JP2004319887A - Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board - Google Patents

Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board Download PDF

Info

Publication number
JP2004319887A
JP2004319887A JP2003114165A JP2003114165A JP2004319887A JP 2004319887 A JP2004319887 A JP 2004319887A JP 2003114165 A JP2003114165 A JP 2003114165A JP 2003114165 A JP2003114165 A JP 2003114165A JP 2004319887 A JP2004319887 A JP 2004319887A
Authority
JP
Japan
Prior art keywords
resin composition
metal foil
hole
additive
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003114165A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikeguchi
信之 池口
Takakiyo Mine
高清 峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003114165A priority Critical patent/JP2004319887A/en
Publication of JP2004319887A publication Critical patent/JP2004319887A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for forming a blind via hole and a through hole in a substrate having an additive resin composition layer formed on the surface, and to obtain a process for producing a printed wiring board employing it. <P>SOLUTION: After additive B stage resin composition layer with a metal foil is thermally bonded onto the surface of an inner layer plate and cured, surface of the metal foil clad plate is irradiated directly with laser to form a blind via hole and/or a through hole. Since the surface of the resin composition is not contaminated, no protrusion or recess is formed by copper plating after the entire surface layer metal foil and burrs of an inner layer copper foil are dissolved and removed and desmearing is performed. When a circuit of thin line is formed, short circuit and open circuit are eliminated and a good high density printed wiring board can be produced. Furthermore, machining speed is remarkably high as compared with drilling and excellent productivity and economy can be attained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、内層板の表面に形成された金属箔付きアディティブ用樹脂組成物の金属箔上にレーザーを直接照射して孔を形成する方法であり、形状が良好で信頼性に優れたブラインドビア孔及び/又は貫通孔を形成でき、これを用いて製造された高密度の小型プリント配線板は、新規な半導体プラスチックパッケージ、マザーボード用等に使用される。
【0002】
【従来の技術】
従来、アディティブ法で高密度のプリント配線板を製造する場合、炭酸ガスレーザーでブラインドビア孔を形成し、デスミア処理、銅メッキを行い、プリント配線板を作製していた(例えば特許文献1参照)。金属ドリルで貫通孔あけする場合、余り小径の孔は形成できない、加工速度が遅い等の欠点があった。また、表層に金属箔が無い構成で炭酸ガスレーザー等を用いて貫通孔をあけようとすると、レーザーの照射数が表面の樹脂に対して多くなるために表裏の孔径が同一とならず、その後の加工でランド切れが発生する等の問題が発生していた。更に樹脂等の加工屑が飛散し、表面のアディティブ用樹脂組成物層に付着し、その後のデスミア処理で除去できないと銅メッキ付着後の回路形成で回路ショート、切断が発生していた。これはブラインドビア孔を形成する場合でも同様で、問題のあるものであった。
【0003】
【特許文献1】特開XXXXXXXXX号公報
【0004】
【発明が解決しようとする課題】
本発明は、以上の問題点を解決した、アディティブ用樹脂組成物が表層に形成された基板に孔形状の良好な小径のブラインドビア孔及び/又は貫通孔を形成するためのレーザー孔あけ方法及びそれを用いたプリント配線板の製造方法を提供するものである。
【0005】
【発明が解決するための手段】
内層板の表面に金属箔付きアディティブ用Bステージ樹脂組成物層を加熱して接着形成して硬化処理した後に、この金属箔張板の表面に直接レーザーを照射してブラインドビア孔及び/又は貫通孔を形成することにより、樹脂組成物表面の汚染もなくすことができる。よって、その後に表層金属箔全て及び内層銅箔に発生した銅箔バリを溶解除去しデスミア処理を行った場合、銅メッキした後の銅メッキでの凹凸も発生せず、かつ細線の回路形成においてショートやパターン切れ等の不良の発生もない、良好な高密度のプリント配線板を作製することができた。また、加工速度はドリルであける場合に比べて格段に速く、生産性も良好で、経済性にも優れているものが得られた。
【0006】
【発明の実施の形態】
本発明は、内層板の表面に金属箔付きアディティブ用Bステージ樹脂組成物層を加熱して接着形成して硬化処理した後に、この金属箔張板の表面に直接レーザーを照射してブラインドビア孔及び/又は貫通孔を形成することにより、アディティブ用樹脂組成物表面の汚染もないために、その後金属箔を除去し、デスミア、銅メッキを施して回路を形成しても回路のショート、切断が無いプリント配線板が得られる。
【0007】
本発明で孔あけする基板は、構成として特に限定はなく、表層にアディティブ用樹脂組成物層を有するものであれば良い。例えば、内層板としてガラス織布基材入り両面銅張積層板から作製した導体回路板を用い、その両外側に金属箔付きアディティブ用Bステージ樹脂組成物シートを用いて、加圧、加熱下に硬化処理した多層板を用いるものである。もちろん、(セミ)アディティブ法で回路を形成するために、孔あけ後は表層の金属箔全て及び孔部に発生した内層銅箔バリを薬液で溶解除去してから、一般には無電解銅メッキ、電解銅メッキを付着させ、(セミ)アディティブ法で回路を形成してプリント配線板とする。
【0008】
本発明で使用する内層用銅張板は、1層以上の銅の層を有する銅張板であり、熱硬化性樹脂銅張積層板としては、無機、有機基材の公知の熱硬化性銅張積層板、その多層銅張板、表層に樹脂付き銅箔シートを使用した多層板等、一般に公知の構成の多層銅張板、また、ポリイミドフィルム、液晶ポリエステルフィルム、全芳香族ポリアミドフィルム等の基材の銅張板が挙げられる。
【0009】
基材補強銅張積層板は、まず補強基材に熱硬化性樹脂組成物を含浸、乾燥させてBステージとし、プリプレグを作製する。次に、このプリプレグを所定枚数重ね、その外側に銅箔を配置して、加熱、加圧下に積層成形し、銅張積層板とする。銅箔の厚みは、好適には9〜35μmである。銅箔は電解銅箔を好適に用いる。
【0010】
基材としては、一般に公知の、有機、無機の織布、不織布が使用できる。具体的には、無機の繊維としては、具体的にはE、S、D、Mガラス等の繊維等が挙げらる。又、有機繊維としては、全芳香族ポリアミド、液晶ポリエステル等一般に公知の繊維等が挙げられる。これらは、混抄でも良い。
【0011】
本発明使用される熱硬化性樹脂組成物の樹脂としては、一般に公知の熱硬化性樹脂が使用される。具体的には、エポキシ樹脂、多官能性シアン酸エステル樹脂、 多官能性マレイミドーシアン酸エステル樹脂、多官能性マレイミド樹脂、不飽和基含有ポリフェニレンエーテル樹脂等が挙げられ、1種或いは2種類以上が組み合わせて使用される。出力の高い炭酸ガスレーザー照射による加工でのスルーホール形状の点からは、ガラス転移温度が150℃以上の熱硬化性樹脂組成物が好ましく、耐湿性、耐マイグレーション性、吸湿後の電気的特性等の点から多官能性シアン酸エステル樹脂組成物が好適である。
【0012】
