JP2004323948A - Electrocrystallization plating bath for forming magnetic film, and electrocrystallization plating method using the same - Google Patents

Electrocrystallization plating bath for forming magnetic film, and electrocrystallization plating method using the same Download PDF

Info

Publication number
JP2004323948A
JP2004323948A JP2003123228A JP2003123228A JP2004323948A JP 2004323948 A JP2004323948 A JP 2004323948A JP 2003123228 A JP2003123228 A JP 2003123228A JP 2003123228 A JP2003123228 A JP 2003123228A JP 2004323948 A JP2004323948 A JP 2004323948A
Authority
JP
Japan
Prior art keywords
magnetic film
plating
alloy
iron
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003123228A
Other languages
Japanese (ja)
Inventor
Kaori Hosoiri
香織里 細入
Mine O
峰 王
Sayaka Doi
さやか 土井
Toru Watanabe
徹 渡辺
Toshio Kuzushima
俊夫 葛島
Takayuki Sone
孝之 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EEJA Ltd
Original Assignee
Electroplating Engineers of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroplating Engineers of Japan Ltd filed Critical Electroplating Engineers of Japan Ltd
Priority to JP2003123228A priority Critical patent/JP2004323948A/en
Publication of JP2004323948A publication Critical patent/JP2004323948A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrocrystallization plating liquid for forming an Fe-Pt alloy magnetic film and an Fe-Pd alloy magnetic film as a new electrocrystallization plating bath for diversifying the magnetic film composing a magnetic recording medium and forming the magnetic film at a large scale and low cost. <P>SOLUTION: The electrocrystallization plating bath for forming a magnetic film of an iron-platinum alloy comprises: 1 to 50 g/L iron sulfate heptahydrate; 2 to 60 g/L chloroplatinic acid (IV); 0.5 to 50 g/L ammonium tartrate; and 5 to 250 g/L ammonia. The electrocrystallization plating bath for forming a magnetic film of an iron-palladium alloy comprises: 1 to 50 g/L iron sulfate heptahydrate; 0.2 to 50 g/L palladium chloride; 0.5 to 70 g/L ammonium tartrate; 0.5 to 30 g/L ammonium chloride; and 0.1 to 10 g/L cresolsulfonic acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気記録媒体を構成する磁性膜の形成に関し、特に、鉄−白金合金(以下、Fe−Pt合金と略す場合もある)磁性膜及び、鉄−パラジウム合金(以下、Fe−Pd合金と略す場合もある)磁性膜を電析めっきにより形成する技術に関する。
【0002】
【従来の技術】
近年、磁気記録媒体の製造においては、記録密度の高密度化のため、スパッタリング法や真空蒸着法のような乾式法によりディスク基板上に形成した磁性膜を記録層とする薄膜型の磁気記録媒体の研究開発が盛んに行われている。
【0003】
この磁気記録媒体の磁性膜材料としては、Feを含む鉄系合金等が一般的に知られている。これらの磁性膜は高記録密度特性を有し、乾式法により形成した薄膜の記録層はその記録密度を飛躍的に向上させているのが現状である。
【0004】
しかしながら、乾式法により磁性膜を形成する場合、大量生産性の観点からすると、十分に満足するものとはいえない。いわゆるブロードバンド化による大量情報通信技術の進展を考慮すると、今後、高密度の記録媒体は必須であり、より高密度記録媒体を大量且つ低コストで提供できる製造技術が必要となる。このようなことから、大量生産が可能となる電析めっきという湿式法による磁性膜製造技術が現在注目されている。
【0005】
例えば、鉄系合金磁性膜では、Fe−Ni系合金磁性膜(特許文献1、2参照)のめっき浴が知られている。
【0006】
【特許文献1】特開2002−249894号公報
【特許文献2】特開2001−284154号公報
【0007】
【発明の解決する課題】
このようにFe−Ni系合金は磁性特性に優れ、電析めっきにより磁性膜を形成する技術も存在するため、現在はFe系合金磁性膜として多く利用さている。
【0008】
