JP2004320361A - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP2004320361A
JP2004320361A JP2003110614A JP2003110614A JP2004320361A JP 2004320361 A JP2004320361 A JP 2004320361A JP 2003110614 A JP2003110614 A JP 2003110614A JP 2003110614 A JP2003110614 A JP 2003110614A JP 2004320361 A JP2004320361 A JP 2004320361A
Authority
JP
Japan
Prior art keywords
information
color
shape information
sequential information
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110614A
Other languages
English (en)
Inventor
Shigeru Tsukimura
滋 月村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2003110614A priority Critical patent/JP2004320361A/ja
Publication of JP2004320361A publication Critical patent/JP2004320361A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Storing Facsimile Image Data (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Record Information Processing For Printing (AREA)
  • Color, Gradation (AREA)
  • Image Generation (AREA)

Abstract

【課題】高速な描画処理が可能であるとともに、部分的な高解像度化に対応して高品質の画像形成を可能とし、さらに高解像度化したときの白抜けも防止した画像処理装置を提供する。
【解決手段】展開処理部11は、描画命令に従って展開メモリ12に対して画素毎に拡張点順次情報の書き込みを行う。拡張点順次情報は、3色のカラー点順次情報とともに、形状情報の有無を示す情報と、形状情報がある場合にはその形状情報を保持する。そして、形状情報を保持する場合、カラー点順次情報として背景色の情報を保持する。点順次情報では、各色成分及び形状情報等を一括して展開メモリ12に書き込むことができ、展開メモリ12へのアクセス回数を減少させて処理を高速化することができる。また、形状情報による高解像度化と、背景色によって白抜けを防止することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、与えられた描画命令に従って描画オブジェクトを展開処理する画像処理技術に関するものである。
【0002】
【従来の技術】
パーソナルコンピュータなどの上位処理装置から記録装置や表示装置などの出力装置に画像を表示させる場合、上位処理装置から出力される描画命令に従って描画オブジェクトを描画処理し、ビットマップイメージを生成する展開処理が行われる。現在の記録装置の一般的な解像度は600dpi程度であるが、展開処理では、このような出力装置の解像度に合わせて展開処理を行っている。
【0003】
しかし、文字や線画などにおいては、600dpi程度の解像度では斜めのエッジ部にジャギーと呼ばれる凹凸が視認され、視覚的な画質の劣化を生じてしまう。このようなジャギーを低減するため、いくつかの手法が提案されている。
【0004】
図10は、イメージエンハンス技術の一例の説明図である。ジャギーを低減するための一つの方法として、イメージエンハンス技術がある。この技術は、例えば図10(A)に示すような斜めの階段状の部分について、図10(B)に示すように段差よりも小さな画素を擬似的に埋めることによって、斜めの部分の段差を少なくしてなだらかにする技術である。このような技術によって、斜め線の部分におけるジャギーを低減することができる。
【0005】
しかし、例えば図10(C)に示すように線同士が90度で交差する付近では、交点付近を階段状の部分であると誤判定し、図10(D)に示すように斜めに画素を埋め込むことによってエッジが鈍るという副作用が発生してしまう。また、量子化誤差によって図10(E)に示すように線の幅が不均一となったり、あるいは図10(F)に示すように線の間隔が不均一になるという不具合については、このイメージエンハンス技術では解決することはできない。
【0006】
図11は、パルス幅変調方式の一例の説明図である。このパルス幅変調方式は、記録装置として電子写真方式を用いる場合の高解像度化の方法の一つである。具体的には、中間調のビデオデータに対し、参照する三角波の種類を切り替えて出力する。例えば図11(A)に示すように、1画素中で次第に電圧の高くなる三角波を用い、しきい値以下の電圧において記録されるように制御する。これによって、1画素の左側においてしきい値に応じた面積が記録される。同様に図11(B)に示すように、1画素中で次第に電圧の低くなる三角波を用い、しきい値以下の電圧において記録されるように制御する。これによって、1画素の右側においてしきい値に応じた面積が記録される。例えば特許文献1などにも、このパルス幅変調方式が記載されている。
【0007】
図11においてはしきい値を三角波の最大電圧と最小電圧の間の50%に設定した例を示しており、これによって1画素の半分の面積に記録することができる。例えば図11(A)または図11(B)のいずれかを選択することによって、水平方向の解像度を部分的に2倍に向上させることができる。もちろん、しきい値を変更すればさらに細かく制御可能であるし、他の三角波を用いることもある。
