成した結果である。磁性膜の形成は、表1に示す各組成のめっき浴を準備し、チタン製のメッシュコーティングがされたPtアノード電極と、Cuカソード電極とを用いて電析めっきすることで行った。めっき処理は、液温60℃、電流密度を100、400、600、800、1000、1200、1500、2000A/mの8つの条件で行い、電析厚み0.2〜0.5μmの磁性膜を形成した。また、電析中にめっき液の撹拌を行った。
【0017】
【表1】

Figure 2004326979
【0018】
実施例1〜4の各めっき浴において、8つの電流密度条件により得られた各Co−Pt合金磁性膜をそれぞれエネルギー分散型X線分光器(EDS)により分析し、磁性膜のPt比率(at%)を調べた。その結果を図1に示す。図1より、電流密度が大きくなると、磁性膜中でのPtの占める割合が増加していることが判明した。また、めっき浴中のPt濃度が高いほど磁性膜中でのPtの占める割合が増加することも確認された。この結果より、めっき浴の組成や電流密度を変化させることにより、組成の異なるCo−Pt合金磁性膜(Pt 10at%〜60at%)が得られることが判明した。
【0019】
次に、本実施形態で得られたCo−Pt合金磁性膜の化学結合状態をX線光電子回折法(XPS)により調べた結果について説明する。この測定は、実施例3の電流密度400A/m(Pt37.2at%、図1参照)で得られた膜により行った。その結果、膜中のCo、Ptは、ともに金属状態のものであることが判明した。
【0020】
続いて、本実施形態で得られたCo−Pt合金磁性膜の結晶構造をX線回折(XRD)により調べた結果について説明する。この測定は、Ptが57at%(実施例1)、51at%(実施例2)、41at%(実施例2)、25at%(実施例4)、16at%(実施例4)の組成を有する5つの膜により行った。その結果、膜中のPt濃度が低いとき(25at%、16at%)はhcp構造をしており、膜中のPt濃度が高いとき(57at%、51at%、41at%、)はfcc構造をしていることが判明した。
【0021】
そして、本実施形態で得られたCo−Pt合金磁性膜の結晶粒径を透過電子顕微鏡(TEM、倍率60万倍)により観察した結果について説明する。この観察は、Ptが57at%(実施例1)、51at%(実施例2)、41at%(実施例2)、37at%(実施例3)、16at%(実施例4)の組成を有する5つの膜により行った。その結果、電析めっきにより得られたCo−Pt合金磁性膜は、5〜10nmオーダーの非常に微細化した結晶であり、膜中のPt比率が高くなると結晶粒径が小さくなる傾向も判明した。また、Ptが16at%の低い比率の磁性膜ではhcp構造をしており、それ以上の高いPt比率の磁性膜ではfcc構造であることが確認された。
【0022】
さらに、本実施形態で得られたCo−Pt合金磁性膜の磁気的性質を振動型磁気天秤(VSM)により調査した結果について説明する。この測定は、実施例2の電流密度1500A/m(Pt51at%、図1参照)で得られた膜を、真空下(10−5〜10−6Pa)450℃、6時間のアニール処理をした磁性膜について行った。X線回折(XRD)、透過電子顕微鏡(TEM、倍率60万倍)により、アニール処理した磁性膜の構造の規則化を調べたところ、アニール処理した磁性膜は、規則fct構造に変化していることが判った。そして、保持力は、面内方向で244Oeで、面垂直方向で673Oeであった。
【0023】
最後に、本実施形態で得られたCo−Pt合金磁性膜の表面状態を操作電子顕微鏡(SEM、傾斜角30°倍率65000倍)により観察した結果について説明する。この観察は、実施例4の電流密度400A/m(Pt16at%、)、実施例4の電流密度600A/m(Pt25at%)、実施例3の電流密度400A/m(Pt37at%)、実施例2の電流密度600A/m(Pt41at%)、実施例2の電流密度1500A/m(Pt51at%)、実施例1の電流密度800A/m(Pt57at%)で得られた6つの膜について行った。その結果、実施例4の電流密度400A/m(Pt16at%)、実施例4の電流密度600A/m(Pt25at%)、実施例2の電流密度1500A/m(Pt51at%)、実施例1の電流密度800A/m(Pt57at%)の磁性膜の表面には若干の起伏が見られるものの、その状態は滑らかであることが判った。また、実施例3の電流密度400A/m(Pt37at%)、実施例2の電流密度600A/m(Pt41at%)、表面に起伏がほとんど認められず、表面状態は非常に滑らかであることが観察された。
【0024】
【発明の効果】
以上説明したように、本発明の磁性膜形成用電析めっき浴によれば、異なる組成(Pt10at%〜60at%)のCo−Pt合金磁性膜を形成することができ、高保持力を有するCo−Pt合金磁性膜を得ることができる。
【図面の簡単な説明】
【図1】本実施形態の電流密度とPt比率の関係を示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the formation of a magnetic film constituting a magnetic recording medium, and more particularly to a technique of forming a cobalt-platinum alloy (hereinafter sometimes abbreviated as a Co-Pt alloy) magnetic film by electrodeposition plating.
[0002]
[Prior art]
In recent years, in the production of magnetic recording media, in order to increase the recording density, a thin film type magnetic recording medium in which a magnetic film formed on a disk substrate by a dry method such as a sputtering method or a vacuum evaporation method is used as a recording layer. R & D is actively conducted.
[0003]
As a magnetic film material of the magnetic recording medium, a cobalt alloy containing cobalt is generally known. At present, these magnetic films have high recording density characteristics, and the recording layer of a thin film formed by a dry method has dramatically improved the recording density.
[0004]
However, when a magnetic film is formed by a dry method, it cannot be said that it is sufficiently satisfactory from the viewpoint of mass productivity. In consideration of the progress of mass information communication technology due to the so-called broadband technology, a high-density recording medium will be indispensable in the future, and a manufacturing technology capable of providing such a high-density recording medium in large quantities at low cost will be required. For this reason, a magnetic film manufacturing technique by a wet method called electrodeposition plating, which enables mass production, has attracted attention at present.
[0005]
As this cobalt-based alloy magnetic film, for example, a plating bath for forming a Co—Pt alloy magnetic film is known (see Patent Document 1).
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 4-307419
When the atomic composition ratio of the Co—Pt alloy magnetic film is 1: 1, the magnetic film has a possibility of being applied to a high-density magnetic recording medium, and has been particularly noted in recent years. It although Co-Pt alloy magnetic film is normally taken irregular fcc structure, when subjected to heat treatment at around 600 to 700 ° C., AuCl type becomes the ordered structure of the fct structure L1 0, high uniaxial crystal magnetic anisotropy This is because it has anisotropy.
[0008]