本発明の好適な熱硬化性樹脂分である多官能性シアン酸エステル化合物とは、分子内に2個以上のシアナト基を有する化合物である。具体的に例示すると、1,3−又は1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、1,3−、1,4−、1,6−、1,8−、2,6−又は2,7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4,4−ジシアナトビフェニル、ビス(4−ジシアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジブロモー4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、トリス(4−シアナトフェニル)ホスファイト、トリス(4−シアナトフェニル)ホスフェート、およびノボラックとハロゲン化シアンとの反応により得られるシアネート類などである。これらの公知のBr付加化合物も挙げられる。
【0013】
これらのほかに特公昭41−1928、同43−18468、同44−4791、同45−11712、同46−41112、同47−26853及び特開昭51−63149等に記載の多官能性シアン酸エステル化合物類も用いら得る。また、これら多官能性シアン酸エステル化合物のシアナト基の三量化によって形成されるトリアジン環を有する分子量400〜6,000 のプレポリマーが使用される。このプレポリマーは、上記の多官能性シアン酸エステルモノマーを、例えば鉱酸、ルイス酸等の酸類;ナトリウムアルコラート等、第三級アミン類等の塩基;炭酸ナトリウム等の塩類等を触媒として重合させることにより得られる。このプレポリマー中には一部未反応のモノマーも含まれており、モノマーとプレポリマーとの混合物の形態をしており、このような原料は本発明の用途に好適に使用される。一般には可溶な有機溶剤に溶解させて使用する。
【0014】
エポキシ樹脂としては、一般に公知のものが使用できる。具体的には、液状或いは固形のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、脂環式エポキシ樹脂;ブタジエン、ペンタジエン、ビニルシクロヘキセン、ジシクロペンチルエーテル等の二重結合をエポキシ化したポリエポキシ化合物類;ポリオール、水酸基含有シリコン樹脂類とエポハロヒドリンとの反応によって得られるポリグリシジル化合物類等が挙げられる。また、これらの公知のBr付加樹脂が挙げられる。これらは1種或いは2種類以上が組み合わせて使用され得る。
【0015】
ポリイミド樹脂としては、一般に公知のものが使用され得る。具体的には、多官能性マレイミド類とポリアミン類との反応物、特公昭57−005406 に記載の末端三重結合のポリイミド類が挙げられる。
【0016】
これらの熱硬化性樹脂は、単独でも使用されるが、特性のバランスを考え、適宜組み合わせて使用するのが良い。
【0017】
本発明の熱硬化性樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて種々の添加物を配合することができる。これらの添加物としては、不飽和ポリエステル等の重合性二重結合含有モノマー類及びそのプレポリマー類;ポリブタジエン、エポキシ化ブタジエン、マレイン化ブタジエン、ブタジエン−アクリロニトリル共重合体、ポリクロロプレン、ブタジエン−スチレン共重合体、ポリイソプレン、ブチルゴム、フッ素ゴム、天然ゴム等の低分子量液状〜高分子量のelasticなゴム類;ポリエチレン、ポリプロピレン、ポリブテン、ポリ−4−メチルペンテン、ポリスチレン、AS樹脂、ABS樹脂、MBS樹脂、スチレン−イソプレンゴム、アクリルゴム、これらのコアシェルゴム、ポリエチレン−プロピレン共重合体、4−フッ化エチレン−6−フッ化エチレン共重合体類;ポリカーボネート、ポリフェニレンエーテル、ポリスルホン、ポリエステル、ポリフェニレンサルファイド等の高分子量プレポリマー若しくはオリゴマー;ポリウレタン、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂等が例示され、適宜使用される。また、その他、公知の有機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は硬化剤、触媒が適宜配合される。
【0018】
本発明の熱硬化性樹脂組成物は、それ自体は加熱により硬化するが硬化速度が遅く、作業性、経済性等に劣るため使用した熱硬化性樹脂に対して公知の熱硬化触媒を用い得る。使用量は、熱硬化性樹脂100重量部に対して0.005〜10重量部、好ましくは0.01〜5重量部である。
【0019】
これらの樹脂は一般に有機溶剤に溶解して使用される。この有機溶剤として使用されるものは特に限定はないが、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;N,N−ジメチルホルムアミド等のアミド類等が挙げられ、これらは1種或いは2種以上が組み合わせて使用される。
【0020】
内層板用銅張板として一般に公知の熱可塑性板も使用可能であるが、特に炭酸ガスレーザーの加工では、熱硬化性樹脂銅張板が好ましい。
【0021】
アディティブ用樹脂組成物としては一般に公知のセミアディティブ用、フルアディティブ用ものが使用できる。具体的には、酸或いは酸化剤に難溶性の成分と、その中に酸或いは酸化剤に可溶性の成分を分散して配合した樹脂組成物を用いることにより、デスミア処理で表面の凹凸が形成できる。ここで、本発明で使用する「可溶性」「難溶性」の語彙は、同一の酸或いは酸化剤からなる溶液に同一時間浸漬した場合に、相対的に溶解速度の速いものが「可溶性」、遅いものが「難溶性」という意味で使用している。
【0022】
本発明のアディティブ用樹脂組成物は、特に限定はなく、一般に公知のものが使用され得る。例えば、酸或いは酸化剤に可溶性の樹脂、樹脂粉体、無機粉体を、酸或いは酸化剤に難溶性のエポキシ樹脂、アクリル樹脂等の熱硬化性、光硬化性樹脂組成物中に均一に分散したものである。それ以外にも公知の樹脂が挙げられる。具体的には、ポリイミド樹脂、多官能性マレイミド樹脂、多官能性シアン酸エステル樹脂、不飽和基含有ポリフェニレンエーテル樹脂等、公知の樹脂が1種或いは2種以上組み合わせて使用される。耐熱性、耐マイグレーション性等の優れた多層プリント配線板を得るためには、多官能性シアン酸エステルモノマー、該シアン酸エステルプレポリマーを必須成分とした樹脂組成物を使用するのが好ましい。
【0023】
本発明の酸或いは酸化剤に可溶性の樹脂としては、一般に公知のものが挙げられる。この樹脂は溶剤に可溶のもの、液状のものであり、難溶性樹脂中に配合され、均一の分散して使用される。これらは特に限定はないが、具体的にはポリブタジエンゴム、アクリロニトリルーブタジエンゴム、これらの公知のエポキシ化物、マレイン化物、イミド化物、カルボキシル基含有物、イミド化物、(メタ)アクリル化物等が挙げられるが、これらに限定されるものではない。又酸或いは酸化剤に可溶性の樹脂粉体としては、形状は、球状、破砕された無定形状のもの、針状等があり、これらは組み合わせて使用可能である。好適には球状、破砕したものが使用され、粒径は特に限定はないが、好ましくは平均粒径0.1〜7μm、更に好ましくは0.2〜5μmである。これらは熱硬化性樹脂粉体、熱可塑性樹脂粉体等が挙げられ、酸或いは酸化剤からなる溶液に浸漬した場合、配合した難溶性樹脂よりも溶解性が速いものであれば特に限定はない。可溶性樹脂粉体の具体例としては、例えばエポキシ樹脂、ポリフェニレンエーテル樹脂、ポリオレフィン樹脂、シリコン樹脂、フェノール樹脂、アクリルゴム、ポリスチレン、MBSゴム、SBR、ABS等の粉体、これらの公知の多重構造(コアーシェル)ゴム等が挙げられるが、これらに限定されるものではない。これらは1種或いは2種以上が適宜選択して配合される。
【0024】
本発明の酸或いは酸化剤に可溶性の無機粉体としては、特に限定はないが、例えば水酸化アルミニウム等のアルミニウム化合物;炭酸カルシウム等のカルシウム化合物類;炭酸カリウム等のカリウム化合物類;炭酸マグネシウム等のマグネシウム化合物類等が挙げられ、1種或いは2種以上が組み合わせて使用される。これらはシランカップリング剤等で表面が処理されていても良い。
【0025】
本発明の難溶性樹脂としては、多官能性シアン酸エステル化合物、該シアン酸エステルプレポリマー を必須成分とした硬化性樹脂組成物が好適に使用される。具体的には上記の多官能性シアン酸エステル化合物が使用される。
【0026】
エポキシ樹脂としては、特に限定はなく、上記の一般に公知のものが使用できる。
【0027】
これらの樹脂組成物は有機溶剤に溶解して使用される。この有機溶剤として使用されるものは特に限定はないが、上記のものが使用される。
【0028】
本発明のアディティブ用樹脂組成物には、組成物本来の特性が損なわれない範囲で、所望に応じて上記以外の種々の添加物を配合することができる。これらの添加物としては、固形、液状のエポキシ樹脂、ポリイミド樹脂、マレイミド樹脂、2重結合付加ポリフェニレンエーテル樹脂、ポリフェニレンエーテル樹脂、ポリオレフィン樹脂、エポキシアクリレート、多官能(メタ)アクリレート等、更にこれらの公知の臭素化物、リン含有化合物等の各種樹脂類、公知の上記以外の無機、有機の充填剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光増感剤、難燃剤、光沢剤、重合禁止剤、チキソ性付与剤等の各種添加剤が、所望に応じて適宜組み合わせて用いられる。必要により、反応基を有する化合物は公知の硬化剤、触媒が適宜配合される。
【0029】
本発明の樹脂組成物中に均一分散している可溶性樹脂、樹脂粉体及び無機粉体の配合量は、特に限定はないが、好適には3〜50重量%、更に好適には5〜35重量%である。
【0030】