【0008】
通常の色情報は濃度を表現するが、エッジ部などの高解像度が必要な画素については濃度の代わりに図形の形状を表す形状情報を保持させ、両者を識別する情報(以下、タグと呼ぶ)を付加する。例えば図11に示す例では、図11(A)に示す三角波か、あるいは図11(B)に示す三角波のいずれを選択するかを示す情報を形状情報として保持し、形状情報を保持している旨を示すタグを付加すればよい。これによって、部分的に解像度を向上させることができ、またページ全体を高解像度で保持しなくともよいためデータ量を低減することができ、オブジェクトの特性にあった解像度と階調性を両立することができる。さらに、イメージエンハンス技術において解決できなかった線幅や線の間隔についても均一にすることが可能である。
【0009】
特許文献3には、上述のような形状情報の保持方法の一例が記載されており、階調数の一部を形状情報に割り当て、具体的には256階調のうち16階調分を形状情報に用い、240階調により濃度を表すことが記載されている。この場合、タグを別途付加しなくても濃度情報のビットを参照するだけで形状情報であるのか濃度情報であるのかを識別することが可能である。しかし、階調数が減少するため、表現可能な濃度あるいは色数が減少してしまい、再現性に問題がある。
【0010】
図12は、パルス幅変調方式を適用した場合の白抜けへの対応の説明図である。記録装置において画像の記録出力を行う場合、3色の色材(シアン(C)、マゼンタ(M)、イエロー(Y))とともに黒(K)の色材を用いる場合が多い。このような記録装置において黒の文字や線画を描画する場合には、通常、黒(K)の色材を用い、他のCMYの色材を用いないように描画する。上述のようなパルス幅変調方式を用いるための形状情報を利用する場合も同様であり、黒(K)の濃度の代わりに形状情報を出力し、他の色成分については濃度を0(白色)としている。しかし、黒の文字や線画の周辺画素が白以外の有色の場合には、形状情報を用いて1画素の一部のみに記録したために、白地が露出してしまい、白抜けが発生する。
【0011】
図12(A)ではC、Yによる緑の画像上に文字「あ」を描画した場合を示している。なお、図12において色材色CMYKのほかにTと記したのはタグを表している。背景となる緑の画素は、形状情報を含まない一般の画素であるため、タグを‘N’として示している。このような緑の背景上に黒の文字「あ」を描画するとき、文字のエッジ部分では、黒の濃度情報の代わりに形状情報を保存する。この状態を図12(B)に示している。中央の画素において左半分が黒くなっているが、この画素のタグを‘G’として形状情報を含むことを示し、K色の濃度として左半分を記録することを示す情報を保持させる。しかし、このように単純に形状情報を適用すると、中央の画素の右半分が白く抜けているのが分かる。この白抜けが原因となり、文字そのものの画質は向上しても、ページ全体で見た場合に画質が劣化してしまう場合がある。
【0012】
このような不具合を解消するため、形状情報をK色の濃度の代わりに保持するとともに、他のCMY色については黒の文字や線画としての描画を行わずに背景の色を残すことが考えられている。例えば図12(C)に示すように、タグは形状情報を含むことを示し、形状情報をK色の濃度情報の代わりに保持するとともに、背景の緑色を示すC、Y色の濃度をそのまま保存する。これによって、エッジ部の画素について、K色の色材で左半分に記録されるとともに、C、Y色の色材でも背景色が記録され、白抜けは防止される。なお、このような白抜けの防止処理については、例えば特許文献2等に記載されている。
【0013】
図13は、従来の描画処理の具体例の説明図である。上述のように、記録装置において画像の記録出力を行う場合、CMYKの4色の色材を用いる場合が多いが、それぞれの色材に対応する色成分の画像ごとに、記録装置が必要とする画素位置が異なっている。そのため、このような記録装置に対して画像を出力する画像処理装置においては、記録装置への画像の出力が容易に行えるように、それぞれの色材色ごとの画像、いわゆる面順次の画像を生成している。
【0014】
図13に示す例では、緑色の矩形を描画した後に黒の文字「あ」を描画する例を示している。面順次の画像として描画処理を行う場合、図13(A)に示すようにそれぞれの色材色、例えばC、M、Y、Kごとに領域を確保する。図13では、それぞれの色の画像領域を平行四辺形で示している。もちろん、上述のようにタグを保持する場合には、このほかにタグの領域も別途確保することになる。
【0015】
そして、描画命令に従って、描画オブジェクトを各色の領域に描画してゆく。まず図13(B)では、緑色の矩形を描画する。緑色はC色とY色の混合色(2次色)であるので、C色の領域とY色の領域には例えば最大濃度の値を書き込み、M色とK色の領域には例えば最小濃度の値を書き込む。
【0016】
次に図13(C)において、文字「あ」を描画する。この場合には従来の一般的な描画方法では、K色の領域に例えば最大濃度の値を書き込み、C色、M色、Y色の領域には例えば最小濃度の値を書き込む。しかし、上述のように白抜けを防止する場合には、少なくとも文字「あ」のエッジ部分について、C、M、Y色として背景となる色をそのまま残した上で、K色の領域に形状情報を書き込む。
【0017】
このように、描画処理を行う際には描画命令に従って描画オブジェクト毎に上述のようにしてそれぞれの色の領域に対して濃度値を書き込んでゆく処理を繰り返すことになる。
【0018】
このように、描画処理は描画オブジェクトをそれぞれの色の領域に書き込むため、1画素についてメモリへの書き込みを4回以上繰り返して行うことになる。そのため、描画処理はCPU演算と比較するとメモリのアクセス時間を非常に多く必要とする処理であり、時間のかかる処理であった。
【0019】
一方、点順次の場合には、一般に赤(R)、緑(G)、青(B)の3色が用いられるが、いずれの色を表現するにしても3色の濃度情報が必要となる。そのため、例えば黒の文字や線画などについて黒を表現するために3色の濃度情報が必要である。従来はこのような点順次の情報において高解像度化を図るための形状情報を保持しようとする考えはないし、仮に形状情報を濃度情報に代えて保持させようとすると、背景の色情報を保持できないという問題があった。
