JPH0817032A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH0817032A
JPH0817032A JP26908294A JP26908294A JPH0817032A JP H0817032 A JPH0817032 A JP H0817032A JP 26908294 A JP26908294 A JP 26908294A JP 26908294 A JP26908294 A JP 26908294A JP H0817032 A JPH0817032 A JP H0817032A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
gas
magnetic recording
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26908294A
Other languages
Japanese (ja)
Inventor
Junichi Nakai
淳一 中井
Shigenori Kusumoto
栄典 楠本
Kazuo Yoshikawa
一男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26908294A priority Critical patent/JPH0817032A/en
Publication of JPH0817032A publication Critical patent/JPH0817032A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a magnetic recording medium having all of such required characteristics as high magnetic flux density, high coercive force and high corrosion resistance. CONSTITUTION:A nonmagnetic metallic underlayer 2, a metallic thin film as a magnetic layer 3 and a protective lubricative layer 4 are successively formed on a substrate 1 of a nonmagnetic material to produce the objective magnetic recording medium. At this time, the magnetic layer 3 is formed by sputtering using gaseous Kr and/or gaseous Xe as sputtering gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンピュターやデータ
プロセッサ等における各種磁気記録用として有用な強磁
性体金属薄膜型磁気記録媒体およびその製造方法に関す
るものであり、殊に高保磁力、高耐食性および低ノイズ
特性を兼ね備えた磁気記録媒体、およびその様な磁気記
録媒体を製造するための有用な方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferromagnetic metal thin film type magnetic recording medium useful for various magnetic recordings in computers, data processors and the like and a method for producing the same, and particularly to high coercive force, high corrosion resistance and The present invention relates to a magnetic recording medium having a low noise characteristic and a useful method for manufacturing such a magnetic recording medium.

【0002】[0002]

【従来の技術】磁気記録装置に用いられる磁気記録媒体
としては、従来から、有機樹脂結合剤と強磁性酸化粉末
からなる混合組成物を、非磁性基板上に塗布して磁性層
を形成したいわゆる塗布型磁気記録媒体が使用されてき
た。しかしながら、近年では、磁気記録媒体の高密度化
への要求から、スパッタリング等の薄膜形成法による強
磁性金属薄膜を磁性層とする強磁性金属薄膜型磁気記録
媒体へと移行しつつある。そして強磁性金属薄膜の組成
は、磁気的性質、記録再生特性および耐候性等を総合的
に評価して決定されている。こうした観点から、上記強
磁性金属薄膜としては、Co−Cr系、Co−Ni系、
Co−Ni−Cr系、或はCo−Cr−Ta系等のCo
基合金が一般的に使用され、更にCo−Cr−Pt系等
のCo基合金も提案されている。尚上記の様な強磁性金
属薄膜を磁性層として基板上に形成する場合には、磁性
膜の配向性制御や基板との密着性向上という観点から、
非磁性基板上にCr膜等の金属下地層が形成されると共
に、磁性膜の保護、耐候性や耐摩耗性向上という観点か
ら、磁性層の表面にC等の保護潤滑層が形成されるのが
一般である。また上記のような強磁性金属薄膜型磁気記
録媒体の製造にあたっては、Arガスをスパッタリング
ガスとして用いたスパッタリング法が一般に採用されて
いる。
2. Description of the Related Art Conventionally, a magnetic recording medium used in a magnetic recording apparatus is a so-called magnetic layer formed by coating a non-magnetic substrate with a mixed composition of an organic resin binder and a ferromagnetic oxide powder. Coated magnetic recording media have been used. However, in recent years, due to the demand for higher density of the magnetic recording medium, a ferromagnetic metal thin film type magnetic recording medium having a ferromagnetic metal thin film as a magnetic layer by a thin film forming method such as sputtering has been shifting. The composition of the ferromagnetic metal thin film is determined by comprehensively evaluating magnetic properties, recording / reproducing characteristics, weather resistance and the like. From such a viewpoint, the ferromagnetic metal thin film may be a Co—Cr-based, Co—Ni-based,
Co such as Co-Ni-Cr system or Co-Cr-Ta system
Base alloys are generally used, and Co base alloys such as Co—Cr—Pt-based alloys have also been proposed. When a ferromagnetic metal thin film as described above is formed on a substrate as a magnetic layer, from the viewpoint of controlling the orientation of the magnetic film and improving the adhesion to the substrate,
A metal underlayer such as a Cr film is formed on a non-magnetic substrate, and a protective lubricating layer such as C is formed on the surface of the magnetic layer from the viewpoint of protecting the magnetic film and improving weather resistance and wear resistance. Is common. Further, in manufacturing the above-mentioned ferromagnetic metal thin film type magnetic recording medium, a sputtering method using Ar gas as a sputtering gas is generally adopted.

【0003】ところで、Co基合金磁性層の面内方向保
磁力は、結晶粒間の磁気的相互作用の低減、磁性層の結
晶磁気異方性および結晶C軸の面内配向度の向上等によ
っても増大することが知られている。これらのなかで、
特に結晶粒間の磁気的相互作用低減による高保磁力化を
目的とした磁気記録媒体やその製造方法が提案されてい
る。
By the way, the in-plane coercive force of the Co-based alloy magnetic layer is reduced by reducing the magnetic interaction between crystal grains, improving the crystal magnetic anisotropy of the magnetic layer, and improving the in-plane orientation degree of the crystal C axis. Is also known to increase. Among these,
In particular, a magnetic recording medium and its manufacturing method have been proposed for the purpose of increasing the coercive force by reducing the magnetic interaction between crystal grains.

【0004】例えば、特開昭63−98824号には、
成膜時に酸素または酸素プラズマを混入して結晶粒界面
に酸化相を形成することによって、結晶粒を分離した磁
気記録媒体が提案されている。しかしながらこの技術で
は、酸素原子が磁性相内にも混入し、酸化物生成に伴う
飽和磁束密度の低下が十分予想される。また金属下地層
であるCr膜の表面に酸化物を形成して、Co基合金磁
性層のエピタキシャル成長を阻害し、結晶配向度の低下
を招くことによって、保磁力の低下が生じるという欠点
がある。
For example, JP-A-63-98824 discloses that
There has been proposed a magnetic recording medium in which crystal grains are separated by mixing oxygen or oxygen plasma during film formation to form an oxidized phase at the crystal grain interface. However, in this technique, oxygen atoms are also mixed in the magnetic phase, and it is sufficiently expected that the saturation magnetic flux density will decrease due to the formation of oxides. Further, there is a drawback that coercive force is lowered by forming an oxide on the surface of the Cr film which is the metal underlayer, hindering the epitaxial growth of the Co-based alloy magnetic layer and lowering the crystal orientation.

