JP2004323258A - Method of purifying carbon nanotube - Google Patents

Method of purifying carbon nanotube Download PDF

Info

Publication number
JP2004323258A
JP2004323258A JP2003116700A JP2003116700A JP2004323258A JP 2004323258 A JP2004323258 A JP 2004323258A JP 2003116700 A JP2003116700 A JP 2003116700A JP 2003116700 A JP2003116700 A JP 2003116700A JP 2004323258 A JP2004323258 A JP 2004323258A
Authority
JP
Japan
Prior art keywords
cnt
poly
carbon nanotubes
cnts
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003116700A
Other languages
Japanese (ja)
Other versions
JP4306316B2 (en
Inventor
Junji Sanada
淳二 真多
Jun Tsukamoto
遵 塚本
Takeshi Saito
毅 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003116700A priority Critical patent/JP4306316B2/en
Publication of JP2004323258A publication Critical patent/JP2004323258A/en
Application granted granted Critical
Publication of JP4306316B2 publication Critical patent/JP4306316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain high purity carbon nanotubes by separating/dispersing carbon nanotubes from carbon nanotubes containing impurities and filtering them without damaging the conductivity of the carbon nanotube. <P>SOLUTION: The carbon nanotubes are purified by suspending the carbon nanotubes containing the impurities with a straight chain conjugated polymer in a solvent and fractionating the nanotubes from the resultant suspension by filtration. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、不純物を含むカーボンナノチューブから精製されたカーボンナノチューブを得る方法に関するものである。
【0002】
【従来の技術】
カーボンナノチューブ(以下、CNTと言う)はナノテクノロジーの有力な素材として、広範な分野で応用の可能性が検討されている。用途としてはトランジスターや顕微鏡用プローブなどのようにCNTの単線を使用する方法と、電子放出電極や燃料電池用電極、あるいはCNTを分散した導電性コンポジットなどのように多数のCNTをまとめてバルクとして使用する方法とがある。いずれの使用方法においてもCNT中に存在するアモルファスカーボンなどの不純物を除去して用いることが好ましく、いくつかの精製処理が行われている。一般にCNTを製造した際には不純物が含まれるためCNTの精製工程は必須になっている。例えばCNT製造時に用いた金属触媒を酸処理によって除去し、比較的低温(200〜500℃)の加熱処理で除去できる炭素物質は焼成によって除去されている(特許文献1)。
【0003】
しかし、酸処理や焼成処理によって除去できない不純物は、さらに別の方法で除去する必要があり、いくつかの他の精製方法が知られている。例えば、不純物を含むCNTをトルエン溶媒の中で螺旋状重合体を加えて分散させ、沈殿したCNTと重合体との複合体を取り出すという方法がある(特許文献2参照)。しかし、得られるCNTには導電性の低い重合体が付着しており、CNT本来の導電性を発揮させにくいという課題があった。また、他の方法として不純物を含むCNTを溶媒中に超音波を用いて分散させ、マイクロメートルからナノオーダーの孔径を有する膜で濾過する精製方法が知られている(特許文献3参照)。しかしこの方法で、エタノール中で不純物を含むCNTを超音波粉砕しても、不純物に付着したCNTを充分に分離することができず、10μm孔径のガラスフィルターによる予備的分離の段階で、ほとんどのCNTを不純物と共に分離除去してしまい、実際的な精製方法とは言えなかった。
【0004】
【特許文献1】
特開平10−120409号公報
【0005】
【特許文献2】
特開2000−44216号公報
【0006】
【特許文献3】
特許第2522469号公報
【0007】
【発明が解決しようとする課題】
本発明は、不純物からCNTを分離・分散し、かつ、CNTの導電性を損なうことなく、純度の高いCNTを得ることができるCNTの精製方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、CNTの懸濁液中に直鎖状共役系重合体を加えれば、不純物やCNTを溶媒中に良好に分散できることを見出し、さらに、該重合体によってCNTの長さよりも大きい不純物をCNTの長さ以下に細かくできることを見出し本発明に到達した。すなわち本発明は、不純物を含むカーボンナノチューブと直鎖状共役系重合体と溶媒からなるカーボンナノチューブ懸濁液から、濾別によってカーボンナノチューブを選択的に分取するカーボンナノチューブの精製方法である。
【0009】
【発明の実施の形態】
CNTはアーク放電法、化学気相成長法(以下CVD法とする)、レーザー・アブレーション法等によって作製されるが、本発明の精製方法に適用できるCNTはいずれの方法によって得られたものであってもよい。CNTには1枚の炭素膜(グラッフェン・シート)が円筒状に巻かれた単層カーボンナノチューブ(以下、SWCNTと言う)と、2枚以上の複数のグラッフェン・シートが同心円状に巻かれた多層カーボンナノチューブ(以下、MWCNTと言う)とがある。上記の方法でSWCNTやMWCNTを作製する際には、同時にフラーレンやグラファイト、アモルファスカーボンが副生産物として生成され、またニッケル、鉄、コバルト、イットリウムなどの触媒金属も残存している。これらの副生産物や残存触媒金属が不純物となる。
【0010】
本発明で使用される直鎖状共役系重合体において、直鎖状とは、高分子の骨格構造が安定状態(外力が加わっていない状態)において螺旋構造を取らず、まっすぐ延びているものを意味する。また、共役系重合体とは高分子骨格の炭素−炭素の結合に関し1重結合と2重結合が交互に連なっている重合体を意味する。
【0011】
このような共役系重合体としては、ポリチオフェン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリ−p−フェニレン系重合体、ポリ−p−フェニレンビニレン系重合体などが挙げられる。これらの共役系重合体が直鎖状であるためには、ポリチオフェン系重合体、ポリピロール系重合体はそれぞれチオフェン環、ピロール環の2、5位でモノマ単位がつながる必要がある。ポリ−p−フェニレン系重合体、ポリ−p−フェニレンビニレン系重合体ではフェニレン基のパラ位で高分子骨格がつながっているので直鎖状となっている。上記重合体の中でも本発明においては、ポリチオフェン系重合体が特に好ましく使用される。
【0012】
ポリチオフェン系重合体とはポリ−p−チオフェン構造の骨格を持つ重合体に側鎖が付いた構造を有するものである。具体例としては、ポリ−3−メチルチオフェン、ポリ−3−ブチルチオフェン、ポリ−3−ヘキシルチオフェン、ポリ−3−オクチルチオフェン、ポリ−3−デシルチオフェン、ポリ−3−ドデシルチオフェンなどのポリ−3−アルキルチオフェン(アルキル基の炭素数は特に制限はないが好ましくは1〜12)、ポリ−3−メトキシチオフェン、ポリ−3−エトキシチオフェン、ポリ−3−ドデシルオキシチオフェンなどのポリ−3−アルコキシチオフェン(アルコキシ基の炭素数はとくに制限はないが好ましくは1〜12)、ポリ−3−(ブチルチオ)チオフェン、ポリ−3−(ヘキシルチオ)チオフェン、ポリ−3−(ドデシルチオ)チオフェンなどのポリ−3−(アルキルチオ)チオフェン(アルキル基の炭素数はとくに制限はないが好ましくは1〜12)、ポリ−3−メトキシ−4−メチルチオフェン、ポリ−3−ドデシルオキシ−4−メチルチオフェンなどのポリ−3−アルコキシ−4−アルキルチオフェン(アルコキシ基およびアルキル基の炭素数は特に制限はないが好ましくは1〜12)が挙げられ、1種もしくは2種以上を用いることができる。中でも、ポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェンおよびポリ−3−(アルキルチオ)チオフェンから選ばれる少なくとも1種が好ましく、特にポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェンが好ましい。ポリ−3−アルキルチオフェンとしては、特にポリ−3−ヘキシルチオフェンが好ましい。上記重合体は必ずしも高分子量である必要はなく、直鎖状共役系からなるオリゴマーであってもよい。
【0013】
本発明で使用される溶媒としては、トルエン、キシレン、クロロホルム、クロルベンゼンなど直鎖状共役系重合体を溶解するものが好ましく使用される。
【0014】
上記の共役系重合体は溶液状態でCNTを良好に分散するだけでなく、特にSWCNTでは束状に凝集したCNTを解きながら分散させるという特長も備えている。一般にSWCNTは製造された状態では束状に凝集しており、少ない添加量でCNTの特性を最大に活用しようとする場合にはCNTがこの束状態から解かれて分散されることが好ましい。このためSWCNTを分散させる場合にはScience誌vol.282,p95(1998)にも見られるように、SWCNTに官能基を付加させる等の方法により化学修飾を施し分散性を付与した上で使用される。しかし、CNTに化学修飾を施すとCNTを構成するπ共役系が破壊されやすいので、CNT本来の特性が損なわれるという問題点がある。本発明ではこのような化学修飾を特に施さなくてもCNTの分散が可能である。
【0015】
本発明のCNT懸濁液の不純物を含むCNTと直鎖状共役系重合体と溶媒の重量比率は特に限定されないが、CNTに対する直鎖状共役系重合体の重量比が0.1〜10、CNTの濃度が0.001〜1g/Lであることが好ましい。この範囲にあることで効率的にCNTを精製することができる。
【0016】