【0020】
【特許文献1】
特許第3266576号公報
【特許文献2】
特開2000−242461号公報
【特許文献3】
特開平8−223423号公報
【0021】
【発明が解決しようとする課題】
本発明は、上述した事情に鑑みてなされたもので、高速に描画処理を行うことができるとともに、部分的な高解像度化に対応して高品質の画像形成を可能とし、さらに高解像度化したときの白抜けも防止した画像処理装置及び画像処理方法を提供することを目的とするものである。
【0022】
【課題を解決するための手段】
本発明は、与えられた描画命令に従って描画オブジェクトの描画処理を行う画像処理装置及び画像処理方法において、与えられた描画命令に従って描画オブジェクトを第1の解像度で色の3要素データを点順次で展開してカラー点順次情報を生成する。このとき、文字や線画のエッジ部など、少なくとも所定の描画オブジェクトのエッジ部については、第1の解像度よりも高い第2の解像度でエッジ部の形状を表現した形状情報を生成し、カラー点順次情報と形状情報を第1の解像度の画素毎に拡張点順次情報として展開メモリに書き込むことを特徴としている。なお拡張点順次情報は、形状情報が生成された画素については形状情報とカラー点順次情報を含み、それ以外の画素については形状情報が含まれない旨の情報とカラー点順次情報を含むように構成することができる。
【0023】
カラー点順次情報は画素毎に各色の濃度情報が一体となっているため、形状情報と合わせても1画素当たりの展開メモリへのアクセス回数を減少させることができ、処理の高速化を図ることができる。特に、形状情報とカラー点順次情報を一括して展開メモリに書き込むことによって、1画素当たりの展開メモリへのアクセスを1回で済ますことができる。このとき、形状情報とカラー点順次情報のビット数を、使用するデータバス幅に収まるように構成しておくとよい。
【0024】
また、第1の解像度よりも高い第2の解像度における形状情報をカラー点順次情報とともに展開メモリに保持させるので、高解像度化に対応することができる。それとともに、形状情報とともに背景色をカラー点順次情報として保持することによって、白抜けも防止することができる。なお、形状情報を生成する画素におけるカラー点順次情報が最高濃度を表している場合には、背景色と描画色が同色であるので、わざわざ形状情報を保持する必要がない。従ってこのような場合には、形状情報の展開メモリへの書き込みを禁止するように構成することができる。
【0025】
描画命令の中には、ROP(Raster OPeration)演算を指示するものがある。形状情報を含む拡張点順次情報についてROP処理をそのまま行ってしまうと、演算結果が意味をなさなくなる場合が生じる。このような問題を回避するため、形状情報を伴う拡張点順次情報が前記展開メモリに保持されている画素については、形状情報を伴わない一般の画素と同様の拡張点順次情報に変換してからROP演算を行うように構成するとよい。また、形状情報を含む拡張点順次情報ではカラー点順次情報として背景色が保持されているため、これを最高濃度に変更することによって、正確なROP演算を行うことが可能となる。
【0026】
さらに、描画後、展開メモリに保持されている拡張点順次情報を出力する際には、拡張点順次情報が形状情報を伴うか否かを判定し、形状情報を伴わない場合には色空間変換処理及びカラー点順次情報を各色ごとの面順次情報へ変換する点面変換処理を行って面順次情報を出力する。また、形状情報を伴う場合には、形状情報を用いて所定の色版について高解像度出力処理を行うとともにカラー点順次情報について色空間変換処理及び点面変換処理を行って面順次情報を出力すればよい。
【0027】
【発明の実施の形態】
図1は、本発明の実施の一形態を示すブロック図である。図中、1は画像処理部、2は出力部、11は展開処理部、12は展開メモリ、13は出力制御部である。この例においては、画像処理部1は例えば上位処理装置などから描画命令を受け取り、その描画命令に従って順に描画オブジェクトの展開処理を行う。そして、展開された画像を出力部2に対して出力する。出力部2は、例えばCMYK等の色材を用いて画像を形成する記録装置などであり、面順次情報を受け取るものとする。画像処理装置1では、出力部2に対応し、CMYKなどの色材色の画像を面順次で出力するものとする。なお、出力部2は図11に示したような高解像度化のための出力制御が可能であるものとする。
【0028】
画像処理部1は、展開処理部11、展開メモリ12、出力制御部13等を含んで構成されている。展開処理部11は、与えられた描画命令を順に解釈し、描画命令に従って描画オブジェクトを第1の解像度で色の3要素データを点順次で展開してカラー点順次情報を生成する。また、文字や線画などのエッジ部など、少なくとも所定の描画オブジェクトのエッジ部については、第1の解像度よりも高い第2の解像度でエッジ部の形状を表現した形状情報を生成する。そして、形状情報を生成しなかった描画画素については、形状情報を含まない旨の情報とカラー点順次情報を拡張点順次情報として展開メモリ12に書き込む。また、形状情報を生成した描画画素については、生成した形状情報とカラー点順次情報を拡張点順次情報として展開メモリ12に書き込む。形状情報とともにカラー点順次情報を拡張点順次情報として書き込む場合、カラー点順次情報として背景色を保持させておき、高解像度化の処理の際の白抜けを防止する。なお、カラー点順次情報が出力部2における最高濃度(例えば黒)を示している場合には、その上に黒の文字や線画を描画しても同色となって見えないため、高解像度化しても無駄になる。そのため、このような場合には形状情報を展開メモリ12へ書き込まないようにし、一般の画素と同様に扱うと良い。また画像処理部1は、描画命令に従ってROP処理を行うことができる。このときの処理については後述する。
【0029】