【0005】一方、特開平3−63919号には、スパ
ッタリング時のArガス圧を高めることによって、結晶
粒間の物理的分離を高めることができ、高保磁力化に有
効であることが報告されている。しかしながら、ここで
の物理的分離とは、実質的には間隙のことを意味してお
り、磁気記録媒体として要求される特性の一つである耐
食性を却って低下させるという欠点がある。
On the other hand, JP-A-3-63919 reported that by increasing the Ar gas pressure during sputtering, the physical separation between crystal grains can be increased, which is effective for increasing the coercive force. There is. However, the physical separation here substantially means a gap, and has a drawback that the corrosion resistance, which is one of the characteristics required for a magnetic recording medium, is rather lowered.

【0006】上記のように、従来の製造方法では、高磁
束密度、高保磁力および高耐食性の要求特性のいずれも
兼ね備えた磁気記録媒体を製造することはできなかっ
た。こうしたことから、磁束密度および耐食性について
は少なくとも低下させることなく、高保磁力を有する磁
気記録媒体を製造することのできる方法の実現が望まれ
ている。
As described above, the conventional manufacturing method cannot manufacture a magnetic recording medium having all of the required characteristics of high magnetic flux density, high coercive force and high corrosion resistance. Therefore, it is desired to realize a method capable of producing a magnetic recording medium having a high coercive force without lowering the magnetic flux density and the corrosion resistance.

【0007】[0007]

【発明が解決しようとする課題】本発明はこの様な事情
に鑑みてなされたものであって、その目的は、高磁束密
度、高保磁力および高耐食性等の要求特性のいずれも兼
ね備えた磁気記録媒体、およびその様な磁気記録媒体を
製造するための有用な方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object thereof is magnetic recording having all the required characteristics such as high magnetic flux density, high coercive force and high corrosion resistance. It is to provide a medium and a useful method for manufacturing such a magnetic recording medium.

【0008】[0008]

【課題を解決するための手段】上記目的を達成した本発
明方法とは、非磁性材料からなる基板上に、非磁性金属
下地層、金属薄膜磁性層および保護潤滑層を順次形成し
てなる磁気記録媒体を製造するに当たり、少なくとも前
記金属薄膜磁性層を形成する際に、Krガスおよび/ま
たはXeガスをスパッタガスとして用いてスパッタ法を
適用して成膜する点に要旨を有する磁気記録媒体の製造
方法である。
The method of the present invention which achieves the above object is a magnetic layer formed by sequentially forming a nonmagnetic metal underlayer, a metal thin film magnetic layer and a protective lubricating layer on a substrate made of a nonmagnetic material. In manufacturing a recording medium, at least when forming the metal thin film magnetic layer, a sputtering method is applied using Kr gas and / or Xe gas as a sputtering gas to form a film. It is a manufacturing method.

【0009】また本発明方法は、金属薄膜磁性層が前記
した様なCo基合金であるときにその効果が最大限に発
揮される。更に、本発明を実施するに当たり、前記非磁
性金属下地層を形成する際に、Krガスおよび/または
Xeガスをスパッタガスとして用いてスパッタ法を適用
して成膜するような構成を採用することも有用であり、
こうした構成を採用することによって、磁気記録媒体の
特性の更なる向上を達成することができる。
The effect of the method of the present invention is maximized when the metal thin film magnetic layer is a Co-based alloy as described above. Furthermore, in carrying out the present invention, when forming the nonmagnetic metal underlayer, a structure is adopted in which a sputtering method is applied using Kr gas and / or Xe gas as a sputtering gas. Is also useful,
By adopting such a configuration, the characteristics of the magnetic recording medium can be further improved.

【0010】一方、上記目的を達成した本発明の磁気記
録媒体とは、非磁性材料からなる基板上に、非磁性金属
下地層、金属薄膜磁性層および保護潤滑層を順次形成し
てなる磁気記録媒体において、前記金属薄膜磁性層は、
Ar,KrおよびXeよりなる群から選ばれる1種以上
の元素を0.01〜1.1原子%含有したものである点
に要旨を有するものである。
On the other hand, the magnetic recording medium of the present invention, which has achieved the above object, is a magnetic recording formed by sequentially forming a nonmagnetic metal underlayer, a metal thin film magnetic layer and a protective lubricating layer on a substrate made of a nonmagnetic material. In the medium, the metal thin film magnetic layer is
The gist is that it contains 0.01 to 1.1 atom% of one or more elements selected from the group consisting of Ar, Kr and Xe.

【0011】また上記の様な磁気記録媒体を製造するに
当たっては、前記金属薄膜磁性層を形成する際に、A
r,KrおよびXeよりなる群から選ばれる1種以上の
元素からなるガスをスパッタガスとして用いると共に、
非磁性材料からなる基板に負の電圧を印加してスパッタ
法を適用して成膜する構成を採用することによって、或
は金属薄膜磁性層を形成した後、Ar,KrおよびXe
よりなる群から選ばれる1種以上の元素を金属薄膜磁性
層にイオン注入する構成を採用することによって達成さ
れる。
In manufacturing the magnetic recording medium as described above, when the metal thin film magnetic layer is formed, A
While using as a sputtering gas a gas consisting of one or more elements selected from the group consisting of r, Kr and Xe,
By applying a negative voltage to a substrate made of a non-magnetic material and applying a sputtering method to form a film, or after forming a metal thin film magnetic layer, Ar, Kr and Xe are formed.
This is achieved by adopting a structure in which one or more elements selected from the group consisting of: are ion-implanted into the metal thin film magnetic layer.