本発明の精製方法において、懸濁液の調製には超音波照射法、混練法、環流法、加熱撹拌法のいずれも用いることができるが、これらの方法に限定されない。凝集体を分散させる装置としては、超音波照射装置、ビーズミルなどの混練装置、環流溶解装置、ジャケット付きミキサーなどの加熱撹拌装置、撹拌羽根などのついたホモジナイザーなどを用いることができるが、粒径1μm以下の1次粒子径を持つ微粒子の凝集体の分散には超音波照射装置が最も効率的である。超音波照射装置には、水槽の下に超音波振動子の装着された超音波洗浄機や、プローブを直接試料溶液の中に挿入する超音波破砕機などがあり、何れの方法でも効率的に分散することができる。より好ましくは超音波破砕機であり、プローブを直接試料に浸して超音波照射するのでより短時間で強力に分散することができる。超音波の照射条件は、液量とプローブの直径によって異なってくるが、直径13mmの標準的なプローブでは液量50mLに対して250Wの出力で10〜30分照射すれば充分である。液量がこれよりも多い場合には液量に比例して超音波照射時間を長くするか、出力を上げれば良い。逆に液量がこれよりも少ない場合には直径の細いプローブで出力を下げて超音波照射することが好ましい。
【0017】
本発明の精製方法で行われる濾別とは、必要なCNTをフィルターで捕集し、不必要な不純物はフィルターを通過させて分離精製するという工程である。濾別による精製が成り立つためには、不純物の粒径がCNTの長さよりもはるかに小さくなっていることが必要である。通常、不純物を含むCNTには、1次粒子径が数十nm〜500nmのアモルファスカーボンと、長さ500nm〜10μmほどのCNTが混在しており、アモルファスカーボンは、凝集によって1〜100μm程度の粒径を有している場合が多い。本発明によれば、不純物を含むCNTを直鎖状共役系重合体と共に溶媒に懸濁させることにより、不純物の粒子径を小さくすることができるので、濾別による精製が可能となる。
【0018】
本発明で行われる濾別には孔径0.5〜20μmのメンブレンフィルターを用いることが好ましい。上述のようにアモルファスカーボンなどの不純物の1次粒径が500nm(0.5μm)以下、CNTの長さが500nm(0.5μm)以上であることが多いので、フィルターの孔径は0.5μm以上であることが望ましい。孔径0.5μm未満のフィルターでは、フィルター上に不純物が大量に捕集され濾別できなくなるので用いることができない。一方、孔径20μmより大きな孔径を持つフィルターでは捕集されるべきCNTが大量に通過してしまい収率が極端に低下してしまうため濾別に適していない。より好ましくは孔径5〜12μmのフィルターである。この範囲にあることで粉砕された不純物を通過させ、なおかつ分散してるCNTを効率的に捕集することができる。メンブレンフィルターの形状はオムニポア、アイソポアの何れでも用いることができる。より好ましくは4フッ化エチレン(PTFE)製のオムニポアメンブレンフィルターであり、効率よく濾別し、濾別したCNTを効率よく回収することができる。また、厚手のセルロース濾紙やガラス繊維濾紙も用いることもできるがこれらの濾紙を用いると濾紙内部にCNTが吸着されてしまうので収率の観点からすると、メンブレンフィルターを用いた方が好ましい。
【0019】
なお本発明において、精製されたCNTの電導度は次のようにして求めることができる。まず、精製されたCNTを溶媒中に分散させ、孔径0.1μmのメンブレンフィルターでCNTを捕集する。捕集されたCNTはシート状になっておりこれをガラス基板上に転写してCNT膜を得る。該CNT膜を4つの電極を用いた4端子法にて電導度を求めることができる。
【0020】
【実施例】
以下、本発明を実施例に基づきさらに具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。
【0021】
実施例1
アモルファスカーボンなどの不純物を含むCNT(単層CNT:米カーボレックス社製、純度70%)10mgと、直鎖状共役系重合体であるポリ−3−ヘキシルチオフェン(アルドリッチ製、分子量:Mw20000)10mgと、クロロホルム20mLを50mLのガラス製サンプル管の中に入れて超音波破砕機(東京理化器械製VCX−520:出力250W、直接照射)を用いて30分間超音波照射したところ、液は均一に懸濁した。この懸濁液5mLを分取して、公称10μm孔径のPTFE製オムニポアメンブレンフィルター(アドバンテック社製、直径25mm)を用いて吸引濾過したところ、フィルター上に多くの濾別物が得られた。濾別物の付着したフィルターをクロロホルム10mLの入ったガラス製サンプル管に入れ、超音波洗浄機で5分間超音波照射したところ、濾別物がクロロホルム中に良好に分散した。この液をスパチュラで微量分取し、シリコンウェハ上に滴下して風乾し、原子間力顕微鏡(AFM)で観察した。結果を図1に示した。濾別物はほとんどがCNTであり、その面積比からCNTの純度は90%であった。なお、面積比は、AFM像の中に存在するCNTの面積の総和と塊状物の面積の総和とを足し合わせたものを分母とし、CNTの面積の総和を分子にして分母で割り付けたものを計算して求めた。
【0022】
一方、初めの濾過でフィルターを通過した濾液をスパチュラで微量分取して、AFM観察したところ、図2に示すように、ほとんどが塊状物であり、CNTが選択的に分取されたことを裏付けている。
【0023】
比較例1
実施例1で用いた不純物を含むCNT10mgと、クロロホルム20mLを50mLのガラス製サンプル管の中に入れて超音波洗浄機(井内盛栄堂製US−2:出力120W、間接照射)を用いて30分間超音波照射したところ、液は不均一に懸濁した。この液をスパチュラで微量分取し、シリコンウェハ上に滴下して風乾し、原子間力顕微鏡(AFM)で観察した。結果を図3に示した。ほとんどがアモルファスカーボンなどの塊状物であり、その大きさは1μm以上のものが多く、CNTが塊状物に付着するように存在していることがわかった。次にこの不均一な懸濁液を公称10μm孔径のPTFE製オムニポアメンブレンフィルター(アドバンテック社製、直径25mm)を用いて吸引濾過したところ懸濁物はすべて捕集され、濾液はクロロホルムのみであった。
【0024】
比較例2
懸濁液調製にポリ−3−ヘキシルチオフェンを加えなかった以外は実施例1と同様の操作を行った。濾別物を再分散しAFM観察を行ったところ、CNT以外にアモルファスカーボンなどの塊状物が多く観察され、全く精製されていなかった。
【0025】
実施例2
懸濁液調製の際にポリ−3−ヘキシルチオフェンの代わりに直鎖状共役系重合体であるポリ[2−メトキシ−5−(2’−エチルヘキシルオキシ)−1,4−フェニレンビニレン](アルドリッチ製、分子量:Mn86000)を用いた以外は実施例1と同様の操作を行った。濾別物を再分散しAFM観察を行ったところ、きれいに精製されており、CNTと不純物の面積比から純度は80%であった。
【0026】
比較例3
懸濁液調製の際にポリ−3−ヘキシルチオフェンの代わりにポリ−m−フェニレンビニレン(PmPV)(特開2000−44216号公報に開示された方法)を用いた以外は実施例1と同様の操作を行った。濾別物を再分散しAFM観察を行ったところ、CNT以外にアモルファスカーボンなどの塊状物が多く観察され、純度はあまり高くならなかった。
【0027】
比較例4
公知の方法(特許第2522469号)に従ってCNTの精製を試みた。不純物を含むCNT10mgと、エタノール20mLを50mLのガラス製サンプル管の中に入れて超音波破砕機(出力250W、直接照射)を用いて30分間超音波照射したところ、液は不均一に懸濁した。この液を孔径10μmのガラスフィルターで濾過したところ、懸濁物がすべて濾別され、濾液をAFM観察してもCNTと不純物の両方が無く、精製されていなかった。
【0028】
実施例3
ポリ−3−ヘキシルチオフェンをポリ−3−オクチルチオフェン(アルドリッチ製、分子量:Mw67000)に変えた以外は実施例1と全く同様の操作を行い、濾別物の再分散液を分取してAFM観察を行ったところきれいに精製されており、CNTと不純物の面積比から純度は90%であった。
【0029】
実施例4
ポリ−3−ヘキシルチオフェンをポリ−3−ドデシルチオフェン(アルドリッチ製、分子量:Mw32000)に変えた以外は実施例1と全く同様の操作を行い、濾別物の再分散液を分取してAFM観察を行ったところきれいに精製されており、CNTと不純物の面積比から純度は90%であった。
【0030】
実施例5
CNTを本荘ケミカル社製CNT(単層CNT、純度10%以下)に変えた以外は実施例1と同様の操作を行い、濾別物の再分散液を分取してAFM観察を行ったところ純度は向上しており、CNTと不純物の面積比から純度は60%であった。
【0031】
実施例6
実施例1の精製方法によって純度の高くなったCNTをクロロホルム中で超音波洗浄機によって超音波を1時間照射し、公称5μm孔径のPTFE製オムニポアメンブレンフィルター(アドバンテック社製、直径25mm)を用いて吸引濾過したところ再び多くの濾別物が得られた。濾別物の付着したフィルターをクロロホルム10mLの入ったガラス製サンプル管に入れ、超音波洗浄機で5分間超音波照射したところ、濾別物が再びクロロホルム中に分散された。この液をスパチュラで微量分取し、AFMで観察した結果、純度は99%以上であった。
【0032】
実施例7
実施例1の精製方法によって得られたCNTを孔径0.1μmのメンブレンフィルター上に捕集し、ガラス基板上に転写して、得られたCNT膜を4端子法にて電導度を測定したところ、60S/cmであった。
【0033】
比較例5
比較例3の精製方法によって得られたCNTを孔径0.1μmのメンブレンフィルター上に捕集し、ガラス基板上に転写して、得られたCNT膜を4端子法にて電導度を測定したところ、2×10−3S/cmであった。
【0034】
【発明の効果】
本発明の精製方法を用いれば、純度の高いCNTを取り出すことができる。
【図面の簡単な説明】
【図1】実施例1で分取されたCNTの原子間顕微鏡写真である。
【図2】実施例1でCNT濾別後の濾液に含まれる塊状物の原子間顕微鏡写真である。
【図3】比較例1における懸濁物の原子間顕微鏡写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for obtaining purified carbon nanotubes from carbon nanotubes containing impurities.
[0002]
[Prior art]