展開メモリ12は、展開処理部11で生成された拡張カラー点順次情報を第1の解像度の画素毎に保持する。図2は、拡張点順次情報のデータフォーマットの具体例の説明図、図3は、形状情報が示す画像形成位置の一例の説明図である。図2に示した例では、拡張点順次情報には、カラー点順次情報としてB、G、Rの3色についてそれぞれの色の濃度情報とともに、タグ情報、形状情報が含まれている。タグ情報には、少なくとも形状情報が含まれているか否かを示すビットが含まれている。タグ情報には、このほかにも画素の属性情報などが含まれる場合がある。
【0030】
また形状情報は、ここでは上述のようなパルス幅変調方式により高解像度により画像形成を行う場合の画像形成位置を示している。形状情報が示す画像形成位置の一例を図3に示している。図3(A)には図11に具体例を示したように左半分あるいは右半分の記録のいずれかを選択することによって主走査方向の解像度を2倍にした場合を示している。この場合、2つのパターンのいずれかを選択するための情報を形状情報とすればよい。図3(B)に示した例は主走査方向とともに副走査方向についても解像度を2倍とした場合の例を示しており、14通りのパターンが存在する。このパターンのいずれかを選択するための情報を形状情報とすればよい。もちろんこのほかのパターンを設定しておき、それらのパターンを選択するための情報を形状情報としても良い。このような形状情報を用いることによって、出力部2において高解像度の画像形成が可能となる。なお、形状情報を生成しない場合には、形状情報のフィールドは利用しないか、あるいはタグ情報のフィールドの一部として利用することができる。
【0031】
なお、図3に示したように形状情報としてどのような形状を保持するかによって、必要とするビット数が異なってくる。記録する領域の分割数が増えれば解像度は高くなるが、その分情報量が増え、形状情報として必要なビット数が増えてしまう。そのため、出力部2が表現できる実質解像度や処理時間を考慮して、分割数など、どのような形状を形状情報として保持するかを決めるのが望ましい。
【0032】
カラー点順次情報であるB、G、Rの3色の濃度情報とは別に形状情報を保持しているため、点順次情報でありながら、形状情報とともに背景色の情報を保持することが可能である。すなわち、形状情報が含まれている場合、そのカラー点順次情報として背景色を保持しておくことができる。これによって、出力部2で形状情報を用いた高解像度出力を行う際に白抜けの発生を防止することができる。
【0033】
一般にB、G、Rの各色の濃度情報は8ビットで表現されることが多い。またタグ情報及び形状情報を8ビットで表現することによって、全体として32ビットで表現することができる。このビット幅は現在一般に使用されているデータバス幅の範囲内であり、図2に示す拡張点順次情報は1画素分を1回の展開メモリ12へのアクセスによって書き込むことができる。従来の面順次情報では、タグを含めて5回の異なるアドレスへのアクセスが必要であったのに比べて展開メモリ12へのアクセス回数を大幅に減少させることができ、処理を高速化することができる。
【0034】
もちろんデータフォーマットは図2に限られるものではないし、それぞれのビット数も上述の説明に限られるものではない。また、保持する色成分もRGBに限られるものではないことは言うまでもない。カラー点順次情報と、形状情報の有無、それに形状情報有りとした場合に形状情報が付加されるデータであれば任意である。
【0035】
展開メモリ12には、上述のような画素毎の拡張点順次情報が並べられることになる。例えば同じスキャンライン上の画素の拡張点順次情報は、連続した領域に書き込んでおくことができる。
【0036】
出力制御部13は、展開メモリ12に保持されている拡張点順次情報を面順次情報として出力部2へ出力する。出力の際には、出力部2が要求する色空間への色空間変換処理や点順次情報を面順次情報に変換する点面変換処理などを施す。また、拡張点順次情報中に形状情報が含まれている場合には、その形状情報に応じた高解像度処理により出力部2において部分的に高解像度の出力処理が行われるように制御する。
【0037】
次に、本発明の実施の一形態における動作の概要について説明する。図4は、展開処理部における1つの描画命令に対する動作の一例を示すフローチャートである。ここでは解像度の具体例として、通常の第1の解像度を600dpiとし、それよりも高解像度の第2の解像度を1200dpiとして説明する。展開処理部11は、描画命令を受け取ると、受け取った描画命令について1つずつ順に図4に示した処理を行う。なお、描画オブジェクトを描画する際の処理については、例えば特許文献1、特許文献2に記載されている内容とほぼ同様であるが、拡張点順次情報を生成するなどの点で異なっている。
【0038】
まずS21において、描画命令中のコマンドを解釈し、その解釈の結果によりS22において処理を分ける。ここでは通常の解像度(600dpi)での文字描画、高解像度(1200dpi)での文字描画、通常の解像度(600dpi)での図形描画、高解像度(1200dpi)での図形描画、写真描画(通常の解像度のみ)、ROP処理、その他の処理に分けている。
【0039】
S23、S25,S27における通常の解像度による文字、図形、写真の描画処理は、それぞれ文字、図形、写真の描画領域内の各画素について、RGBのカラー点順次情報を生成し、また形状情報がない旨の情報を含むタグを付加して、拡張点順次情報として展開メモリ12に書き込む。これによって文字、図形、写真の通常の解像度による描画処理を行う。
【0040】
また、S24,S26における高解像度による文字、図形の描画処理では、少なくともエッジ部の画素について、形状情報を生成する。そして、形状情報がある旨の情報を含むタグと、生成した形状情報の部分について、展開メモリ12に書き込む。カラー点順次情報はそのまま残すことによって背景の色をそのまま利用した新たな拡張点順次情報とすることができる。あるいは、既に展開メモリ12に書き込まれている背景となるカラー点順次情報を取得し、そのカラー点順次情報と、生成した形状情報、それに形状情報がある旨の情報を含むタグを付加して、拡張点順次情報として展開メモリ12に書き込むようにしてもよい。