[Problems to be solved by the invention]
However, the prior art electrolytic plating solution of Patent Document 1 is an acidic electrolytic plating solution, and there is room for study in terms of the stability of the alloy ratio of precipitates and the like. Although the development of technology for forming a Co—Pt alloy magnetic film by a wet method has attracted attention, there have been few reports on the type of plating bath and its conditions. For this reason, the magnetic film formation by the dry method is still the mainstream even today, and it cannot be said that a drastic improvement in productivity and a reduction in cost are sufficiently satisfactory.
[0009]
The present invention has been made in view of the above circumstances, and when forming a magnetic recording medium with a cobalt-platinum alloy magnetic film, a cobalt-platinum alloy having a new composition to form by a wet method. An object of the present invention is to provide an electrodeposition plating bath for forming a magnetic film.
[0010]
[Means for Solving the Problems]
In order to solve such problems, the electrodeposition plating bath for forming a Co—Pt alloy magnetic film of the present invention comprises 0.5 to 20 g / L of cobalt chloride hexahydrate and 2 to 60 g of chloroplatinic acid (IV). / L and 0.5 to 50 g / L of ammonium tartrate.
[0011]
If the cobalt chloride hexahydrate is less than 0.5 g / L, cobalt cannot be co-deposited, and if it exceeds 20 g / L, it will become unstable in the plating solution and tend to precipitate. When the amount of chloroplatinic acid (IV) is less than 2 g / L, it is difficult for eutectoid of platinum, and when it exceeds 50 g / L, salting out tends to occur easily in the plating solution.
[0012]
Ammonium tartrate acts as a complexing agent for cobalt. When the amount is less than 0.5 g / L, cobalt tends to precipitate, and when the amount exceeds 50 g / L, salting out tends to occur easily from the plating solution. Become.
[0013]
When the magnetic film is formed by the electrodeposition plating bath for forming a magnetic film of a cobalt-platinum alloy according to the present invention, the plating treatment may be performed at an electrodeposition current density of 100 to 2000 A / m 2 and a liquid temperature of 50 to 70 ° C. preferable. When the current density is less than 100 A / m 2 , the appearance of the precipitate becomes non-uniform, and when the current density exceeds 2000 A / m 2 , the appearance of the precipitate tends to be burnt. If the solution temperature is less than 50 ° C., it is difficult for eutectoid of platinum, and if it exceeds 70 ° C., ammonia tends to evaporate and the stability of the plating solution tends to deteriorate.
[0014]
When a magnetic film is formed by the electrodeposition plating bath for forming a cobalt-platinum alloy magnetic film according to the present invention, the obtained magnetic film is composed of fine crystals, and as the platinum concentration in the magnetic film increases, the film becomes The structure will be miniaturized. According to the electrodeposition plating bath for forming a cobalt-platinum alloy magnetic film of the present invention, a Co-Pt alloy magnetic film having a composition range of 10 at% to 60 at% Pt can be formed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0016]
The present embodiment is a result of forming a Co—Pt alloy magnetic film using each plating bath having the composition shown in Table 1. The formation of the magnetic film was performed by preparing a plating bath having each composition shown in Table 1, and performing electrodeposition plating using a Pt anode electrode coated with titanium mesh and a Cu cathode electrode. The plating process is performed under eight conditions of a liquid temperature of 60 ° C. and current densities of 100, 400, 600, 800, 1000, 1200, 1500 and 2000 A / m 2 , and a magnetic film having an electrodeposition thickness of 0.2 to 0.5 μm. Was formed. Further, the plating solution was stirred during the electrodeposition.
[0017]
[Table 1]
Figure 2004326979
[0018]
In each of the plating baths of Examples 1 to 4, each of the Co—Pt alloy magnetic films obtained under the eight current density conditions was analyzed by an energy dispersive X-ray spectrometer (EDS), and the Pt ratio (at %). The result is shown in FIG. From FIG. 1, it was found that as the current density increased, the proportion of Pt in the magnetic film increased. It was also confirmed that the higher the Pt concentration in the plating bath, the higher the proportion of Pt in the magnetic film. From this result, it was found that Co-Pt alloy magnetic films (Pt 10 at% to 60 at%) having different compositions can be obtained by changing the composition of the plating bath and the current density.