Carbon nanotubes (hereinafter referred to as CNTs) are being studied in a wide range of fields as potential nanotechnology materials. Applications include the use of a single wire of CNT, such as a transistor or a probe for a microscope, and the integration of a large number of CNTs as a bulk, such as an electron emission electrode, an electrode for a fuel cell, or a conductive composite in which CNTs are dispersed. There are methods to use. In any method of use, it is preferable to remove impurities such as amorphous carbon present in the CNT before use, and some purification treatments have been performed. Generally, when CNTs are produced, impurities are included, so that a CNT purification step is indispensable. For example, a metal catalyst used in the production of CNTs is removed by an acid treatment, and a carbon substance that can be removed by a heat treatment at a relatively low temperature (200 to 500 ° C.) is removed by firing (Patent Document 1).
[0003]
However, impurities that cannot be removed by acid treatment or baking treatment must be removed by another method, and some other purification methods are known. For example, there is a method in which CNT containing impurities is dispersed by adding a helical polymer in a toluene solvent, and a complex of the precipitated CNT and the polymer is taken out (see Patent Document 2). However, there is a problem that a polymer having low conductivity is attached to the obtained CNT, and it is difficult to exhibit the original conductivity of the CNT. As another method, a purification method is known in which CNTs containing impurities are dispersed in a solvent using ultrasonic waves, and the resultant is filtered through a membrane having a pore size on the order of micrometers to nanometers (see Patent Document 3). However, even if CNTs containing impurities are ultrasonically pulverized in ethanol by this method, CNTs adhering to the impurities cannot be sufficiently separated. The CNTs were separated and removed together with the impurities, which was not a practical purification method.
[0004]
[Patent Document 1]
JP-A-10-120409 [0005]
[Patent Document 2]
JP 2000-44216 A
[Patent Document 3]
Japanese Patent No. 2522469
[Problems to be solved by the invention]
An object of the present invention is to provide a CNT purification method capable of separating and dispersing CNT from impurities and obtaining high-purity CNT without impairing the conductivity of the CNT.
[0008]
[Means for Solving the Problems]
The present inventors have found that if a linear conjugated polymer is added to a suspension of CNTs, impurities and CNTs can be well dispersed in a solvent. The inventors have found that impurities can be finely reduced to the length of the CNT or less, and reached the present invention. That is, the present invention is a method for purifying carbon nanotubes by selectively separating carbon nanotubes from a carbon nanotube suspension containing an impurity-containing carbon nanotube, a linear conjugated polymer, and a solvent by filtration.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
CNTs are produced by an arc discharge method, a chemical vapor deposition method (hereinafter, referred to as a CVD method), a laser ablation method, or the like, and CNTs applicable to the purification method of the present invention are obtained by any method. You may. The CNT has a single-walled carbon nanotube (hereinafter referred to as SWCNT) in which one carbon film (graphene sheet) is wound in a cylindrical shape, and a multi-layer in which two or more sheets of graphene sheet are concentrically wound. There is a carbon nanotube (hereinafter, referred to as MWCNT). When SWCNT or MWCNT is produced by the above method, fullerene, graphite, and amorphous carbon are simultaneously produced as by-products, and catalytic metals such as nickel, iron, cobalt, and yttrium remain. These by-products and residual catalyst metals become impurities.
[0010]
In the linear conjugated polymer used in the present invention, linear refers to a polymer in which the skeleton structure of the polymer extends straight without taking a helical structure in a stable state (state in which no external force is applied). means. Further, the conjugated polymer means a polymer in which single bonds and double bonds are alternately connected with respect to a carbon-carbon bond of a polymer skeleton.
[0011]
Examples of such a conjugated polymer include a polythiophene-based polymer, a polypyrrole-based polymer, a polyaniline-based polymer, a polyacetylene-based polymer, a poly-p-phenylene-based polymer, and a poly-p-phenylene-vinylene-based polymer. No. In order for these conjugated polymers to be linear, it is necessary that the polythiophene polymer and the polypyrrole polymer have monomer units connected at the 2 and 5 positions of the thiophene ring and the pyrrole ring, respectively. The poly-p-phenylene-based polymer and the poly-p-phenylene-vinylene-based polymer are linear because the polymer skeleton is connected at the para-position of the phenylene group. Among the above polymers, in the present invention, a polythiophene-based polymer is particularly preferably used.
[0012]