【0041】
エッジ部以外の画素については、通常の解像度の場合と同様に処理しても良いし、全てを塗りつぶす形状情報を生成してエッジ部の画素と同様に処理を行っても良い。なお、図11に示した形状情報の具体例では、左半分又は右半分の描画を行う形状情報しか示していないが、文字や図形の内部まで形状情報を生成する場合には、全てを塗りつぶす形状情報を追加すればよい。図5は、形状情報を用いた場合と用いない場合における出力部で描画される画像の色材量の説明図である。通常の解像度で黒の文字を描画する場合、図5(A)に示すように黒の色材のみで1画素が形成される。しかし、形状情報を使用し、さらに白抜けの防止のために背景色を保存して出力部2で画像を形成した場合、背景色の上に文字や図形のための色材を乗せることになる。そのため、図5(B)に示すように1画素を形成するための色材量が増大してしまう。このように多くの色材が用いられると、パイルハイトの問題の発生が懸念される。また複数色の色材により画像が形成されるため、黒に他の色が混合され、きれいな黒にならないなど、色の再現性に問題が発生する場合がある。このような問題を回避するためには、文字や図形の内部の画素については、通常の解像度の場合と同様に拡張点順次情報を生成して展開メモリ12に書き込むことが望ましい。そもそも輪郭でない領域は高解像度の情報が必要ないため、通常の解像度での描画を行っても何ら問題はない。
【0042】
なお、黒文字や黒の図形を描画する際に、背景色が黒の場合など、背景色として出力部2で最大濃度で記録されるような場合には、文字や図形を描画しても背景色と同色となり、エッジ部で高解像度にした意味がなくなる。そのため、このような場合には形状情報を生成しないか、拡張メモリ12に書き込まず、通常の解像度での拡張点順次情報を拡張メモリ12に書き込めばよい。
【0043】
図6は、展開処理部によって書き込まれる拡張点順次情報の具体例の説明図である。図6に示す例では、上述の図13に示した例と同様に、緑色の矩形を描画した後に黒の文字「あ」を描画する例を示している。ここでは文字「あ」のエッジ部が描画される位置の1画素について示している。初期状態では、図6(A)に示すようにB、G、Rの3色の濃度がB0,G0,R0であるものとする。また、タグには形状情報無しの情報が含まれている。この場合、形状情報は無効である。
【0044】
図6(B)では、緑色の矩形が描画される。これによって、カラー点順次情報としてはB、G、Rの3色の濃度はB1,G1,R1となる。ここでは矩形の描画は通常の解像度あるいは高解像度であるが矩形内部の画素であるものとして、形状情報を生成していない。従って、タグには形状情報無しの情報が含まれている。
【0045】
次に図6(C)において、文字「あ」を高解像度で描画する。この文字「あ」のエッジ部分では高解像度化のために形状情報を生成する。そしてタグとして形状情報有りの情報を含めておく。さらに、カラー点順次情報として、この時点で展開メモリ12に書き込まれているカラー点順次情報(すなわち背景となる色)をそのまま残す。この場合、例えば展開メモリ12から同じ画素のカラー点順次情報を読み出してタグや形状情報とともに拡張点順次情報を作成して展開メモリ12に書き戻したり、あるいはタグ及び形状情報の部分だけ展開メモリ12に書き込めばよい。このようにして、文字「あ」のエッジ部については、高解像度化のための形状情報と、背景色のカラー点順次情報とを含む拡張点順次情報を展開メモリ12に保持させておくことができる。
【0046】
なお、図13と比較して分かるように、従来の面順次情報ではそれぞれの色成分の領域にそれぞれの色の濃度情報を書き込まなければならず、複数回の展開メモリ12のアクセスが必要であった。しかし本発明の拡張点順次情報では、タグや形状情報を含めても、1回の展開メモリ12のアクセスで書き込むことが可能であり、展開メモリ12のアクセスが頻繁に発生する描画処理においては、処理を高速化することができる。
【0047】
図4に戻り、S28において行うROP処理について説明する。ROP処理は、基本的には展開メモリ12に書き込まれている画像(デスティネーション画像)と、新たに描画しようとする画像(ソース画像)との間で論理演算を行い、展開メモリ12に書き戻す処理である。このほかに2つの論理演算をビット毎に切り替える画像(パターン画像)や演算量域を示す画像(マスク画像)等を用いることもある。
【0048】
図7は、拡張点順次情報を用いたROP処理の一例の説明図である。ROP処理は上述のように画像間での論理演算を行う。このとき、1画素の拡張点順次情報にはタグや形状情報が含まれている。そのため、図7(A)に示すように、デスティネーション画像の拡張点順次情報に形状情報が含まれている場合、ROP処理後は形状情報が必要であるか否かは不明であり、タグあるいはさらに形状情報としてどのような値となるかは分からない。さらには双方とも形状情報が含まれている場合であっても同様である。
【0049】
このような不具合を回避するため、形状情報が含まれている拡張点順次情報についてROP演算を行う場合には、例えば図7(B)に示すように、形状情報を含まない(あるいは形状情報を無効とした)通常の画素の拡張点順次情報に変換してからROP処理を行うことができる。この場合、変換前の形状情報を含む拡張点順次情報は、そのカラー点順次情報として背景色を保持しているので、ROP処理は背景色とのROP演算を行うことになる。
【0050】
別の回避方法として、例えば図7(C)に示すように、文字や図形の内部と同様に黒の通常の解像度の画素の拡張点順次情報に変換し、ROP演算を行うことができる。この場合、当該画素は黒の文字や図形の一部としてROP演算処理がなされることになる。なお、この場合のカラー点順次情報は、最高濃度(黒)としておくことになる。
【0051】