[0019]
Next, the result of examining the chemical bonding state of the Co—Pt alloy magnetic film obtained in the present embodiment by X-ray photoelectron diffraction (XPS) will be described. This measurement was performed using the film obtained in Example 3 at a current density of 400 A / m 2 (Pt 37.2 at%, see FIG. 1). As a result, it was found that both Co and Pt in the film were in a metal state.
[0020]
Subsequently, the result of examining the crystal structure of the Co—Pt alloy magnetic film obtained in the present embodiment by X-ray diffraction (XRD) will be described. In this measurement, Pt has a composition of 57 at% (Example 1), 51 at% (Example 2), 41 at% (Example 2), 25 at% (Example 4), and 16 at% (Example 4). Performed with one membrane. As a result, when the Pt concentration in the film is low (25 at%, 16 at%), the film has the hcp structure, and when the Pt concentration in the film is high (57 at%, 51 at%, 41 at%), the film has the fcc structure. Turned out to be.
[0021]
The results obtained by observing the crystal grain size of the Co—Pt alloy magnetic film obtained in the present embodiment with a transmission electron microscope (TEM, magnification: 600,000) will be described. This observation shows that Pt has a composition of 57 at% (Example 1), 51 at% (Example 2), 41 at% (Example 2), 37 at% (Example 3), and 16 at% (Example 4). Performed with one membrane. As a result, the Co—Pt alloy magnetic film obtained by electrodeposition plating was a very fine crystal of the order of 5 to 10 nm, and it was also found that the crystal grain size tended to decrease as the Pt ratio in the film increased. . It was also confirmed that the magnetic film having a low Pt ratio of 16 at% had an hcp structure, and the magnetic film having a higher Pt ratio had an fcc structure.
[0022]
Further, the results of investigating the magnetic properties of the Co—Pt alloy magnetic film obtained in this embodiment using a vibration type magnetic balance (VSM) will be described. In this measurement, the film obtained at a current density of 1500 A / m 2 (Pt 51 at%, see FIG. 1) of Example 2 was annealed at 450 ° C. for 6 hours under vacuum (10 −5 to 10 −6 Pa). The test was performed on the magnetic film. X-ray diffraction (XRD) and transmission electron microscopy (TEM, magnification: 600,000 times) were examined to determine the ordering of the structure of the annealed magnetic film. The annealed magnetic film changed to a regular fct structure. It turns out. The holding force was 244 Oe in the in-plane direction and 673 Oe in the direction perpendicular to the plane.
[0023]
Finally, the result of observing the surface state of the Co—Pt alloy magnetic film obtained in the present embodiment with an operation electron microscope (SEM, tilt angle 30 °, magnification 65,000 times) will be described. This observation was made at a current density of 400 A / m 2 (Pt 16 at%) of Example 4, a current density of 600 A / m 2 (Pt 25 at%) of Example 4, a current density of 400 A / m 2 (Pt 37 at%) of Example 3, Six current density obtained at a current density of 600 A / m 2 (Pt 41 at%) of Example 2, 1500 A / m 2 (Pt 51 at%) of Example 2, and 800 A / m 2 (Pt 57 at%) of Example 1 Performed on membrane. As a result, the current density of Example 4 was 400 A / m 2 (Pt 16 at%), the current density of Example 4 was 600 A / m 2 (Pt 25 at%), and the current density of Example 2 was 1500 A / m 2 (Pt 51 at%). Although the surface of the magnetic film having a current density of 800 A / m 2 (Pt 57 at%) was slightly uneven, the state was found to be smooth. In addition, the current density of Example 3 was 400 A / m 2 (Pt 37 at%), the current density of Example 2 was 600 A / m 2 (Pt 41 at%), the surface showed almost no undulation, and the surface state was very smooth. Was observed.
[0024]
【The invention's effect】
As described above, according to the electrodeposition plating bath for forming a magnetic film of the present invention, a Co—Pt alloy magnetic film having a different composition (10 at% to 60 at%) can be formed, and Co having high coercive force can be formed. -A Pt alloy magnetic film can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a current density and a Pt ratio according to the embodiment.