【0012】[0012]

【作用】本発明者らは、磁気記録媒体の特性の向上を図
るべく、特にその製造条件と磁気特性の関係について、
実験および検討を重ねた。その結果、少なくとも前記金
属薄膜磁性層を形成する際に、これまでスパッタリング
ガスとして用いられてきたArガスの代わりに、Krガ
スおよび/またはXeガスをスパッタガスとして用いて
スパッタ法を適用して成膜すれば、磁気記録媒体の飽和
磁束密度や耐食性を損なうことなく、高い保磁力を有す
る磁気記録媒体が得られることを見いだし、本発明を完
成した。
In order to improve the characteristics of the magnetic recording medium, the inventors of the present invention are particularly interested in the relationship between the manufacturing conditions and the magnetic characteristics.
Experiments and studies were repeated. As a result, when at least the metal thin film magnetic layer is formed, a sputtering method is applied by using Kr gas and / or Xe gas as a sputtering gas instead of Ar gas which has been used as a sputtering gas. It was found that a magnetic recording medium having a high coercive force can be obtained without impairing the saturation magnetic flux density and the corrosion resistance of the magnetic recording medium, and the present invention has been completed.

【0013】本発明において、Krガスおよび/または
Xeガスをスパッタガスとして選んだ理由の一つは、A
rガスと同様にこれらのガスが不活性ガスであることに
よる。不活性ガス元素は、化学的に安定で他の元素と化
合物を形成することなく、且つ常温で単原子分子気体と
なり、物理的な吸着も起こり難い。またCo基合金磁性
膜中に固溶しない過剰の原子は、すべて気体として散逸
するので、飽和磁束密度Bsの減少をもたらすCoとの
化合物を生成することなく、且つ磁性膜中のCo原子の
体積率の減少も少ないために、飽和磁束密度Bsの低下
を生じることなく、良好なCo基合金磁性膜を得ること
ができる。
In the present invention, one of the reasons why Kr gas and / or Xe gas is selected as the sputtering gas is A
This is because these gases are inert gases like r gas. The inert gas element is chemically stable, does not form a compound with other elements, becomes a monatomic molecule gas at room temperature, and physical adsorption hardly occurs. Further, since all the excess atoms that do not form a solid solution in the Co-based alloy magnetic film are dissipated as a gas, they do not form a compound with Co that causes a decrease in the saturation magnetic flux density Bs, and the volume of Co atoms in the magnetic film is large. Since the decrease in the rate is small, a good Co-based alloy magnetic film can be obtained without lowering the saturation magnetic flux density Bs.

【0014】気相成長膜は、膜の堆積方向に特定の優先
成長方位を有するのが一般である。このような傾向は、
スパッタ膜においても同様であるが、堆積膜最表面がタ
ーゲットからの反跳スパッタガス原子およびスパッタガ
スイオンの衝撃に晒され、最表面原子が運動エネルギー
を得て再度移動する現象(表面マイグレーション現象)
によって、優先成長方位への成長が促進されることが知
られている。
The vapor phase growth film generally has a specific preferential growth orientation in the film deposition direction. Such a tendency is
The same applies to sputtered films, but the phenomenon in which the outermost surface of the deposited film is exposed to the impact of recoil sputter gas atoms and sputter gas ions from the target, and the outermost surface atoms gain kinetic energy and move again (surface migration phenomenon)
Is known to promote growth in the preferential growth direction.

【0015】ここで非磁性金属下地層としてCr膜を用
いると、Cr膜はその優先成長方位〈200〉に配向
し、引き続き成膜されるCo基合金磁性層は、そのhc
p(110)面がCr(200)面と最も格子不整が小
さいために、hcp〈110〉方位に配向してエピタキ
シャル成長することが一般に知られている。即ち、hc
p構造のCo基合金の磁化容易軸であるC軸が面内に配
向することによって、面内に高い保磁力が得られると考
えられる。
When a Cr film is used as the non-magnetic metal underlayer, the Cr film is oriented in the preferential growth direction <200>, and the subsequently formed Co-based alloy magnetic layer has its hc.
It is generally known that the p (110) plane has the smallest lattice mismatch with the Cr (200) plane, and thus epitaxial growth is performed with the hcp <110> orientation. That is, hc
It is considered that a high coercive force can be obtained in the plane by orienting the C axis, which is the easy axis of magnetization of the Co-based alloy having the p structure, in the plane.

【0016】このとき、KrやXe等をスパッタリング
ガスとして用いると、これらの原子の質量がArよりも
大きいので、ターゲットからの反跳スパッタガス原子お
よびスパッタガスイオンから表面原子が得る運動エネル
ギーが増加し、膜堆積方向への優先方位結晶成長が促進
される。従って、Co基合金磁性層の厚さ方向のhcp
〈110〉方位へのエピタキシャル成長が促進され、h
cp〈110〉方位と直交するC軸の面内配向度が改善
されて面内保磁力向上効果を達成した膜が得られること
になる。
At this time, when Kr, Xe, or the like is used as the sputtering gas, the mass of these atoms is larger than that of Ar, so that the kinetic energy obtained by the recoil sputter gas atoms from the target and the surface atoms from the sputter gas ions increases. However, preferentially oriented crystal growth in the film deposition direction is promoted. Therefore, hcp in the thickness direction of the Co-based alloy magnetic layer
The epitaxial growth in the <110> direction is promoted, and h
The degree of in-plane orientation of the C axis orthogonal to the cp <110> direction is improved, and a film having an effect of improving the in-plane coercive force can be obtained.