【発明の解決する課題】
ところで、Fe系合金のなかにはFe−Pt合金やFe−Pd合金が磁性特性に優れるものとして知られている。Fe−Pt合金はL1構造を有し、高い磁気異方性を持つことが知られており、微粒状態でも熱の影響が少ない磁性膜となることが期待されている。しかしながら、このFe−Pt合金に関しては、本発明者らが知る限りにおいて、真空蒸着法やスパッタリング法などの乾式法にて膜形成が行われているのみで、電析めっきによりFe−Pt合金磁性膜を形成する技術はない。
【0009】
また、Fe−Pd合金は、FeとPdの組成が1:1及び1:3の原子比組成の付近で、不規則fcc(面心立方晶)とL1及びL1との相変態を示し、30at%Pd付近の組成ではマルテンサイト変態を示すことがしられており、磁性特性を有する形状記憶合金として注目されている。しかしながら、このFe−Pd合金に関しても、本発明者らが知る限りにおいて、真空蒸着法やアーク溶解法などの乾式法にて膜形成が行われているのみで、電析めっきによりFe−Pd合金磁性膜を形成する技術はない。
【0010】
本発明は、以上のような事情のもとになされたもので、磁気記録媒体を構成する磁性膜のバリエーションを増やし、大量、且つ低コストで磁性膜の形成が可能となるべく、新たな電析めっき浴、即ち、Fe−Pt合金磁性膜及びFe−Pd合金磁性膜形成用の電析めっき液を提供する。
【0011】
【課題を解決するための手段】
かかる課題を解決するため、本発明者らは、鉄系合金磁性膜材料として、Fe−Pt合金及びFe−Pd合金について鋭意研究した結果、これら鉄系合金で磁性膜を形成できる新しい電析めっき浴を見出した。
【0012】
まず、第一の本発明は、Fe−Pt合金磁性膜を形成するもので、硫酸鉄七水和物を1〜50g/Lと、塩化白金酸(IV)を2〜60g/Lと、酒石酸アンモニウムを0.5〜50g/Lと、アンモニアを5〜250g/Lとを含有することを特徴とする鉄−白金合金の磁性膜形成用電析めっき浴である。そして、第二の本発明はFe−Pd合金磁性膜を形成するもので、硫酸鉄七水和物を1〜50g/Lと、塩化パラジウムを0.2〜50g/Lと、酒石酸アンモニウムを0.5〜70g/Lと、塩化アンモニウムを0.5〜30g/Lと、クレゾールスルホン酸を0.1〜10g/Lを含有することを特徴とする鉄−パラジウム合金の磁性膜形成用電析めっき浴である。
【0013】
以下、本発明に係る各電析めっき浴について説明する。まず、第一の発明であるFe−Pt合金磁性膜については、硫酸鉄七水和物と、塩化白金酸(IV)と、酒石酸アンモニウムと、アンモニアとを含有する組成の電析めっき浴により形成することができる。
【0014】
硫酸鉄七水和物は、1g/L未満であると、析出物中の鉄の析出がしづらくなり、50g/Lを超えると鉄が沈殿しやすくなる傾向となる。塩化白金酸(IV)は、2g/L未満であると、白金が析出しづらくなり、60g/Lを超えると、合金比率をコントロールしづらくなる傾向となる。
【0015】
酒石酸アンモニウムは、鉄の錯化剤の役割をし、0.5g/L未満であると、鉄が沈殿しやすくなり、60g/Lを超えると鉄が共析しづらくなる傾向となる。また、アンモニアは、白金の錯化剤の役割をし、5g/L未満であると、白金が沈殿しやすくなり、250g/Lを超えると白金が共析しづらくなる傾向となる。
【0016】
本発明に係る鉄−白金合金の磁性膜形成用電析めっき浴により磁性膜を形成する場合、電流密度を100〜1000A/m、液温30〜80℃でめっき処理を行うことが好ましい。電流密度が100A/m未満であると、析出物の外観が均一となり、1000A/mを超えると、析出物の外観が焼けた状態になる傾向となる。そして、液温が30℃未満であると析出しなくなり、80℃を超えるとアンモニアが揮発し、めっき液の安定性が悪くなる傾向となる。
【0017】
本発明に係る鉄−白金合金の磁性膜形成用電析めっき浴により磁性膜を形成すると、得られる磁性膜は微細な結晶により構成されており、34at%〜81at%という白金の比率が高い場合にあってはfccの固溶体を形成するものである。
【0018】
次に、第二の発明であるFe−Pd合金磁性膜については、硫酸鉄七水和物と、塩化パラジウムと、酒石酸アンモニウムと、塩化アンモニウムと、クレーゾールスルホン酸とを含有する組成の電析めっき浴から形成することができる。
【0019】
硫酸鉄七水和物は、1g/L未満であると、析出物中の鉄が析出しづらくなり、50g/Lを超えると鉄が沈殿しやすくなる傾向となる。塩化パラジウムは、0.2g/L未満であると、パラジウムが析出しづらく、不均一な析出物となる傾向があり、50g/Lを超えると、鉄が析出しなくなる傾向となる。
【0020】
酒石酸アンモニウムは、鉄の錯化剤の役割をし、0.5g/L未満であると、鉄が沈殿しやすくなり、70g/Lを超えると鉄が共析しづらくなる傾向となる。塩化アンモニウムは、電気電導塩の役割をし、0.5g/L未満であると、電気伝導の能力が低下して析出物の外観が不均一となり、30g/Lを超えると、塩析を生じやすくなる傾向となる。クレーゾールスルホン酸は、光沢剤の役割をし、0.1g/L未満であると、十分な光沢外観が得られず、10g/Lを超えると析出物の外観に曇りが発生する傾向となる。
【0021】
本発明に係る鉄−パラジウム合金の磁性膜形成用電析めっき浴により磁性膜を形成する場合、電流密度を60〜120A/m、液温20〜60℃でめっき処理を行うことが好ましい。電流密度が60A/m未満であると、析出物の外観が不均一で且つ鉄の析出がしづらくなり、120A/mを超えると、析出物の外観が不均一となるからである。そして、液温が20℃未満であると全く析出しなくなり、60℃を超えると鉄の析出がしづらくなる傾向となるからである。
【0022】
本発明に係る鉄−パラジウム合金の磁性膜形成用電析めっき浴により磁性膜を形成すると、得られる磁性膜は微細な結晶により構成され、パラジウムの比率が高い場合(48at%〜77at%)にあってはfccの固溶体を形成するものである。
【0023】
【発明の実施の形態】
以下に、本発明の好ましい実施形態について説明する。
【0024】
第一実施形態:この第一実施形態では、Fe−Pt合金磁性膜を形成する場合を説明する。磁性膜の形成は、表1に示す組成のめっき浴を準備し、チタン製のメッシュコーティングがされたPtアノード電極と、Cuカソード電極とを用いて電析めっきすることにより行った。めっき処理は、液温60℃、電流密度を10、25、50、73、90A/mの5つの条件で行い、電析厚み0.2〜0.5μmの磁性膜を形成した。また、電析中にめっき液の撹拌を行った。
【0025】
【表1】