あるいは、図7(B)に示す方法と図7(C)に示す方法のいずれかを、例えば形状情報から記録される面積の割合などから選択するように構成することもできる。もちろんこのほかにも、例えばタグ及び形状情報を必ずマスクし、演算結果については形状情報を含まない通常のタグを付加してしまうなど、他の方法を適用することも可能である。なお、デスティネーション画像が形状情報を含まない場合、ソース画像として拡張点順次情報に形状情報が含まれるケースであっても、形状情報を含まない拡張点順次情報を生成することによって上述の不具合を回避することが可能である。
【0052】
上述のようにして、例えば1ページ分の描画命令について、展開メモリ12に対して描画処理(ROP処理を含む)が終了すると、展開メモリ12に書き込まれた拡張点順次情報は出力制御部13によって読み出され、出力制御部13が出力部2を制御しながら、面順次情報を出力部2に出力し、画像を形成させる。
【0053】
出力制御部13は、展開メモリ12から拡張点順次情報を読み出したとき、まずタグ中の形状情報の有無を判定する。そして、形状情報を含んでいなければ次の図8に示す処理を、また、形状情報を含んでいる場合には、後述する図9に示す処理を行う。
【0054】
図8は、出力制御部における通常の解像度での出力処理の一例を示すフローチャートである。形状情報を含まない通常の画素については、S31において、拡張点順次情報中のRGB色空間のカラー点順次情報をCMYK色空間のカラー点順次情報に色空間変換を行った後、S32において、CMYK色空間のカラー点順次情報をCMYK色空間の面順次情報に変換する点面変換を行う。そして、出力部2に対して通常の画像形成時の参照波を選択させた後、C、M、Y、Kのそれぞれの画像信号を出力部2に出力する。これによって、出力部2では、C、M、Y、Kのそれぞれの色材を用いて当該画素の画像を形成することができる。
【0055】
図9は、出力制御部における高解像度での出力処理の一例を示すフローチャートである。拡張点順次情報中に形状情報が含まれている画素の場合、上述のように文字や線画のエッジ部分は形状情報として保持し、背景色をカラー点順次情報として保持している。カラー点順次情報として保持されている背景色については、図8で説明した処理と同様にして、S41において、RGB色空間のカラー点順次情報をCMYK色空間のカラー点順次情報に色空間変換を行った後、S42において、CMYK色空間のカラー点順次情報を面順次情報に変換する点面変換を行うが、このとき、CMYのみについて面順次情報に変換する。そして、出力部2に対して、C、M、Yについては通常の画像形成時の参照波を選択させた後、C、M、Yのそれぞれの画像信号を出力部2に出力する。これによって、出力部2では、C、M、Yのそれぞれの色材を用いて当該画素の画像を形成することができる。
【0056】
また、形状情報については、S43においてその形状情報をデコードした後、Kについては形状情報で選択される参照波を使用するように出力部2を制御し、Kの画像信号を出力部2に出力する。これによって、出力部2では、Kの色材を用いて、高解像度での画像形成を行うことができる。
【0057】
このように、図8に示した処理あるいは図9に示した処理を、拡張点順次情報中の形状情報の有無を示す情報に応じて選択し、出力制御を行うことによって、出力部2では、部分的に高解像度で画像を形成することができる。また、高解像度で画像を形成する画素については、CMYによって背景色も画像形成するので、白抜けが発生せず、良好な画質で画像を形成することができる。
【0058】
上述の説明においては、黒の文字や図形について、エッジ部を高解像度で形成する場合について示した。本発明はこれに限らず、予め決められた特定の色の文字や図形について、同様に処理することが可能である。
【0059】
また、上述の説明では、展開処理部11が受け取る描画命令については任意であり、例えばPDLなどであっても良いし、また、展開処理部11が受け取る前に中間コードに変換されていても良い。また、ページ毎に展開処理を行うほか、例えばバンド単位で展開するような構成など、種々の展開処理に対して応用することができる。
【0060】
【発明の効果】
以上の説明から明らかなように、本発明によれば、拡張点順次情報として描画した各画素の情報を保持するので、展開メモリへのアクセスを減少させることができ、描画処理を高速に実行することができる。また、拡張点順次情報には、3色のカラー点順次情報とともに、高解像度で画像形成する画素については形状情報を付加することができるので、部分的に高解像度で画像を形成することができる。また、形状情報とともに背景色のカラー点順次情報を保持することによって、高解像度での画像形成を行う場合でも白抜けを防止することができる。このように、高速に描画処理を行うことができるとともに、高画質の画像を形成することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示すブロック図である。
【図2】拡張点順次情報のデータフォーマットの具体例の説明図である。
【図3】形状情報が示す画像形成位置の一例の説明図である。
【図4】展開処理部における1つの描画命令に対する動作の一例を示すフローチャートである。
【図5】形状情報を用いた場合と用いない場合における出力部で描画される画像の色材量の説明図である。
【図6】展開処理部によって書き込まれる拡張点順次情報の具体例の説明図である。
【図7】拡張点順次情報を用いたROP処理の一例の説明図である。
【図8】出力制御部における通常の解像度での出力処理の一例を示すフローチャートである。
【図9】出力制御部における高解像度での出力処理の一例を示すフローチャートである。
【図10】イメージエンハンス技術の一例の説明図である。
【図11】パルス幅変調方式の一例の説明図である。
【図12】パルス幅変調方式を適用した場合の白抜けへの対応の説明図である。
【図13】従来の描画処理の具体例の説明図である。
【符号の説明】
1…画像処理部、2…出力部、11…展開処理部、12…展開メモリ、13…出力制御部。

Claims (18)