Claims (2)

塩化コバルト六水和物を0.5〜20g/Lと、塩化白金酸(IV)を2〜60g/Lと、酒石酸アンモニウムを0.5〜50g/Lとを含有することを特徴とするコバルト−白金合金の磁性膜形成用電析めっき浴。Cobalt containing 0.5 to 20 g / L of cobalt chloride hexahydrate, 2 to 60 g / L of chloroplatinic acid (IV), and 0.5 to 50 g / L of ammonium tartrate. -Electroplating bath for forming a magnetic film of platinum alloy. 請求項1に記載の磁性膜形成用電析めっき浴を用いて磁性膜形成のめっき処理を行う電析めっき方法であって、
電流密度100〜2000A/m、液温50〜70℃でめっき処理を行う電析めっき方法。
An electrodeposition plating method for performing a plating process for forming a magnetic film using the electrodeposition plating bath for forming a magnetic film according to claim 1,
An electrodeposition plating method in which plating is performed at a current density of 100 to 2000 A / m 2 and a liquid temperature of 50 to 70 ° C.
JP2003123229A 2003-04-28 2003-04-28 Electrodeposition plating bath for forming magnetic film and electrodeposition plating method using the same Pending JP2004326979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123229A JP2004326979A (en) 2003-04-28 2003-04-28 Electrodeposition plating bath for forming magnetic film and electrodeposition plating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123229A JP2004326979A (en) 2003-04-28 2003-04-28 Electrodeposition plating bath for forming magnetic film and electrodeposition plating method using the same