The polythiophene-based polymer has a structure in which a polymer having a skeleton of a poly-p-thiophene structure is provided with a side chain. Specific examples include poly-3-methylthiophene, poly-3-butylthiophene, poly-3-hexylthiophene, poly-3-octylthiophene, poly-3-decylthiophene, and poly-3-dodecylthiophene. 3-alkylthiophene (the number of carbon atoms in the alkyl group is not particularly limited, but preferably 1 to 12), poly-3-methoxythiophene, poly-3-ethoxythiophene, poly-3-dodecyloxythiophene and other poly-3-thiophenes Polythiols such as alkoxythiophene (the number of carbon atoms of the alkoxy group is not particularly limited but preferably 1 to 12), poly-3- (butylthio) thiophene, poly-3- (hexylthio) thiophene, and poly-3- (dodecylthio) thiophene -3- (alkylthio) thiophene (the number of carbon atoms in the alkyl group is not particularly limited. Preferably 1 to 12), poly-3-alkoxy-4-alkylthiophenes such as poly-3-methoxy-4-methylthiophene and poly-3-dodecyloxy-4-methylthiophene (the carbon number of the alkoxy group and the alkyl group) Is not particularly limited, but preferably 1 to 12), and one or more kinds can be used. Among them, at least one selected from poly-3-alkylthiophenes, poly-3-alkoxythiophenes, and poly-3- (alkylthio) thiophenes is preferable, and poly-3-alkylthiophenes and poly-3-alkoxythiophenes are particularly preferable. As the poly-3-alkylthiophene, poly-3-hexylthiophene is particularly preferred. The polymer does not necessarily have to have a high molecular weight, and may be an oligomer composed of a linear conjugated system.
[0013]
As the solvent used in the present invention, those that dissolve a linear conjugated polymer such as toluene, xylene, chloroform, and chlorobenzene are preferably used.
[0014]
The above-mentioned conjugated polymer not only disperses CNTs well in a solution state, but also has a feature that, in particular, SWCNTs disperse CNTs aggregated in a bundle while dissolving them. In general, SWCNTs are aggregated in a bundle in a manufactured state, and it is preferable that the CNTs be released from the bundle and dispersed in order to maximize the properties of the CNTs with a small amount of addition. For this reason, when dispersing SWCNT, Science magazine vol. 282, p95 (1998), it is used after being subjected to chemical modification by a method such as adding a functional group to SWCNT to impart dispersibility. However, when the CNTs are chemically modified, the π-conjugated system constituting the CNTs is easily broken, so that there is a problem that the intrinsic characteristics of the CNTs are impaired. In the present invention, CNTs can be dispersed without any particular chemical modification.
[0015]
The weight ratio of the CNT containing impurities of the CNT suspension of the present invention, the linear conjugated polymer and the solvent is not particularly limited, but the weight ratio of the linear conjugated polymer to CNT is 0.1 to 10, It is preferable that the concentration of CNT is 0.001 to 1 g / L. Within this range, CNTs can be efficiently purified.
[0016]
In the purification method of the present invention, any of an ultrasonic irradiation method, a kneading method, a reflux method, and a heating and stirring method can be used for preparing a suspension, but is not limited to these methods. As an apparatus for dispersing the aggregates, an ultrasonic irradiation apparatus, a kneading apparatus such as a bead mill, a reflux dissolution apparatus, a heating and stirring apparatus such as a jacketed mixer, a homogenizer with a stirring blade, and the like can be used. An ultrasonic irradiation device is most efficient for dispersing aggregates of fine particles having a primary particle diameter of 1 μm or less. Ultrasonic irradiators include an ultrasonic cleaner equipped with an ultrasonic vibrator under a water tank, and an ultrasonic crusher that inserts a probe directly into a sample solution. Can be dispersed. More preferably, it is an ultrasonic crusher, and since the probe is directly immersed in the sample and irradiated with ultrasonic waves, it can be dispersed strongly in a shorter time. Irradiation conditions of the ultrasonic wave vary depending on the amount of liquid and the diameter of the probe. However, for a standard probe having a diameter of 13 mm, it is sufficient to irradiate 50 mL of liquid with 250 W output for 10 to 30 minutes. If the liquid volume is larger than this, the ultrasonic irradiation time may be lengthened or the output may be increased in proportion to the liquid volume. Conversely, when the liquid volume is smaller than this, it is preferable to reduce the output with a probe having a small diameter and irradiate the ultrasonic waves.
[0017]