Figure 2004323948
【0026】
実施例1及び2のめっき浴において、5つの電流密度条件により得られたFe−Pt合金磁性膜をそれぞれエネルギー分散型X線分光器(EDS)により分析し、磁性膜のPt比率(at%)を調べた。その結果を図1に示す。図1より、電流密度が大きくなると、磁性膜中でのPtの占める割合が増加していることが判明した。また、めっき浴中のPt濃度が高いほど磁性膜中でのPtの占める割合が大きいことが確認された。この結果より、めっき浴の組成や電流密度を変化させることにより、組成の異なるFe−Pt合金磁性膜(Pt34.6〜81.8at%)が得られることが判明した。
【0027】
次に、本実施形態で得られたFe−Pt合金磁性膜の化学結合状態をX線光電子回折法(XPS)により調べた結果について説明する。この測定は、実施例1の電流密度10A/m(Pt57.2at%、図1参照)で得られた膜により行った。その結果、膜中のFe、Ptは、ともに金属状態のものであることが判明した。
【0028】
そして、本実施形態で得られたFe−Pt合金磁性膜の結晶構造、結晶粒径をX線回折(XRD)、透過電子顕微鏡(TEM、倍率60万倍)により調べた結果について説明する。この測定は、実施例2の電流密度10A/m(Pt34.0at%、図1参照)、実施例1の電流密度10A/m(Pt57.2at%、図1参照)、実施例1の電流密度50A/m(Pt75.5at%、図1参照)で得られた3つの膜について行った。その結果、電析めっきにより得られたFe−Pt合金磁性膜は、5nmオーダーの非常に微細化した結晶であることが判明した。
【0029】
さらに、本実施形態で得られたFe−Pt合金磁性膜の磁気的性質を振動型磁気天秤(VSM)により調査した結果について説明する。この測定は、実施例1の電流密度10A/m(Pt57.2at%、図1参照)で得られた膜について行った。その結果、めっきしたままのサンプルでは、保持力は面方向で、わずか10.3Oeであった。これに対して、同じサンプルで、真空下(10−5〜10−6Pa)450°、1時間のアニール処理をした磁性膜についてX線回折(XRD)、透過電子顕微鏡(TEM、倍率60万倍)により観察したところ、磁性膜構造の規則化が規則fct構造であることが判明した。そして、その保持力は面垂直方向で572.8Oeであった。
【0030】
第二実施形態:この第二実施形態では、Fe−Pd合金磁性膜を形成する場合を説明する。磁性膜の形成は、表2に示す組成のめっき浴を準備し、白金製のメッシュコーティングがされたアノード電極と、Cuカソード電極とを用いて電析めっきすることにより行った。めっき処理は、液温40℃、電流密度を60、70、80、90、100、110、120A/mの7つの条件で行い、電析厚み0.2〜0.5μmの磁性膜を形成した。また、電析中にめっき液の撹拌を行った。
【0031】
【表2】
Figure 2004323948
【0032】
実施例3〜5のめっき浴において、7つの電流密度条件により得られた各Fe−Pd合金磁性膜をそれぞれエネルギー分散型X線分光器(EDS)により分析し、磁性膜のPd比率(at%)を調べた。その結果を図2に示す。図2より、電流密度が大きくなると、磁性膜中でのPdの占める割合が減少していることが判明した。また、めっき浴中のPd濃度が高いほど磁性膜中でのPdの占める割合が増加することが確認された。この結果より、めっき浴の組成や電流密度を変化させることにより、組成の異なるFe−Pd合金磁性膜(Pd8〜77at%)が得られることが判明した。
【0033】
次に、本実施形態で得られたFe−Pd合金磁性膜の化学結合状態をX線光電子回折法(XPS)により調べた結果について説明する。この測定は、実施例3の電流密度80A/m(Pd77at%、図2参照)で得られた膜により行った。その結果、膜中のFe、Pdは、ともに金属状態のものであることが判明した。
【0034】
そして、本実施形態で得られたFe−Pd合金磁性膜の結晶構造、結晶粒径をX線回折(XRD)、透過電子顕微鏡(TEM、倍率60万倍)により観察した結果について説明する。この観察は、実施例4の電流密度110A/m(Pd15at%、図2参照)、実施例5の電流密度90A/m(Pd48at%、図2参照)、実施例3の電流密度80A/m(Pd77at%、図2参照)で得られた3つの膜について行った。その結果、電析めっきにより得られたFe−Pd合金磁性膜は、5nmオーダーの非常に微細化した結晶で構成されており、膜中のPd比率が高くなると結晶粒径が小さくなる傾向も判明した。また、Pdが15at%の低い比率の磁性膜ではbcc固溶体構造をしており、Pdが48at%、77at%の高い比率の磁性膜ではfcc固溶体構造をしていることが判明した。
【0035】
さらに、本実施形態で得られたFe−Pd合金磁性膜の磁気的性質を振動型磁気天秤(VSM)により調査した結果について説明する。この測定は、実施例4の電流密度90A/m(Pd52at%、図2参照)で得られた膜について行った。その結果、52at%Pdである磁性膜では、面内方向に磁化容易軸を持つことが判った。
【0036】
最後に、本実施形態で得られたFe−Pd合金磁性膜の表面状態を操作電子顕微鏡(SEM、傾斜角30°倍率65000)により観察した結果について説明する。この観察は、実施例5の電流密度120A/m(Pd8at%、図2参照)、実施例5の電流密度110A/m(Pd28at%、図2参照)、実施例5の電流密度80A/m(Pd54at%、図2参照)、実施例5の電流密度60A/m(Pd77at%、図2参照)で得られた4つの膜について行った。その結果、Pd8at%、Pd28at%の磁性膜については、若干の起伏が見られるものの、表面状態は非常に滑らかであることが判った。
【0037】
【発明の効果】
以上説明したように、本発明の磁性膜形成用電析めっき浴によれば、Fe−Pt合金磁性膜及びFe−Pd合金磁性膜を形成することができ、磁気記録媒体を構成する磁性膜のバリエーションを増やし、大量、且つ低コストで磁性膜の形成が可能となる。
【図面の簡単な説明】
【図1】第一実施形態の電流密度とPt比率の関係を示すグラフ。
【図2】第二実施形態の電流密度とPd比率の関係を示すグラフ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the formation of a magnetic film constituting a magnetic recording medium, and more particularly, to an iron-platinum alloy (hereinafter sometimes abbreviated to Fe-Pt alloy) magnetic film and an iron-palladium alloy (hereinafter Fe-Pd alloy). (Sometimes abbreviated as "abbreviated").
[0002]
[Prior art]
In recent years, in the production of magnetic recording media, in order to increase the recording density, a thin film type magnetic recording medium in which a magnetic film formed on a disk substrate by a dry method such as a sputtering method or a vacuum evaporation method is used as a recording layer. R & D is actively conducted.
[0003]
As a magnetic film material of this magnetic recording medium, an iron-based alloy containing Fe or the like is generally known. At present, these magnetic films have high recording density characteristics, and the recording layer of a thin film formed by a dry method has dramatically improved the recording density.
[0004]
However, when a magnetic film is formed by a dry method, it cannot be said that it is sufficiently satisfactory from the viewpoint of mass productivity. In view of the progress of mass information communication technology due to the so-called broadband technology, a high-density recording medium is indispensable in the future, and a manufacturing technology capable of providing a higher-density recording medium in a large amount at low cost is required. For this reason, a magnetic film manufacturing technique by a wet method called electrodeposition plating, which enables mass production, has attracted attention at present.
[0005]
For example, as an iron-based alloy magnetic film, a plating bath for an Fe-Ni-based alloy magnetic film (see Patent Documents 1 and 2) is known.
[0006]
[Patent Document 1] JP-A-2002-249894 [Patent Document 2] JP-A-2001-284154
[Problems to be solved by the invention]
As described above, Fe-Ni-based alloys have excellent magnetic properties, and there is also a technique for forming a magnetic film by electrodeposition plating.
[0008]
[Problems to be solved by the invention]