【0017】本発明は上述したように、少なくとも前記
金属薄膜磁性層を形成する際に、Krガスおよび/また
はXeガスをスパッタガスとして用いてスパッタ法を適
用して成膜する点に最大の特徴を有するものであるが、
非磁性金属下地層として例えばCrを用いた場合にも、
Krガスおよび/またはXeガスをスパッタガスとして
用いてスパッタ法を適用して成膜することによって優先
成長方位〈200〉への配向が増加するので好ましい。
即ち、エピタキシャル成長に適した非磁性金属下地層の
配向が増加することによって、Co基合金磁性層のC軸
面内配向度もより一層改善され、更に高い面内保磁力を
有する膜を得ることができる。尚このような観点からし
て、上記のようにして形成されるの非磁性金属下地層
は、Crであることが好ましいが、非磁性金属下地層は
Crに限らず、CrにMo,Ta,V,W,Ti等を添
加したCr合金、或はMo,Ta,V,W,Ti等も用
いることができる。
As described above, the present invention is most characterized in that at least the metal thin film magnetic layer is formed by applying a sputtering method using Kr gas and / or Xe gas as a sputtering gas. Which has
Even when Cr is used as the non-magnetic metal underlayer,
It is preferable to use Kr gas and / or Xe gas as a sputtering gas to apply a sputtering method to form a film, because the orientation to the preferential growth orientation <200> increases.
That is, by increasing the orientation of the non-magnetic metal underlayer suitable for epitaxial growth, the degree of C-axis in-plane orientation of the Co-based alloy magnetic layer is further improved, and a film having a higher in-plane coercive force can be obtained. it can. From this point of view, the nonmagnetic metal underlayer formed as described above is preferably Cr, but the nonmagnetic metal underlayer is not limited to Cr, but Cr, Mo, Ta, A Cr alloy added with V, W, Ti or the like, or Mo, Ta, V, W, Ti or the like can also be used.

【0018】本発明は上述の如く、金属薄膜磁性層や非
磁性金属下地層(即ち、金属薄膜磁性層単独、または金
属薄膜磁性層と非磁性金属下地層)を形成する際に、K
rガスおよび/またはXeガスをスパッタガスとして用
いてスパッタ法を適用して成膜するものであるが、本発
明者らが更に検討したところによると、前記金属薄膜磁
性層にKrやXe等の元素を強制的に固溶させることに
よって、保磁力を更に向上させ得ることがわかった。ま
たこうした効果は、強制固溶させる元素が上記KrやX
eに限らず、従来からスパッタガスとして用いられてい
るArにおいても同様に達成されることがわかった。即
ち、前記金属薄膜磁性層にAr,KrおよびXeよりな
る群から選ばれる1種以上の元素を強制的に固溶させる
ことによって、保磁力を更に向上させることができたの
である。
In the present invention, as described above, when the metal thin film magnetic layer and the non-magnetic metal underlayer (that is, the metal thin film magnetic layer alone, or the metal thin film magnetic layer and the non-magnetic metal underlayer) are formed, K
The sputtering method is applied using r gas and / or Xe gas as a sputtering gas to form a film. However, according to a further study by the present inventors, the metal thin film magnetic layer is formed of Kr, Xe, or the like. It was found that the coercive force can be further improved by forcibly dissolving the element. In addition, such an effect is obtained when the element forcibly forming a solid solution is Kr or X.
It was found that not only e, but also Ar, which has been conventionally used as a sputtering gas, can be achieved. That is, the coercive force could be further improved by forcibly forming a solid solution with one or more elements selected from the group consisting of Ar, Kr and Xe in the metal thin film magnetic layer.

【0019】上記元素の強制固溶による保磁力向上効果
は、金属薄膜磁性層への強制固溶による結晶磁気異方性
が向上することによるものと考えることができる。こう
した効果は、金属薄膜磁性層がCo基合金からなるとき
に特に有効である。即ち、Kr,Xe等の原子半径はC
oの原子半径に比べて大きく、或はArの原子半径はC
oの原子半径よりも小さいが格子間元素となるため、A
r,Kr,Xe等をCo基合金に強制的に固溶させる
と、Co基合金の格子定数が増加して稠密六方格子(h
cp)のC軸が延び、結晶磁気異方性が増大する。
It can be considered that the coercive force improving effect by the forced solid solution of the above elements is due to the improvement of the crystal magnetic anisotropy by the forced solid solution in the magnetic layer of the metal thin film. Such an effect is particularly effective when the metal thin film magnetic layer is made of a Co-based alloy. That is, the atomic radius of Kr, Xe, etc. is C
is larger than the atomic radius of o, or the atomic radius of Ar is C
Although it is smaller than the atomic radius of o, it becomes an interstitial element.
When r, Kr, Xe, etc. are forced to form a solid solution in a Co-based alloy, the lattice constant of the Co-based alloy increases and the dense hexagonal lattice (h
The C-axis of cp) extends and the crystal magnetic anisotropy increases.

【0020】金属薄膜磁性層へ強制固溶させる上記元素
の固溶量(含有量)は、単独または合計で0.01〜
1.1原子%とする必要がある。即ち、上記含有量が
0.01原子%未満であると、Ar,Kr,Xe等を強
制固溶させる効果が発揮されず、1.1原子%を超える
と飽和磁束密度Bsや保磁力が急激に低下する。
The solid solution amount (content) of the above-mentioned elements to be forced to form a solid solution in the magnetic layer of the metal thin film is 0.01 to 1,000 or more in total.
It must be 1.1 atomic%. That is, if the content is less than 0.01 atom%, the effect of forcing solid solution of Ar, Kr, Xe, etc. is not exhibited, and if it exceeds 1.1 atom%, the saturation magnetic flux density Bs and the coercive force are rapidly increased. Fall to.

【0021】金属薄膜磁性層に、Ar,Kr,Xe等を
強制固溶させるに当たっては、前記金属薄膜磁性層を形
成する際に、Ar,KrおよびXeよりなる群から選ば
れる1種以上の元素からなるガスをスパッタガスとして
用いると共に、非磁性材料からなる基板に負の電圧を印
加しててスパッタ法を適用して成膜する構成を採用する
ことによって、或は金属薄膜磁性層を形成した後、A
r,KrおよびXeよりなる群から選ばれる1種以上の
元素を金属薄膜磁性層にイオン注入する構成を採用する
ことによって達成される。特に前者の方法、即ちスパッ
タリング成膜時に基板に負の電圧を印加した所謂バイア
ススパッタリングを行なえば、スパッタガスイオンによ
る表面衝撃の増加によって、表面原子が得る運動エネル
ギーが増大し、配向度がより一層向上するという効果も
得られる。またこのバイアススパッタリング法では、金
属薄膜磁性層に強制固溶される上記元素の上限はほぼ
1.1原子%となり、強制固溶されない過剰の原子は、
すべて気体として散逸することになり、過剰に固溶させ
たときの不都合が発生することは殆どない。
In forcing solid solution of Ar, Kr, Xe, etc. in the metal thin film magnetic layer, one or more elements selected from the group consisting of Ar, Kr and Xe are used when forming the metal thin film magnetic layer. The metal thin-film magnetic layer was formed by using a gas composed of the above as a sputtering gas and applying a negative voltage to a substrate made of a non-magnetic material to apply a sputtering method to form a film, or by forming a metal thin film magnetic layer. Later, A
This is achieved by adopting a configuration in which one or more elements selected from the group consisting of r, Kr and Xe are ion-implanted into the metal thin film magnetic layer. Especially in the former method, that is, when so-called bias sputtering in which a negative voltage is applied to the substrate during sputtering film formation is performed, the kinetic energy obtained by the surface atoms is increased due to an increase in surface impact due to the sputter gas ions, and the degree of orientation is further improved. The effect of improving is also obtained. In addition, in this bias sputtering method, the upper limit of the above-mentioned elements that are forcibly solid-dissolved in the metal thin film magnetic layer is about 1.1 atom%, and excess atoms that are not forcibly solid-dissolved are
All will be dissipated as a gas, and there will be almost no inconvenience when an excessive solid solution occurs.