Filtration performed in the purification method of the present invention is a step of collecting necessary CNT with a filter, and separating and purifying unnecessary impurities through a filter. In order for purification by filtration to be established, it is necessary that the particle size of the impurities is much smaller than the length of the CNT. Usually, CNTs containing impurities include amorphous carbon having a primary particle diameter of several tens of nm to 500 nm and CNT having a length of about 500 nm to 10 μm, and the amorphous carbon has a particle size of about 1 to 100 μm due to aggregation. Often have a diameter. According to the present invention, by suspending CNTs containing impurities together with a linear conjugated polymer in a solvent, the particle diameter of the impurities can be reduced, so that purification by filtration becomes possible.
[0018]
It is preferable to use a membrane filter having a pore size of 0.5 to 20 μm for the filtration performed in the present invention. As described above, since the primary particle size of impurities such as amorphous carbon is often 500 nm (0.5 μm) or less and the CNT length is often 500 nm (0.5 μm) or more, the filter pore size is 0.5 μm or more. It is desirable that A filter having a pore size of less than 0.5 μm cannot be used because a large amount of impurities are collected on the filter and cannot be separated by filtration. On the other hand, a filter having a pore size larger than 20 μm is not suitable for filtering because CNT to be collected passes through in large quantities and the yield is extremely reduced. More preferably, the filter has a pore size of 5 to 12 μm. By being within this range, the crushed impurities can be passed, and the dispersed CNTs can be efficiently collected. Regarding the shape of the membrane filter, either omnipore or isopore can be used. More preferably, it is an omnipore membrane filter made of tetrafluoroethylene (PTFE), which can be efficiently filtered, and the filtered CNTs can be efficiently recovered. Also, thick cellulose filter paper or glass fiber filter paper can be used, but if these filter papers are used, CNTs will be adsorbed inside the filter paper. From the viewpoint of yield, it is preferable to use a membrane filter.
[0019]
In the present invention, the conductivity of the purified CNT can be determined as follows. First, purified CNTs are dispersed in a solvent, and the CNTs are collected with a membrane filter having a pore size of 0.1 μm. The collected CNTs are in the form of a sheet and are transferred onto a glass substrate to obtain a CNT film. The electrical conductivity of the CNT film can be determined by a four-terminal method using four electrodes.
[0020]
【Example】
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.
[0021]
Example 1
10 mg of CNT containing impurities such as amorphous carbon (single-wall CNT: manufactured by Carbolex Co., USA, purity: 70%) and 10 mg of poly-3-hexylthiophene, a linear conjugated polymer (manufactured by Aldrich, molecular weight: Mw 20,000) And 20 mL of chloroform was placed in a 50 mL glass sample tube and subjected to ultrasonic irradiation for 30 minutes using an ultrasonic crusher (VCX-520 manufactured by Tokyo Rika Kikai; output 250 W, direct irradiation). Suspended. When 5 mL of this suspension was fractionated and suction-filtered using a PTFE Omnipore membrane filter (25 mm in diameter, manufactured by Advantech) having a nominal pore diameter of 10 μm, many separated substances were obtained on the filter. The filter to which the separated substance was attached was placed in a glass sample tube containing 10 mL of chloroform, and was irradiated with ultrasonic waves for 5 minutes using an ultrasonic washing machine. As a result, the separated substance was well dispersed in chloroform. A small amount of this solution was fractionated with a spatula, dropped on a silicon wafer, air-dried, and observed with an atomic force microscope (AFM). The results are shown in FIG. Most of the filtered product was CNT, and the purity of CNT was 90% from the area ratio. The area ratio is calculated by adding the sum of the areas of the CNTs present in the AFM image and the sum of the areas of the lump as a denominator, and assigning the sum of the areas of the CNTs as the numerator and assigning them by the denominator. It was calculated and found.
[0022]
On the other hand, a small amount of the filtrate passed through the filter in the first filtration was fractionated with a spatula and observed by AFM. As shown in FIG. 2, it was found that most of the filtrate was a lump and CNTs were selectively fractionated. I support it.
[0023]
Comparative Example 1
10 mg of the CNT containing the impurities used in Example 1 and 20 mL of chloroform were put into a 50 mL glass sample tube, and an ultrasonic cleaner (US-2 manufactured by Inuchi Seieido: output 120 W, indirect irradiation) was used for 30 minutes. Upon irradiation with ultrasound, the liquid was non-uniformly suspended. A small amount of this solution was fractionated with a spatula, dropped on a silicon wafer, air-dried, and observed with an atomic force microscope (AFM). The results are shown in FIG. Almost all were lump such as amorphous carbon, and the size was many 1 μm or more, and it was found that CNT existed so as to adhere to the lump. Next, this heterogeneous suspension was subjected to suction filtration using a PTFE omnipore membrane filter (25 mm in diameter, manufactured by Advantech) having a nominal pore diameter of 10 μm. All the suspensions were collected, and the filtrate was only chloroform. Was.