By the way, among Fe-based alloys, Fe-Pt alloy and Fe-Pd alloy are known as having excellent magnetic properties. Fe-Pt alloys have an L1 0 structure, it is known to have a high magnetic anisotropy, the influence of heat in fine condition that is less magnetic film is expected. However, regarding the Fe-Pt alloy, as far as the present inventors know, the film is formed only by a dry method such as a vacuum evaporation method or a sputtering method. There is no technology for forming a film.
[0009]
Further, Fe-Pd alloy, the composition of Fe and Pd is 1: 1 and 1: in the vicinity of the third atomic ratio, shows a phase transformation irregular fcc and (face-centered cubic) and L1 0 and L1 2 , 30 at% Pd, it is known that the composition exhibits martensitic transformation, and is attracting attention as a shape memory alloy having magnetic properties. However, as far as the present inventors know, as far as the present inventors know, the film is formed only by a dry method such as a vacuum deposition method or an arc melting method, and the Fe-Pd alloy is formed by electrodeposition plating. There is no technique for forming a magnetic film.
[0010]
The present invention has been made under the above circumstances, and a new deposition method has been developed to increase the variations of the magnetic film constituting the magnetic recording medium and to form the magnetic film at a large amount and at low cost. Provided is a plating bath, that is, an electrodeposition plating solution for forming an Fe—Pt alloy magnetic film and an Fe—Pd alloy magnetic film.
[0011]
[Means for Solving the Problems]
In order to solve this problem, the present inventors have conducted intensive studies on Fe-Pt alloys and Fe-Pd alloys as iron-based alloy magnetic film materials. As a result, a new electrodeposition plating method capable of forming a magnetic film with these iron-based alloys has been conducted. I found a bath.
[0012]
First, the first invention forms an Fe—Pt alloy magnetic film, and contains 1 to 50 g / L of iron sulfate heptahydrate, 2 to 60 g / L of chloroplatinic acid (IV), and tartaric acid. An electrodeposition plating bath for forming a magnetic film of an iron-platinum alloy, comprising 0.5 to 50 g / L of ammonium and 5 to 250 g / L of ammonia. The second invention forms a Fe-Pd alloy magnetic film, and contains 1 to 50 g / L of iron sulfate heptahydrate, 0.2 to 50 g / L of palladium chloride, and 0 to 50 g / L of ammonium tartrate. 0.5 to 70 g / L, 0.5 to 30 g / L of ammonium chloride, and 0.1 to 10 g / L of cresol sulfonic acid, for depositing an iron-palladium alloy for forming a magnetic film. It is a plating bath.
[0013]
Hereinafter, each electrodeposition plating bath according to the present invention will be described. First, the Fe—Pt alloy magnetic film of the first invention is formed by an electrodeposition plating bath having a composition containing iron sulfate heptahydrate, chloroplatinic acid (IV), ammonium tartrate, and ammonia. can do.
[0014]
If the iron sulfate heptahydrate is less than 1 g / L, precipitation of iron in the precipitate becomes difficult, and if it exceeds 50 g / L, iron tends to precipitate. If the amount of chloroplatinic acid (IV) is less than 2 g / L, it is difficult to deposit platinum, and if it exceeds 60 g / L, the alloy ratio tends to be difficult to control.
[0015]
Ammonium tartrate acts as a complexing agent for iron, and if it is less than 0.5 g / L, iron tends to precipitate, and if it exceeds 60 g / L, it tends to be difficult for eutectoid. Ammonia serves as a complexing agent for platinum. When the amount is less than 5 g / L, platinum is likely to precipitate, and when it exceeds 250 g / L, platinum tends to be difficult to eutectoid.
[0016]
When a magnetic film is formed by the electrodeposition plating bath for forming a magnetic film of an iron-platinum alloy according to the present invention, it is preferable to perform plating at a current density of 100 to 1000 A / m 2 and a liquid temperature of 30 to 80 ° C. When the current density is less than 100 A / m 2 , the appearance of the precipitate becomes uniform, and when the current density exceeds 1000 A / m 2 , the appearance of the precipitate tends to be burnt. If the solution temperature is lower than 30 ° C., no precipitation occurs, and if it exceeds 80 ° C., ammonia evaporates and the stability of the plating solution tends to deteriorate.
[0017]
When a magnetic film is formed by the electrodeposition plating bath for forming a magnetic film of an iron-platinum alloy according to the present invention, the obtained magnetic film is composed of fine crystals and has a high platinum ratio of 34 at% to 81 at%. Is to form a solid solution of fcc.
[0018]
Next, regarding the Fe—Pd alloy magnetic film of the second invention, electrodeposition of a composition containing iron sulfate sulfate heptahydrate, palladium chloride, ammonium tartrate, ammonium chloride, and cresol sulfonic acid. It can be formed from a plating bath.
[0019]