【0022】本発明に係る磁気記録媒体は、非磁性材料
からなる基板上に、非磁性金属下地層、金属薄膜磁性層
および保護潤滑層を順次形成してなるものであるが、上
記基板としては、後記実施例に示すAl合金の他、例え
ばカーボン、ガラス等が採用できる。また本発明で用い
る金属薄膜磁性層としては、前記した様な各種のCo基
合金が採用できる。
The magnetic recording medium according to the present invention comprises a nonmagnetic metal underlayer, a metal thin film magnetic layer, and a protective lubricating layer formed in this order on a substrate made of a nonmagnetic material. In addition to the Al alloys shown in the examples below, for example, carbon, glass, etc. can be adopted. As the metal thin film magnetic layer used in the present invention, various Co-based alloys as described above can be adopted.

【0023】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any change in design can be made without departing from the spirit of the preceding and following claims. It is included in the technical scope.

【0024】[0024]

【実施例】図1は、磁気記録媒体の一構成例を示す概略
説明図(一部破断斜視図、および要部拡大断面図)であ
り、図中1はNiPめっきを施しテクスチャー処理を行
なっていない円盤状のAl基板、2はCr下地膜(非磁
性金属下地層)、3はCo−12原子%Cr−2原子%
Ta合金磁性膜(金属薄膜磁性層)、4はC保護膜(保
護潤滑層)を夫々示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic explanatory view (partially cutaway perspective view and enlarged cross-sectional view of an essential part) showing one structural example of a magnetic recording medium. In FIG. 1, 1 is NiP plated and textured. Diskless Al substrate, 2 Cr underlayer (non-magnetic metal underlayer), 3 Co-12 at% Cr-2 at%
Ta alloy magnetic films (metal thin film magnetic layers) and 4 are C protective films (protective lubricating layers), respectively.

【0025】本発明者らは、直径6インチのCrターゲ
ット、Co−12原子%Cr−2原子%Ta合金ターゲ
ットおよびCターゲットの夫々を用い、DCマグネトロ
ンスパッタ法を適用し、下記実施例1〜4および比較例
1に示す条件(スパッタガスおよびバイアス電圧)に
て、非磁性金属下地層、金属薄膜磁性層および保護潤滑
層を前記NiPめっきAl基板上に順次積層して成膜
し、図1に示した磁気記録媒体を製造した。このとき各
膜厚は、非磁性金属下地層:1000Å、金属薄膜磁性
層:500Å、C膜(保護潤滑層):300Åとした。
The present inventors applied a DC magnetron sputtering method using a Cr target having a diameter of 6 inches, a Co-12 atom% Cr-2 atom% Ta alloy target, and a C target, and the following Examples 1 to 1 were used. 4 and Comparative Example 1 under the conditions (sputtering gas and bias voltage), a non-magnetic metal underlayer, a metal thin film magnetic layer and a protective lubricating layer were sequentially laminated on the NiP plated Al substrate to form a film. The magnetic recording medium shown in was manufactured. At this time, the respective film thicknesses were set to 1000 Å non-magnetic metal underlayer, 500 Å metal thin film magnetic layer, and 300 Å C film (protective lubricating layer).

【0026】得られた各磁気記録媒体について、保磁力
Hc、飽和磁束密度Bs、配向度、磁性層中のスパッタ
ガスの含有量(ガス含有量)、および格子定数の変化の
指標であるhcp(002)面の面間隔(Co合金膜/
純Co膜)等の測定を行なった。尚保磁力Hcおよび飽
和磁束密度Bsについては、振動試料型磁力計(VS
M)を用いて測定し、組成分析についてはX線光電子分
光法(XPS法)によって測定した。また配向度および
面間隔の測定には、X線回折法を適用し、このうち配向
度については下記(1)式に示すように、hcp(00
2)面の回折強度I1 (002)とhcp(110)面
の回折強度I2(110)の強度比K[I2(110)/
1 (002)]を規格化した値で評価し、hcp(0
02)面の面間隔については純Coとの比(Co合金膜
/純Co膜)で評価した。 配向度=(磁性合金膜のK)/(0バイアスArスパッタ磁性膜のK) …(1)
For each of the obtained magnetic recording media, the coercive force Hc, the saturation magnetic flux density Bs, the degree of orientation, the sputter gas content (gas content) in the magnetic layer, and hcp (which is an index of changes in the lattice constant). 002) surface spacing (Co alloy film /
A pure Co film) and the like were measured. Regarding the coercive force Hc and the saturation magnetic flux density Bs, the vibrating sample magnetometer (VS
M), and composition analysis was performed by X-ray photoelectron spectroscopy (XPS method). Further, the X-ray diffraction method is applied to the measurement of the orientation degree and the plane spacing. Among them, the orientation degree is hcp (00
2) The intensity ratio K [I 2 (110) / of the diffraction intensity I 1 (002) of the plane and the diffraction intensity I 2 (110) of the hcp (110) plane.
I 1 (002)] is evaluated with a standardized value, and hcp (0
The interplanar spacing of the (02) plane was evaluated by the ratio to pure Co (Co alloy film / pure Co film). Orientation degree = (K of magnetic alloy film) / (K of 0 bias Ar sputtered magnetic film) (1)