  1. 与えられた描画命令に従って描画オブジェクトを第1の解像度で色の3要素データを点順次で展開してカラー点順次情報を生成するとともに少なくとも所定の描画オブジェクトのエッジ部については前記第1の解像度よりも高い第2の解像度で前記エッジ部の形状を表現した形状情報を生成する展開処理手段と、前記展開処理手段で生成された前記カラー点順次情報及び前記形状情報を前記第1の解像度の画素毎に拡張点順次情報として保持する展開メモリを有することを特徴とする画像処理装置。
  2. 前記拡張点順次情報は、前記形状情報が生成された画素については前記形状情報と前記カラー点順次情報を含み、それ以外の画素については形状情報が含まれない旨の情報と前記カラー点順次情報を含むことを特徴とする請求項1に記載の画像処理装置。
  3. 前記拡張点順次情報は、前記形状情報と前記カラー点順次情報を含む場合、該カラー点順次情報が背景色を示すことを特徴とする請求項2に記載の画像処理装置。
  4. 前記展開処理手段は、前記形状情報を生成した場合に該形状情報と前記カラー点順次情報を一括して前記展開メモリに書き込むことを特徴とする請求項1ないし請求項3のいずれか1項に記載の画像処理装置。
  5. 前記形状情報と前記カラー点順次情報のビット数は、使用するデータバス幅に収まることを特徴とする請求項1ないし請求項3のいずれか1項に記載の画像処理装置。
  6. 前記展開処理手段は、前記形状情報を生成する画素における前記カラー点順次情報が最高濃度を表している場合には、前記形状情報の前記展開メモリへの書き込みを禁止することを特徴とする請求項1ないし請求項5のいずれか1項に記載の画像処理装置。
  7. 前記展開処理手段は、ROP演算を行う際に前記形状情報を伴う拡張点順次情報が前記展開メモリに保持されている画素については前記形状情報を伴わない一般の画素と同様の拡張点順次情報に変換してからROP演算を行うことを特徴とする請求項1ないし請求項6のいずれか1項に記載の画像処理装置。
  8. 前記変換した拡張点順次情報中のカラー点順次情報を最高濃度とすることを特徴とする請求項7に記載の画像処理装置。
  9. さらに、前記展開メモリに保持されている拡張点順次情報を面順次情報として出力する出力制御手段を有し、該出力制御手段は、前記拡張点順次情報が前記形状情報を伴うか否かを判定し、前記形状情報を伴わない場合には色空間変換処理及びカラー点順次情報を各色ごとの面順次情報へ変換する点面変換処理を行って出力し、前記形状情報を伴う場合には前記形状情報を用いて所定の色版について高解像度出力処理を行うとともにカラー点順次情報について色空間変換処理及び点面変換処理を行って出力することを特徴とする請求項1ないし請求項8のいずれか1項に記載の画像処理装置。
  10. 与えられた描画命令に従って描画オブジェクトを第1の解像度で色の3要素データを点順次で展開してカラー点順次情報を生成するとともに、少なくとも所定の描画オブジェクトのエッジ部については前記第1の解像度よりも高い第2の解像度で前記エッジ部の形状を表現した形状情報を生成し、前記カラー点順次情報及び前記形状情報を前記第1の解像度の画素毎に拡張点順次情報として展開メモリに書き込むことを特徴とする画像処理方法。
  11. 前記拡張点順次情報は、前記形状情報が生成された画素については前記形状情報と前記カラー点順次情報を含み、それ以外の画素については形状情報が含まれない旨の情報と前記カラー点順次情報を含むことを特徴とする請求項10に記載の画像処理方法。
  12. 前記拡張点順次情報は、前記形状情報と前記カラー点順次情報を含む場合、該カラー点順次情報が背景色を示すことを特徴とする請求項11に記載の画像処理方法。
  13. 前記形状情報を生成した画素については、該形状情報と前記カラー点順次情報を一括して前記展開メモリに書き込むことを特徴とする請求項10ないし請求項12のいずれか1項に記載の画像処理方法。
  14. 前記形状情報と前記カラー点順次情報のビット数は、使用するデータバス幅に収まることを特徴とする請求項10ないし請求項12のいずれか1項に記載の画像処理方法。
  15. 前記形状情報を生成する画素における前記カラー点順次情報が最高濃度を表している場合には、前記形状情報の前記展開メモリへの書き込みを禁止することを特徴とする請求項10ないし請求項14のいずれか1項に記載の画像処理方法。
  16. 与えられた描画命令に従ってROP演算を行う際には、前記形状情報を伴う拡張点順次情報が前記展開メモリに保持されている画素については、前記形状情報を伴わない一般の画素と同様の拡張点順次情報に変換してからROP演算を行うことを特徴とする請求項10ないし請求項15のいずれか1項に記載の画像処理方法。
  17. 前記変換の際に、前記拡張点順次情報中のカラー点順次情報を最高濃度に変更することを特徴とする請求項16に記載の画像処理方法。
  18. さらに、前記展開メモリに保持されている拡張点順次情報を参照して前記拡張点順次情報が前記形状情報を伴うか否かを判定し、前記形状情報を伴わない場合には色空間変換処理及びカラー点順次情報を各色ごとの面順次情報へ変換する点面変換処理を行って面順次情報を出力し、前記形状情報を伴う場合には前記形状情報を用いて所定の色版について高解像度出力処理を行うとともにカラー点順次情報について色空間変換処理及び点面変換処理を行って面順次情報を出力することを特徴とする請求項10ないし請求項17のいずれか1項に記載の画像処理方法。
JP2003110614A 2003-04-15 2003-04-15 画像処理装置及び画像処理方法 Pending JP2004320361A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110614A JP2004320361A (ja) 2003-04-15 2003-04-15 画像処理装置及び画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110614A JP2004320361A (ja) 2003-04-15 2003-04-15 画像処理装置及び画像処理方法

Publications (1)

Publication Number Publication Date
JP2004320361A true JP2004320361A (ja) 2004-11-11