When the amount of iron sulfate heptahydrate is less than 1 g / L, iron in the precipitate becomes difficult to precipitate, and when it exceeds 50 g / L, iron tends to precipitate. If the amount of palladium chloride is less than 0.2 g / L, palladium tends to hardly precipitate and tends to be a non-uniform precipitate. If the amount exceeds 50 g / L, iron does not tend to precipitate.
[0020]
Ammonium tartrate acts as a complexing agent for iron, and if it is less than 0.5 g / L, iron tends to precipitate, and if it exceeds 70 g / L, iron tends to be difficult to eutectoid. Ammonium chloride plays the role of an electrically conductive salt. When the amount is less than 0.5 g / L, the ability of electric conduction is reduced and the appearance of the precipitate becomes uneven. When the amount exceeds 30 g / L, salting out occurs. It tends to be easier. Cresol sulfonic acid acts as a brightener, and if it is less than 0.1 g / L, sufficient gloss appearance cannot be obtained, and if it exceeds 10 g / L, the appearance of the precipitate tends to be cloudy. .
[0021]
When a magnetic film is formed by the iron-palladium alloy electrodepositing plating bath for forming a magnetic film according to the present invention, it is preferable to perform plating at a current density of 60 to 120 A / m 2 and a liquid temperature of 20 to 60 ° C. If the current density is less than 60 A / m 2 , the appearance of the precipitate is uneven and the precipitation of iron is difficult, and if it exceeds 120 A / m 2 , the appearance of the precipitate is uneven. If the liquid temperature is lower than 20 ° C., no precipitation occurs, and if the liquid temperature exceeds 60 ° C., the precipitation of iron tends to be difficult.
[0022]
When a magnetic film is formed by the electrodeposition plating bath for forming a magnetic film of an iron-palladium alloy according to the present invention, the obtained magnetic film is composed of fine crystals, and when the ratio of palladium is high (48 at% to 77 at%). In this case, a fcc solid solution is formed.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
[0024]
First Embodiment : In the first embodiment, a case where an Fe—Pt alloy magnetic film is formed will be described. The formation of the magnetic film was performed by preparing a plating bath having the composition shown in Table 1, and performing electrodeposition plating using a Pt anode electrode coated with titanium mesh and a Cu cathode electrode. The plating treatment was performed under five conditions of a liquid temperature of 60 ° C. and current densities of 10, 25, 50, 73, and 90 A / m 2 , to form a magnetic film having an electrodeposition thickness of 0.2 to 0.5 μm. Further, the plating solution was stirred during the electrodeposition.
[0025]
[Table 1]
Figure 2004323948
[0026]
In the plating baths of Examples 1 and 2, the Fe—Pt alloy magnetic films obtained under the five current density conditions were respectively analyzed by an energy dispersive X-ray spectrometer (EDS), and the Pt ratio (at%) of the magnetic films was measured. Was examined. The result is shown in FIG. From FIG. 1, it was found that as the current density increased, the proportion of Pt in the magnetic film increased. It was also confirmed that the higher the Pt concentration in the plating bath, the greater the proportion of Pt in the magnetic film. From these results, it was found that Fe--Pt alloy magnetic films (Pt 34.6 to 81.8 at%) having different compositions can be obtained by changing the composition of the plating bath and the current density.
[0027]
Next, the result of examining the chemical bonding state of the Fe—Pt alloy magnetic film obtained in the present embodiment by X-ray photoelectron diffraction (XPS) will be described. This measurement was performed on the film obtained in Example 1 at a current density of 10 A / m 2 (Pt: 57.2 at%, see FIG. 1). As a result, it was found that both Fe and Pt in the film were in a metal state.
[0028]
Then, the results of examining the crystal structure and crystal grain size of the Fe—Pt alloy magnetic film obtained in this embodiment by X-ray diffraction (XRD) and transmission electron microscope (TEM, magnification: 600,000) will be described. This measurement, a current density of 10A / m 2 of Example 2 (Pt34.0at%, see FIG. 1), a current density of 10A / m 2 of Example 1 (Pt57.2at%, see FIG. 1), Example 1 This was performed on three films obtained at a current density of 50 A / m 2 (Pt 75.5 at%, see FIG. 1). As a result, it was found that the Fe—Pt alloy magnetic film obtained by electrodeposition plating was a very fine crystal of the order of 5 nm.
[0029]
Further, the results of investigating the magnetic properties of the Fe—Pt alloy magnetic film obtained in this embodiment using a vibration type magnetic balance (VSM) will be described. This measurement was performed on the film obtained in Example 1 at a current density of 10 A / m 2 (Pt: 57.2 at%, see FIG. 1). As a result, in the as-plated sample, the holding force was only 10.3 Oe in the plane direction. On the other hand, the same sample was annealed at 450 ° C. for 1 hour under vacuum (10 −5 to 10 −6 Pa), and the magnetic film was subjected to X-ray diffraction (XRD), transmission electron microscope (TEM, magnification: 600,000). Observation), it was found that the regularization of the magnetic film structure was a regular fct structure. The holding force was 572.8 Oe in the direction perpendicular to the surface.