【0027】実施例1 Co合金磁性膜作成時にスパッタガスとしてKrガスま
たはXeガスを用い、それ以外の膜(Cr下地膜および
C保護膜)の作成時にスパッタガスとしてArを用い、
図1に示した磁気記録媒体を作成した。この磁気記録媒
体について、保磁力Hc、飽和磁束密度Bs、配向度、
ガス含有量および面間隔の測定結果を、製造条件(スパ
ッタガスおよびバイアス電圧)と共に表1に示す。尚表
1において、「ガス含有量」の項の[ND]とは、検出
限界以下で測定不能であったことを示している。
Example 1 Kr gas or Xe gas was used as a sputter gas when forming a Co alloy magnetic film, and Ar was used as a sputter gas when forming other films (Cr underlayer film and C protective film).
The magnetic recording medium shown in FIG. 1 was created. For this magnetic recording medium, coercive force Hc, saturation magnetic flux density Bs, orientation degree,
The measurement results of the gas content and the surface spacing are shown in Table 1 together with the manufacturing conditions (sputtering gas and bias voltage). In Table 1, "ND" in the "gas content" section indicates that measurement was impossible below the detection limit.

【0028】[0028]

【表1】 [Table 1]

【0029】実施例2 Cr下地膜とCo合金磁性膜作成時に、スパッタガスと
してKrガスまたはXeガスを用い、それ以外の膜(C
保護膜)の作成時にスパッタガスとしてArを用い、図
1に示した磁気記録媒体を作成した。この磁気記録媒体
について、保磁力Hc、飽和磁束密度Bs、配向度、ガ
ス含有量および面間隔の測定結果を、製造条件(スパッ
タガスおよびバイアス電圧)と共に表2に示す。
Example 2 When a Cr underlayer film and a Co alloy magnetic film were formed, Kr gas or Xe gas was used as a sputtering gas, and the other films (C
Ar was used as the sputtering gas when the protective film was formed, and the magnetic recording medium shown in FIG. 1 was prepared. Table 2 shows the measurement results of the coercive force Hc, the saturation magnetic flux density Bs, the degree of orientation, the gas content and the interplanar spacing of this magnetic recording medium together with the manufacturing conditions (sputtering gas and bias voltage).

【0030】[0030]

【表2】 [Table 2]

【0031】比較例1 スパッタガスとしてArを用い、Al基板上にCr下地
膜、Co合金磁性膜およびC保護膜を順次成膜し、図1
に示した磁気記録媒体を作成した。この磁気記録媒体に
ついて、保磁力Hc、飽和磁束密度Bs、配向度、ガス
含有量および面間隔の測定結果を、製造条件(スパッタ
ガスおよびバイアス電圧)と共に表3に示す
Comparative Example 1 Ar was used as a sputtering gas, and a Cr underlayer film, a Co alloy magnetic film and a C protective film were sequentially formed on an Al substrate.
The magnetic recording medium shown in was prepared. Table 3 shows the measurement results of the coercive force Hc, the saturation magnetic flux density Bs, the degree of orientation, the gas content and the interplanar spacing of this magnetic recording medium, together with the manufacturing conditions (sputtering gas and bias voltage).

【0032】[0032]

【表3】 [Table 3]

【0033】実施例3 Cr下地膜,Co合金磁性膜およびC保護膜作成時に、
スパッタガスとしてAr,KrガスまたはXeガスを用
いると共に、100V,200Vの負の電圧を基板に印
加し、図1に示した磁気記録媒体を作成した。これらの
磁気記録媒体について、保磁力Hc、飽和磁束密度B
s、配向度、ガス含有量および面間隔の測定結果を、製
造条件(スパッタガスおよびバイアス電圧)と共に表4
に示す
Example 3 When a Cr underlayer film, a Co alloy magnetic film and a C protective film were formed,
Ar, Kr gas, or Xe gas was used as the sputtering gas, and negative voltages of 100 V and 200 V were applied to the substrate to produce the magnetic recording medium shown in FIG. For these magnetic recording media, coercive force Hc and saturation magnetic flux density B
Table 4 shows the measurement results of s, orientation degree, gas content and interplanar spacing together with manufacturing conditions (sputtering gas and bias voltage).
Shown in

【0034】[0034]

【表4】 [Table 4]

【0035】実施例4 スパッタガスとしてArガスを用い、通常のスパッタ法
によって(即ち、負の電圧を基板に印加せずに)、Cr
下地膜とCo合金磁性膜を作成した。作成したCo合金
磁性膜に、イオン注入法によってAr,Kr,Xeの各
イオンを様々な量で強制固溶させた。その後、上記のス
パッタ法によってC保護膜を成膜し、図1に示した磁気
記録媒体を作成した。この磁気記録媒体について、保磁
力Hc、飽和磁束密度Bsおよび面間隔の測定結果を、
Ar,Kr,Xe等の含有量と共に夫々表5〜7に示
す。尚表5〜7において、「面間隔」の項の「−」と
は、磁気特性が低下していることが明らかであったので
面間隔を測定しなかったことを示している。
Example 4 Ar gas was used as the sputtering gas, and Cr was formed by the usual sputtering method (that is, without applying a negative voltage to the substrate).
A base film and a Co alloy magnetic film were created. Ar, Kr, and Xe ions were forcibly solid-dissolved in various amounts in the prepared Co alloy magnetic film by an ion implantation method. After that, a C protective film was formed by the above-mentioned sputtering method to prepare the magnetic recording medium shown in FIG. For this magnetic recording medium, the coercive force Hc, the saturation magnetic flux density Bs, and the measurement results of the plane spacing are
The contents of Ar, Kr, Xe and the like are shown in Tables 5 to 7, respectively. In Tables 5 to 7, "-" in the section "Plane spacing" indicates that the plane spacing was not measured because it was clear that the magnetic properties were deteriorated.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】[0038]

【表7】 [Table 7]

【0039】以上の結果から、次のように考察できる。
まず実施例1と比較例1を比較しても明らかなように、
Co合金磁性膜の成膜時にスパッタガスとしてKrガス
やXeガスを用いることによって、飽和磁束密度Bsを
低下させることなく、保磁力Hcに優れた磁気記録媒体
が得られている。このような保磁力向上の効果は、磁性
膜中のガス含有量が検出限界以下で、且つ格子定数の変
化の度合が同程度であるので、Co合金磁性膜のC軸の
面内配向度が改善されることによって達成されたものと
考えられる。
From the above results, the following can be considered.
First, as is clear from comparison between Example 1 and Comparative Example 1,
By using Kr gas or Xe gas as the sputtering gas when forming the Co alloy magnetic film, a magnetic recording medium excellent in coercive force Hc is obtained without lowering the saturation magnetic flux density Bs. The effect of improving the coercive force is that the gas content in the magnetic film is below the detection limit and the degree of change in the lattice constant is similar, so that the in-plane orientation degree of the C-axis of the Co alloy magnetic film is It is considered that this has been achieved by being improved.

【0040】また実施例2と実施例1を比較しても明ら
かなように、Co合金磁性膜の成膜時と共にCr下地膜
の成膜時においても、スパッタガスとしてKrやXeを
用いることによって、保磁力を実施例1よりも更に向上
させた磁気記録媒体が得られている。このような保磁力
向上の効果は、実施例1以上にCo合金磁性膜のC軸の
膜面内配向度が改善されることによって達成されてお
り、Cr下地膜の配向度向上に伴うCo合金磁性膜の配
向度向上効果に起因しているものと考えられる。
Further, as is clear from a comparison between Example 2 and Example 1, by using Kr or Xe as the sputtering gas, not only when the Co alloy magnetic film is formed but also when the Cr underlayer film is formed. A magnetic recording medium having a higher coercive force than that of Example 1 is obtained. Such an effect of improving the coercive force is achieved by improving the in-plane orientation degree of the C-axis of the Co alloy magnetic film as compared with Example 1 or more, and the Co alloy with the orientation degree improvement of the Cr underlayer film. It is considered that this is due to the effect of improving the degree of orientation of the magnetic film.

【0041】更に、実施例1,2と実施例3を比較して
も明らかなように、基板に負のバイアス電圧を印加する
ことによって、一層高保磁力の磁気記録媒体が得られて
いる。また比較例1と実施例3を比較しても明らかな様
に、基板に負のバイアス電圧を印加するときは、スパッ
タガスとしてArを用いることも有効であることが分か
る。このような保磁力向上の効果は、Co合金磁性膜の
C軸の膜面内配向度向上と、Co合金磁性膜中のスパッ
タガス含有量の増加によるhcp(0002)面の面間
隔増加に伴った磁気異方性改善効果に起因していると考
えられる。
Further, as is clear from comparison between Examples 1 and 2 and Example 3, by applying a negative bias voltage to the substrate, a magnetic recording medium having a higher coercive force can be obtained. Further, as is clear from comparison between Comparative Example 1 and Example 3, it is found that it is also effective to use Ar as a sputtering gas when applying a negative bias voltage to the substrate. Such an effect of improving the coercive force is accompanied by an increase in the in-plane orientation degree of the C axis of the Co alloy magnetic film and an increase in the interplanar spacing of the hcp (0002) plane due to the increase of the sputter gas content in the Co alloy magnetic film. It is considered that this is due to the effect of improving the magnetic anisotropy.

【0042】一方、実施例4から明らかなように、Co
合金磁性膜中にAr,Kr,Xe等を強制的に固溶させ
るときは、その含有量は0.01〜1.1原子%とする
必要があることがわかる。
On the other hand, as is clear from Example 4, Co
It can be seen that when Ar, Kr, Xe or the like is forced to form a solid solution in the alloy magnetic film, its content needs to be 0.01 to 1.1 atom%.

【0043】[0043]

【発明の効果】本発明は上記の様に構成されており、成
膜時の膜衝撃効果増大に伴う磁性層配向度向上、膜中へ
の強制固溶による格子定数の増加による結晶磁気異方性
増大の効果向が達成され、高い保磁力を有する磁気記録
媒体の作成が可能となった。
The present invention is constructed as described above, and the degree of orientation of the magnetic layer is improved with the increase of the film impact effect during film formation, and the crystalline magnetic anisotropy is increased by the increase of the lattice constant due to the forced solid solution in the film. The effect of increasing the magnetic property was achieved, and it became possible to produce a magnetic recording medium having a high coercive force.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気記録媒体の一構成例を示す概略説明図であ
る。
FIG. 1 is a schematic explanatory diagram showing a configuration example of a magnetic recording medium.

【符号の説明】[Explanation of symbols]