発明のアディティブ用樹脂組成物は、それ自体は加熱により硬化するが、硬化速度が遅く、作業性、経済性等に劣るため使用した硬化性樹脂に対して公知の硬化触媒を用いる。又、(メタ)アクリレート類等の光硬化性樹脂を使用した場合には光重合開始剤等を使用し得る。使用量は、それぞれの硬化性樹脂100重量部に対し、0.005〜20重量部、好ましくは0.01〜10重量部である。
【0031】
本発明の各成分を均一に分散する方法は、一般に公知の方法が使用され得る。例えば、各成分を配合し、溶剤を加えてホモミキサ−で高速攪拌する方法、三本ロールにて、室温或いは加熱下に混練するか、ボールミル、ライカイ機等、一般に公知の方法が使用される。
【0032】
作製された樹脂組成物は、無溶剤、溶剤入りいずれでも良い。Bステージ樹脂組成物シートも金属箔上に直接ロール等で塗布、乾燥してBステージ化する。金属箔の表面にロールコーター等で塗布、乾燥してBステージ樹脂組成物シートとするが、樹脂組成物中に少量の溶剤が残存していても良い。反対側の樹脂面は汚染防止等の点から保護フィルムを使用するのが好ましい。保護フィルムは加熱ロール等で線圧をかけてラミネートし、一体化するのが良い。これを基板に積層又はラミネートして使用する際はこの保護フィルムを剥離して使用する。樹脂組成物の厚みは内層板の銅箔厚さ、銅箔残存率で決めるが、好適には絶縁層間(内層銅箔と表層金属箔間)厚みが15〜50μmとなるように厚さを選択して塗布する。
【0033】
本発明で、金属箔付きアディティブ用Bステージ樹脂組成物シートを製造するための金属箔は特に限定はなく、種類としては、例えばアルミニウム箔、銅箔、ニッケル箔、スズ箔等、及びこれらの合金類が挙げられる。樹脂組成物を付着させる面は平滑でも凹凸が付いていても良いが、その後の酸化剤での粗化を考えると、凹凸が付いていた方が好ましい。金属箔の樹脂組成物を付着しない面は何も処理しなくてもレーザーで孔があく厚さ或いは種類であれば良いが、レーザーエネルギーの吸収を良くする処理が施されているのが好ましい。例えば、炭酸ガスレーザーで銅箔を用いて孔あけする場合には、表層に薬液等で凹凸を付けるか、ニッケル、コバルト或いはこれらの合金処理を施したものを使用する等、一般に公知のものが使用できる。これらは電解銅箔、圧延銅箔いずれでも使用可能である。
【0034】
本発明の金属箔付きアディティブ用Bステージ樹脂組成物シートを使用して多層化する場合、導体回路を形成した内層板の導体に公知の表面処理を施した後、又は両面粗化箔を使用した内層用回路板の表裏に金属箔付きアディティブ用Bステージ樹脂組成物シートを配置し、公知の方法にて加熱、加圧、好適には真空下に積層成形するか、ラミネートしてから後硬化処理する。この硬化処理は孔あけ後に酸化剤等で表面が粗化できる硬化度とするのが重要である。
【0035】
本発明の多層化する際の積層成形条件は、特に限定はないが、アディティブ法で使用するために、酸或いは酸化剤での粗化が適正にできる条件を、使用した樹脂組成によって適宜選択する。一般には温度60〜250℃、圧力2〜50kgf/cm 、時間は0.5〜3時間である。又、真空下に積層成形するのが好ましい。装置は真空ラミネータプレス、一般の多段プレス等、公知のものが使用できる。この場合、銅メッキ後に加熱して後硬化を行う。硬化条件は特に限定はないが、加熱したときにメッキした銅が膨れ、接着力低下を起こさないような条件とする。硬化温度は上記条件と同一である。
【0036】
本発明で得られたアディティブ用樹脂組成物は、粗化可能な程度に硬化後に公知の方法にて樹脂の粗化を行う。粗化に使用する酸としては硫酸、塩酸、硝酸、燐酸、蟻酸等が挙げられ、酸化剤としては過マンガン酸ナトリウム、過マンガン酸カリウム、クロム酸、クロム硫酸等が挙げられるが、これに限定されるものではない。この処理前は必要により公知の膨潤液を使用し、処理後は中和液で中和する。この粗化処理で形成する粗化面の平均粗度は、表面凹凸を銅箔等で付けた場合、金属箔エッチング後の凹凸とは別に平均粗度はRz 0.1〜7μm、好適には3〜5μmとする。
【0037】
その後は、公知のセミアディティブ法、フルアディティブ法等にて無電解メッキ、厚付け無電解メッキ、蒸着、スパッタリング等を行い、必要により電気メッキを行って導体を厚付けする。更にそれぞれ公知の方法で回路を形成し、プリント配線板とする。
【0038】
レーザーを用いて表層に金属箔付きアディティブ用樹脂組成物層を有する多層板に小径の良好な形状のブラインドビア孔及び/又は貫通孔をあけるための孔あけにおいて、特に炭酸ガスレーザー使用で銅箔に孔あけする場合には、銅箔表面に上記の炭酸ガスレーザーエネルギーの吸収の良い公知処理を施したものを用いるか、特開平11−342492に示されるような補助シートを配置して金属箔の上に直接レーザーを照射して孔あけを行う。この工法だと、直接アディティブ用樹脂組成物層にレーザーを照射するのに比べて、金属箔は後で除去するために、加工による加工屑がアディティブ用樹脂組成物層表面に付着せずに、その後の回路形成で回路ショート、切断の不良発生が無いものが得られ、且つ形状の良好な孔が形成される。特に炭酸ガスレーザーを用いた場合には、金属箔が厚いと形成した孔部に内層銅箔のバリが発生するが、表層の金属箔を溶解する時に内層のバリを薬液でエッチング除去することにより、孔内部の平滑度が確保でき、その後の銅メッキで良好な形状の銅メッキされた孔が得られる。
【0039】
炭酸ガスレーザーは、赤外線波長域にある9.3〜10.6μmの波長が一般に使用される。エネルギーは4〜60mJ、好適には6〜35mJ にてパルス発振で銅箔を加工し、孔をあける。エネルギーは表層の金属箔の厚さ、金属箔表面の金属処理、表層に使用する孔あけ用補助シート、金属箔種類によって適宜選択する。UV−YAGレーザーの場合、波長200〜400nmが好適に使用される。
【0040】
本発明の貫通孔を形成する場合、裏面にバックアップシートを使用する。これは一般に公知のバックアップシートが使用できる。例えば特開平11−346044、特開平11−347767、特開2003−008172、特開2003−008173等に挙げられるバックアップシートが使用できる。更には樹脂層に粘着剤を配合した室温ラミネートタイプのバックアップシートも使用できる。
【0041】
本発明の表層金属箔、孔部に発生した銅のバリをエッチング除去する方法としては、特に限定しないが、例えば、特開平02−22887、同02−22896、同02−25089、同02−25090、同02−59337、同02−60189、同02−166789、同03−25995、同03−60183、同03−94491、同04−199592、同04−263488で開示された、薬品で金属表面を溶解除去する方法(SUEP法と呼ぶ)による。エッチング速度は、0.02〜1.0μm/秒で行う。
【0042】
【実施例】
以下に実施例、比較例で本発明を具体的に説明する。尚、特に断らない限り、『部』は重量部を表す。
(実施例1)
2,2−ビス(4−シアナトフェニル)プロパンモノマーを400部150℃に熔融させ、撹拌しながら4時間反応させ、平均分子量2,000のモノマーとプレポリマーの混合物を得た。これをメチルエチルケトンに溶解し、ワニスAとした。これにビスフェノールA型エポキシ樹脂(商品名:エピコート1001、油化シェルエポキシ<株>製)350部、ノボラック型エポキシ樹脂(商品名:DEN431、ダウケミカル<株>製)50部、クレゾールノボラック型エポキシ樹脂(商品名:ESCN−220F、住友化学工業<株>製)100部を配合し、硬化触媒としてアセチルアセトン鉄0.3部をメチルエチルケトンに溶解して加えた。これに液状のエポキシ化ポリブタジエン樹脂(商品名:E−1000−8.0、日本石油化学<株>製)100部、エポキシ樹脂粉体(商品名:トレパールEP−B、平均粒径0.5μm、東レ<株>製)50部を加え、良く攪拌混合して均一なワニスBとした。このワニスBを、銅箔表面にニッケル処理を施した厚さ12μmの銅箔(マット面凹凸3.6〜5.1μm、平均粗度Rz:4.3μm)のマット面に塗布、乾燥してマツト面の凸部先端から厚さ50μmの銅箔付きアディティブ用Bステージ(170℃でのゲル化時間59秒)樹脂組成物シートCを作製した。
【0043】
一方、内層板としてサイズ500x500mmの絶縁層厚さ0.2mm、12μm銅箔を使用したBTレジン両面銅張積層板(商品名:CCL−HL830、三菱ガス化学<株>製 )を用い、これに金属ドリルにて孔径250μmの貫通孔を15万孔あけ、これに回路を形成し、黒色酸化銅処理を銅箔に施した後、この両面に上記銅箔付きアディティブ用Bステージ樹脂組成物シートCを配置し、プレス装置に仕込んだ後、室温から160℃まで25分で温度を上げ、圧力は最初から15kgf/cmとし、真空度は5Torr以下で160℃で30分保持して硬化処理した後、冷却して取り出し、4層の多層板Dを得た。この表面の銅箔上に、炭酸ガスレーザーの出力12mJで1ショット照射して孔径100μmのブラインドビア孔をあけ、20mJで5ショット照射して孔径120μmの貫通孔をあけた。この表層の銅箔全て及び内層に張り出した銅箔バリをSUEP溶液を孔内に通しながら溶解除去してから、過マンガン酸カリウム系デスミア溶液(日本マクダーミッド<株>製)でアディティブ用樹脂組成物を膨潤、デスミア(溶解)、中和して、樹脂表面からの凹を3.7〜5.0μm(平均粗度Rz:4.1μm)とした。同時にブラインドビア孔底部に残存している樹脂層を溶解除去した。次に、この粗化表面に無電解銅メッキ層0.5μm、電解銅メッキ18μm付着させ、加熱炉に入れて100℃から徐々に温度を30分で150℃まで上げ、更に徐々に温度を200℃まで上げて200℃で60分加熱硬化した。これを用いてセミアディティブ法にて銅導体回路を形成し、プリント配線板とした。この評価結果を表1に示す。
【0044】
(実施例2)
ビスフェノールA型エポキシ樹脂(商品名:エピコ−ト1001、ジャパンエポキシレジン<株>製)500部、フェノールノボラック型エポキシ樹脂(商品名:DEN438、ダウケミカル<株>製造)450部、イミダゾール系硬化剤(商品名:2E4MZ、四国化成<株>製)30部、カルボキシル基変性アクリル多層構造有機粉体(商品名:スタフィロイドIM−301、平均粒径0.2μm、Max..粒径0.5μm)60部、微粉砕シリカ(平均粒子径2.4μm)40部、及びアクリロニトリルーブタジエンゴム(商品名:ニポール1031、日本ゼオン<株>製)30部をメチルエチルケトンに溶解、分散した溶液加え、3本ロールにて良く分散し、ワニスEとした。これを厚さ20μmで表面凹凸が2.1〜5.5μm(平均粗度Rz:4.0μm)のアルミニウム箔(商品名:20CF1、日本蓄電器工業<株>製)の片面に連続的に塗布、乾燥して凸部先端から40μmの樹脂層を形成したアルミニウム箔付きアディティブ用Bステージ樹脂組成物シート (170℃でのゲル化時間110秒)を作製し、出てきた時点で樹脂面に厚さ25μmの保護ポリプロピレンフィルムを配置し、温度100℃、線圧5kgf/cmのロールにて連続的にラミネートし、巻き取り、アルミニウム箔付きアディティブ用Bステージ樹脂組成物シートFを得た 。
【0045】
一方、厚さ0.2mm、銅箔厚さ12μm両面銅箔のエポキシ樹脂銅張積層板(商品名:CCL−EL150、三菱ガス化学<株>製)に導体回路を形成し、これに黒色酸化銅処理後に、この両面に上記アルミニウム箔付きアディティブ用Bステージ樹脂組成物シートFのポリプロピレン保護フィルムを剥がして置き、プレス装置に仕込んだ後、室温から徐々に160℃まで25分で温度を上げ、圧力は最初から15kgf/cmとし、真空度0.5Torr以下にて温度165℃で30分保持して硬化処理した後、冷却して取り出し、4層多層板Gを得た。この上から炭酸ガスレーザーエネルギー20mJで6ショット照射して孔径100μmの貫通孔をあけた。又、UV−YAGレーザーエネルギー0.07mJで101ショット照射して孔径50μmのブラインドビア孔をあけた。この表面のアルミニウム箔を10%塩酸溶液で溶解除去後、クロム酸溶液でアディティブ用樹脂組成物層を粗化して、表層からの総凹凸を3.7〜5.7μm、平均粗度Rz:4.3μmとした。次に、この粗化表面に無電解銅メッキ0.7μm、電気銅メッキを19μm付着させ、加熱炉に入れて100℃から徐々に温度を30分で150℃まで上げて、その後更に温度を徐々に上げて170℃で60分加熱保持して硬化した。これを用いてセミアディティブ法にて導体回路を形成し、更に導体回路を黒色酸化銅処理を行い、同様に積層、加工して6層の多層プリント配線板を作製した。評価結果を表1に示す。
【0046】
(比較例1)
実施例1において、表層の銅箔を用いずに同様に孔あけを行い、同様にプリント配線板とした。評価結果を表1に示す。
(比較例2)
実施例2において、アルミニウム箔を除去し、金属ドリルで孔径100μmの貫通孔をあけた。又、UV−YAGレーザーで同様にブラインドビア孔をあけ、同様に加工して6層板を作製し、同様に6層プリント配線板を作製した。評価結果を表1に示す。
【0047】

Figure 2004319887
【0048】
<測定方法>
1)回路ショート・切断 : ライン/スペース=50/50μmの櫛形回路を200個形成し、そのショート、切断発生個数を数えた。発生個数を分子に示した。
2)貫通孔ランド切れ : 貫通孔にランドを形成し、500孔を観察してランド切れの有る個数を数え、分子に示した。実施例1、比較例1は孔径120μmねらいのため、ランド径は+50μmの170μmで形成、実施例2、比較例2は孔径100μmねらいのため、ランド径は+50μmの150μmで形成した。
3)ガラス転移温度 : アディティブ用樹脂のみを厚さ0.8mmとした硬化物を用い、JIS C6481のDMA法に準じて想定した。
4)耐マイグレーション性 : 各実施例、比較例で、孔壁間150μmとし、1000孔を表裏交互につないで、この試験片を85℃・85%RH、50VDC印加して孔壁間の絶縁抵抗値を測定した。
5)貫通孔ヒートサイクル試験 : 貫通孔100個を−65℃←→+150℃が1サイクルで、200サイクル試験し、その抵抗値の変化率の最大値を示した。
6)加工速度 : 900孔を1ブロックとし、これを70ブロック(総計63000孔)を加工する時間を示した。
【0049】
【発明の効果】
内層板の表面に金属箔付きアディティブ用Bステージ樹脂組成物層を加熱して接着形成して硬化処理した後に、この金属箔張板の表面に直接レーザーを照射してブラインドビア孔及び/又は貫通孔を形成することにより、樹脂組成物表面の汚染もないために、その後に表層金属箔全て及び内層銅箔に発生した銅箔バリを溶解除去してからデスミア処理を行った後の銅メッキでの凹凸も発生せず、細線の回路形成において、ショートやパターン切れ等の不良の発生もなく、良好な高密度のプリント配線板を作製することができる。また、加工速度はドリルであける場合に比べて格段に速く、生産性も良好で、経済性にも優れている。[0001]
[Industrial application fields]
The present invention is a method for forming a hole by directly irradiating a laser on a metal foil of an additive resin composition with a metal foil formed on the surface of an inner layer plate, which has a good shape and excellent reliability. A hole and / or a through-hole can be formed, and a high-density small printed wiring board manufactured using the hole and / or the through-hole is used for a new semiconductor plastic package, a mother board, and the like.
[0002]
[Prior art]
Conventionally, when a high-density printed wiring board is manufactured by the additive method, blind via holes are formed with a carbon dioxide gas laser, desmear treatment, and copper plating are performed to produce a printed wiring board (see, for example, Patent Document 1). . When drilling through holes with a metal drill, there are disadvantages such as not being able to form holes with a very small diameter and slow processing speed. In addition, when trying to make a through hole using a carbon dioxide laser or the like in a structure without a metal foil on the surface layer, the number of laser irradiations increases with respect to the resin on the surface, so the hole diameters on the front and back sides are not the same, and thereafter Problems such as land breakage occurred during machining. Furthermore, if processing scraps such as resin scatter and adhere to the additive resin composition layer on the surface and cannot be removed by the subsequent desmear treatment, circuit shorting and disconnection occurred during circuit formation after copper plating adhesion. This was the same even when the blind via hole was formed, and there was a problem.
[0003]
[Patent Document 1] Japanese Patent Laid-Open No. XXXXXXXXX
[Problems to be solved by the invention]
The present invention provides a laser drilling method for forming a small-sized blind via hole and / or a through-hole having a good hole shape in a substrate on which a resin composition for additive is formed on the surface layer, which has solved the above-mentioned problems, and A method of manufacturing a printed wiring board using the same is provided.
[0005]
[Means for Solving the Invention]
After the additive B-stage resin composition layer with metal foil is heated on the surface of the inner layer plate to form an adhesive and cured, the surface of the metal foil-clad plate is directly irradiated with laser to blind via holes and / or through holes. By forming the holes, contamination of the resin composition surface can be eliminated. Therefore, when the copper foil burrs generated on the entire surface layer metal foil and the inner layer copper foil are dissolved and removed after that and desmear treatment is performed, unevenness in the copper plating after copper plating does not occur, and in the formation of a thin wire circuit A good high-density printed wiring board without the occurrence of defects such as short-circuits and pattern cuts could be produced. In addition, the machining speed was much faster than when drilling, the productivity was good, and the economy was excellent.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the additive B-stage resin composition layer with metal foil is heated and bonded to the surface of the inner layer plate, cured, and then directly irradiated with laser to the surface of the metal foil-clad plate to form blind via holes. And / or by forming through-holes, there is no contamination of the additive resin composition surface. After that, even if the metal foil is removed and desmear or copper plating is applied to form a circuit, the circuit may be shorted or cut. No printed wiring board is obtained.
[0007]
The substrate to be punched in the present invention is not particularly limited as long as it has a resin composition layer for additive on the surface layer. For example, using a conductive circuit board produced from a double-sided copper-clad laminate with a glass woven base material as the inner layer board, using an additive B-stage resin composition sheet with metal foil on both outer sides, under pressure and heating A multilayer board that has been cured is used. Of course, in order to form a circuit by the (semi) additive method, after drilling, all the metal foil on the surface layer and the inner layer copper foil burrs generated in the holes are dissolved and removed with a chemical solution, and generally electroless copper plating, Electrolytic copper plating is attached, and a circuit is formed by a (semi) additive method to obtain a printed wiring board.
[0008]
The inner-layer copper-clad plate used in the present invention is a copper-clad plate having one or more copper layers, and as the thermosetting resin copper-clad laminate, known thermosetting copper of inorganic and organic substrates A laminated laminate, its multilayer copper clad, a multilayer board using a resin-coated copper foil sheet as a surface layer, a multilayer copper clad having a generally known structure, a polyimide film, a liquid crystal polyester film, a wholly aromatic polyamide film, etc. Examples include a copper-clad plate as a base material.
[0009]
In the base material reinforced copper clad laminate, first, a reinforced base material is impregnated with a thermosetting resin composition and dried to form a B stage to prepare a prepreg. Next, a predetermined number of the prepregs are stacked, a copper foil is disposed on the outside thereof, and laminated and formed under heating and pressure to obtain a copper-clad laminate. The thickness of the copper foil is preferably 9 to 35 μm. As the copper foil, an electrolytic copper foil is preferably used.
[0010]
As the substrate, generally known organic and inorganic woven fabrics and nonwoven fabrics can be used. Specifically, examples of the inorganic fiber include fibers such as E, S, D, and M glass. Examples of organic fibers include generally known fibers such as wholly aromatic polyamides and liquid crystal polyesters. These may be mixed papers.
[0011]
As the resin of the thermosetting resin composition used in the present invention, generally known thermosetting resins are used. Specific examples include epoxy resins, polyfunctional cyanate resins, polyfunctional maleimide-cyanate resins, polyfunctional maleimide resins, unsaturated group-containing polyphenylene ether resins, and the like. Are used in combination. From the viewpoint of through-hole shape in processing by high-power carbon dioxide laser irradiation, a thermosetting resin composition having a glass transition temperature of 150 ° C. or higher is preferable, moisture resistance, migration resistance, electrical characteristics after moisture absorption, etc. From this point, a polyfunctional cyanate ester resin composition is preferred.
[0012]
The polyfunctional cyanate ester compound which is a preferred thermosetting resin component of the present invention is a compound having two or more cyanato groups in the molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-, 1,4-, 1,6-, 1,8-2, , 6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-dicyanatophenyl) methane, 2,2-bis (4-cyanato) Phenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) ) Sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and cyanates obtained by reaction of novolaks with cyanogen halides. It is. These known Br addition compounds are also mentioned.
[0013]
In addition to these, polyfunctional cyanic acids described in JP-B-41-1928, JP-A-43-18468, JP-A-44-4791, JP-A-45-11712, JP-A-46-41112, JP-A-47-26853, and JP-A-51-63149 Ester compounds can also be used. Further, a prepolymer having a molecular weight of 400 to 6,000 having a triazine ring formed by trimerization of cyanate groups of these polyfunctional cyanate compounds is used. This prepolymer polymerizes the above-mentioned polyfunctional cyanate ester monomers using, for example, acids such as mineral acids and Lewis acids; bases such as sodium alcoholates and tertiary amines; salts such as sodium carbonate and the like as catalysts. Can be obtained. This prepolymer also includes a partially unreacted monomer, which is in the form of a mixture of the monomer and the prepolymer, and such a raw material is suitably used for the application of the present invention. Generally, it is used after being dissolved in a soluble organic solvent.
[0014]
As the epoxy resin, generally known epoxy resins can be used. Specifically, liquid or solid bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, alicyclic epoxy resin; butadiene, pentadiene, vinylcyclohexene, dicyclopentyl ether, etc. And polyglycidyl compounds obtained by reaction of polyols, hydroxyl group-containing silicon resins and epohalohydrin, and the like. Moreover, these well-known Br addition resin is mentioned. These may be used alone or in combination of two or more.
[0015]
As the polyimide resin, generally known resins can be used. Specific examples include a reaction product of a polyfunctional maleimide and a polyamine, and a terminal triple bond polyimide described in JP-B-57-005406.
[0016]
These thermosetting resins may be used alone, but may be used in appropriate combination in consideration of balance of characteristics.
[0017]
In the thermosetting resin composition of the present invention, various additives can be blended as desired within a range where the original properties of the composition are not impaired. These additives include polymerizable double bond-containing monomers such as unsaturated polyesters and prepolymers thereof; polybutadiene, epoxidized butadiene, maleated butadiene, butadiene-acrylonitrile copolymer, polychloroprene, butadiene-styrene copolymer. Low molecular weight liquid to high molecular weight elastic rubber such as polymer, polyisoprene, butyl rubber, fluoro rubber, natural rubber; polyethylene, polypropylene, polybutene, poly-4-methylpentene, polystyrene, AS resin, ABS resin, MBS resin Styrene-isoprene rubber, acrylic rubber, core-shell rubber, polyethylene-propylene copolymer, 4-fluoroethylene-6-fluoroethylene copolymer; polycarbonate, polyphenylene ether, polysulfone, Esters, high molecular weight prepolymers or oligomers such as polyphenylene sulfide; polyurethanes, polyphenylene ether resins, polycarbonate resins and the like are exemplified, are appropriately used. In addition, other known organic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, flame retardants, brighteners, polymerization inhibitors, thixotropic agents Various additives such as are used in appropriate combination as desired. If necessary, the compound having a reactive group is appropriately mixed with a curing agent and a catalyst.
[0018]
Although the thermosetting resin composition of the present invention itself is cured by heating, the curing rate is slow and the workability, economy, etc. are inferior, so that a known thermosetting catalyst can be used for the thermosetting resin used. . The amount used is 0.005 to 10 parts by weight, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the thermosetting resin.
[0019]
These resins are generally used after being dissolved in an organic solvent. Although what is used as this organic solvent is not particularly limited, for example, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; amides such as N, N-dimethylformamide and the like These may be used alone or in combination of two or more.
[0020]
Although a generally known thermoplastic plate can be used as the copper clad plate for the inner layer plate, a thermosetting resin copper clad plate is preferable particularly in the processing of a carbon dioxide laser.
[0021]
As the additive resin composition, generally known semi-additive and full additive resins can be used. Specifically, by using a resin composition in which a component that is hardly soluble in an acid or an oxidizing agent and a component that is soluble in the acid or the oxidizing agent are dispersed therein, surface irregularities can be formed by desmear treatment. . Here, the terms “soluble” and “poorly soluble” used in the present invention are “soluble” and slow when the dissolution rate is relatively high when immersed in a solution of the same acid or oxidizing agent for the same time. Is used in the sense of "slightly soluble".
[0022]
The additive resin composition of the present invention is not particularly limited, and generally known resin compositions can be used. For example, a resin, resin powder, or inorganic powder soluble in an acid or an oxidizing agent is uniformly dispersed in a thermosetting or photocurable resin composition such as an epoxy resin or an acrylic resin that is hardly soluble in an acid or an oxidizing agent. It is a thing. In addition, a known resin can be used. Specifically, known resins such as a polyimide resin, a polyfunctional maleimide resin, a polyfunctional cyanate ester resin, and an unsaturated group-containing polyphenylene ether resin are used alone or in combination of two or more. In order to obtain a multilayer printed wiring board having excellent heat resistance and migration resistance, it is preferable to use a polyfunctional cyanate ester monomer and a resin composition containing the cyanate ester prepolymer as essential components.
[0023]
As the resin soluble in the acid or oxidizing agent of the present invention, generally known resins can be mentioned. This resin is soluble in a solvent or liquid, and is blended in a hardly soluble resin and used in a uniform dispersion. These are not particularly limited, and specific examples include polybutadiene rubber, acrylonitrile-butadiene rubber, known epoxidized products, maleated products, imidized products, carboxyl group-containing products, imidized products, (meth) acrylated products, and the like. However, it is not limited to these. As the resin powder soluble in acid or oxidant, there are spherical shape, crushed amorphous shape, needle shape, etc., and these can be used in combination. A spherical or crushed material is preferably used, and the particle size is not particularly limited, but is preferably an average particle size of 0.1 to 7 μm, more preferably 0.2 to 5 μm. These include thermosetting resin powders, thermoplastic resin powders, etc., and when immersed in a solution comprising an acid or an oxidant, there is no particular limitation as long as the solubility is faster than the blended poorly soluble resin. . Specific examples of the soluble resin powder include, for example, powders such as epoxy resin, polyphenylene ether resin, polyolefin resin, silicon resin, phenol resin, acrylic rubber, polystyrene, MBS rubber, SBR, ABS, and their known multiple structures ( Core-shell) rubber and the like, but are not limited thereto. One or more of these are appropriately selected and blended.
[0024]
The inorganic powder soluble in the acid or oxidizing agent of the present invention is not particularly limited, but for example, aluminum compounds such as aluminum hydroxide; calcium compounds such as calcium carbonate; potassium compounds such as potassium carbonate; These magnesium compounds can be used, and one or two or more can be used in combination. The surface of these may be treated with a silane coupling agent or the like.
[0025]
As the hardly soluble resin of the present invention, a polyfunctional cyanate ester compound and a curable resin composition containing the cyanate ester prepolymer as an essential component are preferably used. Specifically, the above-mentioned polyfunctional cyanate ester compound is used.
[0026]
There is no limitation in particular as an epoxy resin, The said generally well-known thing can be used.
[0027]
These resin compositions are used after being dissolved in an organic solvent. Although what is used as this organic solvent does not have limitation in particular, the said thing is used.
[0028]
In the additive resin composition of the present invention, various additives other than those described above can be blended as desired within a range in which the original properties of the composition are not impaired. Examples of these additives include solid and liquid epoxy resins, polyimide resins, maleimide resins, double bond addition polyphenylene ether resins, polyphenylene ether resins, polyolefin resins, epoxy acrylates, polyfunctional (meth) acrylates, and the like. Various types of resins such as brominated products, phosphorus-containing compounds, known inorganic and organic fillers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, photosensitizers, Various additives such as a flame retardant, a brightener, a polymerization inhibitor, and a thixotropic agent are used in combination as appropriate. If necessary, the compound having a reactive group is appropriately mixed with a known curing agent and catalyst.
[0029]
The blending amount of the soluble resin, resin powder and inorganic powder uniformly dispersed in the resin composition of the present invention is not particularly limited, but is preferably 3 to 50% by weight, more preferably 5 to 35%. % By weight.
[0030]
The additive resin composition of the invention is cured by heating, but has a slow curing rate and is inferior in workability, economy, and the like, and a known curing catalyst is used for the curable resin used. Moreover, when using photocurable resins, such as (meth) acrylates, a photoinitiator etc. can be used. The usage-amount is 0.005-20 weight part with respect to 100 weight part of each curable resin, Preferably it is 0.01-10 weight part.
[0031]
As a method for uniformly dispersing the components of the present invention, generally known methods can be used. For example, generally known methods such as a method of blending each component, adding a solvent and stirring at high speed with a homomixer, kneading with a three-roller at room temperature or under heating, a ball mill, a reiki machine or the like are used.
[0032]
The prepared resin composition may be either solventless or solvent-containing. The B-stage resin composition sheet is also applied directly on a metal foil with a roll or the like and dried to form a B-stage. The surface of the metal foil is coated with a roll coater or the like and dried to obtain a B-stage resin composition sheet, but a small amount of solvent may remain in the resin composition. It is preferable to use a protective film on the opposite resin surface from the viewpoint of preventing contamination. The protective film is preferably laminated by applying linear pressure with a heating roll or the like and integrated. When this is laminated or laminated on a substrate, the protective film is peeled off and used. The thickness of the resin composition is determined by the copper foil thickness of the inner layer plate and the copper foil remaining rate, but the thickness is preferably selected so that the thickness of the insulating layer (between the inner layer copper foil and the surface metal foil) is 15 to 50 μm. And apply.
[0033]
In the present invention, the metal foil for producing the additive B-stage resin composition sheet with metal foil is not particularly limited, and examples thereof include aluminum foil, copper foil, nickel foil, tin foil, and alloys thereof. Kind. The surface on which the resin composition is adhered may be smooth or uneven, but considering the subsequent roughening with an oxidizing agent, it is preferable that the surface is uneven. The surface of the metal foil that does not adhere to the resin composition may be any thickness or type that can be perforated with a laser without any treatment, but is preferably subjected to a treatment that improves the absorption of laser energy. For example, when making a hole using a copper foil with a carbon dioxide gas laser, generally known ones such as using a surface layer with irregularities with a chemical solution, or using nickel, cobalt, or an alloy thereof treated, etc. Can be used. Any of electrolytic copper foil and rolled copper foil can be used.
[0034]
When multilayered using the additive B-stage resin composition sheet with a metal foil of the present invention, a known surface treatment was applied to the conductor of the inner layer plate on which the conductor circuit was formed, or a double-side roughened foil was used. B-stage resin composition sheets for additive with metal foil are placed on the front and back of the circuit board for inner layer, and heat curing, pressurization, preferably under vacuum, preferably laminated or laminated after known process To do. It is important that this hardening treatment has a degree of hardening that can roughen the surface with an oxidizing agent or the like after drilling.
[0035]
The lamination molding conditions for multi-layering of the present invention are not particularly limited, but for use in the additive method, the conditions for appropriate roughening with an acid or an oxidizing agent are appropriately selected depending on the resin composition used. . Generally, the temperature is 60 to 250 ° C., the pressure is 2 to 50 kgf / cm 2 , and the time is 0.5 to 3 hours. Moreover, it is preferable to laminate and form under vacuum. A known apparatus such as a vacuum laminator press or a general multi-stage press can be used. In this case, post-curing is performed by heating after copper plating. There are no particular limitations on the curing conditions, but the conditions are such that the plated copper does not swell when heated and does not cause a decrease in adhesion. The curing temperature is the same as the above conditions.
[0036]
The additive resin composition obtained in the present invention roughens the resin by a known method after curing to such an extent that it can be roughened. Examples of the acid used for roughening include sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, formic acid, and examples of the oxidizing agent include sodium permanganate, potassium permanganate, chromic acid, chromic sulfuric acid, and the like. Is not to be done. Prior to this treatment, a known swelling solution is used if necessary, and after the treatment, the solution is neutralized with a neutralizing solution. The average roughness of the roughened surface formed by this roughening treatment is such that when the surface irregularities are made of copper foil or the like, the average roughness is Rz 0.1 to 7 μm, preferably in addition to the irregularities after the metal foil etching. 3 to 5 μm.
[0037]
Thereafter, electroless plating, thick electroless plating, vapor deposition, sputtering, or the like is performed by a known semi-additive method, full additive method, or the like, and electroplating is performed as necessary to thicken the conductor. Further, a circuit is formed by a known method to obtain a printed wiring board.
[0038]
Copper foil with a carbon dioxide laser, especially when using a laser to make blind via holes and / or through-holes with a small diameter in a multilayer board having an additive resin composition layer with metal foil on the surface. In the case of making holes in the metal foil, the copper foil surface is subjected to the above-mentioned known treatment with good absorption of carbon dioxide laser energy, or an auxiliary sheet as disclosed in JP-A-11-342492 is arranged to form a metal foil. A laser is directly irradiated onto the surface to make a hole. Compared to direct irradiation of the additive resin composition layer with laser, the metal foil is removed later, so that the processing waste does not adhere to the additive resin composition layer surface. Subsequent circuit formation yields a circuit free from short circuit and cutting defects, and forms a hole with a good shape. Especially when a carbon dioxide laser is used, if the metal foil is thick, burrs of the inner layer copper foil are generated in the hole formed, but when the surface layer metal foil is dissolved, the inner layer burrs are removed by etching with a chemical solution. The smoothness inside the hole can be secured, and a copper plated hole having a good shape can be obtained by subsequent copper plating.
[0039]
The carbon dioxide laser generally has a wavelength of 9.3 to 10.6 μm in the infrared wavelength region. The copper foil is processed by a pulse oscillation at an energy of 4 to 60 mJ, preferably 6 to 35 mJ, and a hole is made. The energy is appropriately selected depending on the thickness of the metal foil on the surface layer, the metal treatment on the surface of the metal foil, the auxiliary sheet for drilling used on the surface layer, and the type of metal foil. In the case of a UV-YAG laser, a wavelength of 200 to 400 nm is preferably used.
[0040]
When forming the through hole of the present invention, a backup sheet is used on the back surface. In general, a known backup sheet can be used. For example, the backup sheets described in JP-A-11-346044, JP-A-11-347767, JP-A-2003-008172, JP-A-2003-008173, and the like can be used. Furthermore, a room temperature laminate type backup sheet in which an adhesive is blended in the resin layer can also be used.
[0041]
The surface metal foil of the present invention and the method for etching and removing the copper burrs generated in the holes are not particularly limited. For example, JP-A Nos. 02-2287, 02-22896, 02-25089, and 02-25090. No. 02-59337, No. 02-60189, No. 02-166789, No. 03-259595, No. 03-60183, No. 03-94491, No. 04-199592, and No. 04-263488. By a method of dissolving and removing (referred to as SUEP method). The etching rate is 0.02 to 1.0 μm / second.
[0042]
【Example】
The present invention will be specifically described below with reference to examples and comparative examples. Unless otherwise specified, “parts” represents parts by weight.
(Example 1)
2,2-bis (4-cyanatophenyl) propane monomer was melted at 400 parts at 150 ° C. and reacted for 4 hours with stirring to obtain a monomer and prepolymer mixture having an average molecular weight of 2,000. This was dissolved in methyl ethyl ketone to obtain varnish A. 350 parts of bisphenol A type epoxy resin (trade name: Epicoat 1001, manufactured by Yuka Shell Epoxy Co., Ltd.), 50 parts of novolak type epoxy resin (trade name: DEN431, manufactured by Dow Chemical Co., Ltd.), cresol novolac type epoxy 100 parts of resin (trade name: ESCN-220F, manufactured by Sumitomo Chemical Co., Ltd.) was blended, and 0.3 part of acetylacetone iron was dissolved in methyl ethyl ketone as a curing catalyst and added. Liquid epoxidized polybutadiene resin (trade name: E-1000-8.0, manufactured by Nippon Petrochemical Co., Ltd.), epoxy resin powder (trade name: Trepal EP-B, average particle size 0.5 μm) , Toray Co., Ltd.) was added, and the mixture was well stirred and mixed to obtain a uniform varnish B. This varnish B was applied to a mat surface of a 12 μm-thick copper foil (matt surface irregularities 3.6 to 5.1 μm, average roughness Rz: 4.3 μm) obtained by subjecting the copper foil surface to nickel treatment, and then dried. An additive B stage with a copper foil having a thickness of 50 μm (gelation time at 170 ° C. of 59 seconds) resin composition sheet C was produced from the tip of the convex portion of the matte surface.
[0043]
On the other hand, a BT resin double-sided copper-clad laminate (trade name: CCL-HL830, manufactured by Mitsubishi Gas Chemical Co., Ltd.) using an insulating layer thickness of 0.2 mm and a 12 μm copper foil as the inner layer plate is used. After drilling 150,000 through-holes with a diameter of 250 μm using a metal drill, forming a circuit on the hole, and performing black copper oxide treatment on the copper foil, the additive B-stage resin composition sheet C with the copper foil on both sides The temperature was raised from room temperature to 160 ° C. in 25 minutes, the pressure was initially 15 kgf / cm 2 , and the degree of vacuum was 5 Torr or less and maintained at 160 ° C. for 30 minutes for curing treatment. Thereafter, it was cooled and taken out to obtain a four-layered multilayer board D. On the copper foil on this surface, a blind via hole having a hole diameter of 100 μm was formed by irradiating one shot at a carbon dioxide laser output of 12 mJ, and a through hole having a hole diameter of 120 μm was formed by irradiating 5 shots at 20 mJ. All of the copper foil on the surface layer and the copper foil burrs overhanging the inner layer were dissolved and removed while passing the SUEP solution through the holes, and then the additive resin composition with potassium permanganate desmear solution (Nippon McDermid Co., Ltd.). Was swelled, desmeared (dissolved), and neutralized to make the recesses from the resin surface 3.7 to 5.0 μm (average roughness Rz: 4.1 μm). At the same time, the resin layer remaining at the bottom of the blind via hole was dissolved and removed. Next, an electroless copper plating layer of 0.5 μm and an electrolytic copper plating of 18 μm are attached to the roughened surface, and the temperature is gradually raised from 100 ° C. to 150 ° C. in 30 minutes, and the temperature is gradually increased to 200 ° C. The resulting solution was heated to 200 ° C. and cured by heating at 200 ° C. for 60 minutes. Using this, a copper conductor circuit was formed by a semi-additive method to obtain a printed wiring board. The evaluation results are shown in Table 1.
[0044]
(Example 2)
500 parts of bisphenol A type epoxy resin (trade name: Epicote 1001, manufactured by Japan Epoxy Resin Co., Ltd.), 450 parts of phenol novolac type epoxy resin (trade name: DEN438, manufactured by Dow Chemical Co., Ltd.), imidazole curing agent (Product name: 2E4MZ, Shikoku Kasei Co., Ltd.) 30 parts, carboxyl group-modified acrylic multilayer structure organic powder (Product name: Staphyloid IM-301, average particle size 0.2 μm, Max... Particle size 0.5 μm ) 60 parts, 40 parts of finely pulverized silica (average particle size 2.4 μm), and 30 parts of acrylonitrile-butadiene rubber (trade name: Nipol 1031, manufactured by Nippon Zeon Co., Ltd.) were added to a solution obtained by dissolving and dispersing in methyl ethyl ketone. It was well dispersed with this roll to make Varnish E. This is continuously applied to one surface of an aluminum foil (trade name: 20CF1, manufactured by Nippon Electric Power Industry Co., Ltd.) having a thickness of 20 μm and a surface roughness of 2.1 to 5.5 μm (average roughness Rz: 4.0 μm). Then, an B-stage resin composition sheet for additive with aluminum foil (gelation time at 170 ° C. 110 seconds) with a 40 μm resin layer formed from the tip of the convex portion was produced. A protective polypropylene film having a thickness of 25 μm was placed, laminated continuously with a roll at a temperature of 100 ° C. and a linear pressure of 5 kgf / cm, wound up, and an additive B-stage resin composition sheet F with an aluminum foil was obtained.
[0045]
On the other hand, a conductor circuit is formed on an epoxy resin copper-clad laminate (trade name: CCL-EL150, manufactured by Mitsubishi Gas Chemical Co., Ltd.) having a thickness of 0.2 mm and a copper foil thickness of 12 μm. After the copper treatment, the polypropylene protective film of the additive B-stage resin composition sheet F with aluminum foil is peeled off and placed on both sides, and after being charged into a press machine, the temperature is gradually raised from room temperature to 160 ° C. in 25 minutes. The pressure was set to 15 kgf / cm 2 from the beginning, and after curing by holding at a temperature of 165 ° C. for 30 minutes at a vacuum degree of 0.5 Torr or less, cooling was performed to obtain a four-layer multilayer board G. From this, six shots were radiated with carbon dioxide laser energy of 20 mJ to form through holes with a hole diameter of 100 μm. Further, 101 shots were irradiated with UV-YAG laser energy of 0.07 mJ to form blind via holes with a hole diameter of 50 μm. The aluminum foil on the surface was dissolved and removed with a 10% hydrochloric acid solution, and then the additive resin composition layer was roughened with a chromic acid solution. The total unevenness from the surface layer was 3.7 to 5.7 μm, and the average roughness Rz: 4 3 μm. Next, 0.7 μm of electroless copper plating and 19 μm of electrolytic copper plating are attached to the roughened surface, put in a heating furnace, gradually increase the temperature from 100 ° C. to 150 ° C. in 30 minutes, and then gradually increase the temperature further. And cured by heating at 170 ° C. for 60 minutes. Using this, a conductor circuit was formed by a semi-additive method, and the conductor circuit was further treated with black copper oxide, and similarly laminated and processed to produce a six-layer multilayer printed wiring board. The evaluation results are shown in Table 1.
[0046]
(Comparative Example 1)
In Example 1, punching was performed in the same manner without using the copper foil of the surface layer, and a printed wiring board was obtained in the same manner. The evaluation results are shown in Table 1.