[0030]
Second Embodiment In the second embodiment, a case where a Fe—Pd alloy magnetic film is formed will be described. The formation of the magnetic film was performed by preparing a plating bath having the composition shown in Table 2 and performing electrodeposition plating using an anode electrode coated with platinum mesh and a Cu cathode electrode. The plating process is performed under seven conditions of a liquid temperature of 40 ° C. and current densities of 60, 70, 80, 90, 100, 110, and 120 A / m 2 to form a magnetic film having an electrodeposition thickness of 0.2 to 0.5 μm. did. Further, the plating solution was stirred during the electrodeposition.
[0031]
[Table 2]
Figure 2004323948
[0032]
In the plating baths of Examples 3 to 5, each Fe—Pd alloy magnetic film obtained under the seven current density conditions was analyzed by an energy dispersive X-ray spectrometer (EDS), and the Pd ratio (at%) of the magnetic film was analyzed. ). The result is shown in FIG. From FIG. 2, it was found that as the current density increased, the proportion of Pd in the magnetic film decreased. It was also confirmed that the higher the Pd concentration in the plating bath, the higher the proportion of Pd in the magnetic film. From this result, it was found that by changing the composition and current density of the plating bath, Fe—Pd alloy magnetic films (Pd 8 to 77 at%) having different compositions can be obtained.
[0033]
Next, the result of examining the chemical bonding state of the Fe—Pd alloy magnetic film obtained in the present embodiment by X-ray photoelectron diffraction (XPS) will be described. This measurement was performed on the film obtained in Example 3 at a current density of 80 A / m 2 (Pd 77 at%, see FIG. 2). As a result, it was found that both Fe and Pd in the film were in a metal state.
[0034]
The crystal structure and crystal grain size of the Fe—Pd alloy magnetic film obtained in the present embodiment will be described with reference to the results of observation by X-ray diffraction (XRD) and transmission electron microscope (TEM, magnification: 600,000 times). This observation was made by observing the current density of 110 A / m 2 (Pd 15 at%, see FIG. 2) of Example 4, the current density of 90 A / m 2 of Example 5 (Pd 48 at%, see FIG. 2), and the current density of 80 A / m 2 of Example 3. This was performed on three films obtained with m 2 (Pd 77 at%, see FIG. 2). As a result, the Fe-Pd alloy magnetic film obtained by electrodeposition plating was composed of very fine crystals of the order of 5 nm, and it was found that the crystal grain size tended to decrease as the Pd ratio in the film increased. did. It was also found that a magnetic film having a low Pd content of 15 at% had a bcc solid solution structure, and a magnetic film having a high Pd content of 48 at% and 77 at% had an fcc solid solution structure.
[0035]
Further, the results of investigating the magnetic properties of the Fe—Pd alloy magnetic film obtained in this embodiment using a vibration type magnetic balance (VSM) will be described. This measurement was performed on the film obtained in Example 4 at a current density of 90 A / m 2 (Pd: 52 at%, see FIG. 2). As a result, it was found that the magnetic film of 52 at% Pd had an easy axis of magnetization in the in-plane direction.
[0036]
Finally, the result of observing the surface state of the Fe—Pd alloy magnetic film obtained in the present embodiment with an operation electron microscope (SEM, tilt angle 30 ° magnification 65000) will be described. The observations were conducted at a current density of 120 A / m 2 (Pd 8 at%, see FIG. 2) of Example 5, a current density of 110 A / m 2 (Pd 28 at%, see FIG. 2) of Example 5, and a current density of 80 A / m 2 of Example 5. m 2 (Pd54at%, see FIG. 2), a current density of 60A / m 2 (Pd77at%, see FIG. 2) of example 5 was performed on four film obtained by. As a result, it was found that the surface state of the magnetic films of 8 at% Pd and 28 at% Pd was very smooth, though some undulations were observed.
[0037]
【The invention's effect】
As described above, according to the electrodeposition plating bath for forming a magnetic film of the present invention, the Fe—Pt alloy magnetic film and the Fe—Pd alloy magnetic film can be formed, and the magnetic film constituting the magnetic recording medium can be formed. The number of variations can be increased, and a magnetic film can be formed in large quantities at low cost.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a current density and a Pt ratio according to the first embodiment.
FIG. 2 is a graph showing a relationship between a current density and a Pd ratio according to the second embodiment.