1 NiPめっきAl基板 2 Cr下地膜(非磁性金属下地層) 3 Co基合金磁性膜(金属薄膜磁性層) 4 C保護膜(保護潤滑層) 1 NiP plated Al substrate 2 Cr underlayer film (non-magnetic metal underlayer) 3 Co-based alloy magnetic film (metal thin film magnetic layer) 4 C protective film (protective lubricating layer)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 非磁性材料からなる基板上に、非磁性金
属下地層、金属薄膜磁性層および保護潤滑層を順次形成
してなる磁気記録媒体を製造するに当たり、少なくとも
前記金属薄膜磁性層を形成する際に、Krガスおよび/
またはXeガスをスパッタガスとして用いてスパッタ法
を適用して成膜することを特徴とする磁気記録媒体の製
造方法。
1. When manufacturing a magnetic recording medium comprising a non-magnetic metal underlayer, a metal thin-film magnetic layer and a protective lubricating layer sequentially formed on a substrate made of a non-magnetic material, at least the metal thin-film magnetic layer is formed. Kr gas and / or
Alternatively, a method of manufacturing a magnetic recording medium is characterized in that a film is formed by applying a sputtering method using Xe gas as a sputtering gas.
【請求項2】 前記金属薄膜磁性層が、Co基合金であ
る請求項1に記載の磁気記録媒体の製造方法。
2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the metal thin film magnetic layer is a Co-based alloy.
【請求項3】 前記非磁性金属下地層を形成する際に、
Krガスおよび/またはXeガスをスパッタガスとして
用いてスパッタ法を適用して成膜する請求項1または2
に記載の磁気記録媒体の製造方法。
3. When forming the non-magnetic metal underlayer,
The film is formed by applying a sputtering method using Kr gas and / or Xe gas as a sputtering gas.
A method of manufacturing a magnetic recording medium according to 1.
【請求項4】 非磁性材料からなる基板上に、非磁性金
属下地層、金属薄膜磁性層および保護潤滑層を順次形成
してなる磁気記録媒体において、前記金属薄膜磁性層
は、Ar,KrおよびXeよりなる群から選ばれる1種
以上の元素を0.01〜1.1原子%含有したものであ
ることを特徴とする磁気記録媒体。
4. A magnetic recording medium in which a nonmagnetic metal underlayer, a metal thin film magnetic layer and a protective lubricating layer are sequentially formed on a substrate made of a nonmagnetic material, wherein the metal thin film magnetic layer comprises Ar, Kr and A magnetic recording medium containing 0.01 to 1.1 atom% of one or more elements selected from the group consisting of Xe.
【請求項5】 前記金属薄膜磁性層が、Co基合金であ
る請求項4に記載の磁気記録媒体。
5. The magnetic recording medium according to claim 4, wherein the metal thin film magnetic layer is a Co-based alloy.
【請求項6】 請求項4または5に記載の磁気記録媒体
を製造するに当たり、前記金属薄膜磁性層を形成する際
に、Ar,KrおよびXeよりなる群から選ばれる1種
以上の元素からなるガスをスパッタガスとして用いると
共に、非磁性材料からなる基板に負の電圧を印加してス
パッタ法を適用して成膜することを特徴とする磁気記録
媒体の製造方法。
6. In manufacturing the magnetic recording medium according to claim 4 or 5, when the metal thin film magnetic layer is formed, it comprises at least one element selected from the group consisting of Ar, Kr and Xe. A method for manufacturing a magnetic recording medium, characterized in that a gas is used as a sputtering gas, and a negative voltage is applied to a substrate made of a non-magnetic material to apply a sputtering method to form a film.
【請求項7】 請求項4または5に記載の磁気記録媒体
を製造するに当たり、金属薄膜磁性層を形成した後、A
r,KrおよびXeよりなる群から選ばれる1種以上の
元素を金属薄膜磁性層にイオン注入することを特徴とす
る磁気記録媒体の製造方法。
7. In manufacturing the magnetic recording medium according to claim 4 or 5, after forming a metal thin film magnetic layer, A
A method of manufacturing a magnetic recording medium, comprising ion-implanting one or more elements selected from the group consisting of r, Kr and Xe into a metal thin film magnetic layer.
JP26908294A 1994-04-28 1994-11-01 Magnetic recording medium and its production Withdrawn JPH0817032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26908294A JPH0817032A (en) 1994-04-28 1994-11-01 Magnetic recording medium and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9216994 1994-04-28
JP6-92169 1994-04-28
JP26908294A JPH0817032A (en) 1994-04-28 1994-11-01 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH0817032A true JPH0817032A (en) 1996-01-19

Family

ID=26433638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26908294A Withdrawn JPH0817032A (en) 1994-04-28 1994-11-01 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH0817032A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893542B1 (en) 1999-09-10 2005-05-17 Seagate Technology Llc Sputtered multilayer magnetic recording media with ultra-high coercivity
JP2009026384A (en) * 2007-07-19 2009-02-05 Sharp Corp Magnetic recording medium, manufacturing method of magnetic recording medium, and magnetic information recording method
JP2009205777A (en) * 2008-02-29 2009-09-10 Fujitsu Ltd Method of manufacturing magnetic recording medium, and magnetic recording medium
JP2010244657A (en) * 2009-04-09 2010-10-28 Showa Denko Kk Manufacturing method of magnetic recording medium and magnetic recording and reproducing device
JP2010244658A (en) * 2009-04-09 2010-10-28 Showa Denko Kk Manufacturing method of magnetic recording medium and magnetic recording and reproducing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893542B1 (en) 1999-09-10 2005-05-17 Seagate Technology Llc Sputtered multilayer magnetic recording media with ultra-high coercivity
JP2009026384A (en) * 2007-07-19 2009-02-05 Sharp Corp Magnetic recording medium, manufacturing method of magnetic recording medium, and magnetic information recording method
JP2009205777A (en) * 2008-02-29 2009-09-10 Fujitsu Ltd Method of manufacturing magnetic recording medium, and magnetic recording medium
JP2010244657A (en) * 2009-04-09 2010-10-28 Showa Denko Kk Manufacturing method of magnetic recording medium and magnetic recording and reproducing device
JP2010244658A (en) * 2009-04-09 2010-10-28 Showa Denko Kk Manufacturing method of magnetic recording medium and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
JPH0773441A (en) Metallic thin-film type magnetic recording medium and its production
JP6205871B2 (en) Magnetic recording medium
JPS60157715A (en) Magnetic recording medium
JP2005190538A (en) Magnetic recording medium, and its manufacturing method and apparatus
US5744256A (en) Magnetic recording medium and method of producing same
US7105240B2 (en) Perpendicular media with improved corrosion performance
US7867637B2 (en) Low coupling oxide media (LCOM)
US20110129692A1 (en) Magnetic alloy materials with hcp stabilized microstructure, magnetic recording media comprising same, and fabrication method therefor
JPS61253622A (en) Magnetic recording medium and its production
JPH0817032A (en) Magnetic recording medium and its production
US5789088A (en) Magnetic recording medium having a metal underlayer and a CoCr alloy magnetic thin film
JP2001134927A (en) Magnetic recording medium
JP3075712B2 (en) Magnetic recording media
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
US20120114976A1 (en) Sputtering targets and recording materials of the magnetic recording medium formed from the same
JP2000082210A (en) Target for ground surface film and magnetic recording medium
JP2536993B2 (en) Method for controlling magnetic characteristics of thin film magnetic recording layer
JPS63106916A (en) Magnetic recording medium
JPH10233014A (en) Magnetic recording medium
JP3052092B2 (en) Magnetic recording medium
JPH03265105A (en) Soft magnetic laminate film
JPS61246914A (en) Magnetic recording medium and its production
JPH05314453A (en) Magnetic recording medium
JP2000163732A (en) Magnetic recording medium and its production
JPS6364623A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115