[0024]
Comparative Example 2
The same operation as in Example 1 was performed except that poly-3-hexylthiophene was not added to the suspension preparation. The filtrate was redispersed and subjected to AFM observation. As a result, a lot of lump such as amorphous carbon was observed in addition to CNT, and it was not purified at all.
[0025]
Example 2
Poly [2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylenevinylene] (Aldrich) which is a linear conjugated polymer in place of poly-3-hexylthiophene when preparing a suspension The same operation as in Example 1 was performed except that the molecular weight was 86,000). The filtrate was redispersed and subjected to AFM observation. As a result, it was found to be finely purified, and the purity was 80% based on the area ratio between CNT and impurities.
[0026]
Comparative Example 3
The same as Example 1 except that poly-m-phenylenevinylene (PmPV) (the method disclosed in JP-A-2000-44216) was used instead of poly-3-hexylthiophene in preparing the suspension. The operation was performed. When the filtered material was redispersed and subjected to AFM observation, a large amount of lump such as amorphous carbon was observed in addition to CNT, and the purity was not so high.
[0027]
Comparative Example 4
Purification of CNT was attempted according to a known method (Japanese Patent No. 2522469). When 10 mg of CNT containing impurities and 20 mL of ethanol were placed in a 50 mL glass sample tube and subjected to ultrasonic irradiation using an ultrasonic crusher (output 250 W, direct irradiation) for 30 minutes, the liquid was unevenly suspended. . When this solution was filtered through a glass filter having a pore size of 10 μm, all the suspensions were separated by filtration. When the filtrate was observed by AFM, it did not contain both CNT and impurities, and was not purified.
[0028]
Example 3
Except that poly-3-hexylthiophene was changed to poly-3-octylthiophene (manufactured by Aldrich, molecular weight: Mw 67000), the same operation as in Example 1 was performed. Was carried out, the product was finely purified, and the purity was 90% based on the area ratio between CNT and impurities.
[0029]
Example 4
Except that poly-3-hexylthiophene was changed to poly-3-dodecylthiophene (manufactured by Aldrich, molecular weight: Mw 32000), the same operation as in Example 1 was performed, and a redispersion of the separated product was collected to observe AFM. Was carried out, the product was finely purified, and the purity was 90% based on the area ratio between CNT and impurities.
[0030]
Example 5
The same operation as in Example 1 was performed, except that CNT was changed to Honjo Chemical CNT (single-wall CNT, purity: 10% or less). A redispersion liquid of the separated product was collected and subjected to AFM observation. Was improved, and the purity was 60% based on the area ratio between CNT and impurities.
[0031]
Example 6
The CNTs having a high purity by the purification method of Example 1 were irradiated with ultrasonic waves in chloroform for 1 hour by an ultrasonic cleaner, and a PTFE omnipore membrane filter having a nominal pore diameter of 5 μm (Advantech, 25 mm in diameter) was used. After filtration with suction, many separated products were obtained again. The filter to which the separated substance was attached was placed in a glass sample tube containing 10 mL of chloroform, and was irradiated with ultrasonic waves for 5 minutes using an ultrasonic washing machine. As a result, the separated substance was dispersed again in chloroform. As a result of micro-fractionation of this solution with a spatula and observation with AFM, the purity was 99% or more.
[0032]
Example 7
CNTs obtained by the purification method of Example 1 were collected on a membrane filter having a pore size of 0.1 μm, transferred to a glass substrate, and the obtained CNT film was measured for electrical conductivity by a four-terminal method. , 60 S / cm.
[0033]
Comparative Example 5
CNTs obtained by the purification method of Comparative Example 3 were collected on a membrane filter having a pore size of 0.1 μm, transferred to a glass substrate, and the obtained CNT film was measured for electrical conductivity by a four-terminal method. And 2 × 10 −3 S / cm.
[0034]
【The invention's effect】
By using the purification method of the present invention, high-purity CNT can be obtained.
[Brief description of the drawings]
FIG. 1 is an atomic force micrograph of CNT fractionated in Example 1.
FIG. 2 is an atomic force micrograph of a lump contained in a filtrate after CNT filtration in Example 1.
FIG. 3 is an atomic force micrograph of a suspension in Comparative Example 1.