(Comparative Example 2)
In Example 2, the aluminum foil was removed, and a through hole having a hole diameter of 100 μm was formed with a metal drill. In addition, blind via holes were similarly drilled with a UV-YAG laser and processed in the same manner to produce a 6-layer board, and a 6-layer printed wiring board was similarly produced. The evaluation results are shown in Table 1.
[0047]
Figure 2004319887
[0048]
<Measurement method>
1) Circuit shorts / cuts: 200 comb circuits with line / space = 50/50 μm were formed, and the number of shorts / cuts generated was counted. The number of occurrences is shown in the molecule.
2) Through-hole land breakage: Lands were formed in the through-holes, 500 holes were observed, the number of land breakage was counted, and indicated in the molecule. Since Example 1 and Comparative Example 1 were intended for a hole diameter of 120 μm, the land diameter was formed at 170 μm with +50 μm, and Example 2 and Comparative Example 2 were formed with a hole diameter of 100 μm, and the land diameter was formed at 150 μm with +50 μm.
3) Glass transition temperature: It was assumed in accordance with the DMA method of JIS C6481, using a cured product in which only the additive resin was 0.8 mm thick.
4) Migration resistance: In each example and comparative example, the gap between the hole walls is 150 μm, 1000 holes are alternately connected to the front and back, and this test piece is applied at 85 ° C./85% RH, 50 VDC to insulate resistance between the hole walls. The value was measured.
5) Through-hole heat cycle test: 100 through-holes were tested at -65 ° C ← → + 150 ° C for one cycle for 200 cycles, and the maximum value of the resistance change rate was shown.
6) Machining speed: The time for machining 900 blocks into one block and processing 70 blocks (total 63,000 holes) is shown.
[0049]
【The invention's effect】
After the additive B-stage resin composition layer with metal foil is heated on the surface of the inner layer plate to form an adhesive and cured, the surface of the metal foil-clad plate is directly irradiated with laser to blind via holes and / or through holes. Since there is no contamination of the resin composition surface by forming holes, the copper plating after performing desmear treatment after dissolving and removing the copper foil burrs generated on all surface layer metal foils and inner layer copper foils In the formation of a thin line circuit, there is no occurrence of a defect such as a short circuit or a pattern cut, and a high-density printed wiring board can be produced. In addition, the machining speed is much faster than when drilling, the productivity is good, and the economy is excellent.

Claims (4)

内層板の表面に金属箔付きアディティブ用Bステージ樹脂組成物層を加圧、加熱して接着形成し、硬化処理した後に、この金属箔張板の表面に直接レーザーを照射して孔を形成する孔形成方法。Pressurize and heat the additive B-stage resin composition layer with metal foil on the surface of the inner layer plate, bond and form it, and after curing, form a hole by directly irradiating the surface of this metal foil plate with laser Hole formation method. 該金属箔がアルミニウム箔である請求項1記載のレーザーによる孔形成方法。The method for forming holes by laser according to claim 1, wherein the metal foil is an aluminum foil. 該金属箔が銅箔で、その表面に炭酸ガスレーザーエネルギーの吸収性がある処理を施したもの使用することを特徴とする請求項1記載のレーザーによる孔形成方法。2. The method for forming a hole by a laser according to claim 1, wherein the metal foil is a copper foil and the surface thereof is subjected to a treatment capable of absorbing carbon dioxide laser energy. 該金属箔付きアディティブ用Bステージ樹脂組成物層を内層板に加圧、加熱して接着形成し、硬化処理した後に、この金属箔張板の表面に直接レーザーを照射して孔を形成し、次いで表層金属箔全て及び孔部に張り出した内層銅箔のバリを薬液で溶解除去してからデスミア処理を行って樹脂表面を粗化し、銅メッキを行い、回路を形成することを特徴とする請求項1又は2、あるいは3記載のレーザーによる孔形成した基板を用いたプリント配線板の製造方法。Pressurize and heat the B-stage resin composition layer for additive with metal foil, heat and form it, and after curing, form a hole by direct laser irradiation on the surface of the metal foil tension plate, Next, all the surface layer metal foil and the burrs of the inner layer copper foil protruding in the hole are dissolved and removed with a chemical solution, and then the desmear treatment is performed to roughen the resin surface, copper plating is performed, and a circuit is formed. Item 4. A method for producing a printed wiring board using a substrate in which holes are formed by laser according to item 1 or 2.
JP2003114165A 2003-04-18 2003-04-18 Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board Pending JP2004319887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114165A JP2004319887A (en) 2003-04-18 2003-04-18 Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114165A JP2004319887A (en) 2003-04-18 2003-04-18 Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board

Publications (1)

Publication Number Publication Date
JP2004319887A true JP2004319887A (en) 2004-11-11

Family

ID=33473841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114165A Pending JP2004319887A (en) 2003-04-18 2003-04-18 Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board

Country Status (1)

Country Link
JP (1) JP2004319887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129147A (en) * 2005-11-07 2007-05-24 Hitachi Via Mechanics Ltd Printed wiring board using laser processing and its manufacturing method
JP2009170911A (en) * 2008-01-15 2009-07-30 Samsung Electro-Mechanics Co Ltd Printed circuit board, and manufacturing method thereof
KR20110006626A (en) * 2009-07-14 2011-01-20 아지노모토 가부시키가이샤 Copper clad adhesive film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129147A (en) * 2005-11-07 2007-05-24 Hitachi Via Mechanics Ltd Printed wiring board using laser processing and its manufacturing method
JP4694349B2 (en) * 2005-11-07 2011-06-08 日立ビアメカニクス株式会社 Printed wiring board using laser processing and manufacturing method thereof
JP2009170911A (en) * 2008-01-15 2009-07-30 Samsung Electro-Mechanics Co Ltd Printed circuit board, and manufacturing method thereof
US7992296B2 (en) 2008-01-15 2011-08-09 Samsung Electro-Mechanics Co., Ltd. PCB and manufacturing method thereof
KR20110006626A (en) * 2009-07-14 2011-01-20 아지노모토 가부시키가이샤 Copper clad adhesive film
JP2011040727A (en) * 2009-07-14 2011-02-24 Ajinomoto Co Inc Adhesive film with copper foil
KR101682886B1 (en) 2009-07-14 2016-12-06 아지노모토 가부시키가이샤 Copper clad adhesive film

Similar Documents

Publication Publication Date Title
US6736988B1 (en) Copper-clad board suitable for making hole with carbon dioxide laser, method of making hole in said copper-clad board and printed wiring board comprising said copper-clad board
JP2003340952A (en) Method for manufacturing b-stage resin composition sheet containing fibrous cloth base material for additive
JP2003313324A (en) Method for manufacturing base material-filled b-staged resin composition sheet
JP2003249751A (en) Method for producing multilayer printed wiring board using additive method
JP2004319887A (en) Method for boring additive resin composition substrate by means of laser and process for producing printed wiring board
JP2001260274A (en) B-stage resin sheet with both face-treated copper foil for preparing copper-clad sheet and its printed wiring board
JP2003283141A (en) B-stage resin composition sheet with metal foil for additive
JP4888517B2 (en) Method for manufacturing printed circuit board for extra fine wire circuit
JP2003238772A (en) Curable resin composition and sheet of b-stage resin composition
JP2003249764A (en) Manufacturing method for b-stage resin composition sheet containing base for additive
JP2003246843A (en) Curable resin composition
JP2003332734A (en) Method of manufacturing printed wiring board using additive method
JP2004319888A (en) Multilayer printed circuit board
JP2003258434A (en) B-stage resin composition sheet containing heat-resistant film substrate for additive
JP2001262372A (en) Double-face treated copper foil suitable for carbon- dioxide laser perforating
JP2003298243A (en) Multilayer printed-wiring board
JP2005045046A (en) Process for producing multilayer printed wiring board
JP2003251739A (en) Sheet of b-stage resin composition with metal leaf containing base material for additive
JP2004273911A (en) Method for manufacturing superthin-wire circuit printed wiring board
JP2004158740A (en) Drilling method using carbon dioxide gas laser having superior accuracy of drilling into additive substrate
JP2001347598A (en) Copper-clad sheet suitable for carbon dioxide laser perforation, and high density printed wiring board using the same
JP2004165411A (en) Method of manufacturing extremely thin copper foil-plated board excellent in thickness uniformity of copper foil
JP2004281872A (en) Method for forming hole by laser
JP2004342827A (en) Multilayer printed circuit board
JP2004165255A (en) B stage resin composition sheet filled with heat-resistant film base superior in adhesion to resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090610