Publications (1)

Publication Number Publication Date
JP2004326979A true JP2004326979A (en) 2004-11-18

Family

ID=33501182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123229A Pending JP2004326979A (en) 2003-04-28 2003-04-28 Electrodeposition plating bath for forming magnetic film and electrodeposition plating method using the same

Country Status (1)

Country Link
JP (1) JP2004326979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154285A (en) * 2005-12-07 2007-06-21 Electroplating Eng Of Japan Co Method for producing magnetic film of cobalt-platinum alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154285A (en) * 2005-12-07 2007-06-21 Electroplating Eng Of Japan Co Method for producing magnetic film of cobalt-platinum alloy

Similar Documents

Publication Publication Date Title
CN102965719B (en) The low rate chemical etching of film metal and alloy
CN1909071A (en) Perpendicular magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording apparatus comprising magnetic recording medium
JP2006052456A (en) Alloy powder with fcc structure and manufacturing method therefor
US20060280862A1 (en) Process for producing magnetic recording medium
JPS6380509A (en) Magnetic superlattice film and magnetic head using same
TW200529203A (en) Magnetic recording medium and magnetic recording medium substrate
JP2007023378A (en) Sputter target, magnetic recording medium and manufacturing method therefor
US20110129692A1 (en) Magnetic alloy materials with hcp stabilized microstructure, magnetic recording media comprising same, and fabrication method therefor
JP2001052330A (en) Magnetic recording medium and its manufacture and magnetic recording apparatus
JP2004326979A (en) Electrodeposition plating bath for forming magnetic film and electrodeposition plating method using the same
Pattanaik et al. Morphology and magnetic properties of Co-rich Co-Pt thin films electrodeposited on Cr seed layers
JP2004323948A (en) Electrocrystallization plating bath for forming magnetic film, and electrocrystallization plating method using the same
EP1372140A1 (en) A perpendicular magnetic memory medium, a manufacturing method thereof, and a magnetic memory storage
JP3236171B2 (en) Soft magnetic multilayer
Wodarz et al. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process
JP2005293778A (en) SINGLE CRYSTAL Si SUBSTRATE WITH METAL PLATING LAYER AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
JP2007018688A (en) Process for producing magnetic recording medium
JP2007154285A (en) Method for producing magnetic film of cobalt-platinum alloy
JP2003257013A (en) Magnetic recording medium
JPH04229607A (en) Magnetically soft thin film and its manufacture
JP4750924B2 (en) Manufacturing method of sputtering target
JP2004052068A (en) Metallic nanoparticle cluster, its manufacturing method, its treatment method and recording medium using at least magnetism
JPH0817032A (en) Magnetic recording medium and its production
WO2023038158A1 (en) Ordered alloy ferromagnetic nanowire structure and method for producing same
JP4190973B2 (en) Method for producing cobalt-platinum alloy magnetic film by electrodeposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

RD02 Notification of acceptance of power of attorney

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Effective date: 20081107

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090622