Claims (4)

硫酸鉄七水和物を1〜50g/Lと、塩化白金酸(IV)を2〜60g/Lと、酒石酸アンモニウムを0.5〜50g/Lと、アンモニアを5〜250g/Lとを含有することを特徴とする鉄−白金合金の磁性膜形成用電析めっき浴。Contains iron sulfate sulfate heptahydrate 1-50 g / L, chloroplatinic acid (IV) 2-60 g / L, ammonium tartrate 0.5-50 g / L, and ammonia 5-250 g / L. An electrodeposition plating bath for forming a magnetic film of an iron-platinum alloy. 請求項1に記載の磁性膜形成用電析めっき浴を用いて磁性膜形成のめっき処理を行う電析めっき方法であって、
電流密度100〜1000A/m、液温30〜80℃でめっき処理を行う電析めっき方法。
An electrodeposition plating method for performing a plating process for forming a magnetic film using the electrodeposition plating bath for forming a magnetic film according to claim 1,
An electrodeposition plating method in which plating is performed at a current density of 100 to 1000 A / m 2 and a liquid temperature of 30 to 80 ° C.
硫酸鉄七水和物を1〜50g/Lと、塩化パラジウムを0.2〜50g/Lと、酒石酸アンモニウムを0.5〜70g/Lと、塩化アンモニウムを0.5〜30g/Lと、クレーゾールスルホン酸を0.1〜10g/Lを含有することを特徴とする鉄−パラジウム合金の磁性膜形成用電析めっき浴。1 to 50 g / L of iron sulfate heptahydrate, 0.2 to 50 g / L of palladium chloride, 0.5 to 70 g / L of ammonium tartrate, 0.5 to 30 g / L of ammonium chloride, An electrodeposition plating bath for forming a magnetic film of an iron-palladium alloy, comprising 0.1 to 10 g / L of cresol sulfonic acid. 請求項3に記載の磁性膜形成用電析めっき浴を用いて磁性膜形成のめっき処理を行う電析めっき方法であって、
電流密度60〜120A/m、液温20〜60でめっき処理を行う電析めっき方法。
An electrodeposition plating method for performing a plating treatment for forming a magnetic film using the electrodeposition plating bath for forming a magnetic film according to claim 3,
An electrodeposition plating method for performing plating at a current density of 60 to 120 A / m 2 and a solution temperature of 20 to 60.
JP2003123228A 2003-04-28 2003-04-28 Electrocrystallization plating bath for forming magnetic film, and electrocrystallization plating method using the same Pending JP2004323948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123228A JP2004323948A (en) 2003-04-28 2003-04-28 Electrocrystallization plating bath for forming magnetic film, and electrocrystallization plating method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123228A JP2004323948A (en) 2003-04-28 2003-04-28 Electrocrystallization plating bath for forming magnetic film, and electrocrystallization plating method using the same

Publications (1)

Publication Number Publication Date
JP2004323948A true JP2004323948A (en) 2004-11-18

Family

ID=33501181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123228A Pending JP2004323948A (en) 2003-04-28 2003-04-28 Electrocrystallization plating bath for forming magnetic film, and electrocrystallization plating method using the same

Country Status (1)

Country Link
JP (1) JP2004323948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068688A2 (en) * 2004-01-16 2005-07-28 Canon Kabushiki Kaisha Plating solution, process for producing a structure with the plating solution, and apparatus employing the plating solution
JP2007154285A (en) * 2005-12-07 2007-06-21 Electroplating Eng Of Japan Co Method for producing magnetic film of cobalt-platinum alloy
JP2011063842A (en) * 2009-09-16 2011-03-31 Shinshu Univ METHOD FOR PLATING ARTICLE WITH Fe-Pt ALLOY AND LIQUID FOR PLATING ARTICLE WITH Fe-Pt ALLOY

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005068688A2 (en) * 2004-01-16 2005-07-28 Canon Kabushiki Kaisha Plating solution, process for producing a structure with the plating solution, and apparatus employing the plating solution
WO2005068688A3 (en) * 2004-01-16 2006-03-02 Canon Kk Plating solution, process for producing a structure with the plating solution, and apparatus employing the plating solution
US7641783B2 (en) 2004-01-16 2010-01-05 Canon Kabushiki Kaisha Plating solution, process for producing a structure with the plating solution, and apparatus employing the plating solution
JP2007154285A (en) * 2005-12-07 2007-06-21 Electroplating Eng Of Japan Co Method for producing magnetic film of cobalt-platinum alloy
JP2011063842A (en) * 2009-09-16 2011-03-31 Shinshu Univ METHOD FOR PLATING ARTICLE WITH Fe-Pt ALLOY AND LIQUID FOR PLATING ARTICLE WITH Fe-Pt ALLOY

Similar Documents

Publication Publication Date Title
JP4732668B2 (en) Method for producing cobalt iron molybdenum alloy and cobalt iron molybdenum alloy plated magnetic thin film
JP2008146801A (en) Magnetic recording medium, sputtering target and manufacturing method of magnetic recording medium
Gómez et al. Properties of Co-Mo coatings obtained by electrodeposition at pH 6.6
Yokoshima et al. Electroless CoNiFeB soft magnetic thin films with high corrosion resistance
Bhuiyan et al. Microstructure and magnetic properties of electrodeposited cobalt films
Barbano et al. Electrochemical synthesis of Fe-W and Fe-WP magnetic amorphous films and Fe-W nanowires
Talapatra et al. Synthesis and characterization of cobalt–nickel alloy nanowires
JP3201892B2 (en) Soft magnetic thin film and magnetic inductive MR head using the same
JP2003510465A (en) Electrodeposition method of metal multilayer
JP2004323948A (en) Electrocrystallization plating bath for forming magnetic film, and electrocrystallization plating method using the same
Santhi et al. Electrochemical alloying of immiscible Ag and Co for their structural and magnetic analyses
Kozlov et al. Influence of the nature of metals on the formation of the deposit's polycrystalline structure during electrocrystallization
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
Mardani et al. The effect of surfactant on the structure, composition and magnetic properties of electrodeposited CoNiFe/Cu microwire
Sarac et al. Bath temperature-dependent structural properties, coercive force, surface morphology and surface texture of electrochemically grown nanostructured Ni–Co/ITO thin films
Yermolenko et al. Nanostructured magnetic films based on iron with refractory metals
Esteves et al. Electrodepositon of CoNiMo magnetic thin films from a chloride bath in the presence of citrate or glycine
Zhang et al. Thick film Ni0. 5Mn0. 5− xSnx Heusler alloys by multi-layer electrochemical deposition
Franz et al. Electrodeposition of micromagnets of CoPtW (P) alloys
Garcia-Torres et al. Evolution of magnetic and structural properties from Ag nanolayers to several microns Co–Ag deposits prepared by electrodeposition
Kanthiah et al. Microstructural and magnetic properties of cadmium incorporated magnetic alloys as monolayer and multilayer coatings
JP2004326979A (en) Electrodeposition plating bath for forming magnetic film and electrodeposition plating method using the same
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
Wu et al. Effects of cathode rotation and substrate materials on electrodeposited CoMnP thick films
Tarozait et al. Change of magnetic properties of autocatalytically deposited CoNiP films by electrolysis simultaneously applied

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

RD02 Notification of acceptance of power of attorney

Effective date: 20060426

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Effective date: 20061106

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090925