Claims (6)

不純物を含むカーボンナノチューブを直鎖状共役系重合体と共に溶媒に懸濁させ、得られた懸濁液から濾別によりカーボンナノチューブを分取することを特徴とするカーボンナノチューブの精製方法。A method for purifying carbon nanotubes, comprising suspending carbon nanotubes containing impurities in a solvent together with a linear conjugated polymer, and separating the carbon nanotubes from the resulting suspension by filtration. 懸濁液の調製を超音波照射により行う請求項1記載のカーボンナノチューブの精製方法。The method for purifying carbon nanotubes according to claim 1, wherein the suspension is prepared by ultrasonic irradiation. 孔径が0.5〜20μmのメンブレンフィルターを用いて濾別を行う請求項1または2に記載のカーボンナノチューブの精製方法。The method for purifying carbon nanotubes according to claim 1 or 2, wherein the filtration is performed using a membrane filter having a pore size of 0.5 to 20 µm. 直鎖状共役系重合体がポリチオフェン系重合体である請求項1〜3のいずれか1項に記載のカーボンナノチューブの精製方法。The method for purifying carbon nanotubes according to any one of claims 1 to 3, wherein the linear conjugated polymer is a polythiophene polymer. ポリチオフェン系重合体がポリ−3−アルキルチオフェン、ポリ−3−アルコキシチオフェンおよびポリ−3−(アルキルチオ)チオフェンから選ばれる少なくとも1種である請求項4記載のカーボンナノチューブの精製方法。The method for purifying carbon nanotubes according to claim 4, wherein the polythiophene-based polymer is at least one selected from poly-3-alkylthiophene, poly-3-alkoxythiophene, and poly-3- (alkylthio) thiophene. カーボンナノチューブが単層カーボンナノチューブである請求項1〜5のいずれか1項に記載のカーボンナノチューブの精製方法。The method for purifying a carbon nanotube according to any one of claims 1 to 5, wherein the carbon nanotube is a single-walled carbon nanotube.
JP2003116700A 2003-04-22 2003-04-22 Carbon nanotube purification method Expired - Fee Related JP4306316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116700A JP4306316B2 (en) 2003-04-22 2003-04-22 Carbon nanotube purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116700A JP4306316B2 (en) 2003-04-22 2003-04-22 Carbon nanotube purification method