Family

ID=33471426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110614A Pending JP2004320361A (ja) 2003-04-15 2003-04-15 画像処理装置及び画像処理方法

Country Status (1)

Country Link
JP (1) JP2004320361A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259359A1 (en) 2007-04-18 2008-10-23 Canon Kabushiki Kaisha Image processing apparatus, image processing method, computer program, and storage medium
JP2009124614A (ja) * 2007-11-17 2009-06-04 Ricoh Co Ltd 画像処理装置及びこれを備えた画像形成装置、並びに、画像処理方法
US8305589B2 (en) 2007-07-18 2012-11-06 Konica Minolta Business Technologies, Inc. Image processing apparatus, method, and system for generating image data from prints

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259359A1 (en) 2007-04-18 2008-10-23 Canon Kabushiki Kaisha Image processing apparatus, image processing method, computer program, and storage medium
US8150147B2 (en) 2007-04-18 2012-04-03 Canon Kabushiki Kaisha Image processing apparatus, image processing method, computer program, and storage medium
US8509531B2 (en) 2007-04-18 2013-08-13 Canon Kabushiki Kaisha Image processing apparatus, image processing method, computer program, and storage medium
US8305589B2 (en) 2007-07-18 2012-11-06 Konica Minolta Business Technologies, Inc. Image processing apparatus, method, and system for generating image data from prints
JP2009124614A (ja) * 2007-11-17 2009-06-04 Ricoh Co Ltd 画像処理装置及びこれを備えた画像形成装置、並びに、画像処理方法
US8259359B2 (en) 2007-11-17 2012-09-04 Ricoh Company, Limited Image processing device and image forming apparatus equipped with the image processing device

Similar Documents

Publication Publication Date Title
US7505174B2 (en) Image processing method, system and apparatus, and storage medium
JP4743596B2 (ja) 画像処理装置、方法、プログラムおよび記録媒体
JP4956356B2 (ja) 画像処理装置及び画像処理方法
JP4045015B2 (ja) ラスタ画像の解像度向上方法
JPH08235367A (ja) グレーマスキング技術によるアンチエリアシング方法
JPH11313213A (ja) 情報処理装置、情報処理方法及び媒体
JP2009172970A (ja) 画像処理装置、画像処理方法、プログラム及び記録媒体
JP4386216B2 (ja) カラープリントシステム及びその制御方法
JP4428743B2 (ja) 画像処理方法及び装置、プリンタ、画像処理システム及び記憶媒体
JP2001177731A (ja) 画像処理方法、装置および記憶媒体
US7315402B2 (en) Image forming apparatus and method for selecting an optimal image space frequency for an output image
JP3679253B2 (ja) カラー画像出力方法、装置および記録媒体
JP2004320361A (ja) 画像処理装置及び画像処理方法
JP4514168B2 (ja) 画像処理システム及び画像処理方法
JP4356953B2 (ja) 画像処理システム及び画像処理装置及びその制御方法及び記憶媒体
JP4109785B2 (ja) 画像処理装置及びその方法、コンピュータ可読メモリ
JP2009129342A (ja) 画像処理装置及び方法
JP2004334533A (ja) 画像処理装置および画像処理方法
JP4217332B2 (ja) 画像処理装置及びその方法、コンピュータ可読メモリ
JP4306841B2 (ja) 画像処理装置及びその方法、コンピュータ可読メモリ
JP4200369B2 (ja) 画像変換装置
JP4126827B2 (ja) 画像形成装置
JP2005197993A (ja) 画像形成装置、画像形成方法、及びプログラム
JP2885890B2 (ja) 記録制御装置
JPH09270923A (ja) 画像処理装置及び方法