Publications (2)

Publication Number Publication Date
JP2004323258A true JP2004323258A (en) 2004-11-18
JP4306316B2 JP4306316B2 (en) 2009-07-29

Family

ID=33496818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116700A Expired - Fee Related JP4306316B2 (en) 2003-04-22 2003-04-22 Carbon nanotube purification method

Country Status (1)

Country Link
JP (1) JP4306316B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248888A (en) * 2005-02-10 2006-09-21 Toray Ind Inc Method of manufacturing carbon nanotube
JP2006265035A (en) * 2005-03-24 2006-10-05 National Institute Of Advanced Industrial & Technology Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film
WO2007100306A1 (en) * 2006-03-01 2007-09-07 National University Of Singapore Carbon nanotube(s) and method for making the same
JP2008238162A (en) * 2007-02-27 2008-10-09 Samsung Electronics Co Ltd Dispersant for carbon nanotube and carbon nanotube composition comprising the same
JP2009526733A (en) * 2006-02-14 2009-07-23 エルジー・ケム・リミテッド Rigid random coil and composition containing the same
CN100562491C (en) * 2006-08-23 2009-11-25 中国科学院金属研究所 The method of a kind of purification of Multi-wall Carbon Nanotubes or carbon nano fiber
US9156698B2 (en) 2012-02-29 2015-10-13 Yazaki Corporation Method of purifying carbon nanotubes and applications thereof
CN109809390A (en) * 2017-11-21 2019-05-28 北京华碳元芯电子科技有限责任公司 The method of purification of semi-conductive single-walled carbon nanotubes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248888A (en) * 2005-02-10 2006-09-21 Toray Ind Inc Method of manufacturing carbon nanotube
JP2006265035A (en) * 2005-03-24 2006-10-05 National Institute Of Advanced Industrial & Technology Carbon nanotube-containing thin film, method for manufacturing the thin film, and photoelectric conversion material, photoelectric transducer, electroluminescent material and electroluminescence device equipped with the thin film
JP2009526733A (en) * 2006-02-14 2009-07-23 エルジー・ケム・リミテッド Rigid random coil and composition containing the same
WO2007100306A1 (en) * 2006-03-01 2007-09-07 National University Of Singapore Carbon nanotube(s) and method for making the same
CN100562491C (en) * 2006-08-23 2009-11-25 中国科学院金属研究所 The method of a kind of purification of Multi-wall Carbon Nanotubes or carbon nano fiber
JP2008238162A (en) * 2007-02-27 2008-10-09 Samsung Electronics Co Ltd Dispersant for carbon nanotube and carbon nanotube composition comprising the same
US9156698B2 (en) 2012-02-29 2015-10-13 Yazaki Corporation Method of purifying carbon nanotubes and applications thereof
US9672991B2 (en) 2012-02-29 2017-06-06 Yazaki Corporation Purified carbon nanotubes
US9799460B2 (en) 2012-02-29 2017-10-24 Yazaki Corporation Purified carbon nanotubes and applications thereof
CN109809390A (en) * 2017-11-21 2019-05-28 北京华碳元芯电子科技有限责任公司 The method of purification of semi-conductive single-walled carbon nanotubes
CN109809390B (en) * 2017-11-21 2020-12-29 北京华碳元芯电子科技有限责任公司 Purification method of semiconductor single-walled carbon nanotube

Also Published As

Publication number Publication date
JP4306316B2 (en) 2009-07-29

Similar Documents

Publication Publication Date Title
Rathinavel et al. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application
Furtado et al. Debundling and dissolution of single-walled carbon nanotubes in amide solvents
KR101748894B1 (en) Solvent-based and water-based carbon nanotube inks with removable additives
Hou et al. Purification of carbon nanotubes
Moon et al. High-yield purification process of singlewalled carbon nanotubes
Hirsch et al. Functionalization of carbon nanotubes
EP1112224B1 (en) Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes
JP3951896B2 (en) A method for treating a carbonaceous material, a carbon nanotube dispersion, and a solution.
US20020068170A1 (en) Polymer-wrapped single wall carbon nanotubes
Ribeiro et al. Purification of carbon nanotubes produced by the electric arc-discharge method
WO2003090255A2 (en) Encapsulation of nanotubes via self-assembled nanostructures
JP2009149505A (en) Method for treating carbon nanotube, carbon nanotube and carbon nanotube device containing the carbon nanotube
Rakov Chemistry of carbon nanotubes
Lee et al. Short carbon nanotubes produced by cryogenic crushing
Pillai et al. Purification of multi-walled carbon nanotubes
Matsuzawa et al. Effective nondestructive purification of single-walled carbon nanotubes based on high-speed centrifugation with a photochemically removable dispersant
JP4306316B2 (en) Carbon nanotube purification method
Makama et al. Recent developments in purification of single wall carbon nanotubes
JP2009023886A (en) Carbon nanotube dispersion liquid, its production process and its use
Duesberg et al. Modification of single-walled carbon nanotubes by hydrothermal treatment
JP2004002156A (en) Working method of carbon nanotube
JP2005154200A (en) Method for producing carbon nanotube
Tripathi et al. A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization
Belyakov Carbon nanotubes for the synthesis of ceramic matrix composites (cleaning, dispersion, surface modification)
KR20040075620A (en) Preparation of novel carbon nanotubes-nucleic acids conjugates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees